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Factorial Designs

A factorial design with p factors each of which is
defined at a discrete number of options is one in
which all possible combinations of the choices for
each factor is tested.

In this context, a factor can be actual discrete
options (catalyst A, catalyst B, catalyst C) or
distinct numerical setting (temp 250 ◦C, 260 ◦C,
270 ◦C). A factorial design with these choices would
run each of the nine combinations of factor levels,
one each, or perhaps twice each.
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Factorial Designs

A simple and efficient way to start is with all the
factors at two levels (catalyst A, catalyst B), (temp
250 ◦C, 270 ◦C).

This will give some idea of whether process yield
goes up or down with temperature and this can be
refined in subsequent experiments.

With p factors each at two levels, the number of
runs is a multiple of 2p.

So with 5 factors, there are 32 runs, or 64 if
replicated.
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A Conceptual Example

Suppose that the clarity of floor wax is influenced by
the formulation, with factors and a binary
qualitative readout of Clear/Cloudy

Name Definition of Factor Levels
A Amount of Emulsifier A less/more −1/1
B Amount of Emulsifier B less/more −1/1
C Amount of Catalyst C less/more −1/1

We can code the readout as 0/1 and incorporate all
this into a data frame. This is example 1 in section
5.2 of the text.
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> film

A B C clarity

1 -1 -1 -1 1

2 1 -1 -1 1

3 -1 1 -1 0

4 1 1 -1 0

5 -1 -1 1 1

6 1 -1 1 1

7 -1 1 1 0

8 1 1 1 0

> film.lm1 <- lm(clarity~A+B+C,data=film)

Note the pattern of factor levels in the 8 runs. The first
listed one has alternating −1 and +1, the second has
alternating repeats −1,−1 and +1, +1, and the third
has first 4 of −1 and then 4 of +1. Also, the dot
product of any two is zero, so the vectors are orthogonal.
A · B = 1+ (−1) + (−1) + 1 + 1+ (−1) + (−1) + 1 = 0
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> film

A B C clarity

1 -1 -1 -1 1

2 1 -1 -1 1

3 -1 1 -1 0

4 1 1 -1 0

5 -1 -1 1 1

6 1 -1 1 1

7 -1 1 1 0

8 1 1 1 0

> film.lm1 <- lm(clarity~A+B+C,data=film)

Note that the output (clarity) perfectly reflects factor B.
We will see in a formal analysis that only the B
coefficient is different from 0, and that the error in
prediction is 0. This is an extreme case of detecting a
factor that is important and two that are not important
(inert).
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> summary(film.lm1)

Call:

lm(formula = clarity ~ A + B + C, data = film)

Residuals:

1 2 3 4

-9.529e-17 1.530e-17 5.455e-17 2.544e-17

5 6 7 8

8.812e-17 -8.129e-18 -4.738e-17 -3.261e-17 #Residuals are all essentially 0

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.000e-01 2.743e-17 1.823e+16 <2e-16 *** # 0.5

A 2.179e-33 2.743e-17 0.000e+00 1.00 # 0.0

B -5.000e-01 2.743e-17 -1.823e+16 <2e-16 *** #-0.5

C 2.902e-17 2.743e-17 1.058e+00 0.35 # 0.0

Residual standard error: 7.758e-17 on 4 degrees of freedom #MSE essentially 0

Warning message:

In summary.lm(film.lm1) :

essentially perfect fit: summary may be unreliable
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Scaling

In section 5.4 of the text, a pilot plant investigation is
presented. The goal is to obtain the best response yield
from the setup (average of two replicates).

Factor Name Values −1/1 Coding 0/1 Coding
Temperature (◦C) T 160 −1 0
— — 180 1 1
Concentration (%) C 20 −1 0
— — 40 1 1
Catalyst K A −1 0
— — B 1 1
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-1/1 Coding as in the Book

> pilot

run T C K y

1 1 -1 -1 -1 60

2 2 1 -1 -1 72

3 3 -1 1 -1 54

4 4 1 1 -1 68

5 5 -1 -1 1 52

6 6 1 -1 1 83

7 7 -1 1 1 45

8 8 1 1 1 80

Actual Units

> pilot.a

run T C K y

1 1 160 20 A 60

2 2 180 20 A 72

3 3 160 40 A 54

4 4 180 40 A 68

5 5 160 20 B 52

6 6 180 20 B 83

7 7 160 40 B 45

8 8 180 40 B 80

0/1 Coding

> pilot.b

run T C K y

1 1 0 0 0 60

2 2 1 0 0 72

3 3 0 1 0 54

4 4 1 1 0 68

5 5 0 0 1 52

6 6 1 0 1 83

7 7 0 1 1 45

8 8 1 1 1 80
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> summary(pilot.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.250 2.531 25.385 1.43e-05 ***

T 11.500 2.531 4.544 0.0105 *

C -2.500 2.531 -0.988 0.3792

K 0.750 2.531 0.296 0.7817

------------------------------------------------------------

> summary(pilot.lma)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -124.5000 43.8392 -2.840 0.0469 *

