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Mean Residual Life

The mean lifetime with a survival distribution f (x) is∫ ∞

0

xf (x)dx

For the exponential distribution we know that the mean
is λ−1 The mean residual life after survival to time x is

mrl(x) = S−1(x)

∫ ∞

x

(u − x)f (u)du

For the exponential, the mean residual life is also λ−1
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The 2019 US standard mortality table estimates the
expectation of life of females at birth as 81.28 years.

At age 50, 95.6% of US females are still alive.

The mean residual life at age 50 is 33.51 years (age
50 + 33.51 = 83.51). At age 83, 56.4% are still
alive.

In 1850 an estimate of the expectation of life at
birth for females is 39.4 years. At age 1, it is
1 + 49.3 = 50.3

But 44.7% of females lived to age 50 and the further
expectation of life was 20.4 years, so to age 70.4.
About 24% lived to age 70 and 10% to age 80.

So it was not rare to live beyond age 39.
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Actuarial Life Tables

The text describes cohort life tables, which are
constructed by following a cohort from initiation of
the study until all events have occurred. We will not
pursue this further—we usually use the raw data for
analysis.

Another form of life table is an actuarial life table
which is constructed from death rates in a particular
year and present life data for a hypothetical
population in which at every age the death rates
were the same as in the year the table was
constructed.
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Actuarial Life Tables

This applies as if a (say) female person born
1/1/2019 would have a chance of dying between
age 50 and 51 equal to the chance a female person
born 1/1/1969 had of dying between the age of 50
and 51 even though the hypothetical event would
take place between 1/1/2069 and 12/31/2069.

In reality, a 50 year old person in 2019 would have a
death rate depending on the current year (time
effect) and the year of birth (cohort effect).

The cohort effect in 2069 for those born in 2019
and the time effect for those aged 50 in 2069 are
both unknown.
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Actuarial Life Tables

This is however the best we can do, and is in any
case standard.

Announcements that the life expectency in the US
dropped in 2020 by one year is, however, not useful.
This comes from applying the excess mortality due
to COVID to each future year of someone born in
2020, which seems unlikely to be correct.

These tables have substantial practical importance
and it is unclear what SSA and others will make of
this.
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Other Parametric Survival Distributions

Any density on [0,∞) can be a survival distribution,
but the most useful ones are all skew right.
The commonest generalization of the exponential is
the Weibull.
Other common choices are the gamma, log-normal,
log-logistic, Gompertz, inverse Gaussian, and Pareto.
Most of what we in biomedical statistics is
non-parametric or semi-parametric, but sometimes
these parametric distributions provide a useful
approach.
Engineering applications usually, but not always, use
parametric distributions.
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Weibull Distribution

f (x) = αλxα−1e−λxα

h(x) = αλxα−1

S(x) = e−λxα

E (X ) = Γ(1 + 1/α)/λ1/α

When α = 1 this is the exponential. When α > 1 the
hazard is increasing and when α < 1 the hazard is
decreasing. This provides more flexibility than the
exponential.
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Nonparametric Survival Analysis

Mostly, we work without a parametric model.

The first task is to estimate a survival function from
data listing survival times, and censoring times for
right-censored data.

For example one patient may have relapsed at 10
months. Another might have been followed for 32
months without a relapse having occurred
(censored).

The minimum information we need for each patient
is a time and a censoring variable which is 1 if the
event occurred at the indicated time and 0 if this is
a censoring time.
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KM drug6mp Data

This is from a clinical trial in 1963 for 6-MP treatment vs. placebo
for Acute Leukemia in 42 children. Pairs of children matched by
remission status at the time of treatment (1 = partial or 2 =
complete) and randomized to 6-MP or placebo. Followed until
relapse or end of study. All of the placebo group relapsed, but some
of the 6-MP group were censored (which means they were still in
remission).

