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Two Kinds of Issues

One issue with the design and analysis of
experimental data is at the design stage to defeat as
many common sources of false results as possible.
Methods that help with this include randomization,
controlling treatment assignment, blocking,
adequate sample size, and appropriate comparisons.

The other kind of issue happens when many things
are measured at once, as in proteomics,
metabolomics, or transcriptomics.
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The design issues are always important, but the
multiple readouts add additional complications both
to the design stage and the analysis stage.

Analyzing results from proteomics, metabolomics,
etc. may need professional help, both the get the
project funded (in the grant application) and to
complete the design and analysis.

We will look into these issues at the end of the
quarter, but complete coverage is a course in itself.
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Reference Distributions

If we are comparing a set of results under one
condition with a set of results under another, we
need a reference distribution to see if the difference
(say in means) that we observe would be unusual if
only chance were playing a role. We often use a
significance test that gives us a p-value, which is the
probability that a result this large or larger could
have happened by chance.

One method might be a two-sample t-test that you
would have learned about in your previous statistics
class, but this is a derived idea, not the basic idea of
comparison.
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time method yield

1 A 89.7

2 A 81.4

3 A 84.5

4 A 84.8

5 A 87.3

6 A 79.7

7 A 85.1

8 A 81.7

9 A 83.7

10 A 84.5

11 B 84.7

12 B 86.1

13 B 83.2

14 B 91.9

15 B 86.3

16 B 79.3

17 B 82.6

18 B 89.1

19 B 83.7

20 B 88.5

These are the data from Table 3.1 in BHH and
show the yield from 10 runs with the standard
method (A) and 10 with a possibly improved
method (B).

The “standard analysis” is based on the
two-sample t-distribution and depends on
“assumptions” that the observations are
statistically independent and approximately
normally distributed.
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> yield1 <- read.table("tab0301.dat",header=T)

> t.test(yield~method,data=yield1)

Welch Two Sample t-test

data: yield by method

t = -0.88158, df = 17.129, p-value = 0.3902

alternative hypothesis: true difference in means between group A and group B

is not equal to 0

95 percent confidence interval:

-4.409417 1.809417

sample estimates:

mean in group A mean in group B

84.24 85.54

The yield from the new method is higher than the yield
from the standard method by 1.30, but not by enough to
be “significant”. One possibility is that this is because of
serial correlation between successive yields (which turns
out to be true).
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This could have been fixed in the design stage by
not running all the standard ones first and then the
new ones.

Usually, this could not be fixed after collecting the
data, but in this case they had 210 past
observations of the standard method.

Suppose we compute the difference of 10 vs. the
next 10, of which the starting index is 1, 2, . . . , 191.

Then this set of 191 differences forms a new
reference set that has the same correlation structure
as the A/B data set.
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File ‘‘RandBlocks.R’’

-------------------------------------------------------

yield1 <- read.table("tab0301.dat",header=T)

yield2 <- read.table("tab03B1.dat",header=T)

refdis <- function(){

ref1 <- rep(0,191)

for (i in 1:191){

j <- i+10

mn1 <- mean(yield2$obs[i:(i+9)])

mn2 <- mean(yield2$obs[j:(j+9)])

ref1[i] <- mn2-mn1

}

return(ref1)

}

ref1 <- refdis()

print(t.test(yield~method,data=yield1)$estimate %*%c(-1,1))

print(sum(ref1 > 1.30))

print(sum(ref1 == 1.30))

print(sum(ref1 < -1.30))

print(sum(ref1 == -1.30))
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yield1 <- read.table("tab0301.dat",header=T)

yield2 <- read.table("tab03B1.dat",header=T)

ref1 <- refdis()

print(t.test(yield~method,data=yield1)$estimate %*%c(-1,1))

print(sum(ref1 > 1.30))

print(sum(ref1 == 1.30))

print(sum(ref1 < -1.30))

print(sum(ref1 == -1.30))

--------------------------------------------------------------------------

> source("RandBlocks.R")

[,1]

[1,] 1.3

[1] 9

[1] 0

[1] 7

[1] 0

> 9/191

[1] 0.04712042

> 16/191

[1] 0.08376963

The difference observed could be significant, depending
on whether the one-sided test was appropriate, but the
p-value is in any case much smaller.
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Ordinarily, we cannot construct a reference
distribution from a large collection of previous null
tests.

This means that we must anticipate the problem,
and forestall it through design.

Block what you can and randomize to forestall the
influences that you cannot block on.