T 1.1500 0.2531 4.544 0.0105 *

C -0.2500 0.2531 -0.988 0.3792

KB 1.5000 5.0621 0.296 0.7817

------------------------------------------------------------

> summary(pilot.lmb)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.500 5.062 10.766 0.000422 ***

T 23.000 5.062 4.544 0.010469 *

C -5.000 5.062 -0.988 0.379201

K 1.500 5.062 0.296 0.781735

Inferences are all
the same (except
for Intercept).
Coefficients and
standard errors
depend on coding
of values. In the
first and third
cases, all
coefficients have
the same SE. Effect
of T is 11.5 yield
per 10◦change, 23
yield per
20◦change, and is
1.15 per 1◦change.
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> cbind(pilot,predict(pilot.lm))

run T C K y predict(pilot.lm)

1 1 -1 -1 -1 60 54.5

2 2 1 -1 -1 72 77.5

3 3 -1 1 -1 54 49.5

4 4 1 1 -1 68 72.5

5 5 -1 -1 1 52 56.0

6 6 1 -1 1 83 79.0

7 7 -1 1 1 45 51.0

8 8 1 1 1 80 74.0

> pilot.pred <-cbind(pilot,predict(pilot.lm))

> pilot.pred[c(2,4,6,8),] - pilot.pred[c(1,3,5,7),]

run T C K y predict(pilot.lm)

2 1 2 0 0 12 23

4 1 2 0 0 14 23

6 1 2 0 0 31 23

8 1 2 0 0 35 23

The predicted change in yield between 160 ◦C to 180 ◦C is 23 averaged across
levels of C and K. If we want predictions of that change for specific values of C
and K, we get 12, 14, 31, and 35. Interactions are difference of those four
values from 23: 11, 9, -8, and -12.

David M. Rocke Factorial Designs at Two Levels February 13, 2024 11 / 64



> summary(lm(y~T*C*K,data=pilot))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.425e+01 NaN NaN NaN

T 1.150e+01 NaN NaN NaN

C -2.500e+00 NaN NaN NaN

K 7.500e-01 NaN NaN NaN

T:C 7.500e-01 NaN NaN NaN

T:K 5.000e+00 NaN NaN NaN

C:K -1.963e-15 NaN NaN NaN

T:C:K 2.500e-01 NaN NaN NaN

When C and K are −1 and T changes from −1 to 1, the
predicted yield changes from
64.25− 11.5 + 2.5− 0.75 + 0.75 + 5− 0.25 to
64.25 + 11.5 + 2.5− 0.75− 0.75− 5 + 0.25, a change of
23− 1.5− 10 + .5 = 12.
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> pilot.b

run T C K y

1 1 0 0 0 60

2 2 1 0 0 72

3 3 0 1 0 54

4 4 1 1 0 68

5 5 0 0 1 52

6 6 1 0 1 83

7 7 0 1 1 45

8 8 1 1 1 80

> summary(lm(y~T*C*K,data=pilot.b))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60 NaN NaN NaN

T 12 NaN NaN NaN

C -6 NaN NaN NaN

K -8 NaN NaN NaN

T:C 2 NaN NaN NaN

T:K 19 NaN NaN NaN

C:K -1 NaN NaN NaN

T:C:K 2 NaN NaN NaN

Change in T when C = K = 0 is 12. Change in T when
K = 0, C = 1 is 12 + 2 = 14. Easy in this coding.
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Coding

Coding on the original scale leads to predictions
from values on the original scale.

−1/1 coding has equal variances of coefficients and
is centered on the middle of the design.

0/1 coding has equal variance of coefficients and
makes interactions easily predict conditional
changes: result of changing temperature when C is
at the low level and K is at the default level. Terms
disappear if any of the variables is at the zero level.

Inferences about coefficients and models are the
same for any of them (except for the intercept).
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All of the codings have orthogonal main effects,
meaning that coefficients for the main effect of a
particular variable don’t change if other variables are
omitted.

The -1/1 coding has all main effects and
interactions orthogonal, which is a strong reason to
use it.

With 8 data points and 8 coefficients (intercept + 3
main + 3 two-way interactions + 1 three-way
interaction). All predictions are the data point and
the errors are 0.

Any of the codings can be used and the choice may
depend on habit or on the application.
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> pilot2 <- read.table("tab0503.dat",header=T)

> pilot2

run T C K y

1 6 -1 -1 -1 59

2 2 1 -1 -1 74

3 1 -1 1 -1 50

4 5 1 1 -1 69

5 8 -1 -1 1 50

6 9 1 -1 1 81

7 3 -1 1 1 46

8 7 1 1 1 79

9 13 -1 -1 -1 61

10 4 1 -1 -1 70

11 16 -1 1 -1 58

12 10 1 1 -1 67

13 12 -1 -1 1 54

14 14 1 -1 1 85

15 11 -1 1 1 44

16 15 1 1 1 81

Here we have the same design, but with replication at
each value of T, C, and K. Replication requires each
step to be re-performed, not just the final sample
analyzed twice. The replication should not immediately
follow the original; all 16 must be done in a random
order.,
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> summary(lm(y~T*C*K,data=pilot2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.425e+01 7.071e-01 90.863 2.40e-13 ***

