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Class prediction from omics data 
 One common use of omics data is to try to develop 

predictions for classes of patients, such as  
 cancer/normal 
 type of tumor 
 grading or staging of tumors 
 many other disease/healthy or diagnosis of disease type 
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Two-class prediction 
 Linear regression 
 Logistic regression 
 Linear or quadratic discriminant analysis 
 Partial least squares 
 Fuzzy neural nets estimated by genetic algorithms and 

other buzzwords 
 Many such methods require fewer variables than cases, 

so dimension reduction is needed 
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Dimension Reduction 
 Suppose we have 20,000 variables and wish to predict 

whether a patient has ovarian cancer or not and 
suppose we have 50 cases and 50 controls 

 We can only use a number of predictors much smaller 
than 50 

 How do we do this? 
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 Two distinct ways are selection of genes and selection 
of “supergenes” as linear combinations 

 We can choose the genes with the most significant t-
tests or other individual gene criteria 

 We can use forward stepwise logistic regression, which 
adds the most significant gene, then the most 
significant addition, and so on, or other ways of 
picking the best subset of genes 
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Supergenes are linear combinations of genes. If g1, g2, g3, 
…, gp are the expression measurements for the p genes 
in an array, and a1, a2, a3, …, ap are a set of coefficients 
then g1 a1+ g2 a2+ g3 a3+ …+ gp ap is a supergene. 
Methods for construction of supergenes include PCA 
and PLS 
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Choosing Subsets of Genes 

 Suppose we have 50 cases and 50 controls and an array 
of 20,000 gene expression values for each of the 100 
observations 

 In general, any arbitrary set of 100 genes will be able to 
predict perfectly in the data if a logistic regression is fit 
to the 100 genes 

 Most of these will predict poorly in future samples 

February 10, 2014 BST 226 Statistical Methods for Bioinformatics 7 



 This is a mathematical fact 
 A statistical fact is that even if there is no association 

at all between any gene and the disease, often a few 
genes will produce apparently excellent results, that 
will not generalize at all 

 We must somehow account for this, and cross 
validation is the usual way 
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source(“spuriousprediction.r”) 
y <- rep(0:1,each=50) 
x <- matrix(rnorm(100*20000),ncol=100) 
ts <- vector("numeric",20000) 
for (i in 1:20000) 
{ 
  ts[i] <- (t.test(x[i,] ~ y)$statistic)^2 
} 
ind <- order(ts,decreasing=T) 
 
 

BST 226 Statistical Methods for Bioinformatics 9 



February 10, 2014 

ind <- order(ts,decreasing=T) 
> source("spuriousprediction2.r") 
sp.glm <- glm(y ~ x[ind[1],],binomial) 
print(summary(sp.glm)) 
yp <- predict.glm(sp.glm,type="response") 
yp[yp < 0.5] <- 0 
yp[yp >= 0.5] <- 1 
print("Number of Misclassifications out of 100") 
print(sum(y != yp)) 
 
sp.glm <- glm(y ~ x[ind[1],],binomial) 
yp <- predict.glm(sp.glm,type="response") 
yp[yp < 0.5] <- 0 
yp[yp >= 0.5] <- 1 
print("Number of variables/Misclassifications out of 100") 
print(c(1,sum(y != yp))) 
 
sp.glm <- glm(y ~ x[ind[1],]+x[ind[2],],binomial) 
yp <- predict.glm(sp.glm,type="response") 
yp[yp < 0.5] <- 0 
yp[yp >= 0.5] <- 1 
print("Number of variables/Misclassifications out of 100") 
print(c(2,sum(y != yp))) 
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> source("spuriousprediction2.r") 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.96156  -1.07483   0.08347   0.99583   1.68009   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.03078    0.22122  -0.139 0.889342     
x[ind[1], ] -1.15034    0.30385  -3.786 0.000153 *** 
 
    Null deviance: 138.63  on 99  degrees of freedom 
Residual deviance: 119.00  on 98  degrees of freedom 
AIC: 123.00 
 
Number of Fisher Scoring iterations: 4 
 
[1] "Number of Misclassifications out of 100" 
[1] 36 
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[1] "Number of variables/Misclassifications out of 100" 
[1]  1 36 
[1] "Number of variables/Misclassifications out of 100" 
[1]  2 32 
[1] "Number of variables/Misclassifications out of 100" 
[1]  3 27 
[1] "Number of variables/Misclassifications out of 100" 
[1]  4 19 
[1] "Number of variables/Misclassifications out of 100" 
[1]  5 17 
[1] "Number of variables/Misclassifications out of 100" 
[1]  6 21 
[1] "Number of variables/Misclassifications out of 100" 
[1]  7 16 
[1] "Number of variables/Misclassifications out of 100" 
[1] 20  0 
Warning messages:  
1: Algorithm did not converge in: glm.fit(x = X, y = Y,  
  weights = weights, start = start, etastart = etastart,   
2: fitted probabilities numerically 0 or 1 occurred in:  
glm.fit(x = X, y = Y, weights = weights, start = start,  
etastart = etastart,   
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Now with the first 20 variables instead of the 20/20000 with the 
Biggest t-scores: 
 