6-MP = 6-Mercaptopurine (Purinethol) is an anti-cancer

(“antineoplastic” or “cytotoxic”) chemotherapy drug used currently

for Acute Lymphoblastic Leukemia (ALL). It is classified as an

antimetabolite.
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KM drug6mp Data

Clinical trial in 1963 for 6-MP treatment vs. placebo for Acute
Leukemia in 42 children. Pairs of children matched by remission
status at the time of treatment (1 = partial or 2 = complete) and
randomized to 6-MP or placebo. Followed until relapse or end of
study. All of the placebo group relapsed, but some of the 6-MP
group were censored.

> library(KMsurv)

> data(drug6mp)

> drug6mp

pair remstat t1 t2 relapse

1 1 1 1 10 1

2 2 2 22 7 1

3 3 2 3 32 0
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KM drug6mp Data

drug6mp data

Description

The drug6mp data frame has 21 rows and 5 columns.

Format

This data frame contains the following columns:

pair pair number

remstat Remission status at randomization (1=partial, 2=complete)

t1 Time to relapse for placebo patients, months

t2 Time to relapse for 6-MP patients, months

relapse Relapse indicator (0=censored, 1=relapse) for 6-MP patients
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Descriptive Statistics

The average time in each group is not useful. Some
of the 6-MP patients have not relapsed at the time
recorded, while all of the placebo patients have
relapsed.

The median time is not really useful either because
so many of the 6-MP patients have not relapsed
(12/21).

Both are biased down in the 6-MP group.
Remember that lower times are worse since they
indicate sooner recurrence.
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Descriptive Statistics

We can compute the average hazard rate, which is
the estimate of the exponential parameter: number
of relapses divided by the sum of the times.

For the placebo, that is just the reciprocal of the
mean time = 1/8.667 = 0.115.

For the 6-MP group this is 9/359 = 0.025

The estimated average hazard in the placebo group
is 4.6 times as large (if the hazard is constant over
time).
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The Kaplan-Meier Product Limit
Estimator

The estimated survival function for the placebo
patients is easy to compute. For any time t in
months, S(t) is the fraction of patients with times
greater than t.

For the 6-MP patients, we cannot ignore the
censored data because we know that the time to
relapse is greater than the censoring time.
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The Kaplan-Meier Product Limit
Estimator

For any time t in months, we know that 6-MP
patients with times greater than t have not
relapsed, and those with relapse time less than t
have relapsed, but we don’t know if patients with
censored time less than t have relapsed or not.

The procedure we usually use is the Kaplan-Meier
product-limit estimator of the survival function.
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The Kaplan-Meir estimator is a step function (like
the empirical cdf), which changes value only at the
event times, not at the censoring times.

At each event time t, we compute the at-risk group
size Y , which is all those observations whose event
time or censoring time is at least t.

If d of the observations have an event time (not a
censoring time) of t, then the group of survivors
immediately following time t is reduced by the
fraction

Y − d

Y
= 1− d

Y
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If the event times are ti with events per time of di
(1 ≤ i ≤ k), then

Ŝ(t) =
∏
ti<t

[1− di/Yi ]

where Yi is the set of observations whose time (event or
censored) is ≥ ti , the group at risk at time ti .
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If there are no censored data, and there are n data
points, then just after (say) the third event time

Ŝ(t) =
∏
ti<t

[1− di/Yi ]

= [
n − d1

n
][
n − d1 − d2

n − d1
][
n − d1 − d2 − d3

n − d1 − d2
]

=
n − d1 − d2 − d3

n

the usual empirical cdf estimate.
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require(KMsurv)

data(drug6mp)

plot(survfit(Surv(drug6mp$t2,drug6mp$relapse)~1))

title("Kaplan-Meier Survival Curve for 6-MP Patients")

time12 <- c(drug6mp$t1,drug6mp$t2)

cens12 <- c(rep(1,21),drug6mp$relapse)

treat12 <- rep(1:2,each=21)

pairs12 <- rep(1:21,2)

plot(survfit(Surv(time12,cens12)~treat12),col=1:2)

title("Kaplan-Meier Survival Curve for 6-MP and Placebo Patients")

plot(survfit(Surv(time12,cens12)~treat12),conf.int=T,col=1:2)