To compare two things, we have the two-sample
t-test and the paired t-test and associated
confidence intervals for measured outcomes.

For counted outcomes we have chi-square tests and
tests and intervals for differences of proportions.
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Fully Randomized Designs

In the context of a two-sample tests, a completely
randomized design is a way of generating the most
important assumptions of the two-sample t-test.

If I want to measure blood coagulation time in
C57BL/6 mice and I want 4 mice in each group
with two diets, I can take the labels of the mice and
randomly assign each to a diet so that there are 4
with each diet.

If we can perform 8 assays per day, then I can assign
8 samples from two treatments randomly to the 8
times. We can do this as well with more than two
treatments.
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Variance Assumptions

There is a two-sample t-test method that treats the
variance in each group as the same, but the method
that does not make that assumption is better
because it works over a larger range of
circumstances.

If the sample standard deviations of the two groups
are s1 and s2, then the usual two-sample t-test has
denominator

√
s21/n1 + s22/n2 and the equal

variance one has denominator
√

s2(1/n1 + 1/n2)
where s2 = [(n1 − 1)s21 + (n2 − 1)s22 ]/(n1 + n2 − 2).

David M. Rocke Randomized Block Designs February 6, 2024 12 / 55



Variance Assumptions

When there are more than two groups, there is more
than one comparison, and if we allowed separate
estimates of variance for each group, things would
get really complicated. The number of comparisons
with k groups is k(k − 1)/2 or ∞ depending on
assumptions.

So for more than two groups, we estimate a
common variance for the combined within group
variability.
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Blood Coagulation Time Example

Table 4.1 shows blood coagulation time for 24
animals, six each on each of four diets. The animals
were (conceptually) numbered 1 to 24 and were
placed in a random order (called run in the data set)
and assigned to diets A, B, C, and D.

There are many hypotheses we could test. If we let
µA, µB , µC , and µD be the true mean coagulation
time for the four diets, meaning that if we tested
1000 animals each we would get that mean, then
one hypothesis concerns if chance alone could
explain the different means.
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> coag <- read.table("tab0401.dat",header=T)

> coag

run diets y

1 20 A 62

2 2 A 60

3 11 A 63

4 10 A 59

5 5 A 63

6 24 A 59

7 12 B 63

8 9 B 67

9 15 B 71

10 14 B 64

11 4 B 65

12 8 B 66

13 16 C 68

14 7 C 66

15 1 C 71

16 17 C 67

17 13 C 68

18 21 C 68

19 23 D 56

20 3 D 62

21 6 D 60

22 18 D 61

23 22 D 63

24 19 D 64

This hypothesis would be that all the means are equal

H0 : µA = µB = µC = µD .

This means that not only is the difference of any two
means equal to 0, but any linear combination of the
means where the coefficients add to 0 (called a
contrast) is then 0.

6µA − 2µB + µC − 5µD = 0

We estimate the variance of the values within each
group together as a single quantity.
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In effect, we are comparing two models of the data.
One is that y ∼ diets, where the mean coagulation
time depends on the diet and is the same within the
diet, and one is y ∼ 1, where all the animals have
the same mean coagulation time, regardless of diet.

In the first case, we are estimating four means
(x̄1,x̄2,x̄3,x̄4)and a variance, and in the second case,
one mean x̄ = mean(x̄i) and a variance.

The random assignment of diets to animals means
that any systematic other effect (cage location for
example) is averaged out.
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> coag.lm <- lm(y~diets,data=coag)

> summary(coag.lm)

Call:

lm(formula = y ~ diets, data = coag)

Residuals:

Min 1Q Median 3Q Max

-5.00 -1.25 0.00 1.25 5.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.100e+01 9.661e-01 63.141 < 2e-16 ***

dietsB 5.000e+00 1.366e+00 3.660 0.00156 **

dietsC 7.000e+00 1.366e+00 5.123 5.18e-05 ***

dietsD -9.999e-15 1.366e+00 0.000 1.00000

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.366 on 20 degrees of freedom

Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212

F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.100e+01 9.661e-01 63.141 < 2e-16 ***

dietsB 5.000e+00 1.366e+00 3.660 0.00156 **

dietsC 7.000e+00 1.366e+00 5.123 5.18e-05 ***

dietsD -9.999e-15 1.366e+00 0.000 1.00000

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> predict(coag.lm,data.frame(diets=c("A","B","C","D")))