[1] "Number of variables/Misclassifications out of 100" 
[1] 20 26 
 
Call: 
glm(formula = y ~ x[1, ] + x[2, ] + x[3, ] + x[4, ] + x[5, ] +  
    x[6, ] + x[7, ] + x[8, ] + x[9, ] + x[10, ] + x[11, ] + x[12,  
    ] + x[13, ] + x[14, ] + x[15, ] + x[16, ] + x[17, ] + x[18,  
    ] + x[19, ] + x[20, ], family = binomial) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-2.20702  -0.89041   0.01297   0.92103   1.90446   
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Coefficients: 
            Estimate Std. Error z value Pr(>|z|)   
(Intercept)  0.06041    0.24533   0.246   0.8055   
x[1, ]      -0.43297    0.30242  -1.432   0.1522   
x[2, ]       0.60087    0.28979   2.074   0.0381 * 
x[3, ]       0.11777    0.23215   0.507   0.6119   
x[4, ]       0.22212    0.24727   0.898   0.3690   
x[5, ]      -0.15468    0.26043  -0.594   0.5526   
x[6, ]       0.31370    0.24938   1.258   0.2084   
x[7, ]      -0.43456    0.30462  -1.427   0.1537   
x[8, ]      -0.41751    0.29113  -1.434   0.1515   
x[9, ]      -0.45591    0.29228  -1.560   0.1188   
x[10, ]      0.50699    0.28279   1.793   0.0730 . 
x[11, ]     -0.54391    0.27250  -1.996   0.0459 * 
x[12, ]      0.38480    0.26215   1.468   0.1422   
x[13, ]     -0.04257    0.24281  -0.175   0.8608   
x[14, ]      0.13996    0.25947   0.539   0.5896   
x[15, ]      0.41957    0.23650   1.774   0.0761 . 
x[16, ]     -0.20779    0.29312  -0.709   0.4784   
x[17, ]      0.57632    0.30106   1.914   0.0556 . 
x[18, ]      0.02833    0.27818   0.102   0.9189   
x[19, ]      0.25862    0.25417   1.018   0.3089   
x[20, ]      0.45244    0.23562   1.920   0.0548 . 

BST 226 Statistical Methods for Bioinformatics 14 



February 10, 2014 

Null deviance: 138.63  on 99  degrees of freedom 
Residual deviance: 112.35  on 79  degrees of freedom 
---------------------------------------------------- 
(138.63 – 112.35) = 26.28 ~ chisq(20) p ~ .32  
---------------------------------------------------- 
 
        Df Deviance Resid. Df Resid. Dev P(>|Chi|) 
NULL                       99    138.629           
x[1, ]   1    0.467        98    138.163     0.494 
x[2, ]   1    1.376        97    136.787     0.241 
x[3, ]   1    0.217        96    136.570     0.641 
x[4, ]   1    0.135        95    136.435     0.713 
x[5, ]   1    0.962        94    135.473     0.327 
x[6, ]   1    0.603        93    134.870     0.437 
x[7, ]   1    1.622        92    133.248     0.203 
x[8, ]   1    0.575        91    132.672     0.448 
x[9, ]   1    0.574        90    132.099     0.449 
x[10, ]  1    1.509        89    130.589     0.219 
x[11, ]  1    2.262        88    128.327     0.133 
x[12, ]  1    1.557        87    126.771     0.212 
x[13, ]  1    0.006        86    126.764     0.937 
x[14, ]  1    0.598        85    126.166     0.439 
x[15, ]  1    2.902        84    123.264     0.088 
x[16, ]  1    0.328        83    122.936     0.567 
x[17, ]  1    5.015        82    117.921     0.025 
x[18, ]  1    0.011        81    117.909     0.916 
x[19, ]  1    1.704        80    116.205     0.192 
x[20, ]  1    3.855        79    112.350     0.050 
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Consequences of many variables 
 If there is no effect of any variable on the classification, 

it is still the case that the number of cases correctly 
classified increases in the sample that was used to 
derive the classifier as the number of variables 
increases 

 But the statistical significance is usually not there 
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 If the variables used are selected from many, the 
apparent statistical significance and the apparent 
success in classification is greatly inflated, causing 
end-stage delusionary behavior in the investigator 

 This problem can be improved using cross validation 
or other resampling methods 
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Overfitting 
 When we fit a statistical model to data, we adjust the 

parameters so that the fit is as good as possible and the 
errors are as small as possible 

