University of California, Davis
Department of Public Health Sciences

Fall 2023	Survival Analysis	BST 222
David M. Rocke		September 28, 2023

Homework Assignment 1

Due October 10, 2023

1. The log-logistic distribution has survival function

$$S(t) = \frac{1}{1 + \lambda t^{\alpha}}$$

where $\lambda, \alpha > 0$ and $t \ge 0$. Here, the distribution of the logarithm of the failure times is logistic with mean μ and scale parameter σ , and $\alpha = 1/\sigma$, $\lambda = \exp(-\mu/\sigma)$

- (a) Find the hazard rate for this distribution. For what values of α is the hazard function monotone. When it is monotone, is it increasing or decreasing?
- (b) When the hazard function is not monotone, where does it change slope? Is it decreasing to increasing or increasing to decreasing?
- (c) Describe a practical situation where the hazard function might change slopes in this manner.
- 2. Do Exercise 2.18 from Klein and Moeschberger.
- 3. Using the data from Exercise 3.6 in Klein and Moeschberger,
 - (a) Suppose that time from the start of the study to relapse is assumed to be exponential with parameter λ_1 and time from start of the study to death is assumed to be exponential with parameter λ_2 . Find the likelihoods for λ_1 and λ_2 and find the MLE for each of these parameters.
 - (b) Suppose that we could not observe the death times of patients who had not relapsed. Find the estimate of λ_2 from the truncated sample and discuss the difference.

4. Suppose that the failure distribution of a particular type of disk drive is exponential with a mean time between failures (MTBF) of 4 years (so that $\lambda = 0.25$). In this model we suppose that after each failure, the time to the next failure is still exponential with the same parameter λ . This means that the failures form a Poisson process with the mean number of failures per year of $\lambda = 0.25$. If we have n disks on test, then the failure process is still Poisson with MTBF $1/(n\lambda)$ and mean number of failures per year of $n\lambda$.

Suppose that we put n disks on test and need to have a 95% chance of at least 30 failures in the first year to have sufficient accuracy in estimating λ . How many disks need to be put on test? We can attack this either using the Poisson distribution (**qpoiss**, **ppoiss** in R) or by using the gamma distribution (**qgamma**, **pgamma**). For the Poisson calculation, you need to compute the mean number of failures in the first year as a function of n, and then you can use **qpoiss** with **lower=F** and trial and error in choosing n until you find the minimum value of n that results in 30 as the point with upper tail equal to 0.95. For the gamma calculation, the waiting time to the kth failure with exponential waiting times with parameter λ_0 has rate λ_0 and shape k. You can use **pgamma** to find the least value of n that results in a time to 30 failures of one year that has a probability of 0.95 or greater. Do this calculation both ways until you get the same answer from both methods.