1 2 3 4

61 66 68 61

> with(coag,tapply(y,diets,mean)) #predictions = means in one-way ANOVA

A B C D

61 66 68 61

61 Intercept = default level A

66 Intercept + dietsB = 61 + 5 #dietsB = mean(B) - mean(A)

68 Intercept + dietsC = 61 + 7 #dietsC = mean(C) - mean(A)

61 Intercept + dietsD = 61 + 0 #dietsD = mean(D) - mean(A)

Diets B and C differ in coagulation from diet A. Diet D
does not differ from Diet A. Do diets B and C differ?
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> coag.lm <- lm(y~diets,data=coag)

Residual standard error: 2.366 on 20 degrees of freedom

Multiple R-squared: 0.6706, Adjusted R-squared: 0.6212

F-statistic: 13.57 on 3 and 20 DF, p-value: 4.658e-05

> anova(coag.lm)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

diets 3 228 76.0 13.571 4.658e-05 ***

Residuals 20 112 5.6

Residual standard error is the square root of the
combined within-diet variance (

√
5.6 = 2.366).

The F-statistic (MS-diets/MS-error) is a test of the
hypothesis that all means are equal. The variance of the
model without diet is (128 + 112)/23 = 14.78 which is
much bigger than the within-diets variance of 5.6.
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The next 3 slides show
what results from
plot(coag.lm). From
this plot, no outliers,
and approximately
equal variance.
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If the errors were
normally distributed,
then the points would
be near the line. The
rows of points result
from the book rounding
to make things whole
numbers.
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The residuals from diet
B are a little smaller in
absolute value, but
nothing shocking.
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The plot of residuals vs.
run order. Nothing
problematic.

plot(residuals(coag.lm) ∼ run,

data=coag)
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Means and Differences

The concept of the mean coagulation time for a diet
is less important than that of the differences
between diets.

There are four diets and therefore six differences to
consider. Three of these are the coefficients of diet
and confidence intervals are attached, so we have
data on A vs. B, A vs. C, and A vs. D.

We can retrieve confidence intervals for the other
ones by means of contrasts.
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Means and Differences

There are four levels in the factor diets. The
coefficient in the model called the Intercept is the
prediction for the default level of diet; i.e., diet A.

The coefficient labeled dietsB represents the
difference between diet B and diet A.

The coefficient labeled dietsC represents the
difference between diet C and diet A.

So the difference dietsB − dietsC is
(B − A)− (C − A) = B − C

The estimated difference between diet C and diet B
is the difference of the coefficients.
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> coef(coag.lm)

(Intercept) dietsB dietsC dietsD

6.100000e+01 5.000000e+00 7.000000e+00 -9.999406e-15

> vcov(coag.lm)

(Intercept) dietsB dietsC dietsD

(Intercept) 0.9333333 -0.9333333 -0.9333333 -0.9333333

dietsB -0.9333333 1.8666667 0.9333333 0.9333333

dietsC -0.9333333 0.9333333 1.8666667 0.9333333

dietsD -0.9333333 0.9333333 0.9333333 1.8666667

Estimated difference between diet C and diet B is
7− 5 = 2. The variance of a difference x − y is
var(x) + var(y)− 2cov(x , y).
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If the coefficient vector is b = coef(coag.lm) and the
covariance matrix is V = vcov(coag.lm) and if
c = (0,−1, 1, 0) then the difference between diet C and
diet B is c⊤b and the variance is c⊤Vc .

> c1 <- c(0,-1,1,0)

> t(c1) %*% coef(coag.lm)

[,1]

[1,] 2

> t(c1) %*% vcov(coag.lm) %*% c1

[,1]

[1,] 1.866667

> sqrt(t(c1) %*% vcov(coag.lm) %*% c1)

[,1]

[1,] 1.36626
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> summary(coag.lm)

Call:

lm(formula = y ~ diets, data = coag)

Residuals:

Min 1Q Median 3Q Max

-5.00 -1.25 0.00 1.25 5.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.100e+01 9.661e-01 63.141 < 2e-16 ***

dietsB 5.000e+00 1.366e+00 3.660 0.00156 **

dietsC 7.000e+00 1.366e+00 5.123 5.18e-05 ***

dietsD -9.999e-15 1.366e+00 0.000 1.00000

Estimated difference between diet C and diet B is
7− 5 = 2. The standard deviation of the difference is
1.36626 from the previous slide. Due to the balance of
the design, this is the same as the other three differences.
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Randomized Block Designs

Here we have a factor/variable that is of main
concern as well as a second factor (“block”) that is
thought to possibly influence the results in a way
that might not be reproducible or controllable.

