
The R Environment for Statistical
Computing and Graphics

Reference Index

The R Development Core Team

Version 1.6.1 (2002-11-01)

Copyright (c©) 1999–2002 R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to
redistribute it under the terms of the GNU General Public License. For more information
about these matters, see http://www.gnu.org/copyleft/gpl.html.

ISBN 3-901167-50-1

Contents

1 The base package 1
.Machine . 1
.Platform . 3
.Script . 4
abbreviate . 4
abline . 5
abs . 6
add1 . 7
aggregate . 9
agrep . 10
AIC . 12
AIC.logLik . 13
airmiles . 14
airquality . 14
alias . 15
all . 17
all.equal . 17
all.names . 19
anova . 19
anova.glm . 20
anova.lm . 21
anscombe . 23
any . 24
aov . 25
aperm . 26
append . 27
apply . 28
approxfun . 29
apropos . 30
args . 32
Arithmetic . 33
array . 34
arrows . 35
as.environment . 36
as.function . 36
as.POSIX* . 37
AsIs . 38
assign . 39
assignOps . 40
assocplot . 41
attach . 42

i

ii CONTENTS

attenu . 43
attitude . 44
attr . 45
attributes . 46
autoload . 47
ave . 48
axis . 49
axis.POSIXct . 50
axTicks . 51
backsolve . 52
bandwidth . 53
barplot . 55
BATCH . 57
Bessel . 58
Beta . 60
bindenv . 61
Binomial . 63
birthday . 64
body . 65
box . 66
boxplot . 66
boxplot.formula . 69
boxplot.stats . 70
browseEnv . 71
browser . 72
browseURL . 73
bug.report . 74
builtins . 76
bxp . 77
by . 78
C . 79
c . 80
call . 81
capabilities . 82
cars . 83
case/variable.names . 84
cat . 85
Cauchy . 86
cbind . 87
char.expand . 88
character . 89
charmatch . 90
chartr . 91
check.options . 92
chickwts . 93
Chisquare . 94
chol . 95
chol2inv . 97
chull . 98
class . 99
close.socket . 100
co2 . 100

CONTENTS iii

codes . 101
coefficients . 102
col . 103
col2rgb . 103
colors . 105
colSums . 106
commandArgs . 107
comment . 108
Comparison . 108
COMPILE . 109
complete.cases . 110
complex . 111
conflicts . 112
connections . 113
Constants . 117
contour . 118
contrast . 120
contrasts . 121
contributors . 122
Control . 123
convolve . 124
coplot . 125
copyright . 127
cor . 128
count.fields . 129
cov.wt . 130
crossprod . 131
cumsum . 132
curve . 132
cut . 134
cut.POSIXt . 135
data . 136
data.class . 137
data.frame . 138
data.matrix . 140
dataentry . 140
date . 142
DateTimeClasses . 143
dcf . 145
debug . 146
debugger . 147
Defunct . 148
delay . 150
delete.response . 151
demo . 152
density . 153
deparse . 156
Deprecated . 157
deriv . 157
det . 159
detach . 160
dev.xxx . 161

iv CONTENTS

dev2 . 162
dev2bitmap . 164
deviance . 165
Devices . 166
df.residual . 167
diag . 168
diff . 169
difftime . 170
dim . 171
dimnames . 171
discoveries . 172
do.call . 173
dotchart . 173
double . 175
download.file . 176
dput . 177
drop . 178
dummy.coef . 179
dump . 180
duplicated . 181
dyn.load . 182
edit . 184
edit.data.frame . 185
eff.aovlist . 187
effects . 188
eigen . 189
environment . 191
esoph . 193
euro . 194
eurodist . 195
eval . 195
example . 197
exists . 198
expand.grid . 200
expand.model.frame . 200
Exponential . 201
expression . 202
Extract . 203
extractAIC . 204
Extremes . 206
factor . 207
factor.scope . 209
faithful . 210
family . 211
FDist . 213
fft . 214
file.access . 215
file.choose . 216
file.info . 217
file.path . 218
file.show . 218
files . 220

