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Isoform Level Analysis 
 DESeq and edgeR use raw counts mapped to genes as 

the element of analysis 
 Cuffdiff tries to separate out expression of different 

isoforms, which they call the “true expression” 
 Clearly, this has advantages (isoforms are potentially 

different in function) and disadvantages (isoform 
expression is not directly observable and has to be 
inferred from calculation. 
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Library Size Normalization 
 Using the total fragment count is problematic because 

highly expressed genes will provide most of the fragments 
 Four genes with expression 10,000, 100, 150, 200 in 

condition A and 20,000, 100, 150, 200 in condition B. 
 Normalized fragment counts use total fragment counts of 

10,450 and 20,450 and can be normalized to 15,450 
 Normalized fragment counts are 14,785, 148, 222, 296 in 

condition A and 15,110, 76, 113, 151 in condition B, so up-
regulation of gene 1 has been turned into down-regulation 
of the other three. 

 Fold changes are 2.0, 1.0, 1.0, 1.0 before “normalization” and 
1.02, 0.51, 0.51, 0.51 after. 
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Normalization Methods 
 Total count 
 Quantile Normalization 
 Geometric normalization (default) 

 For each gene, compute the geometric mean of the total 
fragment count across libraries 

 Library “size” is the median across genes of the total fragment 
count divided by the geometric mean fragment count. 

 In our 4-gene example, the geometric means are 14,142, 100, 
150, 200, the ratios for A are 0.707, 1, 1, 1 and for B are 1.414, 1, 1, 
1, so the size factors are the medians, namely 1 and 1 
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 Cuffdiff2 first normalizes replicates under the same 
conditions giving an internal library size of sj 

 Then the arithmetic mean of the scaled gene counts 
for each gene is used to compute an external library 
size of ηj. 
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Sources of Variability 
 Transcript abundance in biological samples differs 

even if the conditions have been the same. This is 
biological variability. 

 Library construction and sequencing adds technical 
variability, so that the relative fragment abundance is 
different from the relative transcript abundance in the 
sample. 

 Two measurements of aliquots of the same RNA 
sample differ by technical variability. Replicates differ 
by the sum of biological and technical variability. 
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 Fragment counts are not observed due to ambiguously mapped 
fragments, so are only estimated. 

 Also, there may be variability in the rate of fragment production by 
location on the transcript 

 Both lead to overdispersion 
 So we can model the transcript count as a mixture of Poisson’s, in 

particular as a negative binomial 
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Variance Estimation 
 For each set of replicates of a given condition, we 

compute the mean and variance of the gene-level 
scaled fragment counts across replicates, so that there 
are as many pairs as there are genes. 

 We fit a local regression to the variances as a function 
of the mean and use the fitted variance for the 
variance of the negative binomial distributions. 

 This is done separately for each condition. 
 If a condition has no replicates, then we use the 

estimates from the condition with the largest number 
of replicates. 
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 This is basically the Huber and Anders procedure. 
 Alternatively, we could pool these across conditions as 

is usual in ANOVA 
 This procedure will give biased estimates of the 

variances for two reasons: 
 The means are estimates as well as the variances, 

introducing biases into the regression function. 
 Two genes with the same mean fragment count can have 

different variances. 
 Cuffdiff2 and DESeq account for the systematic change 

of variance with the mean. 
 edgeR accounts for the variability around the mean. 
 Probably, one should do both. 
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Assigning Counts to Isoforms 
 Partition each gene into non-overlapping loci (one or 

more exons) so that all isoforms are accounted for  
 We estimate the probabilities that a fragment maps to 

a given locus and the probability that a fragment 
mapping to a given locus comes from each of the 
transcripts containing that locus 

 Incorporates fragment bias estimates 
 Initializes probabilities that an ambiguously mapped 

fragment comes from each of the n loci it could come 
from as 1/n. 

 Iterates maximum likelihood estimates. 
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Modeling Transcript Abundance 
 The transcript abundance ρt is modeled as a beta negative 

binomial; that is, a beta mixture of negative binomials. 
 This has three parameters, which are chosen to fit three 

constraints: 
 The mean should equal the observed transcript count times 

the estimated chance that that count comes from transcript t, 
which is the mean of the estimated transcript count. 

 The variance should equal the variance of the estimated 
transcript count. 

 The variability of the mean of the negative binomial should 
be equal to the estimated uncertainty of the transcript 
assignment. 
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Differential Expression 
 Other methods of differential expression have one 

number per gene/sample that may be scaled, but is 
otherwise observed. 

 Cuffdiff expression measurements for a given 
transcript/sample is actually a probability distribution, 
not a measurement. 

 Expression for a gene is a sum of scaled transcript 
distributions. 

 Uses resampling of assignment to produce variance 
estimates. 

 This appears opaque at best. 
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Conclusion 
 Although the point about isoforms is in a sense 

technically correct, it is not clear what advantage it 
confers on the statistical analysis. 

 In particular, taking an observed count for a gene, 
dividing it into uncertain counts for transcripts and 
then adding them back together does not seem to help 
the clarity of the situation 

 The variance function method is questionable. 
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In the top line, we have four exons, with observed counts (1, 2, 0, 7) and (0, 2, 0, 8). 
Counts in position 1 are isoform A and 2 are B. Counts in position 4 are either. Thus 
on the left, counts for the two isoforms are 8/2, 7/3, 6/4, 5/5, 4/6, 3/7, 2/8, or 1/9 with 
various probabilities. On the right, the counts for the two isoforms are 8/2, 7/3, … 2/8,  
also with various probabilities. 
 
What does this get us that the original counts don’t? 
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 I generated 200 samples of 5, Poisson(10). 
 The observed ratio of the variance to the mean 
 This varied from 0.02 to 4.3 with a mean very near 1. 
 In this case, using the averages works (mean of means 

= 10.01, mean of variances = 10.11) 
 But if the true variances vary, then this does not work 

well because it overestimates the variance of some and 
underestimates the variances of others. 

 More work to be done 
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