In the tomato yield experiment from Lecture 1, the
tomato plants were in pairs in the same part of the
greenhouse, which might influence yield, and then
within the pair one plant was assigned at random to
each fertilizer. Here the fertilizer is the factor of
interest, and the pair of plants/location in the
greenhouse are the blocks.
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Penicillin Data

The penicillin data from Table 4.4 propose the investigation of
four variants of the process, called A, B, C, and D. In addition,
one raw material (corn steep liquor) was found to be variable
and also influential of the yield of penicilllin. This kind of
effect is often found in batches of reagent, particularly
biologicals such as antibodies.

In this instance, a batch of the ingredient, called “blends” here
but functioning as “blocks” could accommodate four runs, so
each treatment could be run once in each block.

The run order of A, B, C, and D within the blend (block) was
randomized and is given as a separate variable in the data set.
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> penicillin <- read.table("tab0404.dat",header=T)

> penicillin

run blend treatment y

1 1 1 A 89

2 4 2 A 84

3 2 3 A 81

4 1 4 A 87

5 3 5 A 79

6 3 1 B 88

7 2 2 B 77

8 1 3 B 87

9 3 4 B 92

10 4 5 B 81

11 2 1 C 97

12 3 2 C 92

13 4 3 C 87

14 2 4 C 89

15 1 5 C 80

16 4 1 D 94

17 1 2 D 79

18 3 3 D 85

19 4 4 D 84

20 2 5 D 88

Note that the run order is 1–4 within a block,
but is not otherwise given. There are five blends
and four treatments and each treatment occurs
once with each blend. Statistically, there are
two factors here which do not differ in
calculation but do differ in application. The
blend effect is not reproducible blend-to-blend,
but the treatment effect, being characteristics
of the process is reproducible. Blocks often, but
not always, have this character of importance
but not reproducibility.
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> penicillin$blend <- factor(penicillin$blend)

> pen.lm <- lm(y~blend+treatment,data=penicillin)

> summary(pen.lm)

Residuals:

Min 1Q Median 3Q Max

-5.00 -2.25 -0.50 2.25 6.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.000 2.745 32.791 4.1e-13 ***

blend2 -9.000 3.069 -2.933 0.01254 *

blend3 -7.000 3.069 -2.281 0.04159 *

blend4 -4.000 3.069 -1.304 0.21686

blend5 -10.000 3.069 -3.259 0.00684 **

treatmentB 1.000 2.745 0.364 0.72194

treatmentC 5.000 2.745 1.822 0.09351 .

treatmentD 2.000 2.745 0.729 0.48018

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.34 on 12 degrees of freedom

Multiple R-squared: 0.5964, Adjusted R-squared: 0.361

F-statistic: 2.534 on 7 and 12 DF, p-value: 0.07535
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> drop1(pen.lm,test="F")

Single term deletions

Model:

y ~ blend + treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 226 64.496

blend 4 264 490 71.973 3.5044 0.04075 *

treatment 3 70 296 63.893 1.2389 0.33866

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(pen.lm,col=penicillin$blend,lwd=2)

Blends seem to have a detectable effect, but the
evidence that treatments differ is not convincing. The
best of them looks to be C, but more testing or other
variants of the process may be needed. What is it about
blend 1 that led to the high yields? Blend 4 - Blend 5?
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> coef(pen.lm)

(Intercept) blend2 blend3 blend4 blend5 treatmentB treatmentC treatmentD

90 -9 -7 -4 -10 1 5 2

> print(round(vcov(pen.lm),3))

(Intercept) blend2 blend3 blend4 blend5 treatmentB treatmentC treatmentD

(Intercept) 7.533 -4.708 -4.708 -4.708 -4.708 -3.767 -3.767 -3.767

blend2 -4.708 9.417 4.708 4.708 4.708 0.000 0.000 0.000

blend3 -4.708 4.708 9.417 4.708 4.708 0.000 0.000 0.000

blend4 -4.708 4.708 4.708 9.417 4.708 0.000 0.000 0.000

blend5 -4.708 4.708 4.708 4.708 9.417 0.000 0.000 0.000

treatmentB -3.767 0.000 0.000 0.000 0.000 7.533 3.767 3.767

treatmentC -3.767 0.000 0.000 0.000 0.000 3.767 7.533 3.767

treatmentD -3.767 0.000 0.000 0.000 0.000 3.767 3.767 7.533

> c1 <- c(0,0,0,1,-1,0,0,0) #Contrast for blend 4 - blend 5

> pen.coef <- coef(pen.lm)