CONTENTS v

filled.contour . 221
findInterval . 223
fitted.values . 225
fivenum . 225
fix . 226
Foreign . 227
Formaldehyde . 229
formals . 230
format . 231
format.info . 233
formatC . 234
formatDL . 236
formula . 237
fourfoldplot . 238
frame . 240
freeny . 241
ftable . 241
ftable.formula . 243
function . 244
GammaDist . 245
gc . 246
gc.time . 247
gctorture . 247
Geometric . 248
get . 249
getNativeSymbolInfo . 250
getNumCConverters . 252
getwd . 253
gl . 254
glm . 255
glm.control . 258
glm.summaries . 259
glm.summary . 260
Gnome . 261
gray . 262
grep . 262
grid . 264
gtk . 265
HairEyeColor . 266
help . 267
help.search . 269
help.start . 271
Hershey . 271
hist . 281
hist.POSIXt . 283
hsv . 284
Hyperbolic . 285
Hypergeometric . 286
identical . 287
identify . 288
ifelse . 289
image . 290

vi CONTENTS

index.search . 292
infert . 293
influence.measures . 294
InsectSprays . 295
INSTALL . 296
integer . 298
integrate . 298
interaction . 300
interaction.plot . 301
interactive . 302
Internal . 303
invisible . 303
IQR . 304
iris . 305
is.empty.model . 306
is.finite . 306
is.function . 309
is.language . 309
is.object . 310
is.R . 310
is.recursive . 311
is.single . 312
islands . 312
Japanese . 313
jitter . 326
kappa . 327
kronecker . 328
labels . 329
lapply . 330
Last.value . 331
layout . 331
legend . 333
length . 336
levels . 337
levels.factor . 338
library . 339
library.dynam . 342
license . 343
LifeCycleSavings . 343
lines . 344
LINK . 345
list . 346
list.files . 347
lm . 348
lm.fit . 350
lm.influence . 352
lm.summaries . 353
lm.summary . 354
load . 355
localeconv . 356
locales . 357
locator . 358

CONTENTS vii

log . 359
Logic . 360
logical . 361
Logistic . 361
logLik . 363
logLik.glm . 364
logLik.lm . 365
loglin . 366
Lognormal . 367
longley . 369
lower.tri . 370
lowess . 370
ls . 371
ls.diag . 372
ls.print . 374
lsfit . 374
mad . 375
mahalanobis . 376
make.link . 377
make.names . 378
make.socket . 379
make.tables . 380
makepredictcall . 381
manova . 382
margin.table . 383
mat.or.vec . 383
match . 384
match.arg . 385
match.call . 386
match.fun . 387
matmult . 388
matplot . 389
matrix . 391
max.col . 392
mean . 393
median . 394
Memory . 394
memory.profile . 396
menu . 396
merge . 397
Methods . 398
methods . 400
missing . 402
mode . 402
model.extract . 403
model.frame . 405
model.matrix . 406
model.tables . 407
morley . 408
mosaicplot . 409
mtcars . 411
mtext . 412

viii CONTENTS

n2mfrow . 414
NA . 414
na.action . 415
na.fail . 416
name . 417
names . 418
namespace . 419
naprint . 419
naresid . 420
nargs . 420
nchar . 421
nclass . 422
NegBinomial . 423
nextn . 424
nhtemp . 425
nlevels . 426
nlm . 426
noquote . 428
Normal . 429
NotYet . 431
nrow . 431
nsl . 432
NULL . 433
numeric . 433
object.size . 434
octmode . 435
offset . 435
on.exit . 436
optim . 436
optimize . 440
options . 441
OrchardSprays . 445
order . 446
outer . 447
p.adjust . 448
package.contents . 450
package.dependencies . 451
package.skeleton . 451
packageStatus . 452
page . 453
pairs . 453
pairs.formula . 455
palette . 456
Palettes . 457
panel.smooth . 458
par . 459
Paren . 465
parse . 465
paste . 466
pdf . 467
persp . 468
phones . 471

CONTENTS ix

pictex . 472
pie . 473
PkgUtils . 475
PlantGrowth . 475
plot . 476
plot.default . 477
plot.density . 479
plot.factor . 480
plot.formula . 481
plot.histogram . 482
plot.lm . 483
plot.table . 485
plot.ts . 486
plot.window . 487
plot.xy . 488
plotmath . 489
pmatch . 495
png . 496
points . 498
Poisson . 499
poly . 501
polygon . 502
polyroot . 504
pos.to.env . 505
postscript . 505
power . 509
ppoints . 510
precip . 510
predict . 511
predict.glm . 512
predict.lm . 513
preplot . 515
presidents . 515
pressure . 516
pretty . 516
Primitive . 518
print . 518
print.coefmat . 519
print.data.frame . 521
print.default . 522
print.matrix . 523
print.ts . 524
proc.time . 524
prod . 525
profile . 526
proj . 526
prompt . 528
prop.table . 529
pushBack . 530
qqnorm . 531
qr . 532
QR.Auxiliaries . 534

