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Supervised and Unsupervised Learning 
 Logistic regression, the elastic net, and Fisher’s LDA 

and QDA are examples of supervised learning. 
 This means that there is a ‘training set’ which contains 

known classifications into groups that can be used to 
derive a classification rule. 

 This can be then evaluated on a ‘test set’, or this can be 
done repeatedly using cross validation.  
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Unsupervised Learning 
 Unsupervised learning means (in this instance) that 

we are trying to discover a division of objects into 
classes without any training set of known classes, 
without knowing in advance what the classes are, or 
even how many classes there are. 

 It should not have to be said that this is a difficult task 
 And yet, clustering is perhaps more often used with 

omics data than supervised learning methods. 

February 26, 2014 BST 226 Statistical Methods for Bioinformatics 3 



Cluster Analysis 
 ‘Cluster analysis’, or simply ‘clustering’ is a 

collection of methods for unsupervised class 
discovery 

 These methods are widely used for gene expression 
data, proteomics data, and other omics data types 

 They are likely more widely used than they should 
be 

 One can cluster subjects (types of cancer) or genes 
(to find pathways or co-regulation) or both at the 
same time. 
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Distance Measures 
 It turns out that the most crucial decision to make in 

choosing a clustering method is defining what it 
means for two vectors to be close or far. 

 There are other components to the choice, but these 
are all secondary 

 Often the distance measure is implicit in the choice of 
method, but a wise decision maker knows what he/she 
is choosing.  
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 A true distance, or metric, is a function defined on 
pairs of objects that satisfies a number of properties: 
 D(x,y) = D(y,x)  
 D(x,y) ≥ 0 
 D(x,y) = 0 ⇔ x = y  
 D(x,y) + D(y,z) ≥ D(x,z) (triangle inequality) 

 The classic example of a metric is Euclidean distance. 
If x = (x1,x2,…xp), and y=(y1,y2,…yp) , are vectors, the 
Euclidean distance is  √[(x1-y1)2+ (xp-yp)2] 
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Other Metrics 
 The city block metric is the distance when only 

horizontal and vertical travel is allowed, as in walking 
in a city. 

 It turns out to be  
|x1-y1|+ |xp-yp|  
instead of the Euclidean distance  
√[(x1-y1)2+ (xp-yp)2] 

 These are called sometimes the L1 and L2 metrics. 
 

February 26, 2014 BST 226 Statistical Methods for Bioinformatics 9 



Mahalanobis Distance 
 Mahalanobis distance is a kind of weighted Euclidean 

distance 
 It produces distance contours of the same shape as a 

data distribution 
 It is often more appropriate than Euclidean distance 

when there are not too many variables 
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Non-Metric Measures of Similarity 
 A common measure of similarity used for microarray 

data is the (absolute) correlation. 
 This rates two data vectors as similar if they move up 

and down together, without worrying about their 
absolute magnitudes 

 This is not a metric, since it violates several of the 
required properties 

 We could use 1 - |ρ| as the “distance” 
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Agglomerative Hierarchical Clustering 
 We start with all data items as individuals 
 In step 1, we join the two closest individuals 
 In each subsequent step, we join the two closest 

individuals or clusters 
 This requires defining the distance between two 

groups as a number that can be compared to the 
distance between individuals 

 We can use the R commands hclust or agnes 
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Group Distances 
 Complete link clustering defines the distance 

between two groups as the maximum distance 
between any element of one group and any of the 
other 

 Single link clustering defines the distance between 
two groups as the minimum distance between any 
element of one group and any of the other 

 Average link clustering defines the distance 
between two groups as the mean distance between 
elements of one group and elements of the other. 
(This is not the same as the distance between the 
means.) 
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         Distances in R 
dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 
This function computes and returns the distance matrix computed by using the 
specified distance measure to compute the distances between the rows of a data 
matrix of to convert a symmetric matrix of "distances“ into a distance object. 
 
euclidean: Usual square distance between the two vectors (2 norm). 
 
maximum: Maximum distance between two components of x and y (supremum norm) 
 
manhattan: Absolute distance between the two vectors (1 norm). 
 
canberra: sum(|x_i - y_i| / |x_i + y_i|) 
Terms with zero numerator and denominator are omitted from the sum and treated as 
if the values were missing. This is intended for non-negative values (e.g. 
counts): taking the absolute value of the denominator is a 1998 R modification to 
avoid negative distances. 
 
binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-
zero elements are ‘on’ and zero elements are ‘off’. The distance is the 
proportion of bits in which only one is on amongst those in which at least one is 
on. 
 
minkowski: The p norm, the pth root of the sum of the pth powers of the 
differences of the components 
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> iris.d <- dist(iris[,1:4]) 
> iris.hc <- hclust(iris.d) 
> plot(iris.hc) 
> par(pin=c(10,5)) 
> par(cex=.8) 
> plot(iris.hc,labels=rep(c("S","C","I"),each=50), 
  xlab="",sub="",ylab="",main="Iris Cluster Plot") 
 
 
 
> plot(hclust(dist(t(exprs(eset.lmg))))) 
> plot(hclust(as.dist(1-cor(exprs(eset.lmg))^2))) 
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Divisive Clustering 
 Divisive clustering begins with the whole data set as a 

cluster, and considers dividing it into k clusters. 
 Usually this is done to optimize some criterion such as 

the ratio of the within cluster variation to the between 
cluster variation 

 The choice of k is important 
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 K-means is a widely used divisive algorithm (R 
command kmeans) 

 Its major weakness is that it uses Euclidean distance 
 Some other routines in R for divisive clustering include 
agnes and fanny in the cluster package 
(library(cluster)) 
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> iris.km <- kmeans(iris[,1:4],3) 
> plot(prcomp(iris[,1:4])$x,col=iris.km$cluster) 
> 
> table(iris.km$cluster,iris[,5]) 
    
    setosa versicolor virginica 
  1  0     48         14        
  2  0      2         36        
  3 50      0          0        
> 
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> rice.km2 <- kmeans(t(exprs(eset.lmg)),2) 
> rice.km3 <- kmeans(t(exprs(eset.lmg)),3) 
> rice.km4 <- kmeans(t(exprs(eset.lmg)),4) 
> rice.km5 <- kmeans(t(exprs(eset.lmg)),5) 
> rice.km6 <- kmeans(t(exprs(eset.lmg)),6) 
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> table(rice.km2$cluster,group) 
   group 
    0 1 2 3 4 5 
  1 0 0 2 2 0 0 
  2 2 2 0 0 2 2 
> table(rice.km3$cluster,group) 
   group 
    0 1 2 3 4 5 
  1 2 2 0 0 0 0 
  2 0 0 2 2 0 0 
  3 0 0 0 0 2 2 
> table(rice.km4$cluster,group) 
   group 
    0 1 2 3 4 5 
  1 0 0 0 0 2 2 
  2 0 0 2 2 0 0 
  3 1 0 0 0 0 0 
  4 1 2 0 0 0 0 
> table(rice.km5$cluster,group) 
   group 
    0 1 2 3 4 5 
  1 0 0 1 2 0 0 
  2 0 0 0 0 2 2 
  3 1 0 0 0 0 0 
  4 0 0 1 0 0 0 
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> table(rice.km6$cluster,group) 
   group 
    0 1 2 3 4 5 
  1 1 0 0 0 0 0 
  2 0 0 0 0 2 1 
  3 1 2 0 0 0 0 
  4 0 0 0 0 0 1 
  5 0 0 1 2 0 0 
  6 0 0 1 0 0 0 



 

 Model-based clustering methods allow use of more 
flexible shape matrices. One such package is mclust, 
which needs to be downloaded from CRAN 

 Functions in this package include EMclust (more 
flexible), Mclust (simpler to use) 

 Other excellent software is EMMIX from Geoff 
McLachlan at the University of Queensland. 

 Clusters are modeled as multivariate normal, with the 
number of clusters estimated along with the cluster 
parameters.  
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Models compared in mclust:  
 
univariateMixture A vector with the following components:  
"E": equal variance (one-dimensional)  
"V": variable variance (one-dimensional)   
 
multivariateMixture A vector with the following components:  
"EII": spherical, equal volume  
"VII": spherical, unequal volume  
"EEI": diagonal, equal volume and shape 
"VEI": diagonal, varying volume, equal shape 
"EVI": diagonal, equal volume, varying shape  
"VVI": diagonal, varying volume and shape  
"EEE": ellipsoidal, equal volume, shape, and orientation  
"EEV": ellipsoidal, equal volume and equal shape 
"VEV": ellipsoidal, equal shape  
"VVV": ellipsoidal, varying volume, shape, and orientation   
 
