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Cystic Fibrosis Data Set 
 The 'cystfibr' data frame has 25 rows and 10 columns. It 

contains lung function data for cystic fibrosis patients 
(7-23 years old) 

 We will examine the relationships among the various 
measures of lung function 
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 age: a numeric vector. Age in years. 
 sex: a numeric vector code. 0: male, 1:female. 
 height: a numeric vector. Height (cm). 
 weight: a numeric vector. Weight (kg). 
 bmp: a numeric vector. Body mass (% of normal). 
 fev1: a numeric vector. Forced expiratory 

volume. 
 rv: a numeric vector. Residual volume. 
 frc: a numeric vector. Functional residual 

capacity. 
 tlc: a numeric vector. Total lung capacity. 
 pemax: a numeric vector. Maximum expiratory 

pressure. 
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Scatterplot matrices 
 We have five variables and may wish to study the 

relationships among them 
 We could separately plot the (5)(4)/2 = 10 pairwise 

scatterplots 
 In R we can use the pairs() function, or the 
splom() function in the lattice package. 

 In Stata, we can use graph matrix 
 Most other statistical packages can do the same 
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Scatterplot matrices 
> pairs(lungcap) 

 

> library(lattice) 

> splom(lungcap) 
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Principal Components Analysis 
 The idea of PCA is to create new variables that are 

combinations of the original ones. 
 If x1, x2, …, xp are the original variables, then a 

component is a1x1 + a2x2 +…+ apxp 
 We pick the first PC as the linear combination that has 

the largest variance 
 The second PC is that linear combination orthogonal 

to the first one that has the largest variance, and so on 
 Frequently, we scale the variables first, so that each has 

mean 0 and variance 1. 
 Then the covariance matrix of X is also the correlation 

matrix. 
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> lungcap.pca <- prcomp(lungcap,scale=T) 
> plot(lungcap.pca) 
> names(lungcap.pca) 
[1] "sdev"     "rotation" "center"   "scale"    "x"        
> lungcap.pca$sdev 
[1] 1.7955824 0.9414877 0.6919822 0.5873377 0.2562806 
> lungcap.pca$center 
  fev1     rv    frc    tlc  pemax  
 34.72 255.20 155.40 114.00 109.12  
> lungcap.pca$scale 
    fev1       rv      frc      tlc    pemax  
11.19717 86.01696 43.71880 16.96811 33.43691  
 
> plot(lungcap.pca$x[,1:2]) 
 
Always use scaling before PCA unless all variables are on the 
same scale. This is equivalent to PCA on the correlation 
matrix instead of the covariance matrix  
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Scree Plot 
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. pca fev1 rv frc tlc pemax 
 
Principal components/correlation                  Number of obs    =        25 
                                                  Number of comp.  =         5 
                                                  Trace            =         5 
    Rotation: (unrotated = principal)             Rho              =    1.0000 
 
    -------------------------------------------------------------------------- 
       Component |   Eigenvalue   Difference         Proportion   Cumulative 
    -------------+------------------------------------------------------------ 
           Comp1 |      3.22412      2.33772             0.6448       0.6448 
           Comp2 |      .886399       .40756             0.1773       0.8221 
           Comp3 |      .478839      .133874             0.0958       0.9179 
           Comp4 |      .344966      .279286             0.0690       0.9869 
           Comp5 |     .0656798            .             0.0131       1.0000 
    -------------------------------------------------------------------------- 
 
Principal components (eigenvectors)  
 
    ------------------------------------------------------------------------------ 
        Variable |    Comp1     Comp2     Comp3     Comp4     Comp5 | Unexplained  
    -------------+--------------------------------------------------+------------- 
            fev1 |  -0.4525    0.2140    0.5539    0.6641   -0.0397 |           0  
              rv |   0.5043    0.1736   -0.2977    0.4993   -0.6145 |           0  
             frc |   0.5291    0.1324    0.0073    0.3571    0.7582 |           0  
             tlc |   0.4156    0.4525    0.6474   -0.4134   -0.1806 |           0  
           pemax |  -0.2970    0.8377   -0.4306   -0.1063    0.1152 |           0  
    ------------------------------------------------------------------------------ 
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PCA on High Dimensional Data 
 If p is much larger than n, say p = 50,000 and n = 100, we 

can still do PCA. 
 In general, there are as many principal components as the 

minimum of n and p. 
 More precisely, there are as many principal components as 

the rank of X, which is the number of non-zero 
eigenvalues, and which is no greater than min(n, p) 

 There is no particular reason why the first PC’s are likely to 
be good for separating groups. 