T 1.150e+01 7.071e-01 16.263 2.06e-07 ***

C -2.500e+00 7.071e-01 -3.536 0.007670 **

K 7.500e-01 7.071e-01 1.061 0.319813

T:C 7.500e-01 7.071e-01 1.061 0.319813

T:K 5.000e+00 7.071e-01 7.071 0.000105 ***

C:K 7.216e-16 7.071e-01 0.000 1.000000

T:C:K 2.500e-01 7.071e-01 0.354 0.732810

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.828 on 8 degrees of freedom

Multiple R-squared: 0.9763, Adjusted R-squared: 0.9555

F-statistic: 47.05 on 7 and 8 DF, p-value: 7.071e-06

Temperature is important, higher is better.
Concentration is important, lower is better. The T*K
interaction is important, with catalyst B being better.
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> summary(lm(y~T*C*K,data=pilot2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.425e+01 7.071e-01 90.863 2.40e-13 ***

T 1.150e+01 7.071e-01 16.263 2.06e-07 ***

C -2.500e+00 7.071e-01 -3.536 0.007670 **

K 7.500e-01 7.071e-01 1.061 0.319813

T:C 7.500e-01 7.071e-01 1.061 0.319813

T:K 5.000e+00 7.071e-01 7.071 0.000105 ***

C:K 7.216e-16 7.071e-01 0.000 1.000000

T:C:K 2.500e-01 7.071e-01 0.354 0.732810

> round(coef(lm(y~T*C*K,data=pilot2)),3)

(Intercept) T C K

64.25 11.50 -2.50 0.75

T:C T:K C:K T:C:K

0.75 5.00 0.00 0.25

These coefficients are exactly half the size of the ones in Table 5.4. (23, -5, 1.5,
1.5, 10, 0, 0.5) because the one above are per unit change, and -1 to 1 is a unit
change of 2. The coefficients in Table 5.4 are the predicted change from the low
level to the high level.
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> summary(lm(y~T*C*K,data=pilot2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.425e+01 7.071e-01 90.863 2.40e-13 ***

T 1.150e+01 7.071e-01 16.263 2.06e-07 ***

C -2.500e+00 7.071e-01 -3.536 0.007670 **

K 7.500e-01 7.071e-01 1.061 0.319813

T:C 7.500e-01 7.071e-01 1.061 0.319813

T:K 5.000e+00 7.071e-01 7.071 0.000105 ***

C:K 7.216e-16 7.071e-01 0.000 1.000000

T:C:K 2.500e-01 7.071e-01 0.354 0.732810

When T goes up by 1 (which is 10◦), the T coefficient
adds 11.5 to the predicted yield. If catalyst A is used,
this increase is lowered by 5 to 6.5 and when catalyst B
is used this increase is raised by 5 to 16.5. So higher
temperature is better in either case, but has a higher
effect on yield with catalyst B.
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This interaction effect was surprising.

Catalysts A and B were supposedly identical from
different suppliers.

But the yield from catalyst B at 180 ◦C was the
highest that had been seen to date:

> pilot2

run T C K y

6 9 1 -1 1 81

8 7 1 1 1 79

14 14 1 -1 1 85

16 15 1 1 1 81
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> pilot2c <- with(pilot2,data.frame(cbind(T*0+1,T,C,K,T*C,T*K,C*K,T*C*K)))

> names(pilot2c) <- c("I","T","C","K","TC","TK","CK","TCK")

I T C K TC TK CK TCK

1 1 -1 -1 -1 1 1 1 -1

2 1 1 -1 -1 -1 -1 1 1

3 1 -1 1 -1 -1 1 -1 1

4 1 1 1 -1 1 -1 -1 -1

5 1 -1 -1 1 1 -1 -1 1

6 1 1 -1 1 -1 1 -1 -1

7 1 -1 1 1 -1 -1 1 -1

8 1 1 1 1 1 1 1 1

9 1 -1 -1 -1 1 1 1 -1

10 1 1 -1 -1 -1 -1 1 1

11 1 -1 1 -1 -1 1 -1 1

12 1 1 1 -1 1 -1 -1 -1

13 1 -1 -1 1 1 -1 -1 1

14 1 1 -1 1 -1 1 -1 -1

15 1 -1 1 1 -1 -1 1 -1

16 1 1 1 1 1 1 1 1

The columns are orthogonal in the sense that the dot
product of each two is zero, and all are orthogonal to the
intercept vector which is all +1 (contrasts).
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Orthogonality means that the coefficient of each
term stays the same regardless of which other terms
are in the model.

This is not generally true in regression.

This makes interpretation of effects much easier
than if they variables were not orthogonal.

