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Time to Event Data

Survival Analysis is a term for analyzing
time-to-event data.

This is used in clinical and epidemiological studies,
where the event is often death or incidence or
recurrence of disease.

It is used in engineering reliability analysis, where
the event is often failure of a device or system.

It is used in insurance, particularly life insurance,
where the event is death, disability, or damage from
an accident.
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Time to Event Data

The distribution of ‘failure’ times is usually
asymmetric and can be long-tailed.

The base distribution is not normal, but
exponential. This is the simplest distribution to
model failure time data.

There are often censored or truncated observations,
which are ones in which the failure time is not
observed.

Typically, this is because the failure has not yet
happened, though there are other patterns.
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Time to Event Data

Often, these are right-censored, meaning that we
know that the event occurred after some known
time t, but we don’t know the actual event time, as
when a patient is still alive at the end of the study.

Observations can also be left-censored, meaning we
know the event has already happened at time t, or
interval-censored, meaning that we only know that
the event happened between times t1 and t2.

Analysis is difficult if censoring is associated with
treatment or other predictors of the event in
question.
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Right Censoring

Patients are in a clinical trial for cancer, some on a
new treatment and some on standard of care.

Some patients in each group have died by the end
of the study. We know the survival time (measured
for example from time of diagnosis—each person on
their own clock).

Patients still alive at the end of the study are right
censored.

Patients who are lost to follow-up or withdraw from
the study may be right-censored.
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Left and Interval Censoring

An individual tests positive for HIV.

If the event is infection with HIV, then we only
know that it has occurred before the testing time t,
so this is left censored.

If an individual has a negative HIV test at time t1
and a positive HIV test at time t2, then the
infection event is interval censored.
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Engineering Reliability Example

Engineering reliability studies often use parametric
survival models, the simplest of which is the
exponential distribution.

The following example is based on information
provide by Seagate about one of their disk drive
models in terms of likelihood of failure.

A common statistics given is MTBF = mean time
between failures, which is equal to the mean lifetime
under the exponential distribution.
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Computer Disk Drives

Here is an example excerpt from a Product Manual, in
this case for the Seagate Barracuda ES.2 Near-Line
Serial ATA drive:

The product shall achieve an Annualized Failure Rate
(AFR) of 0.73% (Mean Time Between Failures (MTBF)
of 1.2 Million hrs) when operated in an environment that
ensures the HDA case temperatures do not exceed 40◦C.
Operation at case temperatures outside the
specifications in Section 2.9 may increase the product
Annualized Failure Rate (decrease MTBF).
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AFR and MTBF are population statistics that are not
relevant to individual units.
AFR and MTBF specifications are based on the following
assumptions for business critical storage system
environments:

8,760 power-on-hours per year.

250 average motor start/stop cycles per year.

Operations at nominal voltages.

Systems will provide adequate cooling to ensure the case
temperatures do not exceed 40◦C. Temperatures outside
the specifications in Section 2.9 will increase the product
AFR and decrease MTBF.
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Computer Disk Drives

1.2 million hours at 8,760/hours per year (365× 24)
is 137 years! The exponential parameter in years is
1/137 = 0.0073.

How can this be tested!

Assuming exponential failures, the average time in
years until the first failure out of n units is 137/n
and an estimate of the exponential parameter is n
times the first failure time.
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Computer Disk Drives

With 1000 disk drives, the mean waiting time would
be 0.137 years or less than 2 months.

To find the mean time until failure k , we need to
use the gamma distribution. The chance of 4 or
more failures in 6 months is about 0.5.

Accelerated failure time methods vs. temperature is
more feasible.

These figures are not credible to anyone who has
ever had a disk drive!
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Poisson Process

A Poisson Process places random points in a
continuous space, usually R,R2,R3 or a subset
thereof.

The complete independence property of a Poisson
process is that for any pre-specified collection of
disjoint, bounded subregions of the space, the
random variables indicating the number of points in
each subregion are statistically independent.

For a homogeneous Poisson process, the probability
that there are n points in a region depends only on
the measure (length, area, volume) of the region.
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Poisson Process

For survival analysis, we are interested in a counting process
on the positive real line. This can be defined as a random
process that generates a random function N(t), t ≥ 0, defined
as the number of points in the interval (0, t].

For a homogeneous Poisson process, there is a parameter λ
such that the mathematical expectation of the number of
points in an interval of length t is λt.

The probability mass function for the number of points n in an
interval of length t is

f (n;λt) =
(λt)ne−λt

n!

which is called the Poisson distribution.
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Exponential Distribution

If the points on the line are generated by a homogeneous
Poisson process with parameter λ and t0 ≥ 0 is any
pre-chosen point on the line, then the distance between
t0 and the point of the process that has the smallest
distance forward from t0 has a distance x defined by the
exponential density

f (x ;λ) =

{
λe−λx x ≥ 0,

0 x < 0.

