
BST 226
Statistical Methods for

Bioinformatics
David M. Rocke

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 1

Class prediction from omics data
 One common use of omics data is to try to develop

predictions for classes of patients, such as
 cancer/normal
 type of tumor
 grading or staging of tumors
 many other disease/healthy or diagnosis of disease type

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 2

Two-class prediction
 Linear regression
 Logistic regression
 Linear or quadratic discriminant analysis
 Partial least squares
 Fuzzy neural nets estimated by genetic algorithms and

other buzzwords
 Many such methods require fewer variables than cases,

so dimension reduction is needed

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 3

Dimension Reduction
 Suppose we have 20,000 variables and wish to predict

whether a patient has ovarian cancer or not and
suppose we have 50 cases and 50 controls

 We can only use a number of predictors much smaller
than 50

 How do we do this?

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 4

 Two distinct ways are selection of genes and selection
of “supergenes” as linear combinations

 We can choose the genes with the most significant t-
tests or other individual gene criteria

 We can use forward stepwise logistic regression, which
adds the most significant gene, then the most
significant addition, and so on, or other ways of
picking the best subset of genes

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 5

Supergenes are linear combinations of genes. If g1, g2, g3,
…, gp are the expression measurements for the p genes
in an array, and a1, a2, a3, …, ap are a set of coefficients
then g1 a1+ g2 a2+ g3 a3+ …+ gp ap is a supergene.
Methods for construction of supergenes include PCA
and PLS

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 6

Choosing Subsets of Genes

 Suppose we have 50 cases and 50 controls and an array
of 20,000 gene expression values for each of the 100
observations

 In general, any arbitrary set of 100 genes will be able to
predict perfectly in the data if a logistic regression is fit
to the 100 genes

 Most of these will predict poorly in future samples

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 7

 This is a mathematical fact
 A statistical fact is that even if there is no association

at all between any gene and the disease, often a few
genes will produce apparently excellent results, that
will not generalize at all

 We must somehow account for this, and cross
validation is the usual way

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 8

February 10, 2014

source(“spuriousprediction.r”)
y <- rep(0:1,each=50)
x <- matrix(rnorm(100*20000),ncol=100)
ts <- vector("numeric",20000)
for (i in 1:20000)
{
 ts[i] <- (t.test(x[i,] ~ y)$statistic)^2
}
ind <- order(ts,decreasing=T)

BST 226 Statistical Methods for Bioinformatics 9

February 10, 2014

ind <- order(ts,decreasing=T)
> source("spuriousprediction2.r")
sp.glm <- glm(y ~ x[ind[1],],binomial)
print(summary(sp.glm))
yp <- predict.glm(sp.glm,type="response")
yp[yp < 0.5] <- 0
yp[yp >= 0.5] <- 1
print("Number of Misclassifications out of 100")
print(sum(y != yp))

sp.glm <- glm(y ~ x[ind[1],],binomial)
yp <- predict.glm(sp.glm,type="response")
yp[yp < 0.5] <- 0
yp[yp >= 0.5] <- 1
print("Number of variables/Misclassifications out of 100")
print(c(1,sum(y != yp)))

sp.glm <- glm(y ~ x[ind[1],]+x[ind[2],],binomial)
yp <- predict.glm(sp.glm,type="response")
yp[yp < 0.5] <- 0
yp[yp >= 0.5] <- 1
print("Number of variables/Misclassifications out of 100")
print(c(2,sum(y != yp)))

BST 226 Statistical Methods for Bioinformatics 10

February 10, 2014

> source("spuriousprediction2.r")

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.96156 -1.07483 0.08347 0.99583 1.68009

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.03078 0.22122 -0.139 0.889342
x[ind[1],] -1.15034 0.30385 -3.786 0.000153 ***

 Null deviance: 138.63 on 99 degrees of freedom
Residual deviance: 119.00 on 98 degrees of freedom
AIC: 123.00

Number of Fisher Scoring iterations: 4

[1] "Number of Misclassifications out of 100"
[1] 36

BST 226 Statistical Methods for Bioinformatics 11

February 10, 2014

[1] "Number of variables/Misclassifications out of 100"
[1] 1 36
[1] "Number of variables/Misclassifications out of 100"
[1] 2 32
[1] "Number of variables/Misclassifications out of 100"
[1] 3 27
[1] "Number of variables/Misclassifications out of 100"
[1] 4 19
[1] "Number of variables/Misclassifications out of 100"
[1] 5 17
[1] "Number of variables/Misclassifications out of 100"
[1] 6 21
[1] "Number of variables/Misclassifications out of 100"
[1] 7 16
[1] "Number of variables/Misclassifications out of 100"
[1] 20 0
Warning messages:
1: Algorithm did not converge in: glm.fit(x = X, y = Y,
 weights = weights, start = start, etastart = etastart,
2: fitted probabilities numerically 0 or 1 occurred in:
glm.fit(x = X, y = Y, weights = weights, start = start,
etastart = etastart,