 PCA is unsupervised learning (doesn’t use the class labels if 
any), not supervised learning. 
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Fisher’s Iris Data 
   This famous (Fisher's or Anderson's) iris data set gives 

the measurements in centimeters of the variables sepal 
length and width and petal length and width, 
respectively, for 50 flowers from each of 3 species of 
iris.  The species are _Iris setosa_, _versicolor_, and 
_virginica_. 
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> data(iris) 
> help(iris) 
> names(iris) 
[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"      
> attach(iris) 
> iris.dat <- iris[,1:4] 
> splom(iris.dat) 
> splom(iris.dat,groups=Species) 
> splom(~ iris.dat | Species) 
> summary(iris) 
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width          Species   
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   setosa    :50   
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:50   
 Median :5.800   Median :3.000   Median :4.350   Median :1.300   virginica :50   
 Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199                   
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800                   
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500                   
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> data(iris) 
> iris.pc <- prcomp(iris[,1:4],scale=T) 
> plot(iris.pc$x[,1:2],col=rep(1:3,each=50)) 
> names(iris.pc) 
[1] "sdev"     "rotation" "center"   "scale"    "x"        
> plot(iris.pc) 
> iris.pc$sdev 
[1] 1.7083611 0.9560494 0.3830886 0.1439265 
> iris.pc$rotation 
                    PC1         PC2        PC3        PC4 
Sepal.Length  0.5210659 -0.37741762  0.7195664  0.2612863 
Sepal.Width  -0.2693474 -0.92329566 -0.2443818 -0.1235096 
Petal.Length  0.5804131 -0.02449161 -0.1421264 -0.8014492 
Petal.Width   0.5648565 -0.06694199 -0.6342727  0.5235971 
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Discriminant Analysis 
 An alternative to logistic regression for classification is 

discrimininant analysis 
 This comes in two flavors, (Fisher’s)  Linear 

Discriminant Analysis or LDA and (Fisher’s) Quadratic 
Discriminant Analysis or QDA 

 In each case we model the shape of the groups and 
provide a dividing line/curve 
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 One way to describe the way LDA and QDA work is to 
think of the data as having for each group an elliptical 
distribution 

 We allocate new cases to the group for which they have 
the highest likelihoods 

 This provides a linear cut-point if the ellipses are 
assumed to have the same shape and a quadratic one if 
they may be different 
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> library(MASS) 
> iris.lda <- lda(iris[,1:4],iris[,5]) 
> iris.lda 
Call: 
lda(iris[, 1:4], iris[, 5]) 
 
Prior probabilities of groups: 
    setosa versicolor  virginica  
 0.3333333  0.3333333  0.3333333  
 
Group means: 
           Sepal.Length Sepal.Width Petal.Length Petal.Width 
setosa            5.006       3.428        1.462       0.246 
versicolor        5.936       2.770        4.260       1.326 
virginica         6.588       2.974        5.552       2.026 
 
Coefficients of linear discriminants: 
                    LD1         LD2 
Sepal.Length  0.8293776  0.02410215 
Sepal.Width   1.5344731  2.16452123 
Petal.Length -2.2012117 -0.93192121 
Petal.Width  -2.8104603  2.83918785 
 
Proportion of trace: 
   LD1    LD2  
0.9912 0.0088  
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> plot(iris.lda,col=rep(1:3,each=50)) 
> iris.pred <- predict(iris.lda) 
> names(iris.pred) 
[1] "class"     "posterior" "x"         
> iris.pred$class[71:80] 
 [1] virginica  versicolor versicolor versicolor versicolor  
     versicolor versicolor 
 [8] versicolor versicolor versicolor 
Levels: setosa versicolor virginica 
> iris.pred$posterior[71:80,] 
         setosa versicolor    virginica 
71 7.408118e-28  0.2532282 7.467718e-01 
72 9.399292e-17  0.9999907 9.345291e-06 
73 7.674672e-29  0.8155328 1.844672e-01 
74 2.683018e-22  0.9995723 4.277469e-04 
75 7.813875e-18  0.9999758 2.421458e-05 
76 2.073207e-18  0.9999171 8.290530e-05 
77 6.357538e-23  0.9982541 1.745936e-03 
78 5.639473e-27  0.6892131 3.107869e-01 
79 3.773528e-23  0.9925169 7.483138e-03 
80 9.555338e-12  1.0000000 1.910624e-08 
 
> sum(iris.pred$class != iris$Species) 
[1] 3 
 
This is an error rate of 3/150 = 2% 



February 19, 2014 BST 226 Statistical Methods for Bioinformatics 30 



February 19, 2014 BST 226 Statistical Methods for Bioinformatics 31 

iris.cv <- function(ncv,ntrials) 
{ 
  nwrong <- 0 
  n <- 0 
  for (i in 1:ntrials) 
  { 
    test <- sample(150,ncv) 
    test.ir <- data.frame(iris[test,1:4]) 
    train.ir <- data.frame(iris[-test,1:4]) 
    lda.ir <- lda(train.ir,iris[-test,5]) 
    lda.pred <- predict(lda.ir,test.ir) 
    nwrong <- nwrong + sum(lda.pred$class != iris[test,5]) 
    n <- n + ncv 
  } 
  print(paste("total number classified = ",n,sep="")) 
  print(paste("total number wrong = ",nwrong,sep="")) 
  print(paste("percent wrong = ",100*nwrong/n,"%",sep="")) 
} 
> iris.cv(10,1000) 
[1] "total number classified = 10000" 
[1] "total number wrong = 213" 
[1] "percent wrong = 2.13%" 
 