> pen.vcov <- vcov(pen.lm)

> t(c1) %*% pen.coef

6 #Difference in predicted values (coefficients)

> t(c1) %*% pen.vcov %*% c1

9.416667

> diff45 <- t(c1) %*% pen.coef

> se45 <- sqrt(t(c1) %*% pen.vcov %*% c1)

3.068659 #Standard error of the difference, same as others

> t45 <- diff45/se45

1.955252 #t-statistics (12df)

> pt(t45,12,lower=F)

0.03712245 #One sided p-value
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 90.000 2.745 32.791 4.1e-13 ***

blend2 -9.000 3.069 -2.933 0.01254 *

blend3 -7.000 3.069 -2.281 0.04159 *

blend4 -4.000 3.069 -1.304 0.21686

blend5 -10.000 3.069 -3.259 0.00684 **

treatmentB 1.000 2.745 0.364 0.72194

treatmentC 5.000 2.745 1.822 0.09351 .

treatmentD 2.000 2.745 0.729 0.48018

> with(penicillin,tapply(y,blend,mean))

1 2 3 4 5

92 83 85 88 82

> with(penicillin,tapply(y,treatment,mean))

A B C D

84 85 89 86

The spacing of the means of blends across treatments
and of the treatments across blends is the same as the
spacing of the coefficients (because data are balanced).
Coefficients work even for unbalanced data.
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Blend 1 (black) has
four of the five highest
predicted yields, and
the residuals are closer
to the 0 line.
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All the large residuals
are from Blends 2–5.
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Again, blend 1 is less
variable.
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Interactions

One possible issue is the presence of interactions

This would mean that the differences in the
treatments might themselves differ among the
blends.

If A is better than B on blend 1, but B is better than
A on blend 2, then this complicates the analysis.

We could ordinarily test for this by fitting a model
that contains interaction terms, but this requires
replicated data in the cells.

In the presence of important interaction, we should
see some signs of trouble in the plots.
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Latin Squares

Sometimes there is more than one blocking variable
that needs to be considered.

The auto emissions example in Table 4.8 supposes
that we are investigating four gasoline additives (A,
B, C, D) that might reduce tailpipe emissions.

In road tests, the driver of the car might matter, as
might the physical car itself.

With four drivers, four cars, and four additives, all
possible combinations would require 4× 4× 4 = 64
experiments
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Latin Squares

64 runs might be more expensive than desired, at
least for a preliminary trial.

Sometimes a blocking factor, such as batches of
reagent, may have a limited number of runs that it
can support.

For either of both reasons, a smaller set of
experiments may be the way to start.
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California Reformulated Gasoline

California regulations on gasoline are stricter than
the EPA national regulations.

These include limits on vapor pressure (for
evaporative emissions), sulfur, benzene, total
aromatics, olefins, and distillation temperature T50
and T90, among others.

Refiners could adopt alternative limits only with
extensive testing, so CARB developed the predictive
model for emission.
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California Predictive Model

The database for the development of the predictive
model had tests on over 1000 vehicles, each with
multiple fuels from among over 200 different
formulations, with the output of the tests (similar to
the “smog check”) in emissions of O3, NOx (NO
and NO2), CO, SO2, PM10, and PM2.5.

Predicted emissions derived from these data (first in
the 1990’s) were able to be used by refiners to
qualify additional blends as acceptable, and the
additional flexibility reduced the extra cost of the
tighter gasoline regulations.
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> emit <- read.table("tab0408.dat",header=T)

> emit

driver cars additive y

1 1 1 A 19

2 2 1 D 23

3 3 1 B 15

4 4 1 C 19

5 1 2 B 24

6 2 2 C 24

7 3 2 D 14

8 4 2 A 18

9 1 3 D 23

10 2 3 A 19

11 3 3 C 15

12 4 3 B 19

13 1 4 C 26

14 2 4 B 30

15 3 4 A 16

16 4 4 D 16

Each driver drove each car once for a
total of 16 runs.

Each car was driven with each additive.

Each driver drove with each additive. (1
with A, B, D, C), (2 with D, C, A, B),
etc.

But a given additive was not tested with
all combinations of car and driver (A
with D1C1, D4C2, D2C3, and D3C4).