 Once we have done so, the model may fit well, but we 
don’t have an unbiased estimate of how well it fits if we 
use the same data to assess as to fit 
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Training and Test Data 
 One way to approach this problem is to fit the 

model on one dataset (say half the data) and assess 
the fit on another 

 This avoids bias but is inefficient, since we can 
only use perhaps half the data for fitting 

 We can get more by doing this twice in which each 
half serves as the training set once and the test set 
once 

 This is two-fold cross validation 
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 It may be more efficient to use 5- 10-, or 20-fold cross 
validation depending on the size of the data set 

 Leave-out-one cross validation is also popular, 
especially with small data sets 

 With 10-fold CV, one can divide the set into 10 parts, 
pick random subsets of size 1/10, or repeatedly divide 
the data 
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ind <- order(ts,decreasing=T) 
 
n.tot <- 0 
n.wrong <- 0 
 
for (i in 1:100) 
{ 
  test.set.list <- sample(100,10) 
  test.seti <- rep(F,100) 
  test.seti[test.set.list] <- T 
  train.seti <- !test.seti 
  y1 <- y[train.seti] 
  x1 <- x[ind[1],train.seti] 
  sp.glm <- glm( y1 ~ x1,binomial) 
  yp <- predict.glm(sp.glm,data.frame(x1=x[ind[1],test.seti]),type="response") 
  yp[yp < 0.5] <- 0 
  yp[yp >= 0.5] <- 1 
  n.tot <- n.tot+10 
  n.wrong <- n.wrong+sum(y[test.seti] != yp) 
} 
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print("Number of variables/Misclassifications out of 1000") 
print(c(1,n.wrong,n.tot,100*n.wrong/n.tot)) 
 
> source("spuriousprediction3.r") 
[1] "Number of variables/Misclassifications out of 1000" 
[1]    1.0  363.0 1000.0   36.3 
 
 
Cf. missclass within the 100 for this variable was 36 
It should have been about 50 since the predictors are random 
Cross validation does not solve the problem if the whole data 
Set was used to find the variable(s) 

BST 226 Statistical Methods for Bioinformatics 22 



Stepwise Logistic Regression 
 Another way to select variables is stepwise 
 This can be better than individual variable selection, 

which may choose many highly correlated predictors 
that are redundent 

 A generic function step() can be used for many kinds 
of predictor functions in R 
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Using step() 
 step(glm.model) is sufficient 
 It uses steps either backward (using drop1) or forward 

(using add1) until a model is reached that cannot be 
improved 

 Criterion is AIC = Akaiki Information Criterion, which 
tries to account for the effect of extra variables, more 
so than MSE or R2 
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 You may also specify a scope in the form of a 
list(lower=model1, upper =model2) 

 For expression arrays, with thousands of variables one 
should start with y ~ 1 and use scope =list(lower=y~1, 
upper=**) 
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for (i in 1:100) 
{ 
  assign(paste("x",i,sep=""),x[ind[i],]) 
} 
fchar <- "y~x1" 
for (i in 2:100) 
{ 
  fchar <- paste(fchar,"+x",i,sep="") 
} 
form <- as.formula(fchar) 
step(glm(y ~ 1),list(lower=(y~1),upper=form)) 

assign creates a variable with a name and a value 
paste makes a character string by pasting together parts 
The first loop creates variables x1 to x100 
The second loop creates a formula of the form 
y~x1+x2+x3+…+x100 
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Step:  AIC= -288.12  
 y ~ x29 + x13 + x60 + x17 + x47 + x3 + x50 + x30 + x26 + x16 +   
    x78 + x9 + x37 + x89 + x52 + x6 + x46 + x75 + x83 + x62 +   
    x28 + x14 + x98 + x22 + x8 + x56 + x81 + x53 + x65 + x5 +   
    x23 + x27 + x44 + x99 + x90 + x92 + x93 + x71 + x70 + x40 +   
    x10 + x77 + x20 + x15 + x4 + x33 + x61 + x25 + x68 + x35 +   
    x67 + x55 + x96 + x19 + x87 + x39 + x42 + x64 + x100 + x94 +   
    x18 + x63 + x2 + x11 + x86 + x7 + x12 + x57 + x24 + x80 +   
    x31 + x32 + x21 + x51 + x49 + x72 + x58 + x41 + x69 + x36  
 
Given that there is no variable here actually related to the 
Response, this cannot be said to have done very well. Partly 
The problem is that we started with the 100 accidentally highest 
t-scores 
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Conclusions 
 Predicting an outcome from a set of variables many times 

the size of the number of observations is hazardous 
 Cross validation or something similar is the only way to 

have any chance of integrity. 
 Nothing can be done to the data before cross validation 

that uses both the class labels and the predictors. 
 So we can eliminate variables all of whose values are too 

small 
 But we cannot choose variables that predict well from the 

whole data set. 
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