title("Kaplan-Meier Survival Curve for 6-MP and Placebo Patients")
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Time At Risk Relapses Censored KM Factor KM Curve
6 21 3 1 0.857 0.857
7 17 1 0 0.941 0.807
9 16 0 1 1 0.807
10 15 1 1 0.933 0.753
11 13 0 1 1 0.753
13 12 1 0 0.917 0.690
16 11 1 0 0.909 0.627
17 10 0 1 1 0.627
19 9 0 1 1 0.627
20 8 0 1 1 0.627
22 7 1 0 0.857 0.538
23 6 1 0 0.833 0.448
25 5 0 1 1 0.448
32 4 0 2 1 0.448
34 2 0 1 1 0.448
35 1 0 1 1 0.448
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For the 6-MP patients at time 6 months, there are 21
patients at risk. At t = 6 there are 3 relapses and 1
censored observations. The Kaplan-Meier factor is
(21− 3)/21 = 0.857. The number at risk for the next
time (t = 7) is 21− 3− 1 = 17.

At time 7 months, there are 17 patients at risk. At t = 7
there is 1 relapse and 0 censored observations. The
Kaplan-Meier factor is (17− 1)/17 = 0.941. The Kaplan
Meier estimate is 0.857× 0.941 = 0.807. The number at
risk for the next time (t = 9) is 17− 1 = 16.
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time12 <- c(drug6mp$t1,drug6mp$t2)

cens12 <- c(rep(1,21),drug6mp$relapse)

treat12 <- rep(1:2,each=21)

pairs12 <- rep(1:21,2)

print(survdiff(Surv(time12,cens12)~treat12))

N Observed Expected (O-E)^2/E (O-E)^2/V

treat12=1 21 21 10.7 9.77 16.8

treat12=2 21 9 19.3 5.46 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

print(survdiff(Surv(time12,cens12)~treat12+strata(pairs12)))

N Observed Expected (O-E)^2/E (O-E)^2/V

treat12=1 21 21 13.5 4.17 10.7

treat12=2 21 9 16.5 3.41 10.7

Chisq= 10.7 on 1 degrees of freedom, p= 0.00106
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Package Survival

Surv

Create a survival object, usually used as a response variable in a model formula.

Usage

Surv(time, event)

Arguments

time for right censored data, this is the follow up time.

event The status indicator, normally 0=alive, 1=dead.

Also TRUE/FALSE (TRUE = death) or 1/2 (2=death).

The event indicator can be omitted,

in which case all subjects are assumed to have an event.

-----

Surv(drug6mp$t2,drug6mp$relapse)
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Package Survival

survfit

This function creates survival curves from either a formula

(e.g. the Kaplan-Meier), a previously fitted Cox model,

or a previously fitted accelerated failure time model.

Usage

survfit(formula, ...)

Arguments

formula either a formula or a previously fitted model

-----

plot(survfit(Surv(drug6mp$t2,drug6mp$relapse)~1))

plot(survfit(Surv(time12,cens12)~treat12))
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Package Survival

survdiff

Tests if there is a difference between two or more survival curves.

Usage

survdiff(formula, data, subset, na.action, rho=0)

Arguments

formula a formula expression as for other survival models,

of the form Surv(time, status) ~ predictors.

A strata term may be used to produce a stratified test.

rho Type of test. Default is the Mantel-Haenszel test.

-------

print(survdiff(Surv(time12,cens12)~treat12))

print(survdiff(Surv(time12,cens12)~treat12+strata(pairs12)))
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Bone Marrow Transplant Data

Copelan et al. (1991) study of allogeneic (from a
donor) bone marrow transplant therapy for acute
myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL).

Possible intermediate events are graft vs. host
disease (GVHD), an immunological rejection
response to the transplant, and platelet recovery, a
return of platelet count to normal levels. One or the
other, both in either order, or neither may occur.

End point events are relapse of the disease or death.

Any or all of these events may be censored.
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KMsurv bmt data

The bmt data frame has 137 rows and 22 columns.