There are enough data (16) to fit
intercept (1 df), drivers (3 df), cars (3
df), and additives (3 df), with 6 df left to
estimate the error.
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Fuel Additive Assignments for Car/Driver Pairs

Car1 Car2 Car3 Car4
Driver1 A B C D
Driver2 D C A B
Driver3 B D C A
Driver4 C A B D
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Latin Squares

There are n × n Latin squares for every value of n.

The number of distinct Latin squares grows rapidly
with n; for example, there are 576 4× 4 Latin
squares, 161,280 5× 5 Latin squares, and
812,851,200 6× 6 Latin squares.

The function latin in the R package magic can
construct a random Latin square of any size.

Any Latin square can be used with two blocking
factors and one treatment factor, but blocks and
treatments must be randomly assigned to the labels
for treatments and blocks.
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Analysis of Latin Square Designs

When the Latin Square is set up as a data frame,
one can analyze it as a three-factor anova using the
command lm().

If any of the blocks/treatment factors are likely to
have an interaction, then this is not a suitable
design.

Use drop1() to check significance unless n = 2.

The coefficient values can be used to obtain
predictions for each level of the treatment.
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> emit <- read.table("tab0408.dat",header=T)

> emit$driver <- factor(emit$driver)

> emit$cars <- factor(emit$cars)

> emit

driver cars additive y

1 1 1 A 19

2 2 1 D 23

3 3 1 B 15

4 4 1 C 19

5 1 2 B 24

6 2 2 C 24

7 3 2 D 14

8 4 2 A 18

9 1 3 D 23

10 2 3 A 19

11 3 3 C 15

12 4 3 B 19

13 1 4 C 26

14 2 4 B 30

15 3 4 A 16

16 4 4 D 16

The driver and cars predictors have to be
changed to a factor because they are not
numerical.

The predictor additive is a character
variable, but those are automatically
changed to factors when used in lm().

Our model will use three predictors, the
two blocking factors driver and cars and
the treatment additive.
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> summary(emit.lm)

Residuals:

Min 1Q Median 3Q Max

-3 -1 0 1 2

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.000e+01 1.826e+00 10.954 3.44e-05 ***

driver2 1.000e+00 1.633e+00 0.612 0.56276

driver3 -8.000e+00 1.633e+00 -4.899 0.00271 **

driver4 -5.000e+00 1.633e+00 -3.062 0.02217 *

cars2 1.000e+00 1.633e+00 0.612 0.56276

cars3 -1.904e-15 1.633e+00 0.000 1.00000

cars4 3.000e+00 1.633e+00 1.837 0.11584

additiveB 4.000e+00 1.633e+00 2.449 0.04983 *

additiveC 3.000e+00 1.633e+00 1.837 0.11584

additiveD 1.000e+00 1.633e+00 0.612 0.56276

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.309 on 6 degrees of freedom

Multiple R-squared: 0.8974, Adjusted R-squared: 0.7436

F-statistic: 5.833 on 9 and 6 DF, p-value: 0.0219

Additive predicted
values are 20, 24, 23,
and 21 respectively.
The largest difference is
A to B, which is
statistically significant.
(Intercept = 20, which
is the predicted
emissions from additive
A with driver 1 and car
1).
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Fuel Additive Predicted Values for Car/Driver Pairs

Car1 Car2 Car3 Car4
Driver1 A 20 B 25 C 21 D 26
Driver2 D 22 C 25 A 21 B 28
Driver3 B 16 D 14 C 15 A 15
Driver4 C 18 A 16 B 19 D 19
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> drop1(emit.lm, test="F")

Single term deletions

Model:

y ~ driver + cars + additive

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 32 31.090

driver 3 216 248 57.853 13.5 0.004466 **

cars 3 24 56 34.044 1.5 0.307174

additive 3 40 72 38.065 2.5 0.156490

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(emit.lm)

There is no strong evidence that the additives differ in
emissions, but the strong effect of drivers has been
eliminated by use of the Latin square design. Some will
choose a model based on the AIC, which is
−2 ln(L) + 2k where L is the likelihood (basically the
residual SSE) and k is the number of parameters.
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> drop1(emit.lm, test="F")

Single term deletions

Model:

y ~ driver + cars + additive

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 32 31.090

driver 3 216 248 57.853 13.5 0.004466 **

cars 3 24 56 34.044 1.5 0.307174

additive 3 40 72 38.065 2.5 0.156490

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> plot(emit.lm)

The model with the smallest (best) AIC is the full model!
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