x CONTENTS

quakes . 535
quantile . 536
quartz . 537
quit . 538
R.home . 539
R.Version . 539
Random . 540
Random.user . 543
randu . 545
range . 546
rank . 547
RdUtils . 547
read.00Index . 548
read.ftable . 549
read.fwf . 551
read.socket . 552
read.table . 553
readBin . 556
readline . 558
readLines . 559
real . 560
Recall . 561
recordPlot . 561
recover . 562
rect . 563
reg.finalizer . 565
relevel . 565
REMOVE . 566
remove . 567
remove.packages . 568
rep . 568
replace . 569
replications . 570
reshape . 571
residuals . 573
restart-deprecated . 574
rev . 575
rgb . 575
RHOME . 576
rivers . 576
rle . 577
Round . 578
round.POSIXt . 579
row . 580
row/colnames . 580
rowsum . 581
Rprof . 582
rug . 583
sample . 584
save . 585
savehistory . 587
scale . 587

CONTENTS xi

scan . 588
screen . 591
sd . 593
se.aov . 593
se.contrast . 594
search . 595
seek . 596
segments . 597
seq . 598
seq.POSIXt . 599
sequence . 600
sets . 601
SHLIB . 602
showConnections . 602
sign . 603
Signals . 604
SignRank . 604
sink . 605
sleep . 607
slotOp . 607
solve . 608
sort . 609
source . 611
Special . 612
splinefun . 613
split . 615
sprintf . 616
stack . 618
stackloss . 619
standardGeneric . 620
stars . 621
start . 623
Startup . 624
stat.anova . 626
state . 627
stem . 628
step . 628
stop . 630
stopifnot . 631
str . 632
stripchart . 634
strptime . 635
strsplit . 637
structure . 638
strwidth . 639
strwrap . 640
subset . 641
substitute . 642
substr . 644
sum . 645
summary . 645
summary.manova . 646

xii CONTENTS

summaryRprof . 648
sunflowerplot . 649
sunspots . 651
svd . 651
sweep . 653
swiss . 654
switch . 655
symbols . 656
symnum . 658
Syntax . 659
Sys.getenv . 660
Sys.info . 661
sys.parent . 662
Sys.putenv . 664
Sys.sleep . 665
sys.source . 666
Sys.time . 666
system . 667
system.file . 668
system.time . 669
t . 670
table . 670
tabulate . 672
tapply . 672
taskCallback . 674
taskCallbackManager . 676
taskCallbackNames . 677
TDist . 678
tempfile . 680
termplot . 681
terms . 682
terms.formula . 683
terms.object . 684
text . 685
textConnection . 686
time . 688
Titanic . 689
title . 690
ToothGrowth . 691
toString . 692
trace . 693
traceback . 695
transform . 696
trees . 697
Trig . 698
try . 699
ts . 700
ts-methods . 702
tsp . 702
Tukey . 703
TukeyHSD . 704
type.convert . 705

CONTENTS xiii

typeof . 706
UCBAdmissions . 707
Uniform . 708
unique . 709
uniroot . 710
units . 711
unlink . 712
unlist . 713
unname . 714
update . 714
update.formula . 715
update.packages . 716
url.show . 718
USArrests . 718
USJudgeRatings . 719
USPersonalExpenditure . 720
uspop . 720
VADeaths . 721
vcov . 722
vector . 722
volcano . 723
warning . 724
warnings . 725
warpbreaks . 725
weekdays . 726
Weibull . 727
weighted.mean . 728
weighted.residuals . 729
which . 730
which.min . 731
Wilcoxon . 732
window . 733
with . 734
women . 736
write . 736
write.table . 737
writeLines . 739
x11 . 739
xfig . 740
xtabs . 742
xy.coords . 743
xyz.coords . 744
zcbind . 745
zip.file.extract . 746