This data frame contains the following columns:

group Disease Group 1-ALL, 2-AML Low Risk, 3-AML High Risk

t1 Time To Death Or On Study Time

t2 Disease Free Survival Time (Time To Relapse, Death, Or End Of Study)

d1 Death Indicator 1-Dead 0-Alive

d2 Relapse Indicator 1-Relapsed, 0-Disease Free

d3 Disease Free Survival Indicator 1-Dead Or Relapsed, 0-Alive Disease Free)

ta Time To Acute Graft-Versus-Host Disease

da Acute GVHD Indicator 1-Developed Acute GVHD 0-Never Developed Acute GVHD)

tc Time To Chronic Graft-Versus-Host Disease

dc Chronic GVHD Indicator 1-Developed Chronic GVHD

0-Never Developed Chronic GVHD

tp Time To Platelet Recovery

dp Platelet Recovery Indicator 1-Platelets Returned To Normal,

0-Platelets Never Returned to Normal
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KMsurv bmt data

z1 Patient Age In Years

z2 Donor Age In Years

z3 Patient Sex: 1-Male, 0-Female

z4 Donor Sex: 1-Male, 0-Female

z5 Patient CMV Status: 1-CMV Positive, 0-CMV Negative

z6 Donor CMV Status: 1-CMV Positive, 0-CMV Negative

z7 Waiting Time to Transplant In Days

z8 FAB: 1-FAB Grade 4 Or 5 and AML, 0-Otherwise

z9 Hospital: 1-The Ohio State University, 2-Alferd , 3-St. Vincent,

4-Hahnemann

z10 MTX Used as a Graft-Versus-Host- Prophylactic: 1-Yes 0-No
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Bone Marrow Transplant Example

We concentrate for now on disease-free survival (t2
and d3) for the three risk groups, ALL, AML Low
Risk, and AML High Risk.

We will construct the Kaplan-Meier survival curves,
compare them, and test for differences.

We will construct the cumulative hazard curves and
compare them.

We will estimate the hazard functions, interpret,
and compare them.

Then we will introduce the Cox proportional hazards
model.
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Survival Function

Ŝ(t) =
∏
ti<t

[1− di/Yi ]

where Yi is the group at risk at time ti .
The estimated variance of Ŝ(t) is (Greenwood’s formula)

V̂ [Ŝ(t)] = Ŝ(t)2
∑
ti<t

di
Yi(Yi − di)

which we can use for confidence intervals for a survival
function or a difference of survival functions.
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Cumulative Hazard

h(t) = −d ln S(t)

dt
The cumulative hazard function is

H(t) =

∫ t

0

h(t)dt

= − ln S(t)

Ĥ(t) = − ln Ŝ(t)
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> library(KMsurv)

> library(survival)

> data(bmt)

> dfsurv <- Surv(bmt$t2,bmt$d3)

The last command creates a survival object from the
time variable t2 (disease-free survival) and the
associated status variable d3. This is usually the first
step in computer analysis of survival data.

David M. Rocke Survival Data and Methods March 7, 2024 37 / 54



> plot(survfit(dfsurv~group,data=bmt),col=1:3,lwd=2)

> title("Disease-Free Survival for Three Groups")

> legend("bottomright",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)

This plots the estimated survival curves for the three
groups on the same graph in three colors with associated
legend.
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> plot(survfit(dfsurv~group,data=bmt),col=1:3,lwd=2,fun="cumhaz")

> title("Disease-Free Cumulative Hazard for Three Groups")

> legend("bottomright",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)

This plots the cumulative hazards for the three groups.
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> survdiff(dfsurv~group,data=bmt)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=1 38 24 21.9 0.211 0.289

group=2 54 25 40.0 5.604 11.012

group=3 45 34 21.2 7.756 10.529

Chisq= 13.8 on 2 degrees of freedom, p= 0.00101

This tests whether the three groups could have a
common survival function. Note that group is treated as
a factor even though it is numeric. This is the
Mantel-Haenszel test.
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Nelson-Aalen Survival Function Estimate