BST 226 Statistical Methods for Bioinformatics 12

February 10, 2014

Now with the first 20 variables instead of the 20/20000 with the
Biggest t-scores:

[1] "Number of variables/Misclassifications out of 100"
[1] 20 26

Call:
glm(formula = y ~ x[1,] + x[2,] + x[3,] + x[4,] + x[5,] +
 x[6,] + x[7,] + x[8,] + x[9,] + x[10,] + x[11,] + x[12,
] + x[13,] + x[14,] + x[15,] + x[16,] + x[17,] + x[18,
] + x[19,] + x[20,], family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.20702 -0.89041 0.01297 0.92103 1.90446

BST 226 Statistical Methods for Bioinformatics 13

February 10, 2014

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.06041 0.24533 0.246 0.8055
x[1,] -0.43297 0.30242 -1.432 0.1522
x[2,] 0.60087 0.28979 2.074 0.0381 *
x[3,] 0.11777 0.23215 0.507 0.6119
x[4,] 0.22212 0.24727 0.898 0.3690
x[5,] -0.15468 0.26043 -0.594 0.5526
x[6,] 0.31370 0.24938 1.258 0.2084
x[7,] -0.43456 0.30462 -1.427 0.1537
x[8,] -0.41751 0.29113 -1.434 0.1515
x[9,] -0.45591 0.29228 -1.560 0.1188
x[10,] 0.50699 0.28279 1.793 0.0730 .
x[11,] -0.54391 0.27250 -1.996 0.0459 *
x[12,] 0.38480 0.26215 1.468 0.1422
x[13,] -0.04257 0.24281 -0.175 0.8608
x[14,] 0.13996 0.25947 0.539 0.5896
x[15,] 0.41957 0.23650 1.774 0.0761 .
x[16,] -0.20779 0.29312 -0.709 0.4784
x[17,] 0.57632 0.30106 1.914 0.0556 .
x[18,] 0.02833 0.27818 0.102 0.9189
x[19,] 0.25862 0.25417 1.018 0.3089
x[20,] 0.45244 0.23562 1.920 0.0548 .

BST 226 Statistical Methods for Bioinformatics 14

February 10, 2014

Null deviance: 138.63 on 99 degrees of freedom
Residual deviance: 112.35 on 79 degrees of freedom
--
(138.63 – 112.35) = 26.28 ~ chisq(20) p ~ .32
--

 Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 99 138.629
x[1,] 1 0.467 98 138.163 0.494
x[2,] 1 1.376 97 136.787 0.241
x[3,] 1 0.217 96 136.570 0.641
x[4,] 1 0.135 95 136.435 0.713
x[5,] 1 0.962 94 135.473 0.327
x[6,] 1 0.603 93 134.870 0.437
x[7,] 1 1.622 92 133.248 0.203
x[8,] 1 0.575 91 132.672 0.448
x[9,] 1 0.574 90 132.099 0.449
x[10,] 1 1.509 89 130.589 0.219
x[11,] 1 2.262 88 128.327 0.133
x[12,] 1 1.557 87 126.771 0.212
x[13,] 1 0.006 86 126.764 0.937
x[14,] 1 0.598 85 126.166 0.439
x[15,] 1 2.902 84 123.264 0.088
x[16,] 1 0.328 83 122.936 0.567
x[17,] 1 5.015 82 117.921 0.025
x[18,] 1 0.011 81 117.909 0.916
x[19,] 1 1.704 80 116.205 0.192
x[20,] 1 3.855 79 112.350 0.050

BST 226 Statistical Methods for Bioinformatics 15

Consequences of many variables
 If there is no effect of any variable on the classification,

it is still the case that the number of cases correctly
classified increases in the sample that was used to
derive the classifier as the number of variables
increases

 But the statistical significance is usually not there

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 16

 If the variables used are selected from many, the
apparent statistical significance and the apparent
success in classification is greatly inflated, causing
end-stage delusionary behavior in the investigator

 This problem can be improved using cross validation
or other resampling methods

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 17

Overfitting
 When we fit a statistical model to data, we adjust the

parameters so that the fit is as good as possible and the
errors are as small as possible

 Once we have done so, the model may fit well, but we
don’t have an unbiased estimate of how well it fits if we
use the same data to assess as to fit

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 18

Training and Test Data
 One way to approach this problem is to fit the

model on one dataset (say half the data) and assess
the fit on another

 This avoids bias but is inefficient, since we can
only use perhaps half the data for fitting

 We can get more by doing this twice in which each
half serves as the training set once and the test set
once