2 The ctest package 747
ansari.test . 747
bartlett.test . 749
binom.test . 750
chisq.test . 752
cor.test . 753
fisher.test . 756
fligner.test . 758

xiv CONTENTS

friedman.test . 759
kruskal.test . 761
ks.test . 763
mantelhaen.test . 764
mcnemar.test . 767
mood.test . 768
oneway.test . 769
pairwise.prop.test . 770
pairwise.t.test . 771
pairwise.table . 772
pairwise.wilcox.test . 773
power.prop.test . 773
power.t.test . 774
print.pairwise.htest . 775
print.power.htest . 776
prop.test . 777
prop.trend.test . 779
quade.test . 780
shapiro.test . 781
t.test . 782
var.test . 784
wilcox.test . 785

3 The eda package 789
line . 789
medpolish . 790
smooth . 791

4 The lqs package 795
cov.rob . 795
lqs . 797
predict.lqs . 799

5 The methods package 801
.BasicFunsList . 801
as . 801
BasicClasses . 805
BasicFunctions . 806
callNextMethod . 807
class . 809
Classes . 810
classRepresentation-class . 811
EmptyMethodsList-class . 812
environment-class . 813
genericFunction-class . 814
GenericFunctions . 815
getClass . 818
getMethod . 819
getPackageName . 822
hasArg . 823
is . 824
language-class . 825
languageEl . 826

CONTENTS xv

LinearMethodsList-class . 827
makeClassRepresentation . 828
MethodDefinition-class . 829
Methods . 830
MethodsList . 832
MethodsList-class . 834
MethodSupport . 835
methodUtilities . 836
MethodWithNext-class . 837
new . 838
ObjectsWithPackage-class . 840
promptClass . 840
promptMethods . 841
RClassUtils . 842
representation . 847
RMethodUtils . 848
SClassExtension-class . 852
Session . 853
setClass . 854
setGeneric . 857
setMethod . 861
setOldClass . 863
show . 864
showMethods . 866
signature-class . 868
slot . 868
StructureClasses . 870
substituteDirect . 870
TraceClasses . 871
validObject . 872

6 The modreg package 875
ksmooth . 875
loess . 876
loess.control . 878
modreg-internal . 879
plot.ppr . 879
ppr . 880
predict.loess . 883
predict.smooth.spline . 884
rock . 886
scatter.smooth . 886
smooth.spline . 887
supsmu . 890

7 The mva package 893
ability.cov . 893
as.hclust . 894
biplot . 895
biplot.princomp . 896
cancor . 897
cmdscale . 898
cophenetic . 900

xvi CONTENTS

cutree . 901
dendrogram . 902
dist . 904
factanal . 906
Harman23.cor . 909
Harman74.cor . 910
hclust . 911
identify.hclust . 913
kmeans . 915
loadings . 916
prcomp . 916
princomp . 918
rect.hclust . 920
screeplot . 921
summary.princomp . 922
varimax . 922

8 The nls package 925
asOneSidedFormula . 925
BOD . 926
ChickWeight . 926
clearNames . 927
CO2 . 928
DNase . 929
formula.nls . 930
getInitial . 931
Indometh . 932
Loblolly . 933
nls . 933
nls.control . 936
nlsModel . 937
NLSstAsymptotic . 938
NLSstClosestX . 939
NLSstLfAsymptote . 940
NLSstRtAsymptote . 940
numericDeriv . 941
Orange . 942
plot.profile.nls . 943
predict.nls . 944
profile.nls . 945
profiler . 946
profiler.nls . 947
Puromycin . 949
selfStart . 950
selfStart.default . 951
selfStart.formula . 952
setNames . 953
sortedXyData . 954
SSasymp . 955
SSasympOff . 956
SSasympOrig . 957
SSbiexp . 958
SSfol . 959

CONTENTS xvii

SSfpl . 960
SSgompertz . 961
SSlogis . 962
SSmicmen . 963
SSweibull . 964
Theoph . 965

9 The splines package 967
asVector . 967
backSpline . 968
bs . 969
interpSpline . 970
ns . 971
periodicSpline . 972
polySpline . 973
predict.bs . 974
predict.bSpline . 975
splineDesign . 976
splineKnots . 977
splineOrder . 978
xyVector . 978

10 The stepfun package 981
ecdf . 981
plot.stepfun . 983
stepfun . 984

11 The tcltk package 987
TclInterface . 987
TkCommands . 990
tkpager . 993
TkWidgetcmds . 994
TkWidgets . 996

12 The tools package 999
checkFF . 999
checkTnF . 1000
checkVignettes . 1001
codoc . 1001
QA . 1003
Rtangle . 1004
RweaveLatex . 1005
Sweave . 1006
SweaveSyntConv . 1008
tools-internal . 1009
undoc . 1009

