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Background on the Proportional Hazards
Model

The exponential distribution has constant hazard

f (t) = λe−λt

S(t) = e−λt

h(t) = λ

Let’s make two generalizations. First, let the hazard
depend on covariates x1, x2, . . . xp. Second, let the base
hazard depend on t but not on the covariates.
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The Cox Model

The generalization is that the hazard function is

η = β1x1 + · · ·+ βpxp
h(t|covariates) = h0(t)e

η

This has a log link as in a generalized linear model. It is
semi-parametric because the linear predictor depends on
estimated parameters but the base hazard function is
unspecified. There is no constant term because it is
absorbed in the base hazard. Note that for two different
individuals with possibly different covariates, the ratio of
the hazard functions is exp(η1)/ exp(η2) = exp(η1 − η2)
which does not depend on t.
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The coxph() Function in R

coxph {survival} R Documentation

Fit Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model.

Time dependent variables, time dependent strata, multiple events per subject,

and other extensions are incorporated using the counting process formulation of

Andersen and Gill.

Usage

coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)
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The coxph() Function in R
coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)

Arguments

formula a formula object, with the response on the left of a ~ operator,

and the terms on the right. The response must be a survival object

as returned by the Surv function.

data a data.frame in which to interpret the variables named in the formula,

or in the subset and the weights argument.

weights vector of case weights. If weights is a vector of integers,

then the estimated coefficients are equivalent to estimating the model

from data with the individual cases replicated as many times as

indicated by weights.

subset expression indicating which subset of the rows of data

should be used in the fit. All observations are included by default.
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The coxph() Function in R

coxph(formula, data=, weights, subset,

na.action, init, control,

ties=c("efron","breslow","exact"),

singular.ok=TRUE, robust=FALSE,

model=FALSE, x=FALSE, y=TRUE, tt, method, ...)

Arguments

ties a character string specifying the method for tie handling.

If there are no tied death times all the methods are equivalent.

Nearly all Cox regression programs use the Breslow method by default,

but not this one. The Efron approximation is used as the default here,

it is more accurate when dealing with tied death times, and is as

efficient computationally. The "exact partial likelihood" is

equivalent to a conditional logistic model, and is appropriate

when the times are a small set of discrete values. See further below.
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Cox Model for bmt Survival vs. Group

> dfsurv <- Surv(bmt$t2,bmt$d3)

> bmt.cox <- coxph(dfsurv~factor(group),data=bmt)

> summary(bmt.cox)

n= 137, number of events= 83

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004

David M. Rocke Survival Regression Models March, 2024 7 / 38



Cox Model for bmt Survival vs. Group

Hypothesis tests for factor levels compare group 2 to group 1 and 3 to group 1.

Group 3 has the highest hazard and group 2 has the lowest so the most significant

comparison is not directly shown.

The coefficient 0.3834 is on the log-hazard-ratio scale, as in log-risk-ratio.

The next column gives the hazard ratio 1.4673, and a hypothesis (Wald) test.

The (not shown) group 3 vs. group 2 log hazard ratio is 0.3834 + 0.5742 = 0.9576.

The hazard ratio is then exp(0.9576) or 2.605. Inference on all coefficients

and combinations can be constructed using coef(bmt.cox) and vcov(bmt.cox).

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Cox Model for bmt Survival vs. Group

The next part of the output gives 95% confidence intervals for the

relative risk. For the difference between groups 2 and 3 we need to use

coef(bmt.cox) and vcov(bmt.cox).

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

> coef(bmt.cox)

factor(group)2 factor(group)3

-0.5741967 0.3834137

> vcov(bmt.cox)

factor(group)2 factor(group)3

factor(group)2 0.08254038 0.04181177

factor(group)3 0.04181177 0.07148991
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> coef(bmt.cox)

factor(group)2 factor(group)3

-0.5741967 0.3834137

> vcov(bmt.cox)

factor(group)2 factor(group)3

factor(group)2 0.08254038 0.04181177

factor(group)3 0.04181177 0.07148991

> sqrt(vcov(bmt.cox)[1,1])

[1] 0.2872984

> sqrt(vcov(bmt.cox)[2,2])

[1] 0.267376
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

exp(coef) exp(-coef) lower .95 upper .95

factor(group)2 0.5632 1.7757 0.3207 0.989

factor(group)3 1.4673 0.6815 0.8688 2.478

> c1 <- coef(bmt.cox)

> v1 <- vcov(bmt.cox)

> cont1 <- c(-1,1)