Of course, the vectors are geometrically orthogonal
since the dot product is zero, meaning that they are
perpendicular geometrically in dimension 16.
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> pilot2c2

I T C K TC TK CK TCK TCTK

1 1 -1 -1 -1 1 1 1 -1 1

2 1 1 -1 -1 -1 -1 1 1 1

3 1 -1 1 -1 -1 1 -1 1 -1

4 1 1 1 -1 1 -1 -1 -1 -1

5 1 -1 -1 1 1 -1 -1 1 -1

6 1 1 -1 1 -1 1 -1 -1 -1

7 1 -1 1 1 -1 -1 1 -1 1

8 1 1 1 1 1 1 1 1 1

9 1 -1 -1 -1 1 1 1 -1 1

10 1 1 -1 -1 -1 -1 1 1 1

11 1 -1 1 -1 -1 1 -1 1 -1

12 1 1 1 -1 1 -1 -1 -1 -1

13 1 -1 -1 1 1 -1 -1 1 -1

14 1 1 -1 1 -1 1 -1 -1 -1

15 1 -1 1 1 -1 -1 1 -1 1

16 1 1 1 1 1 1 1 1 1

The last column is the element-wise
(Hadamard) product of the TC column and the
TK column. Note that this is identical to the
CK column. The eight vectors form a closed
group under multiplication, with
T 2 = C 2 = K 2 = I . Any repeated factor
cancels out, so, for example,
TC × TK = TCTK = T 2CK = CK and
TK × TCK = C . Oddly enough, this
relationship between particular experimental
designs and closed groups under multiplication
persist as we look to more advanced
experimental designs such as fractional
factorials.
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I T C K TC TK CK TCK

1 1 -1 -1 -1 1 1 1 -1

2 1 1 -1 -1 -1 -1 1 1

3 1 -1 1 -1 -1 1 -1 1

4 1 1 1 -1 1 -1 -1 -1

5 1 -1 -1 1 1 -1 -1 1

6 1 1 -1 1 -1 1 -1 -1

7 1 -1 1 1 -1 -1 1 -1

8 1 1 1 1 1 1 1 1

9 1 -1 -1 -1 1 1 1 -1

10 1 1 -1 -1 -1 -1 1 1

11 1 -1 1 -1 -1 1 -1 1

12 1 1 1 -1 1 -1 -1 -1

13 1 -1 -1 1 1 -1 -1 1

14 1 1 -1 1 -1 1 -1 -1

15 1 -1 1 1 -1 -1 1 -1

16 1 1 1 1 1 1 1 1

The last 7 columns are all of the same type. We
could have assigned T, C, and K to the last
three columns instead of their current ones and
all the math would be similar. What if we used
2 blocks with T, C, and K as in the table, and
assigned the blocks according to the last, TCK,
column?
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Worsted Yarn

Table 5.6 in the text shows the results of a study on the
durance of strands of yarn, in which strands of 250mm and
350mm, were repeatedly stretched by 8mm or 10mm, under a
load of 40gm or 50gm until failure. The response is recorded
as the log of the number of cycles to failure.

We can analyze the data in -1/1 coding, 0/1 coding and
original units.

With numerical predictors, we can ask new questions, such as
“What do the combinations of A, B, and C look like that have
equal predicted durance?” and “How do we change A, B, and
C to go maximally uphill, that is to the most increased
durance?”
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> yarn

run A B C y

1 1 -1 -1 -1 28

2 2 1 -1 -1 36

3 3 -1 1 -1 22

4 4 1 1 -1 31

5 5 -1 -1 1 25

6 6 1 -1 1 33

7 7 -1 1 1 19

8 8 1 1 1 26

> yarn.b

run A B C y

1 1 0 0 0 28

2 2 1 0 0 36

3 3 0 1 0 22

4 4 1 1 0 31

5 5 0 0 1 25

6 6 1 0 1 33

7 7 0 1 1 19

8 8 1 1 1 26

> yarn.a

run A B C y

1 1 250 8 40 28

2 2 350 8 40 36

3 3 250 10 40 22

4 4 350 10 40 31

5 5 250 8 50 25

6 6 350 8 50 33

7 7 250 10 50 19

8 8 350 10 50 26

We can check if interactions seem important in any of
these codings.
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> summary(lm(y~A*B*C,data=yarn))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.75e+01 NaN NaN NaN

A 4.00e+00 NaN NaN NaN

B -3.00e+00 NaN NaN NaN

C -1.75e+00 NaN NaN NaN

A:B -3.16e-15 NaN NaN NaN

A:C -2.50e-01 NaN NaN NaN

B:C -2.50e-01 NaN NaN NaN

A:B:C -2.50e-01 NaN NaN NaN

round(coef(lm(y~A*B*C,data=yarn)),3)

(Intercept) A B C

27.50 4.00 -3.00 -1.75

A:B A:C B:C A:B:C

0.00 -0.25 -0.25 -0.25

The main effects seem more important so we will
eliminate the interactions. To see what combinations of
variables lead to the same predicted durance, let’s use
the original units.
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> summary(lm(y~A+B+C,data=yarn.a))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.25000 3.05420 15.143 0.000111 ***

A 0.08000 0.00433 18.475 5.05e-05 ***

B -3.00000 0.21651 -13.856 0.000157 ***

C -0.35000 0.04330 -8.083 0.001273 **

ŷ = 46.25 + 0.08A− 3B − 0.35C

When is y predicted to be 25? If A is 250 and C is 40, then

B = [46.25− 25 + (0.08)(250)− (0.35)(40)]/3 = 9.08 If B is 10

and C is 50 then A is 328.125. We can set two of A, B, and C and

determine the value of the third that makes y = 25. Some are inside

the original design and some not.
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Steepest Ascent