13 The ts package 1011
acf . 1011
acf2AR . 1013
AirPassengers . 1013
ar . 1014
ar.ols . 1017

xviii CONTENTS

arima . 1019
arima.sim . 1022
arima0 . 1023
ARMAacf . 1027
ARMAtoMA . 1028
austres . 1029
beavers . 1029
BJsales . 1030
Box.test . 1031
cpgram . 1032
decompose . 1033
diffinv . 1034
embed . 1035
EuStockMarkets . 1035
filter . 1036
HoltWinters . 1037
JohnsonJohnson . 1039
KalmanLike . 1040
kernapply . 1042
kernel . 1042
lag . 1044
lag.plot . 1045
LakeHuron . 1046
lh . 1047
lynx . 1047
monthplot . 1048
na.contiguous . 1049
Nile . 1050
nottem . 1051
plot.acf . 1052
plot.HoltWinters . 1053
plot.spec . 1054
PP.test . 1055
predict.Arima . 1056
predict.HoltWinters . 1057
spec.ar . 1058
spec.pgram . 1060
spec.taper . 1062
spectrum . 1063
stl . 1065
stlmethods . 1067
StructTS . 1068
sunspot . 1070
toeplitz . 1071
treering . 1071
ts.plot . 1072
ts.union . 1073
tsdiag . 1074
tsSmooth . 1075
UKDriverDeaths . 1075
UKgas . 1077
UKLungDeaths . 1077

CONTENTS xix

USAccDeaths . 1078
WWWusage . 1078

Index 1081

xx CONTENTS

Chapter 1

The base package

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine
R is running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR.

Value

A list with components (for simplicity, the prefix “double” is omitted in the explanations)

double.eps the smallest positive floating-point number x such that 1 + x != 1. It
equals base^ulp.digits if either base is 2 or rounding is 0; otherwise,
it is (base^ulp.digits) / 2.

double.neg.eps

a small positive floating-point number x such that 1 - x != 1. It
equals base^neg.ulp.digits if base is 2 or round is 0; otherwise, it
is (base^neg.ulp.digits) / 2. As neg.ulp.digits is bounded below
by -(digits + 3), neg.eps may not be the smallest number that can
alter 1 by subtraction.

double.xmin the smallest non-vanishing normalized floating-point power of the radix,
i.e., base^min.exp.

double.xmax the largest finite floating-point number. Typically, it is equal to (1 -
neg.eps) * base^max.exp, but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the
last digit of the significand.

double.base the radix for the floating-point representation

1

2 .Machine

double.digits the number of base digits in the floating-point significand
double.rounding

the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there
is partial underflow;
5 if floating-point addition rounds in the IEEE style, and there is partial
underflow

double.guard the number of guard digits for multiplication with truncating arithmetic.
It is 1 if floating-point arithmetic truncates and more than digits base
base digits participate in the post-normalization shift of the floating-point
significand in multiplication, and 0 otherwise.

double.ulp.digits

the largest negative integer i such that 1 + base^i != 1, except that it
is bounded below by -(digits + 3).

double.neg.ulp.digits

the largest negative integer i such that 1 - base^i != 1, except that it
is bounded below by -(digits + 3).

double.exponent

the number of bits (decimal places if base is 10) reserved for the repre-
sentation of the exponent (including the bias or sign) of a floating-point
number

double.min.exp

the largest in magnitude negative integer i such that base ^ i is positive
and normalized.

double.max.exp

the smallest positive power of base that overflows.

integer.max the largest integer which can be represented.

sizeof.long the number of bytes in a C long type.
sizeof.longlong

the number of bytes in a C long long type. Will be zero if there is no
such type.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters.
Transactions on Mathematical Software, 14, 4, 303–311.

See Also

.Platform for details of the platform.

Examples

str(.Machine)

(Meps <- .Machine$double.eps)

All the following relations must hold :

stopifnot(

.Platform 3

1 + Meps != 1,

1 + .5* Meps == 1,

log2(.Machine$double.xmax) == .Machine$double.max.exp,

log2(.Machine$double.xmin) == .Machine$double.min.exp

)

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides
means to write OS portable R code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character, giving the Operating System (family) of the computer. One
of the following values is returned: "unix", "mac", or "windows" (in
historical order).

file.sep character, giving the file separator, used on your platform, e.g., "/" on
Unix alikes.

dynlib.ext character, giving the file name extension of dynamically loadable
libraries, e.g., ".dll" on Windows.