The point hazard at time ti can be estimated by di/Yi

which leads to the estimate of the cumulative hazard

Ĥ(t) =
∑
ti<t

di/Yi

which has approximate variance

V̂ [Ĥ(t)] =
∑
ti<t

(di/Yi)(1− di/Yi)

Yi
≈

∑
ti<t

di
Y 2
i

giving an alternate estimate of the survival function

ŜNA(t) = exp[−Ĥ(t)]
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KM and NA Survival Function Estimates

ŜKM(t) =
∏
ti<t

[1− di/Yi ]

V̂ [ŜKM(t)] = Ŝ(t)2
∑
ti<t

di
Yi(Yi − di)

ŜNA(t) = exp[−
∑
ti<t

di/Yi ]

=
∏
ti<t

exp(−di/Yi)

≈
∏
ti<t

[1− di/Yi ]
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The product limit estimate and the Nelson-Aalen
estimate often do not differ by much. The latter is
considered more accurate in small samples and also
directly estimates the cumulative hazard. The
"fleming-harrington" method reduces to
Nelson-Aalen when the data are unweighted. We can
also estimate the cumulative hazard as the negative log
of the KM survival function estimate.

nafit <- survfit(dfsurv~group,type="fleming-harrington",data=bmt)

plot(survfit(dfsurv~group,data=bmt))

lines(nafit,col=2)

legend("bottomleft",c("Product Limit","Nelson-Aalen"),col=1:2,lwd=1)

title("Two Survival Function Estimates for Three Groups")
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Nelson-Aalen Survival Function Estimate

The Nelson-Aalen estimate of the cumulative hazard is
usually used for estimates of the hazard and often the
cumulative hazard.

If the hazards of the three groups are proportional, that
means that the ratio of the hazards is constant over t.
We can test this using the ratios of the estimated
cumulative hazards, which also would be proportional.
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nafit <- survfit(dfsurv~group,type="fleming-harrington",data=bmt)

timevec <- 1:1000

sf1 <- stepfun(nafit[1]$time,c(1,nafit[1]$surv))

sf2 <- stepfun(nafit[2]$time,c(1,nafit[2]$surv))

sf3 <- stepfun(nafit[3]$time,c(1,nafit[3]$surv))

cumhaz1 <- -log(sf1(timevec))

cumhaz2 <- -log(sf2(timevec))

cumhaz3 <- -log(sf3(timevec))

plot(timevec,cumhaz1/cumhaz2,type="l",ylab="Hazard Ratio",xlab="Time",ylim=c(0,6))

lines(timevec,cumhaz3/cumhaz1,ylab="Hazard Ratio",xlab="Time",col=2)

lines(timevec,cumhaz3/cumhaz2,ylab="Hazard Ratio",xlab="Time",col=3)

legend("bottomright",c("1/2","3/1","3/2"),col=1:3,lwd=1)

title("Hazard Ratios for Three Groups")
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The Nelson-Aalen estimate of the cumulative hazard is
usually used for estimates of the hazard. Since the
hazard is the derivative of the cumulative hazard, we
need a smooth estimate of the cumulative hazard, which
is provided by smoothing the step-function cumulative
hazard.

The R package muhaz handles this for us. What we are
looking for is whether the hazard function is more or less
the same shape, increasing, decreasing, constant, etc.
Are the hazards “proportional”?
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> library(muhaz)

> plot(muhaz(bmt$t2,bmt$d3,bmt$group==3),lwd=2,col=3)

> lines(muhaz(bmt$t2,bmt$d3,bmt$group==1),lwd=2,col=1)

> lines(muhaz(bmt$t2,bmt$d3,bmt$group==2),lwd=2,col=2)

> legend("bottomleft",c("ALL","Low Risk AML","High Risk AML"),col=1:3,lwd=2)

> title("Smoothed Hazard Rate Estimates for Three Groups")

Group 3 was plotted first because it has the highest hazard. We could also

have set the ylim value in plot.

We will see that except for an initial blip in the high risk AML group, the

hazards look roughly proportional . They are all strongly decreasing.
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