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Normalization 
 Sometimes even single-analyte assays are normalized. 
 Measure TNF-α with a western blot using optical 

density of the band 
 Sometimes “housekeeping” proteins like β-actin or 

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) 
are used to normalize and account for variations in the 
amount of protein loaded 
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Multi-analyte Normalization 
 In a western blot, we measure one or a few analytes and perhaps 

a loading control like β-actin 
 In other assays we measure many analytes and there may be no 

control, or none we want to use for normalization  
 Instead, we may use some measure of the overall response of the 

sample to normalize. 
 For example, we may compute the mean or median value across 

analytes for each sample (Mi) and the overall mean or median M 
of the Mi across samples, and then normalize the value yij for 
analyte j from sample i to yij – Mi + M. 

 For gene expression arrays, we often normalize in an intensity 
dependent way so that the averages are only for genes with 
similar spot intensities; this avoids level-dependent biases. 
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Normalization methods 
 Use of the mean or sum can cause trouble because this may 

be driven completely by a few large values 
 Thus, total ion current for mass spec is not a good 

normalization method even though it is a good measure of 
the total throughput 

 We often use the median across the sample for a small 
number of analytes as in Luminex 

 We use lowess smoothing for expression arrays—this 
normalizes across regions of similar intensity. 

 rma() uses quantile normalization, which makes each 
array have the same values, just in a different order 
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Background correction 
 If the target transcript is not present in the sample, the 

spot will still fluoresce. 
 This is due to things like non-specific hybridization 
 We can try to adjust for this by subtracting an estimate 

of background from the value on each spot (and then 
adding back the average background) 

 This is not as important as some other adjustments. 
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Data Transformations. 
 In a gene expression array, and in other assays, the 

variance rises generally with the mean. 
 For high level data, the log will stabilize the variance. 
 For low level data, this causes problems 
 Good transformations include the generalized log and 

the started log. 
 Often, for Affymetrix data, the rma() method is good 

enough, though it does not stabilize the variance as 
well. 
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Fitting a model to genes 
 We can fit a model to the data of each gene after the 

whole arrays have been background corrected, 
transformed, and normalized, for example by rma(). 

 Each gene is then test for whether there is differential 
expression 

 Significance levels are determined in the usual way, or 
we can “borrow strength” from other genes if the 
sample size is small. 
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> dim(exprs(eset)) 
[1] 12625    12 
> exprs(eset)[942,] 
LN0A.CEL LN0B.CEL LN1A.CEL LN1B.CEL LN2A.CEL LN2B.CEL LN3A.CEL LN3B.CEL  
9.063619 9.427203 9.570667 9.234590 8.285440 7.739298 8.696541 8.876506  
LN4A.CEL LN4B.CEL LN5A.CEL LN5B.CEL  
9.425838 9.925823 9.512081 9.426103  
> group <- as.factor(c(0,0,1,1,2,2,3,3,4,4,5,5)) 
> group 
 [1] 0 0 1 1 2 2 3 3 4 4 5 5 
Levels: 0 1 2 3 4 5 
> anova(lm(exprs(eset)[942,] ~ group)) 
Analysis of Variance Table 
 
Response: exprs(eset)[942, ] 
          Df Sum Sq Mean Sq F value   Pr(>F)    
group      5 3.7235  0.7447  10.726 0.005945 ** 
Residuals  6 0.4166  0.0694                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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getp <- function(y) 
{ 
  tmp <- anova(lm(y ~ group))$P[1] 
  return(tmp) 
} 
 
allp <- function(array) 
{ 
  tmp2 <- apply(array,1,getp) 
  return(tmp2) 
} 
 
> source("allgenes.r") 
> allp1 <- allp(exprs(eset)) 
> length(allp1) 
[1] 12625 
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Multiplicity Adjustments 
 If we test thousands of genes and pick all the ones 

which are significant at the 5% level, we will get 
hundreds of false positives. 

 Multiplicity adjustments winnow this down so that the 
number of false positives is smaller 
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Types of Multiplicity Adjustments 
 The Bonferroni correction aims to detect no significant 

genes at all if there are truly none, and guarantees that 
the chance that any will be detected is less than .05 
under these conditions 

 Generally, this is too conservative 
 Less conservative versions include methods due to 