GUI character, giving the type of GUI in use, or "unknown" if no GUI can be
assumed.

endian character, "big" or "little", giving the endianness of the processor in
use.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was compiled.

.Machine for details of the arithmetic used, and system for invoking platform-specific sys-
tem commands.

Examples

Note: this can be done in a system-independent way by file.info()$isdir

if(.Platform$OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }

dir.exists <- function(dir) sapply(dir, function(d)system.test("-d", d))

dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}

4 abbreviate

.Script Scripting Language Interface

Description

Run a script through its interpreter with given arguments.

Usage

.Script(interpreter, script, args, ...)

Arguments

interpreter a character string naming the interpreter for the script.

script a character string with the base file name of the script, which must be
located in the ‘interpreter’ subdirectory of ‘R HOME/share’.

args a character string giving the arguments to pass to the script.

... further arguments to be passed to system when invoking the interpreter
on the script.

Note

This function is for R internal use only.

Examples

.Script("perl", "maketitle.pl", file.path(.Library, "base", "DESCRIPTION"))

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they
were).

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE)

Arguments

names.arg a vector of names to be abbreviated.

minlength the minimum length of the abbreviations.

use.classes logical (currently ignored by R).

dot logical; should a dot (".") be appended?

abline 5

Details

The algorithm used is similar to that of S. First spaces at the beginning of the word are
stripped. Then any other spaces are stripped. Next lower case vowels are removed followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper
case letters are stripped.

Letters are always stripped from the end of the word first. If an element of names.arg
contains more than one word (words are separated by space) then at least one letter from
each word will be retained. If a single string is passed it is abbreviated in the same manner
as a vector of strings.

If use.classes is FALSE then the only distinction is to be between letters and space. This
has NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates
in the original names.arg will be given identical abbreviations. If any non-duplicated
elements have the same minlength abbreviations then minlength is incremented by one
and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")

abbreviate(x, 2)

data(state)

(st.abb <- abbreviate(state.name, 2))

table(nchar(st.abb))# out of 50, 3 need 4 letters

abline Add a Straight Line to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)

6 abs

Arguments

a,b the intercept and slope.

untf logical asking to untransform. See Details.

h the y-value for a horizontal line.

v the x-value for a vertical line.

coef a vector of length two giving the intercept and slope.

reg an object with a coef component. See Details.

... graphical parameters.

Details

The first form specifies the line in intercept/slope form (alternatively a can be specified on
its own and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object which contains reg$coef. If it is of length 1 then the value is
taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to
be the intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn correspond-
ing to a line in original coordinates, otherwise a line is drawn in the transformed coordinate
system. The h and v parameters always refer to original coordinates.

The graphical parameters col and lty can be specified as arguments to abline; see par
for details.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

Examples

data(cars)

z <- lm(dist ~ speed, data = cars)

plot(cars)

abline(z)

abs Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the
standard for computer languages such as C or Fortran.

Usage

abs(x)
sqrt(x)

add1 7

Arguments

x a numeric vector

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

Examples

xx <- -9:9

plot(xx, sqrt(abs(xx)), col = "red")

lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

add1 Add or Drop All Possible Single Terms to a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from
the model, fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)
add1.default(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)
add1.lm(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)
add1.glm(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

drop1(object, scope, ...)
drop1.default(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)
drop1.lm(object, scope, scale = 0, all.cols = TRUE,

test=c("none", "Chisq", "F"),k = 2, ...)
drop1.glm(object, scope, scale = 0, test = c("none", "Chisq", "F"),

k = 2, ...)

Arguments

object a fitted model object.

scope a formula giving the terms to be considered for adding or dropping.

scale an estimate of the residual mean square to be used in computing Cp.
Ignored if 0 or NULL.

test should the results include a test statistic relative to the original model?
The F test is only appropriate for lm and aov models or perhaps for glm
fits with estimated dispersion. The χ2 test can be an exact test (lm models
with known scale) or a likelihood-ratio test or a test of the reduction in
scaled deviance depending on the method.

8 add1

k the penalty constant in AIC / Cp.

trace if TRUE, print out progress reports.

x a model matrix containing columns for the fitted model and all terms in
the upper scope. Useful if add1 is to be called repeatedly.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns
of the design matrix should be used. If FALSE then non-estimable columns
are dropped, but the result is not usually statistically meaningful.

