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Assumptions 
 Consider a two-sample t-test between two random 

variables X and Y with samples {x1, x2,…, xn} and {y1, y2, 
…,ym}. 

 Assumptions under which we do the math are as follows: 
 The values of X are statistically independent 
 The values of Y are statistically independent 
 The values of X and Y are statistically independent 
 Each value of X has the same variance σX

2. 
 Each value of Y has the same variance σY

2. 
 The values of X are normally distributed 
 The values of Y are normally distributed 
 Possibly σX

2 = σY
2. 
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Assumptions 
 If we transform the variables to f(X) and f(Y)  then 

these assumptions are still true or false as with X and Y 
 The values of X are statistically independent 
 The values of Y are statistically independent 
 The values of X and Y are statistically independent 

 But these may change with the transformation 
 Each value of X has the same variance σX

2. 
 Each value of Y has the same variance σY

2. 
 The values of X are normally distributed 
 The values of Y are normally distributed 
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Transformations in Regression 
 Transforming X or Y or both (for example to logs) can 

affect linearity, additivity, non-constant variance, and 
normality. 

 Often logs are useful with measured data at levels well 
above 0 

 Often square roots are useful for count data. 
 The generalized logarithm can be used for measured 

data that has both low and high level observations. 
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The Delta Method 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Transformations vs. Weighting 
 Suppose we have a regression with heteroscedasticity. 
 We can transform y and/or x so that the variance is 

more nearly constant. 
 We could also conduct a weighted least squares 

analysis with weights equal to the inverse estimated 
variance of each observation. 

 These will often yield results that are similar, but 
sometimes one method may be better than the other, 
depending on context. 
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