> t(cont1) %*% c1

[,1]

[1,] 0.9576104 log hazard ratio group 3 to group2

> t(cont1) %*% v1 %*% cont1

[,1]

[1,] 0.07040675

> sqrt(t(cont1) %*% v1 %*% cont1)

[,1]

[1,] 0.2653427 standard error of log hazard ratio
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Cox Model for bmt Survival vs. Group

coef exp(coef) se(coef) z Pr(>|z|)

factor(group)2 -0.5742 0.5632 0.2873 -1.999 0.0457 *

factor(group)3 0.3834 1.4673 0.2674 1.434 0.1516

> t(cont1) %*% c1

[1,] 0.9576104 log hazard ratio group 3 to group2

> sqrt(t(cont1) %*% v1 %*% cont1)

[1,] 0.2653427 standard error of log hazard ratio

> lhr23 <- t(cont1) %*% c1

> sqrt(t(cont1) %*% v1 %*% cont1)

[1,] 0.2653427

> selhr23 <- sqrt(t(cont1) %*% v1 %*% cont1)

> lhr23/selhr23

[1,] 3.608957

> lhr23+1.96*selhr23

[1,] 1.477682

> lhr23-1.96*selhr23

[1,] 0.4375387
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Cox Model for bmt Survival vs. Group

Concordance is agreement of first failure between pairs of subjects and

higher predicted risk between those subjects, omitting non-informative pairs.

The Rsquare value is Cox and Snell’s pseudo R-squared and is not very useful.

There are three tests for whether the model with the group covariate

is better than the one without

--Usual likelihood ratio chi-squared

--Wald test chi-squared, obtained with the covariance matrix

--score = log-rank test, as with comparison of survival functions.

The likelihood ratio test is probably best in smaller samples, followed

by the Wald test.

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004
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Cox Model for bmt Survival vs. Group

> c1 <- coef(bmt.cox)

> v1 <- vcov(bmt.cox)

> t(c1)%*%solve(v1)%*%c1

[,1]

[1,] 13.03152

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004

A general Wald test for H0 : β = β0 is obtained with

(β̂ − β0)
⊤V−1(β̂ − β0)
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Cox Model for bmt Survival vs. Group

The anova function performs the likelihood ratio test for comparing models.

One can use drop1(), add1(), step(), or compare two explicit models.

> anova(bmt.cox)

Analysis of Deviance Table

Cox model: response is dfsurv

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)

NULL -373.30

factor(group) -366.57 13.452 2 0.001199 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Concordance= 0.625 (se = 0.031 )

Rsquare= 0.094 (max possible= 0.996 )

Likelihood ratio test= 13.45 on 2 df, p=0.001199

Wald test = 13.03 on 2 df, p=0.00148

Score (logrank) test = 13.81 on 2 df, p=0.001004
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Inference on Combinations of Coefficients

If a predictor is categorical, with possible values
a1, a2, . . . ap then the output of essentially any regression
method is in terms of p − 1 coefficients
B = (b2, b3, . . . , bp), which are differences on the
appropriate scale of groups 2, 3, . . . , p from group 1. and
an estimated covariance matrix V . Any linear
combination of coefficients, such as b3 − b2 can be
represented via a vector of weights w of length p − 1
such as (−1, 1, 0, . . . , 0) in the form w⊤B whose
variance is then w⊤Vw .
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Survival Curves from the Cox Model

We defined the “base hazard” but then did not use it to
estimate the coefficients. In fact, there is no meaningful
base hazard. In this case, it is the hazard for group 1.
We can use survfit to get survival functions, but by
default it produces the hazard for an average individual
with average covariates. This is like the family with 1.5
children—it does not exist. Always it is best to specify
the covariate level(s) for which you want the survival
curve(s). In this case, we can plot the Cox model
survival curves, which are by definition proportional,
along with the individual KM curves for the groups.
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plot(survfit(dfsurv~group,data=bmt))

lines(survfit(bmt.cox,data.frame(group=1:3),conf.int=F),col="red")

legend("bottomleft",c("Kaplan-Meier","Cox Model"),col=c("black","red"),lwd=1)

title("Survival Functions for Three Groups by KM and Cox Model")

When we use survfit() with a Cox model, we should include a data frame

with the same named columns as the predictors in the Cox model and

one or more levels of each.