... further arguments passed to or from other methods.

Details

For drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy
is respected when considering terms to be added or dropped: all main effects contained in
a second-order interaction must remain, and so on.

The methods for lm and glm are more efficient in that they do not recompute the model
matrix and call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p
is the rank of the model (the number of effective parameters). This is only defined up to
an additive constant (like log-likelihoods). For linear Gaussian models with fixed scale, the
constant is chosen to give Mallows’ Cp, RSS/scale+2p−n. Where Cp is used, the column
is labelled as Cp rather than AIC.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will at-
tempt to use a subset of the data with no missing values for any of the variables if
na.action=na.omit, but this may give biased results. Only use these functions with data
containing missing values with great care.

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the
methods used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ Cp and Akaike’s AIC are used, not those of the
authors of the models chapter of S.

Author(s)

B. D. Ripley

See Also

step, aov, lm, extractAIC.

aggregate 9

Examples

example(step)#-> swiss

add1(lm1, ~ I(Education^2) + .^2)

drop1(lm1, test="F")

example(glm)

drop1(glm.D93, test="Chisq")

drop1(glm.D93, test="F")

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result
in a convenient form.

Usage

aggregate(x, ...)
aggregate.default(x, ...)
aggregate.data.frame(x, by, FUN, ...)
aggregate.ts(x, nfrequency = 1, FUN = sum, ndeltat = 1,

ts.eps = getOption("ts.eps"), ...)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables in x. Names for
the grouping variables are provided if they are not given.

FUN a scalar function to compute the summary statistics which can be applied
to all data subsets.

nfrequency new number of observations per unit of time; must be a divisor of the
frequency of x.

ndeltat new fraction of the sampling period between successive observations; must
be a divisor of the sampling interval of x.

ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original
frequency.

... further arguments passed to or used by methods.

Details

aggregate is a generic functions with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series,
and otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced
to one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of
identical combinations of the components of by, and FUN is applied to each such subset with
further arguments in ... passed to it. (I.e., tapply(VAR, by, FUN, ..., simplify =

10 agrep

FALSE) is done for each variable VAR in x, conveniently wrapped into one call to lapply().)
Empty subsets are removed, and the result is reformatted into a data frame containing the
variables in by and x. The ones arising from by contain the unique combinations of grouping
values used for determining the subsets, and the ones arising from x the corresponding
summary statistics for the subset of the respective variables in x.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then,
the variables in x are split into appropriate blocks of length frequency(x) / nfrequency,
and FUN is applied to each such block, with further (named) arguments in ... passed to
it. The result returned is a time series with frequency nfrequency holding the aggregated
values.

Author(s)

Kurt Hornik

See Also

apply, lapply, tapply.

Examples

data(state)

Compute the averages for the variables in ‘state.x77’, grouped

according to the region (Northeast, South, North Central, West) that

each state belongs to.

aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more

than 130 days of frost.

aggregate(state.x77,

list(Region = state.region,

Cold = state.x77[,"Frost"] > 130),

mean)

(Note that no state in ‘South’ is THAT cold.)

data(presidents)

Compute the average annual approval ratings for American presidents.

aggregate(presidents, nf = 1, FUN = mean)

Give the summer less weight.

aggregate(presidents, nf = 1, FUN = weighted.mean, w = c(1, 1, 0.5, 1))

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within the string x (the
second argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE, max.distance = 0.1)

agrep 11

Arguments

pattern a non-empty character string to be matched (not a regular expression!)

x character vector where matches are sought.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined is returned and if TRUE, a vector containing the matching elements
themselves is returned.

max.distance Maximum distance allowed for a match. Expressed either as integer,
or as a fraction of the pattern length (will be replaced by the smallest
integer not less than the corresponding fraction), or a list with possible
components

all: maximal (overall) distance
insertions: maximum number/fraction of insertions
deletions: maximum number/fraction of deletions
substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all.
The component names can be abbreviated.

Details

The Levensthein edit distance is used as measure of approximateness: it is the the total
number of insertions, deletions and substitutions required to transform one string into
another.

The function is a simple interface to the apse library developed by Jarkko Hietaniemi (also
used in the Perl String::Approx module).

Value

Either a vector giving the indices of the elements that yielded a match, of, if value is TRUE,
the matched elements.