Lymphoma Data Set 
 Alizadeh et al. Nature (2000) “Distinct types of diffuse 

large B-cell lymphoma identified by gene expression 
profiling” 

 We will analyze a subset of the data consisting of 61 
arrays on patients with 
 45 Diffuse large B-cell lymphoma (DLBCL/DL) 
 10 Chronic lymphocytic leukaemia (CLL/CL) 
 6 Follicular leukaemia (FL) 
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Data Available 
 The original Nature paper 
 The expression data in the form of unbackground 

corrected log ratios. A common reference was always 
on Cy3 with the sample on Cy5 (array.data.txt and 
array.data.zip). 9216 by 61 

 A file with array codes and disease status for each of 
the 61 arrays, ArrayID.txt 
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Identify Differentially  
Expressed Genes 
 We will assume that the log ratios are on a reasonable 

enough scale that we can use them as is 
 For each gene, we can run a one-way ANOVA and find 

the p-value, obtaining 9,216 of them. We can use 
apply() or genediff() from LMGene 

 Adjust p-values with p.adjust or padjust 
 Identify genes with small adjusted p-values 
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Develop Classifier 
 Reduce dimension with ANOVA gene selection or with 

PCA. (We could also use stepwise logistic regression.) 
 Use logistic regression or LDA. 
 Evaluate the four possibilities and their sub-

possibilities with cross validation. With 61 arrays one 
could reasonable omit 10% or 6 at random. 
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Differential Expression 
 We can locate genes that are differentially expressed; 

that is, genes whose expression differs systematically 
by the type of lymphoma. 

 To do this, we could use lymphoma type to predict 
expression, and see when this is statistically 
significant. 

 For one gene at a time, this is ANOVA. 
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 It is almost equivalent to locate genes whose 
expression can be used to predict lymphoma type, 
this being the reverse process.  

 If there is significant association in one direction 
there should logically be significant association in 
the other 

 This will not be true exactly, but is true 
approximately 

 We can also easily do the latter analysis using the 
expression of more than one gene using logistic 
regression, LDA, and QDA 
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Significant Genes 
 There are 3845 out of 9261 genes that have significant 

p-values from the ANOVA of less than 0.05, compared 
to 463 expected by chance 

 There are 2733 genes with FDR adjusted p-values less 
than 0.05 

 There are only 184 genes with Bonferroni adjusted p-
values less than 0.05  
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Logistic Regression 
 We will use logistic regression to distinguish DLBCL 

from CLL and DLBCL from FL 
 We will do this first by choosing the variables with the 

smallest overall p-values in the ANOVA 
 We will then evaluate the results within sample and by 

cross validation 
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Number of 
Variables 

DL/CL 
Errors 

DL/FL 
Errors 

1 7 4 
2 7 4 
3 5 5 
4 0 3 
5 0 2 
6 0 0 

Within Sample Errors 



Evaluation of performance 
 Within sample evaluation of performance like this is 

unreliable 
 This is especially true if we are selecting predictors 

from a very large set 
 One useful yardstick is the performance of random 

classifiers 
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Number of 
Variables 

Percent 
Errors 

1 24.0% 
2 24.7% 
3 23.3% 
4 24.7% 
5 28.7% 
6 24.7% 
7 26.3% 
8 23.6% 
9 25.7% 

10 24.3% 

Left is CV 
performance of 
best k variables 
 
Random = 
25.4% 



Conclusion 
 Logistic regression on the variables with the smallest 

p-values does not work very well 
 This cannot be identified by looking at the within 

sample statistics 
 Cross validation is a requirement to assess 

performance of classifiers 
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alkfos {ISwR} R Documentation 
 
Alkaline phosphatase data 
 
Repeated measurements of alkaline phosphatase in a  
randomized trial of Tamoxifen treatment of breast cancer  
patients. 
 
Format 
 
A data frame with 43 observations on the following 8 
variables. 

 
grp a numeric vector, group code (1=placebo, 2=Tamoxifen). 
c0  a numeric vector, concentration at baseline. 
c3  a numeric vector, concentration after 3 months. 
c6  a numeric vector, concentration after 6 months. 
c9  a numeric vector, concentration after 9 months. 
c12 a numeric vector, concentration after 12 months. 
c18 a numeric vector, concentration after 18 months. 
c24 a numeric vector, concentration after 24 months. 



Exercises (for later) 
 In the ISwR data set alkfos, do a PCA of the placebo and 

Tamoxifen groups separately, then together. Plot the first 
two principal components of the whole group with color 
coding for the treatment and control subjects. 

 Conduct a linear discriminant analysis of the two groups 
using the 7 variables. How well can you predict the 
treatment? Is this the usual kind of analysis you would see? 

 Use logistic regression to predict the group based on the 
measurements. Compare the in-sample error rates. 

 Use cross-validation with repeated training subsamples of 
38/43 and test sets of size 5/43. What can you now 
conclude about the two methods? 
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