For example

> data.frame(group=1:3,age=50)

group age

1 1 50

2 2 50

3 3 50

> data.frame(group=rep(1:3,2),age=rep(c(50,60),each=3))

group age

1 1 50

2 2 50

3 3 50

4 1 60

5 2 60

6 3 60
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Maximum Partial Likelihood

If subject j(i) is the one who fails at time ti , then the
partial likelihood is

L(β|T ) =
∏
i

θj(i)∑
k∈R(ti ) θk

where T stands for all the data including times,
censoring, and covariate values, while β is the vector of
coefficients.
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The partial log likelihood is

ℓℓ(β|T ) =
∑
i

ln[θj(i)]− ln

 ∑
k∈R(ti )

θk


and with θk = exp(ηk), let

θmk =
∂

∂βm
θk

= θk
∂

∂βm
ηk

= θkxmk
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Then

ℓℓ(β|T ) =
∑
i

ln[θj(i)]− ln

 ∑
k∈R(ti )

θk


∂

∂βm
ℓℓ(β|T ) =

∑
i

[θj(i)]
−1θmj(i) −

 ∑
k∈R(ti )

θk

−1 ∑
k∈R(ti )

θmk

which is the gradient vector, AKA the score statistic, and
similarly we can derive the Hessian, whose negative
inverse is the Fisher information. This can be used with
a variety of optimization techniques such as Newton’s
method to find the MLE. Similar calculations can be
used with tied event times.
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In logistic regression, if all the values of a covariate for
cases are larger than all the values for controls, or the
reverse, then the covariate is very predictive, but the
coefficient will diverge in estimation to ±∞. The same
happens in Cox regression if the covariate values for the
individuals with events are increasing (or decreasing) as
the event times go from smallest to largest.
Paradoxically, this makes the numerical optimization
invalid while strongly indicating the covariate is related
to risk.
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Wald Tests

We use the maximum partial likelihood estimates β̂ of
the parameter vector β which has estimated covariance
matrix V from the Fisher information. The diagonal
entries of V are the squares of the standard errors which
we can use for tests and confidence intervals for single
coefficients (these are given in the output). A linear

combination c⊤β̂ of coefficients has covariance matrix
c⊤Vc . The hypothesis H0 : β̂ = β0 can be tested with
(β̂ − β0)

⊤V (β̂ − β0) which is asymptotically χ2(p) under
the null, where p is the number of parameters.
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Likelihood Ratio Tests

Asymptotically, the log likelihood ratio 2[ℓℓ(β̂)− ℓℓ(β0)]
is χ2(p). This test, as well as the Wald test, can be used
with partial specification by the null hypothesis of the
coefficients in which case the dimension of the χ2

statistic is the number of linear constraints. For example,
if one coefficient is specified to be zero, this is equivalent
to leaving that variable out and re-running the
optimization. That is a test of that one coefficient and
has dimension 1. Note that the Wald test of one
coefficient uses the previous coefficient estimates,
whereas the LR test re-estimates all the coefficients.
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Score Tests

The score statistic AKA the gradient is 0 at the MLE.
Let G (β) be the score statistic, so that G (β̂) = 0. The
statistic

G (β0)
⊤VG (β0)

has asymptotically a χ2(p) distribution as well. If there
are no ties, then the score test and the log rank test (as
used in survdiff) are the same. In many cases, the LR
test has faster convergence than the Wald test, though
the book indicates that they are similar. The score test is
generally less accurate.
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Coding and Transforming Predictors

A factor is a categorical covariate. If it has two
levels, and those are coded as 0 and 1 in a numerical
variable, then the coefficient is the predicted
difference in the two levels (such as male/female).

If there are more than two levels, then one can
represent the factor with one fewer predictors than
the number of levels. For example if the coding is
group = 1, 2, 3, then we could define x1 = 1 iff
group =2 and x2 = 1 iff group = 3.
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Coding and Transforming Predictors

This is rather old fashioned, though may sometimes
be useful. Instead
dtype = factor(dtype,labels = c("NHL","HOD"))

redefines the variable to be a factor, which is
inherently categorical.

The coefficients though are by default comparisons
with the first level.
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Coding and Transforming Predictors

Numerical variables may be transformed linearly so
that the coefficient is in interpretable units.

It also may improve the model to use the log,
square root, or inverse of the original variable.

The urge to categorize numeric variables should be
resisted unless there is strong evidence that it helps.