This is the waiting time until the next event.
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Gamma Distribution

In cases where more than one event can happen, we
can measure the time to the k th event forward from
a particular time. That waiting time has a gamma
distribution defined by

f (x ;λ, k) =
xk−1e−λxλk

Γ(k)

For R, using the gamma distribution, scale = λ and
shape = k .
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Disk Drive Failure

If the failures of a particular type of disk drive form
a homogeneous Poisson process on the real line with
parameter λ and if we have m disk drives on test
with independent failures, then the pooled failure
times form a Poisson process with parameter
λ∗ = mλ.

The probability that an interval of length T
contains n points is Poisson with parameter mλ.

The time until the k th failure has a gamma
distribution with scale mλ and shape k .
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Counting Process

In general, the time to an event can be viewed as
the result of a counting process, but one without
necessarily the same value of λ thoughout time.

The hazard λ can depend on characteristics of the
individual and to vary over time.

But the exponential model is still interesting as the
simplest example of time to event data.
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Basic Quantities and Models

The probability density function f (x) is defined as with
any continuous distribution. For any short interval of
time, it can be thought of as the relative chance that the
event will occur in that short interval. The cumulative
distribution function is

F (x) = Pr(X ≤ x) =

∫ x

0

f (x)dx

For survival data, a more relevant quantity is the survival
function

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞

x

f (x)dx
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Basic Quantities and Models

S(x) = 1− F (x) = Pr(X > x) =

∫ ∞

x

f (x)dx

The survival function S(x) is the probability that the
event time is later than x . If the event in a clinical trial
is death, then this is the fraction of the original
population at time 0 that is still alive at time x ; that is,
the fraction surviving to time x .
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The Hazard Function

Another important function is the hazard function, which
is the probability that the event will occur in the next
very short interval, given that it has not occurred yet.

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

The expression in the numerator is the probability of
survival until at least time x +∆x conditional on
surviving until time x . This might be the chance of
someone who has just turned 30 still being alive one day
later.
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The Hazard Function

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

This might be the chance of someone who has just
turned 30 still being alive one day later. You can see that
this is different than the probability at birth of surviving
until age 30 plus one day. The first is the ratio of the
number of those who die at age 30 plus one day over the
number alive at age 30. The second is a ratio with the
same numerator, but with the larger denominator of the
number who are born. The latter ratio is smaller.
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The Hazard Function

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x

= S−1(x) lim
∆x→0

Pr[x ≤ X < x +∆x ]

∆x
= f (x)/S(x)

The limit takes the difference quotient into a derivative
(by definition of the derivative) and the result is because
the density f (x) is the derivative of the CDF F (x).
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The Hazard Function

Also,

h(x) = lim
∆x→0

Pr[x ≤ X < x +∆x |X ≥ x ]

∆x
= f (x)/S(x)

f (x) = −dS(x)

dx
Because F ′ = f

h(x) = −d ln(S(x))

dx
= −S−1(x)

dS(x)

dx
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Cumulative Hazard

h(x) = −d ln(S(x))

dx
The cumulative hazard function is

H(x) =

∫ x

0

h(t)dt = − ln(S(x))

This function is easier to estimate than the hazard
function, and we can then approximate the hazard
function by the approximate derivative of the cumulative
hazard.
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Exponential Distribution

The exponential distribution is the base distribution
for survival analysis.

The distribution has a constant hazard λ which
makes it the simplest survival distribution in that
sense.

The mean survival time is λ−1
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f (x ;λ) = λe−λx density = likelihood

ln(f (x ;λ)) = lnλ− λx log likelihood
∂

∂λ
ln(f (x ;λ)) = λ−1 − x

F (x) = 1− e−λx

S(X ) = e−λx

ln(S(x)) = −λx

h(x) = − d

dx
ln(S(x))

= − d

dx
(−λx)

= λ
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Estimation of λ

Suppose we have m exponential survival times of
t1, t2, . . . , tm and k right-censored values at
u1, u2, . . . , uk .

A survival time of ti = 10 means that subject i died
at time 10. A right-censored time ui = 10 means
that at time 10, subject i was still alive and that we
have no further follow-up.

For the moment we will assume that the survival
distribution is exponential and that all the subjects
have the same parameter λ.
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Estimation of λ

A naive estimate of λ is the average of the survival
times of the of those subjects who died, m−1

∑
ti ,

but this is not correct because it ignores the k
subjects that are still alive.

Suppose one subject died at 1 day, and the rest were
still alive at 10 years. One day is a poor estimate of
average survival (although this is often the first
thing that statistically naive investigators think of).