Suppose that we wanted to increase the durance by
changing A, B, and C. The most uphill direction is the
gradient, the vector of partial derivatives, which are just
the coefficients in this case in a main effects model. This
depends on the coding because “most uphill” means
largest change in durance per unit length of the vector.
For this calculation, the -1/1 is best because it treats
each edge of the design rectangle as of equal length, and
presumably, the design was set such that varying each
factor had some effect, but not dominating.
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> yarn

run A B C y

1 1 -1 -1 -1 28

2 2 1 -1 -1 36

3 3 -1 1 -1 22

4 4 1 1 -1 31

5 5 -1 -1 1 25

6 6 1 -1 1 33

7 7 -1 1 1 19

8 8 1 1 1 26

> summary(lm(y~A+B+C,data=yarn))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.5000 0.2165 127.017 2.30e-08 ***

A 4.0000 0.2165 18.475 5.05e-05 ***

B -3.0000 0.2165 -13.856 0.000157 ***

C -1.7500 0.2165 -8.083 0.001273 **

Gradient vector is G = (4,−3,−1.75), uphill variable
values are λG = (4λ,−3λ,−1.75λ)
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P(a, b, c) = 27.5 + 4a− 3b − 1.75c prediction

G = (4,−3,−1.75) gradient vector

||G || =
√
28.0625 = 5.297 length ofG

g = G/5.297

= (0.7551,−0.5663,−0.3304) normalized gradient vector

λg = (0.7551λ,−0.5663λ,−0.3304λ) uphill values

P(λg) = 27.5 + (4)(0.7551)λ+ (−3)(−0.5663)λ

+ (−1.75)(−0.3394)λ

= 27.5 + 3.0203λ+ 1.6989λ+ 0.5781λ prediction at uphill values

dP(λg)

dλ
= 3.0203 + 1.6989 + 0.5781 = 5.2974 slope uphill

Compare to uphill slopes in variable directions of 4, 3, and 1.75!
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Multiple Responses

Section 5.12 deals with a problem regarding pet
rabbit food manufacture from Prat and Tort (1990),
linked on the web site.

During cooling and drying of the rabbit food pellets,
loss of product in the form of fine powder was
taking place. This should be reduced.

After packaging, during manipulation and
transportation, pellets eroded leaving more fine
powder residue, which resulted in loss of product as
well as digestive problems for the rabbits.

Goals: quality, productivity, and cost.
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Multiple Responses
The main steps in manufacture of this pet food are
as follows:

Decide the formula.
Ingredients
Proportions
Value of the PQF = glue material).

Mixing and Conditioning
Weight
Mix
Set temperature of water steam
Add water steam to mixture

Extruding and Cutting
Extrude mixture through metal die
Cut extruded material into small cylinders

Cooling and Drying
Small cylinders cooled and dried with air
Packaging
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Wider Goals

Educate the company in issues of product quality
from the consumer point of view.

Help the engineers and plant personnel realize how
simple experimentation can improve process, quality,
productivity, and cost.

Educate plant personnel in the importance of
collecting good data.

Educate engineers in the usefulness of scientific
feedback in addition to theories and hunches.
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Design

This is a somewhat simplifed version from the paper, but
illustrates the points.

Variable −1 +1
A Conditioning Temperature 80% of max Max
B Flow 80% of max Max
C Compression zone 2” 2.5”

All eight combinations were run in a semi-random order
(compression zone is hard to change so was set to
change only three times). There was an additional
variable that did not turn out to be useful and there were
four additional runs that are used in the book just to
estimate replication error.
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Response Variables

Variable Definition
y1 Powder in the product After handling and transport
y2 Powder in the process After manufacturing
y3 Yield
y4 Energy Consumption

In general, to the extent possible, we would like to
reduce the first two, particularly the consumer oriented
y2, increase yield and decrease energy consumption.
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Powder in the Product

> summary(lm(y1~A*B*C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 110.375 NaN NaN NaN

A -4.125 NaN NaN NaN

B 2.125 NaN NaN NaN

C -9.125 NaN NaN NaN

A:B 4.625 NaN NaN NaN

A:C 0.875 NaN NaN NaN

B:C 2.125 NaN NaN NaN

A:B:C -2.875 NaN NaN NaN

> summary(lm(y1~A+B+C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 110.375 2.955 37.347 3.07e-06 ***

A -4.125 2.955 -1.396 0.2353

B 2.125 2.955 0.719 0.5119

C -9.125 2.955 -3.088 0.0367 *

Replicate observations
suggest that the
standard error of the
coefficients is around 2
(4 in the book where
the coefficients are
twice as large). The
main effects model has
it as around 3 (a model
with the A:B interaction
has it as about 2, but
has p =0.12). None of
the other interactions is
large. Higher
compression zone seems
to reduce powder in
product.
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Powder in the Plant

> summary(lm(y2~A*B*C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 178.875 NaN NaN NaN