Hemoglobin A1C test (from CDC web page):
Normal A1C < 5.7%

Prediabetes 5.7% ≤ A1C ≤ 6.4%

Diabetes A1C ≥ 6.5%
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Use of Tests in Model Building

Generally in a survival analysis we have chosen a
response, such as progression-free survival, and perhaps a
main predictor, such as drug vs. standard of care. We
may have other covariates of interest which are thought
possibly to influence survival, or even perhaps the
efficacy of the drug (the latter would imply an
interaction term). If a covariate is not statistically
significant, does that mean we should remove it from the
model? Well, not necessarily.
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We could compare the models with a measure of
predictive performance such as the Akaiki Information
Criterion (AIC) or the Bayesian Information Criterion
(BIC). We might keep a predictor in the model because
it is useful or because other studies have used it.

For clinical trials, the analysis must be prespecified and
usually consists of a simple comparison of treatment and
standard of care (remembering that these trials usually
are randomized). Secondary analysis, also usually
prespecified, can encompass covariates.
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ANOVA

The analysis of variance is in linear regression the
division of the sums of squares into parts assigned to
covariates and interactions as well as the total and the
error term. More generally, this describes a comparison
of two models in which one is derived from the other by
omitting terms. This can be done for many types of
regression models including the ones in coxph.

OED: (post-classical Latin) analysis: act of resolving (something)
into its elements (13th cent. in British and continental sources).
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KMsurv hodg data set

Data on lymphoma: Hodgins disease and non-Hodkins lymphoma:

gtype = Graft type (1=allogenic, 2=autologous)

dtype = Disease type (1=Non Hodgkin lymphoma, 2=Hodgkins disease)

time = Time to death or relapse, days

delta = Death/relapse indicator (0=alive, 1=dead)

score = Karnofsky score

wtime = Waiting time to transplant in months

Karnovsky score indicates general functionality of the individual.
There are 43 patients, 20 with Hodgkin’s disease and and 23 with
non-Hodkins lymphoma.
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> hodg.cox1 <- coxph(hodg.surv ~ gtype * dtype + score + wtime, data = hodg2)

> anova(hodg.cox1)

Analysis of Deviance Table

Cox model: response is hodg.surv

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)

NULL -87.258

gtype -87.194 0.1285 1 0.71996

dtype -86.995 0.3973 1 0.52848

score -74.445 25.1003 1 5.442e-07 ***

wtime -73.899 1.0920 1 0.29604

gtype:dtype -71.181 5.4357 1 0.01973 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

>

This sequential addition of variables is not the most useful. The test indicates the usefulness
of the given variable in a model already including variables that proceed it in the list.
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> drop1(hodg.cox1)

Single term deletions

Model:

hodg.surv ~ gtype * dtype + score + wtime

Df AIC

<none> 152.36 Any drop increases the AIC (bad)

score 1 167.60

wtime 1 153.64 Can’t drop gtype or dtype

gtype:dtype 1 155.80 if gtype:dtype is in the model

> drop1(hodg.cox1,test="Chisq")

Single term deletions

Model:

hodg.surv ~ gtype * dtype + score + wtime

Df AIC LRT Pr(>Chi)

<none> 152.36

score 1 167.60 17.2365 3.3e-05 *** score and gtype:dtype

wtime 1 153.64 3.2792 0.07016 . are significant by LR test

gtype:dtype 1 155.80 5.4357 0.01973 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The command drop1 respects hierarchy, meaning that if
an interaction is in the model then none of the subsidiary
terms can be dropped. A LR test can be added but the
AIC is always given.

AIC = −2ℓℓ+ 2p

where p is the effective number of parameters. When
terms are added to a model, the ℓℓ cannot drop, but
when penalized by the dimension of the predictors it may.
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The penalty term is 2p by default but may be set to be
kp. If k = ln(n) this is called the Bayesian Information
Criterion (BIC) which favors smaller models than the
AIC. Significance testing usually results in smaller models
than the AIC or else the same model.

If there are missing values, then the models may be fit to
different data sets which makes the inference invalid.

There is also an add1 command which requires a term
indicating the largest possible model that can be
considered. An example is on the next slide.
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> add1(hodg.cox1,scope = ~ gtype * dtype * score * wtime,test="Chisq")

Single term additions

Model:

hodg.surv ~ gtype * dtype + score + wtime

Df AIC LRT Pr(>Chi)

<none> 152.36

gtype:score 1 149.03 5.3339 0.02091 *

dtype:score 1 153.13 1.2355 0.26634

gtype:wtime 1 153.13 1.2321 0.26699

dtype:wtime 1 154.27 0.0884 0.76619

score:wtime 1 154.30 0.0630 0.80188

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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