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Assumptions 
 Consider a two-sample t-test between two random 

variables X and Y with samples {x1, x2,…, xn} and {y1, y2, 
…,ym}. 

 Assumptions under which we do the math are as follows: 
 The values of X are statistically independent 
 The values of Y are statistically independent 
 The values of X and Y are statistically independent 
 Each value of X has the same variance σX

2. 
 Each value of Y has the same variance σY

2. 
 The values of X are normally distributed 
 The values of Y are normally distributed 
 Possibly σX

2 = σY
2. 
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Assumptions 
 If we transform the variables to f(X) and f(Y)  then 

these assumptions are still true or false as with X and Y 
 The values of X are statistically independent 
 The values of Y are statistically independent 
 The values of X and Y are statistically independent 

 But these may change with the transformation 
 Each value of X has the same variance σX

2. 
 Each value of Y has the same variance σY

2. 
 The values of X are normally distributed 
 The values of Y are normally distributed 
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Transformations in Regression 
 Transforming X or Y or both (for example to logs) can 

affect linearity, additivity, non-constant variance, and 
normality. 

 Often logs are useful with measured data at levels well 
above 0 

 Often square roots are useful for count data. 
 The generalized logarithm can be used for measured 

data that has both low and high level observations. 
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The Delta Method 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Variance-Stabilizing Transformations 
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Transformations vs. Weighting 
 Suppose we have a regression with heteroscedasticity. 
 We can transform y and/or x so that the variance is 

more nearly constant. 
 We could also conduct a weighted least squares 

analysis with weights equal to the inverse estimated 
variance of each observation. 

 These will often yield results that are similar, but 
sometimes one method may be better than the other, 
depending on context. 
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