singleComponent A vector with the following components:  
"X": one-dimensional  
"XII": spherical  
"XXI": diagonal  
"XXX": ellipsoidal   
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> data(iris) 
> mc.obj <- Mclust(iris[,1:4]) 
> plot.Mclust(mc.obj,iris[1:4]) 
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> names(mc.obj) 
 [1] "modelName"      "n"              "d"              "G"              
 [5] "BIC"            "bic"            "loglik"         "parameters"     
 [9] "z"              "classification" "uncertainty"    
> mc.obj$bic 
[1] -561.7285 
> mc.obj$BIC 
         EII        VII        EEI        VEI        EVI        VVI       EEE 
1 -1804.0854 -1804.0854 -1522.1202 -1522.1202 -1522.1202 -1522.1202 -829.9782 
2 -1123.4115 -1012.2352 -1042.9680  -956.2823 -1007.3082  -857.5515 -688.0972 
3  -878.7651  -853.8145  -813.0506  -779.1565  -797.8356  -744.6356 -632.9658 
4  -784.3102  -783.8267  -735.4820  -716.5253  -732.4576  -705.0688 -591.4097 
5  -734.3865  -746.9931  -694.3922  -703.0523  -695.6736  -700.9100 -604.9299 
6  -715.7148  -705.7813  -693.8005  -675.5832  -722.1517  -696.9024 -621.8177 
7  -712.1014  -708.7210  -671.6757  -666.8672  -704.1649  -703.9925 -617.6212 
8  -686.0967  -707.2610  -661.0846  -657.2447  -703.6602  -702.1138 -622.4221 
9  -694.5242  -700.0220  -678.5986  -671.8247  -737.3109  -727.6346 -638.2076 
        EEV       VEV       VVV 
1 -829.9782 -829.9782 -829.9782 
2 -644.5997 -561.7285 -574.0178 
3 -610.0853 -562.5514 -580.8399 
4 -646.0011 -603.9266 -628.9650 
5 -621.6906 -635.2087 -683.8206 
6 -669.7188 -681.3062 -711.5726 
7 -711.3150 -715.2100 -728.5508 
8 -750.1897 -724.1750 -801.7295 
9 -799.6408 -810.1318 -835.9095 



Clustering Genes 
 Clustering genes is relatively easy, in the sense that 

we treat an experiment with 60 arrays and 9,000 
genes as if the sample size were 9,000 and the 
dimension 60 

 Extreme care should be taken in selection of the 
explicit or implicit distance function, so that it 
corresponds to the biological intent 

 This is used to find similar genes, identify putative 
co-regulation, and reduce dimension by replacing 
a group of genes by the average 
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Clustering Samples 
 This is much more difficult, since we are using the 

sample size of 60 and dimension of 9,000 
 K-means and hierarchical clustering can work here 
 Model-based clustering requires substantial 

dimension reduction either by gene selection or use of 
PCA or similar methods 
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Heatmaps 
 A heatmap displays a clustering of the samples and the 

genes using a false color plot. 
 It may or may not be useful in a given situation. 
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> heatmap(exprs(eset.lmg)) 
> Library(RColorBrewer) 
> heatmap(exprs(eset.lmg),col=brewer.pal(7,"RdYlGn")) 
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Cautionary Notes 
 Cluster analysis is by far the most difficult type of 

analysis one can perform.  
 Much about how to do cluster analysis is still 

unknown.  
 There are many choices that need to be made about 

distance functions and clustering methods and no 
clear rule for making the choices 
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 Hierarchical clustering is really most appropriate when 
there is a true hierarchy thought to exist in the data; an 
example would be phylogenetic studies. 

 The ordering of observations in a hierarchical 
clustering is often interpreted. However, for a given 
hierarchical clustering of, say, 60 cases, there are 5×1017 
possible orderings, all of which are equally valid. With 
9,000 genes, the number of orderings in unimaginably 
huge, approximate 102700 
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Exercises 
 In the ISwR data set alkfos, cluster the data based on 

the 7 measurements using hclust(), kmeans(), and 
Mclust(). 

 Compare the 2-group clustering with the 
placebo/Tamoxifen classification. 
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