A -3.125 NaN NaN NaN

B 5.625 NaN NaN NaN

C 2.375 NaN NaN NaN

A:B -6.875 NaN NaN NaN

A:C -0.125 NaN NaN NaN

B:C -6.875 NaN NaN NaN

A:B:C -5.875 NaN NaN NaN

> summary(lm(y2~A+B+C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 178.875 5.680 31.491 6.06e-06 ***

A -3.125 5.680 -0.550 0.611

B 5.625 5.680 0.990 0.378

C 2.375 5.680 0.418 0.697

Replicate observations
suggest that the
standard error of the
coefficients is around
3.7. The main effects
model has it as around
5.68. None of the
effects is large. Powder
in the plant seems not
to be related to any of
the chosen production
variables.
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Yield

> summary(lm(y3~A*B*C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.00 NaN NaN NaN

A 1.75 NaN NaN NaN

B 6.50 NaN NaN NaN

C -10.25 NaN NaN NaN

A:B -2.75 NaN NaN NaN

A:C 0.50 NaN NaN NaN

B:C -1.75 NaN NaN NaN

A:B:C -3.00 NaN NaN NaN

> summary(lm(y3~A+B+C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.000 2.229 36.787 3.26e-06 ***

A 1.750 2.229 0.785 0.4763

B 6.500 2.229 2.916 0.0434 *

C -10.250 2.229 -4.598 0.0100 *

Replicate observations
suggest that the
standard error of the
coefficients is around
2.5. The main effects
model has it as around
2.2. Only the main
effects of B = Flow and
C = Compression Zone
are large. Increasing the
flow increases the yield,
but increasing the
compression zone
reduces the yield.
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Energy

> summary(lm(y4~A*B*C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 239.875 NaN NaN NaN

A -3.375 NaN NaN NaN

B 11.125 NaN NaN NaN

C -1.125 NaN NaN NaN

A:B 1.875 NaN NaN NaN

A:C 0.625 NaN NaN NaN

B:C -0.375 NaN NaN NaN

A:B:C 0.375 NaN NaN NaN

> summary(lm(y4~A+B+C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 239.8750 0.4732 506.876 1.69e-08 ***

A -3.3750 0.4732 -7.132 0.005675 **

B 11.1250 0.4732 23.508 0.000169 ***

C -1.1250 0.4732 -2.377 0.097863 .

A:B 1.8750 0.4732 3.962 0.028716 *

Replicate observations
and the reduced model
suggest that the
standard error of the
coefficients is around
0.5. Large effects
consist of A =
Temperature, B = Flow
Rate, and the A:B
interaction. Increasing
temperature reduces
energy use (!),
increasing flow rate
increases energy use,
with a significant
interaction effect.
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> summary(lm(y1~C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 110.375 3.068 35.978 3.07e-08 ***

C -9.125 3.068 -2.974 0.0248 *

> summary(lm(y3~B+C,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 82.000 2.142 38.285 2.29e-07 ***

B 6.500 2.142 3.035 0.02892 *

C -10.250 2.142 -4.786 0.00495 **

> summary(lm(y4~A*B,data=rabbit))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 239.875 0.696 344.663 4.25e-10 ***

A -3.375 0.696 -4.849 0.00834 **

B 11.125 0.696 15.985 8.96e-05 ***

A:B 1.875 0.696 2.694 0.05443 .

Suppose that a one unit
increase in yield saves 5
cents per package, and
a one unit increase in
energy use increases
costs at 2 cents per
package. Increasing
flow rate (B) by one
unit from the center
reduces costs by about
10 cents. Increasing
Compression Zone (C)
by one unit reduces
powder by around 9 per
package at a cost of
around 50 cents.
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∆Powder = −9.125C

∆Yield = 6.50B − 10.25C

∆Energy = −3.375A+ 11.25B + 1.875AB

∆Cost = −7.75A+ 10B − 51.25C + 3.75AB

Reduced powder per package has not been assigned a
benefit, but the cost of such a reduction in powder can
be computed.
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Replicates

This study did not have true replicates. What it had is a
fourth factor, which was the amount of PQF at 10 or 20.
This had no apparent effect on any of the responses,
which meant that as an inert factor it could generate
replicates, in which two runs had the same values of A,
B, and C but different values of the inert factor D. This
is a major advantage of factorial type designs in
screening for active factors.
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Run A B C D y1 y2 y3 y3
1 + – + – 92 192 75 223
6 + – + + 91 208 72 222
2 – – – + 118 207 87 238
5 – – – – 132 166 83 235
3 + + – – 122 185 102 250
8 + + – + 127 213 96 248
4 – + + + 112 203 62 250
7 – + + – 107 196 80 268
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> reps

Pair y

1 a 92

2 a 91

3 b 118

4 b 132

5 c 122

6 c 127

7 d 112

8 d 107

> summary(lm(y~Pair,data=reps))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 91.500 3.929 23.288 2.02e-05 ***

Pairb 33.500 5.557 6.029 0.00381 **

Pairc 33.000 5.557 5.939 0.00403 **

Paird 18.000 5.557 3.239 0.03169 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.557 on 4 degrees of freedom