 This is two-fold cross validation

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 19

 It may be more efficient to use 5- 10-, or 20-fold cross
validation depending on the size of the data set

 Leave-out-one cross validation is also popular,
especially with small data sets

 With 10-fold CV, one can divide the set into 10 parts,
pick random subsets of size 1/10, or repeatedly divide
the data

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 20

February 10, 2014

ind <- order(ts,decreasing=T)

n.tot <- 0
n.wrong <- 0

for (i in 1:100)
{
 test.set.list <- sample(100,10)
 test.seti <- rep(F,100)
 test.seti[test.set.list] <- T
 train.seti <- !test.seti
 y1 <- y[train.seti]
 x1 <- x[ind[1],train.seti]
 sp.glm <- glm(y1 ~ x1,binomial)
 yp <- predict.glm(sp.glm,data.frame(x1=x[ind[1],test.seti]),type="response")
 yp[yp < 0.5] <- 0
 yp[yp >= 0.5] <- 1
 n.tot <- n.tot+10
 n.wrong <- n.wrong+sum(y[test.seti] != yp)
}

BST 226 Statistical Methods for Bioinformatics 21

February 10, 2014

print("Number of variables/Misclassifications out of 1000")
print(c(1,n.wrong,n.tot,100*n.wrong/n.tot))

> source("spuriousprediction3.r")
[1] "Number of variables/Misclassifications out of 1000"
[1] 1.0 363.0 1000.0 36.3

Cf. missclass within the 100 for this variable was 36
It should have been about 50 since the predictors are random
Cross validation does not solve the problem if the whole data
Set was used to find the variable(s)

BST 226 Statistical Methods for Bioinformatics 22

Stepwise Logistic Regression
 Another way to select variables is stepwise
 This can be better than individual variable selection,

which may choose many highly correlated predictors
that are redundent

 A generic function step() can be used for many kinds
of predictor functions in R

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 23

Using step()
 step(glm.model) is sufficient
 It uses steps either backward (using drop1) or forward

(using add1) until a model is reached that cannot be
improved

 Criterion is AIC = Akaiki Information Criterion, which
tries to account for the effect of extra variables, more
so than MSE or R2

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 24

 You may also specify a scope in the form of a
list(lower=model1, upper =model2)

 For expression arrays, with thousands of variables one
should start with y ~ 1 and use scope =list(lower=y~1,
upper=**)

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 25

February 10, 2014

for (i in 1:100)
{
 assign(paste("x",i,sep=""),x[ind[i],])
}
fchar <- "y~x1"
for (i in 2:100)
{
 fchar <- paste(fchar,"+x",i,sep="")
}
form <- as.formula(fchar)
step(glm(y ~ 1),list(lower=(y~1),upper=form))

assign creates a variable with a name and a value
paste makes a character string by pasting together parts
The first loop creates variables x1 to x100
The second loop creates a formula of the form
y~x1+x2+x3+…+x100

BST 226 Statistical Methods for Bioinformatics 26

February 10, 2014

Step: AIC= -288.12
 y ~ x29 + x13 + x60 + x17 + x47 + x3 + x50 + x30 + x26 + x16 +
 x78 + x9 + x37 + x89 + x52 + x6 + x46 + x75 + x83 + x62 +
 x28 + x14 + x98 + x22 + x8 + x56 + x81 + x53 + x65 + x5 +
 x23 + x27 + x44 + x99 + x90 + x92 + x93 + x71 + x70 + x40 +
 x10 + x77 + x20 + x15 + x4 + x33 + x61 + x25 + x68 + x35 +
 x67 + x55 + x96 + x19 + x87 + x39 + x42 + x64 + x100 + x94 +
 x18 + x63 + x2 + x11 + x86 + x7 + x12 + x57 + x24 + x80 +
 x31 + x32 + x21 + x51 + x49 + x72 + x58 + x41 + x69 + x36

Given that there is no variable here actually related to the
Response, this cannot be said to have done very well. Partly
The problem is that we started with the 100 accidentally highest
t-scores

BST 226 Statistical Methods for Bioinformatics 27

Conclusions
 Predicting an outcome from a set of variables many times

the size of the number of observations is hazardous
 Cross validation or something similar is the only way to

have any chance of integrity.
 Nothing can be done to the data before cross validation

that uses both the class labels and the predictors.
 So we can eliminate variables all of whose values are too

small
 But we cannot choose variables that predict well from the

whole data set.

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 28

	Class Prediction from Omics Data
	Class prediction from omics data
	Two-class prediction
	Dimension Reduction
	Slide Number 5
	Slide Number 6
	Choosing Subsets of Genes
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Consequences of many variables
	Slide Number 17
	Overfitting
	Training and Test Data
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Stepwise Logistic Regression
	Using step()
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Conclusions