This estimate of average survival could be too small
or too large.
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Estimation of λ

Another naive estimate of λ is the average of the
times of all the subjects, (m + k)−1[

∑
ti +

∑
ui ],

but this is not correct either because it treats the
subjects who are still alive as though they had just
died.

This estimate of average survival is too small if any
of the subjects are censored.
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Estimation of λ

Suppose we have m exponential survival times of
t1, t2, . . . , tm and k right-censored values at
u1, u2, . . . , uk .

A survival time of ti = 10 means that subject i died
at time 10. A right-censored time ui = 10 means
that at time 10, subject i was still alive and that we
have no further follow-up.

For the moment we will assume that the survival
distribution is exponential and that all the subjects
have the same parameter λ.
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Estimation of λ

We have m exponential survival times of t1, t2, . . . , tm
and k right-censored values at u1, u2, . . . , uk . The
log-likelihood of an observed survival time ti is

ln
(
λe−λti

)
= lnλ− λti

and the likelihood of a censored value is the probability
of that outcome (survival greater than uj) so the
log-likelihood is

log(e−λuj) = −λuj .
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Let T =
∑

ti and U =
∑

uj . Then the log likelihood is

m∑
i=1

(lnλ− λti) +
k∑

j=1

(−λuj) = m lnλ− λ(T + U)
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m lnλ− λ(T + U)

is maximized when the derivative wrt λ is 0, that is when

0 = m/λ̂− (T + U)

λ̂ = m/(T + U)

1/λ̂ = (T + U)/m

Thus, the estimated mean survival is the total of the
times, exact and censored, divided by the number of
exact times. It can be show that the variance of λ̂ is
asymptotically λ2/m, depending only on the number of
uncensored observations. This is generally true.
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Suppose that we have two groups with m items in each
group, where the mean time in each group is x̄ . If the
times in group 1 are failures and the times in group 2 are
censored, vs. both are failures, then

1/λ̂ = (mx̄ +mx̄)/m

= x̄ + x̄ = 2x̄

V̂ (λ̂) = λ̂2/m

1/λ̂ = (mx̄ +mx̄)/(2m)

= (x̄ + x̄)/2 = x̄

V̂ (λ̂) = λ̂2/(2m)
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The Score and the Fisher Information

The log likelihood is

ℓℓ = m lnλ− (T + U)λ

and its derivative, called the score, is

ℓℓ′ = m/λ− (T + U)

Under certain conditions, the negative derivative of the
score, called the Fisher Information, estimates the
reciprocal of the variance of the MLE.
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The score is
ℓℓ′ = m/λ− (T + U)

(which is 0 evaluated at the MLE) and the observed
Fisher information is

−ℓℓ′′ = m/λ̂2

and its reciprocal is
λ̂2/m

Although the value of λ̂ depends on both the uncensored
data and the censored data, the variance depends only
on the uncensored sample size.
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The (expected value of the) score statistic is zero
when evaluated at the MLE.

The larger the second derivative of the log
likelihood is, the steeper the fall-off from the MLE
and the more certainly we know the true parameter.

The multivariate generalization of the Fisher
information is most times the method of
determining the variance covariance matrix for Wald
tests.

Or we can use the likelihood ratio chi-squared test
and interval from inverting this test (profile
likelihood).
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Multivariate Generalization

If there are p parameters, then the score is the
gradient vector of length p of partial derivatives of
the log likelihood. This determines the estimates by
solving p equations in p unknowns setting the score
vector to the zero vector.

The Hessian H is the matrix of second partials and
its negative inverse evaluated at the MLE’s
estimates the variance covariance matrix of the
estimated parameters.
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If we have a null hypothesis for the exponential
parameter λ

H0 : λ = λ0

then the log likelihood at the MLE is

ℓℓ = m ln(m/(T + U))−m

and at the null hypothesis is

ℓℓ = m lnλ0 − (T + U)λ0

The likelihood ratio statistics is the negative of
twice the difference between the log likelihood at
the null and the log likelihood at the MLE.
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We can construct a confidence interval for λ in two
ways: using the asymptotic normal approximation or
the likelhood ratio statistics.
The plot on the next slide is for
m = 10, k = 5,T = 100,U = 10 with

λ̂ = 0.0909

ŝe(λ) = 0.02875

The red lines are at ±1.96 standard errors away
from the MLE.
The blue line is at the chisquare statistic with 5% in
the tail and 1 df and intersects the likelihood curve
to form another interval.
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The Wald test/interval and the LLR test/profile
likelihood interval are both asymptotically accurate
subject to assumptions.

Frequently, the convergence of the LLR procedures
to asymptopia is faster than that of the Wald
procedures.

We could check this by simulation under the
assumptions.

Also, the profile likelihood procedures are
unchanged by transformations in the
parameter—the same for λ as for the mean λ−1;
this is not true of the Wald procedures.
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