Holm, Hochberg, and Benjamini and Hochberg (FDR) 
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> allp1adj <- p.adjust(allp1,"fdr") 
> sum(allp1adj<.05) 
[1] 119 
> featureNames(eset)[allp1adj < .05] 
  [1] "120_at"                    "1288_s_at"                 
  [3] "1423_at"                   "1439_s_at"                 
  [5] "1546_at"                   "1557_at"                   
..............................................  
[101] "41058_g_at"                "411_i_at"                  
[103] "41206_r_at"                "41501_at"                  
[105] "41697_at"                  "41733_at"                  
[107] "476_s_at"                  "613_at"                    
[109] "646_s_at"                  "672_at"                    
[111] "769_s_at"                  "777_at"                    
[113] "801_at"                    "922_at"                    
[115] "952_at"                    "AFFX-BioB-M_at"            
[117] "AFFX-HUMGAPDH/M33197_3_at" "AFFX-M27830_5_at"          
[119] "AFFX-M27830_M_at"          
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LMGene 
 LMGene is a Bioconductor package for linear 

model analysis of gene expression data. 
 It can duplicate the small program which does a 

one-way ANOVA for each gene, or any other linear 
model. 

 It also can compute the “moderated” t or F 
statistic, in which small denominators are made 
larger and large denominators are made smaller.  

 Install using BiocLite() in R. 
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Moderated Statistics 
 If we conduct a one-way ANOVA for each of 12625 

genes, then each F-statistic uses the 6df denominator 
which estimates the true MSE. 

 We can do better if we assume that the true MSE varies 
from gene to gene, but not arbitrarily. 
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> colnames(exprs(eset)) 
 [1] "LN0A.CEL" "LN0B.CEL" "LN1A.CEL" "LN1B.CEL" "LN2A.CEL" "LN2B.CEL" 
 [7] "LN3A.CEL" "LN3B.CEL" "LN4A.CEL" "LN4B.CEL" "LN5A.CEL" "LN5B.CEL" 
 
> group <- factor(c(0,0,1,1,2,2,3,3,4,4,5,5)) 
> vlist <- list(group=group) 
> vlist 
$group 
 [1] 0 0 1 1 2 2 3 3 4 4 5 5 
Levels: 0 1 2 3 4 5 
 
> eset.lmg <- neweS(exprs(eset),vlist) 
> lmg.results <- LMGene(eset.lmg) 

This results in a list of 1173 genes that are differentially 
expressed after using the moderated F statistic. Compare to 
119 if the moderated statistic is not used. We will see later  
how to understand the biological implications of the results  
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> genediff.results <- genediff(eset.lmg) 
> names(genediff.results) 
[1] "Gene.Specific" "Posterior"     
> hist(genediff.results$Gene.Specific) 
> hist(genediff.results$Posterior) 
> pv2 <- pvadjust(genediff.results) 
> names(pv2) 
[1] "Gene.Specific"     "Posterior"         "Gene.Specific.FDR" 
[4] "Posterior.FDR"  
> sum(pv2$Gene.Specific < .05) 
[1] 2615 
> sum(pv2$Posterior < .05) 
[1] 3082 
> sum(pv2$Gene.Specific.FDR < .05) 
[1] 119 
> sum(pv2$Posterior.FDR < .05) 
[1] 1173 

Using genediff results in two lists of 12625 p-values. One  
uses the standard 6df denominator and the other uses the  
moderated F-statistic with a denominator derived from an  
analysis of all of the MSE’s from all the linear models. 
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Using LMGene for  
More Complex Models  
 The eS object contains a matrix of data and a list of 

variables that can be used for the linear model 
 An optional second argument is the linear model that 

is fit to the data. 
 The default is to use all the variables as main effects 

with no interactions. 
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 Suppose the data consist of 32 arrays from 8 patients at 
each of 4 doses (in this case of ionizing radiation) of 0, 
1, 10, and 100 cGy. 

 We specify each variable, make a list for the eS, and 
then write the model if necessary. 
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> patient <- factor(rep(1:8,each=4)) 
> patient 
 [1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 
Levels: 1 2 3 4 5 6 7 8 
> dose <- rep(c(0,1,10,100),8) 
> dose 
 [1]   0   1  10 100   0   1  10 100   0   1  10 100   0   1  10 100  
[17] 0   1  10 100   0   1  10 100   0   1  10 100   0   1  10 100 
> vlist <- list(patient=patient, dose=dose) 
> eset.rads <- neweS(exprs(eset),vlist) 
> rads.results <- LMGene(eset.rads) 
> rads.results <- LMGene(eset.rads,’patient+dose’) 
> rads.results <- LMGene(eset.rads,’patient*dose’) 
 

The + operator means an additive model, the * operator means  
the factors/variables and all interactions, the : operator  
just adds the interactions. 
 
y ~ patient+dose 
y ~ patient*dose == patient+dose+patient:dose 
y ~ patient+dose+time+patient:dose 
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