Multiple R-squared: 0.9239, Adjusted R-squared: 0.8669

F-statistic: 16.2 on 3 and 4 DF, p-value: 0.01057

For response y1, we have four pairs of responses with
the same values of A, B, and C. The analysis by the pairs
gives us the pooled standard deviation of the four pairs
of replicates. We can do the same for the other three
responses.
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A Four-Factor Factorial Design

The is from Section 5.13 of the text and is a 24 factorial
exploration of factors that possibly influence the Percent
Conversion in an industrial process. Here are the four
factors:

Var # Var Name − +
1 Catalyst charge (lb) 10 15
2 Temperature (◦C) 220 240
3 Pressure (psi) 50 80
4 Concentration (%) 10 12
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> process

yatesOrd x1 x2 x3 x4 conversion randomOrd

1 1 -1 -1 -1 -1 70 8

2 2 1 -1 -1 -1 60 2

3 3 -1 1 -1 -1 89 10

4 4 1 1 -1 -1 81 4

5 5 -1 -1 1 -1 69 15

6 6 1 -1 1 -1 62 9

7 7 -1 1 1 -1 88 1

8 8 1 1 1 -1 81 13

9 9 -1 -1 -1 1 60 16

10 10 1 -1 -1 1 49 5

11 11 -1 1 -1 1 88 11

12 12 1 1 -1 1 82 14

13 13 -1 -1 1 1 60 3

14 14 1 -1 1 1 52 12

15 15 -1 1 1 1 86 6

16 16 1 1 1 1 79 7

“Yates Order” is when
the first column
alternates by 1 unit
−1/+ 1, the second
column alternates by
pairs, the third column
by 4’s, and so on. The
run order should always
be randomized.
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> processCont

I x1 x2 x3 x4 x12 x13 x14 x23 x24 x34 x123 x124 x134 x234 x1234 conversion

1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 70

2 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 60

3 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 89

4 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 81

5 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 69

6 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 62

7 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 88

8 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 81

9 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 60

10 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 49

11 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 88

12 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 82

13 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 60

14 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 52

15 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 86

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 79

These 16 columns form a closed group by element-wise multiplication in the same way as
previously. Also, the dot product of each column times the conversion column is the effect as
labeled.

> processCont$x124 * processCont$x234

[1] 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

> processCont$x124 * processCont$x234 - processCont$x13 # (124)(234) = (13)

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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> summary(lm(conversion~x1*x2*x3*x4,data=process))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.225e+01 NaN NaN NaN

x1 -4.000e+00 NaN NaN NaN

x2 1.200e+01 NaN NaN NaN

x3 -1.250e-01 NaN NaN NaN

x4 -2.750e+00 NaN NaN NaN

x1:x2 5.000e-01 NaN NaN NaN

x1:x3 3.750e-01 NaN NaN NaN

x2:x3 -6.250e-01 NaN NaN NaN

x1:x4 -7.138e-16 NaN NaN NaN

x2:x4 2.250e+00 NaN NaN NaN

x3:x4 -1.250e-01 NaN NaN NaN

x1:x2:x3 -3.750e-01 NaN NaN NaN

x1:x2:x4 2.500e-01 NaN NaN NaN

x1:x3:x4 -1.250e-01 NaN NaN NaN

x2:x3:x4 -3.750e-01 NaN NaN NaN

x1:x2:x3:x4 -1.250e-01 NaN NaN NaN

The four- and three-factor interactions seem small.
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> summary(lm(conversion~x1*x2+x1*x3+x1*x4+x2*x3+x2*x4+x3*x4,data=process))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.225e+01 2.739e-01 263.820 1.48e-11 ***

x1 -4.000e+00 2.739e-01 -14.606 2.72e-05 ***

x2 1.200e+01 2.739e-01 43.818 1.17e-07 ***

x3 -1.250e-01 2.739e-01 -0.456 0.667219

x4 -2.750e+00 2.739e-01 -10.042 0.000168 ***

x1:x2 5.000e-01 2.739e-01 1.826 0.127464

x1:x3 3.750e-01 2.739e-01 1.369 0.229205

x1:x4 -8.257e-16 2.739e-01 0.000 1.000000

x2:x3 -6.250e-01 2.739e-01 -2.282 0.071344 .

x2:x4 2.250e+00 2.739e-01 8.216 0.000435 ***

x3:x4 -1.250e-01 2.739e-01 -0.456 0.667219

Residual standard error: 1.095 on 5 degrees of freedom

Catalyst charge (x1), Temperature (x2), Concentration (x4), and the
Temperature by Concentration interaction (x2 : x4) seem important. Pressure is
less so, but there is an almost-significant interaction of Temperature and
Pressure. Directions leading to increased conversion are reducing Catalyst,
increasing Temperature, and reducing Concentration.
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Filtering Effects by Normal QQ Plots

If there are no real effects, then the collection of the
15 non-intercept coefficients looks like a sample
from a normal distribution.

Normal, because as the sum of 16 random errors,
the central limit theorem says the distribution
should be roughly normal.

If a few of the effects are real, these will show up as
“outliers” while the rest will look like the normal
sample. Orthogonality keeps them separate.

