Burn Data

David M. Rocke

November 2, 2023

David M. Rocke

문 문 문

1/12

The burn data set from KMsury is from Ichida et al. (1993) which is linked on the web site. It represents a study of an attempt to improve infection control by replacing routine bathing with total body washing using an antimicrobial agent. The main outcome of interest is infection with straphylocous aureaus, the time and status of which are represented by T3 and D3. There are 11 ordinary covariates Z1–Z11 and two time dependent predictors that can be constructed for surgical excision of burn tissue (T1, D1) and prophylactic antibiotic treatment (T2, D2).

The input R file on the web site recodes and renames the ordinary covariates, as shown above, to make interpretation easier. The cases with routine bathing are historical controls so this does not represent a single cohort study and in particular the assignment of treatment to patient is not random.

Your assignment is to analyze the data and write a report as if to the head burn surgeon in the hospital. You will be graded on the analysis and also on the quality of the communication in the presentation. Below are some possible things to look at. There may be others as well, and maybe you don't need all of these. If you make a plot or do an analysis, then explain why you did it and what the meaning of the results might be.

Burn Data Set

	Bulli Bata Set				
Var.	Definition				
Obs	Observation number				
Z1	Treatment: 0-routine bathing 1-Body cleansing				
Z2	Gender (0=male 1=female)				
Z3	Race: 0=nonwhite 1=white				
Z4	Percentage of total surface area burned				
Z5	Burn site indicator: head 1=yes, 0=no				
Z6	Burn site indicator: buttock 1=yes, 0=no				
Z7	Burn site indicator: trunk 1=yes, 0=no				
Z8	Burn site indicator: upper leg $1=$ yes, $0=$ no				
Z9	Burn site indicator: lower leg 1=yes, 0=no				
Z10	Burn site indicator: respiratory tract 1=yes, 0=no				
Z11	Type of burn: 1=chemical, 2=scald, 3=electric, 4=flame				
Τ1	Time to excision or on study time				
D1	Excision indicator: $1 = yes 0 = no$				
T2	Time to prophylactic antibiotic treatment or on study time				
D2	Prophylactic antibiotic treatment: 1=yes 0=no				
Т3	Time to straphylocous aureaus infection or on study time				
D3	Straphylocous aureaus infection: 1=yes 0=no				

æ

Recoded Burn Data Set									
Var.	New Var.	Definition and Factor Levels							
Obs		Observation number							
Z1	Treatment	Routine/Cleansing							
Z2	Gender	Male/Female							
Z3	Race	Nonwhite/White							
Z4	PercentBurned	Percentage of total surface area burned							
Z5	SiteHead	NotBurned/Burned							
Z6	SiteButtock	NotBurned/Burned							
Z7	SiteTrunk	NotBurned/Burned							
Z8	SiteUpperLeg	NotBurned/Burned							
Z9	SiteLowerLeg	NotBurned/Burned							
Z10	SiteRespTract	NotBurned/Burned							
Z11	BurnType	Chemical/Scald/Electric/Flame							
Τ1		Time to excision or on study time							
D1		Excision indicator: $1 = yes 0 = no$							
T2		Time to prophylactic antibiotic treatment or on study time							
D2		Prophylactic antibiotic treatment: 1=yes 0=no							
Т3		Time to straphylocous aureaus infection or on study time							
D3		Straphylocous aureaus infection: 1=yes 0=no							

Recoded Burn Data Set

イロト イヨト イヨト イヨト

æ

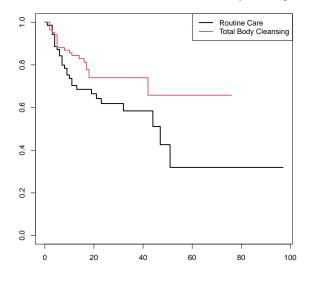
```
require(KMsurv)
require(survival)
data(burn)
```

burn1 <- burn burn1 <- data.frame(burn1,Treatment=factor(burn1\$Z1, labels=c("Routine","Cleansing"))) burn1 <- data.frame(burn1,Gender=factor(burn1\$Z2, labels=c("Male","Female"))) burn1 <- data.frame(burn1,Race=factor(burn1\$Z3, labels=c("Nonwhite","White"))) burn1 <- data.frame(burn1,PercentBurned=burn1\$Z4) burn1 <- data.frame(burn1,SiteHead=factor(burn1\$Z5, labels=c("NotBurned","Burned"))) burn1 <- data.frame(burn1,SiteHead=factor(burn1\$Z6, labels=c("NotBurned","Burned"))) burn1 <- data.frame(burn1,SiteTrunk=factor(burn1\$Z7, labels=c("NotBurned","Burned")))

э

```
burn1 <- data.frame(burn1,SiteUpperLeg=factor(burn1$Z8,
    labels=c("NotBurned","Burned")))
burn1 <- data.frame(burn1,SiteLowerLeg=factor(burn1$Z9,
    labels=c("NotBurned","Burned")))
burn1 <- data.frame(burn1,SiteRespTract=factor(burn1$Z10,
    labels=c("NotBurned","Burned")))
burn1 <- data.frame(burn1,BurnType=factor(burn1$Z11,
    labels=c("Chemical","Scald","Electric","Flame")))
burn1.surv <- with(burn1,Surv(T3,D3))
plot(survfit(burn1.surv~Treatment,data=burn1),col=1:2,lwd=2)
title("Time to Infection for Routine Care and Total Body Cleansing")
```

```
legend("topright",c("Routine Care","Total Body Cleansing"),col=1:2,lwd=2)
```


print(survdiff(burn1.surv~Treatment,data=burn1))

survdiff(formula = burn1.surv ~ Treatment, data = burn1)

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
Treatment=Routine	70	28	21.4	2.07	3.79
Treatment=Cleansing	84	20	26.6	1.66	3.79

Chisq= 3.8 on 1 degrees of freedom, p= 0.05

Time to Infection for Routine Care and Total Body Cleansing

David M. Rocke

November 2, 2023

< □ > < 同 >

문 🛌 🖻

- Plot the Kaplan-Meier curves for the treated and untreated patients and use survdiff to test for whether the curves are different.
- Plot the cumulative hazards vs. time and the complimentary log-log survival vs. log time.

Construct Cox model using only the time-independent predictors. Maybe start with one using only Treatment. Decide if the burn site variables will be separately included after analysis or included or excluded as a group. Note that this is not a factor, because a patient may have burns at many sites. The respiratory tract burn site variable is different from the others since it does not focus on skin.

10 / 12

- Run the usual suite of model checking methods and report any interesting findings. Possibly alter the model as a result.
- Construct the data set with the the time-dependent covariates for surgical excision and prophylactic antibiotic treatment and find a good model which includes useful time-dependent covariates as well as useful time-independent ones.

11/12

- Run the usual suite of model checking methods and report any interesting findings. Possibly alter the model as a result.
- Interpret the results and comment on the implications for clinical management. Note that, from other studies, for the endpoint of survival (an outcome not included in this data set), burn percentage and burn degree (first, second, third) are quite important, but the first one may or may not be important for infection control, and information on the second factor is not included in the data set.