We can make the 15-coefficient normal QQ plot,
pick out the “outliers” and then plot the remaining
ones.
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This confirms the
choice of active effects.
The remainder look like
a random sample from
a normal distribution.
No sign of importance
of the x3 or x1:x3
terms.
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The ”inert effects” look
sufficiently like a
random sample from a
normal distribution.
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Why Does this Work?

Suppose that we don’t vary anything but just
measure under the same conditions 16 times.

Then roughly yi ∼ N(µ, σ2).

The intercept will be near µ and the other
coefficients will be near 0 and look like a sample
from a normal distribution N(0, 16σ2).
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Suppose now that we change factor 1 so that when
1 = 1, y = µ+ δ + ϵ and when 1 = −1,
y = µ− δ + ϵ, where ϵ ∼ N(0, σ2) .

All the other effects are orthogonal to 1, so their
average is 0 + 8δ − 8δ = 0, and their variance is
N(0, 16σ2), as before.

Effects that are inert behave like effects that don’t
change anything, so all the inert effects look like a
random sample from a normal distribution.
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Blocking Factorial Designs

Suppose we have a 23 factorial design for a process
that uses a reagent for which a batch can only
accommodate four runs.

We need a way to assign the eight runs to batch A
or batch B so that there are four of each and so
that the batch effect interferes as little as possible
with the three assigned factors.

We can use one of the existing −/+ patterns, and
the one that interferes the least is the 123
interaction.

If we let the block factor be denoted by 4, then we
have 4 = 123.

David M. Rocke Factorial Designs at Two Levels February 13, 2024 58 / 64



What we mean by equating two expressions like
4 = 123 is that, however we label the calculated
result, it is the sum of the effect of the blocks, and
the three-way interaction effect of the three factors.

These are confounded, meaning that if the effect is
large, we can’t be sure if it is large because of a
large block effect or because of a large three-factor
interaction 123, or both.

Of course, if both effects are real and of opposite
signs, then they could also cancel.

Of the 15 possible effects, the best one to confound
with blocks is the 123 interaction because is is least
likely to be large.
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We now have 8 effects, each of which confounds two effects, and we
can figure out the pattern starting with 4 = 123 or I = 1234.

1 = 234 12 = 34

2 = 134 13 = 24

3 = 124 23 = 14

so that main effects are confounded only with three-way
interactions, likely to be small. Two-way interactions of factors are
confounded with two-way interactions between a factor and the
blocks, which are often assumed to be negligible. We can therefore
interpret (usually) the seven coefficients as three main effects, three
two-factor interactions and one block effect.
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Blocks of Size Two

If we either had two blocking factors, or needed
blocks smaller than 4, we could make blocks of size
two instead of four.

One way to do that would be to pick two of the
factor interactions to confound with blocks.

Suppose we have 4 = 123 and we choose another
interaction to assign to a second blocking factor
such as 5 = 23.

Divide the eight runs into four blocks, we need a
third relation, which is 45 = (123)(23) = 1, so we
have unfortunately confounded a main effect with a
contrast of the difference of blocks.

David M. Rocke Factorial Designs at Two Levels February 13, 2024 61 / 64



A better plan is to set 4 = 12, 5 = 23 so that 45 = 13. We still
have 8 effects, but each of them confounds four effects, and we can
figure out the pattern starting with I = 124 = 235 = 1345.

1 = 24 =1235 = 345

2 = 14 = 35 = 12345

3 =1234 = 25 = 145

4 = 12 =2345 = 135

5 =1245 = 23 = 134

45 = 125 = 234 = 13

Now blocks are confounded with the two-way interactions, but not
with any main effects and main effects are confounded also with
two-way interactions. We can reasonably estimate the three main
effects and the collective size of the block effects. and one block
effect.
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Generators and Defining Relations

Generators are letters (we use letters instead of numbers
just for this discussion) like a, b, c , . . . . There is a unit I
such that for all letters mI = Im = m. Letter sequences
are commutative, meaning that pm = mp and also for all
letters mm = m2 = I . If we have three letters a, b, c
then there are eight possible elements,
I , a, b, c , ab, ac , bc , abc . If there are four letters,
a, b, c , d then there would be 16 elements, unless one of
the elements is defined in terms of the others, like
d = abc , which in standardized form is abcd = I . This
relation cuts the number of distinct elements in half, so
there are only eight, not 16.
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If there are n letters, then there are 2n possible elements.
If there are k relations, then that reduces the size of the
unique elements by up to a factor of 2k , depending on
how many unique relations are generated. For example,
if there are six letters, a, b, c , d , e, f , the relations
ab = I , bc = I , and cd = I also imply ac = I , bd = I ,
ad = I , and abcd = I , making 8 relations (counting
I = I ) so the original size of 26 = 64 is reduced by a
factor of 23 = 8, leaving 64/8 = 8. On the other hand,
the three relations ab = I , bc = I , and ac = I generate
only 22 = 4, so the full set of elements has size
64/4 = 16. We use this algebra to figure out how to add
additional factors or blocks without adding to the size of
the study. (See Table 5A.1).

David M. Rocke Factorial Designs at Two Levels February 13, 2024 64 / 64