Author(s)

David Meyer 〈David.Meyer@ci.tuwien.ac.at〉 (based on C code by Jarkko Hietaniemi); mod-
ifications by Kurt Hornik

See Also

grep

Examples

agrep("lasy", "1 lazy 2")

agrep("lasy", "1 lazy 2", max = list(sub = 0))

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)

agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

12 AIC

AIC Akaike Information Criterion

Description

Generic function calculating the Akaike information criterion for one or several fitted
model objects for which a log-likelihood value can be obtained, according to the formula
−2log-likelihood + knpar, where npar represents the number of parameters in the fitted
model, and k = 2 for the usual AIC, or k = log(n) (n the number of observations) for the
so-called BIC or SBC (Schwarz’s Bayesian criterion).

Usage

AIC(object, ..., k = 2)

Arguments

object a fitted model object, for which there exists a logLik method to ex-
tract the corresponding log-likelihood, or an object inheriting from class
logLik.

... optionally more fitted model objects.

k numeric, the “penalty” per parameter to be used; the default k = 2 is the
classical AIC.

Details

The default method for AIC, AIC.default() entirely relies on the existence of a logLik
method computing the log-likelihood for the given class.

When comparing fitted objects, the smaller the AIC, the better the fit.

Value

If just one object is provided, returns a numeric value with the corresponding AIC (or BIC,
or . . . , depending on k); if more than one object are provided, returns a data.frame with
rows corresponding to the objects and columns representing the number of parameters in
the model (df) and the AIC.

Author(s)

Jose Pinheiro and Douglas Bates

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statis-
tics. D. Reidel Publishing Company.

See Also

logLik, AIC.logLik.

AIC.logLik 13

Examples

data(swiss)

lm1 <- lm(Fertility ~ . , data = swiss)

AIC(lm1)

stopifnot(all.equal(AIC(lm1),

AIC(logLik(lm1))))

a version of BIC or Schwarz’ BC :

AIC(lm1, k = log(nrow(swiss)))

AIC.logLik AIC of a logLik Object

Description

see Description in AIC.

Usage

AIC(object, ..., k = 2)

Arguments

object an object inheriting from class "logLik", usually resulting from applying
a logLik method to a fitted model object.

... further arguments to be passed to or from methods.

k numeric, the “penalty” per parameter to be used; the default k = 2 is the
classical AIC.

Value

a numeric value with the corresponding AIC.

Author(s)

Jose Pinheiro and Douglas Bates

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statis-
tics. D. Reidel Publishing Company.

See Also

AIC, logLik.

14 airquality

airmiles Commercial Airline Mileage

Description

The revenue passenger miles flown by commercial airlines in the United States for each year
from 1937 to 1960.

Usage

data(airmiles)

Format

A time-series of 24 observations; yearly, 1937–1960.

Source

F.A.A. Statistical Handbook of Aviation.

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall.

Examples

data(airmiles)

plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

airquality New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

data(airquality)

Format

A data frame with 154 observations on 6 variables.

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

alias 15

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September
30, 1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
• Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from

0800 to 1200 hours at Central Park
• Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia

Airport
• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data)
and the National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Belmont, CA: Wadsworth.

Examples

data(airquality)

pairs(airquality, panel = panel.smooth, main = "airquality data")

alias Find Aliases (Dependencies) in a Model

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)
alias.formula(object, data, ...)
alias.lm(object, complete = TRUE, partial = FALSE,

partial.pattern = FALSE, ...)

Arguments

object A fitted model object, for example from lm or aov, or a formula for
alias.formula.

data Optionally, a data frame to search for the objects in the formula.
complete Should information on complete aliasing be included?
partial Should information on partial aliasing be included?
partial.pattern

Should partial aliasing be presented in a schematic way? If this is done,
the results are presented in a more compact way, usually giving the deciles
of the coefficients.

... further arguments passed to or from other methods.

16 alias

Details

Although the main method is for class "lm", alias is most useful for experimental designs
and so is used with fits from aov. Complete aliasing refers to effects in linear models that
cannot be estimated independently of the terms which occur earlier in the model and so
have their coefficients omitted from the fit. Partial aliasing refers to effects that can be
estimated less precisely because of correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly depen-
dent on the rows; may be of class "mtable" which has its own print
method.

Partial The correlations of the estimable effects, with a zero diagonal.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably
most useful.

The defaults are different from those in S.

Author(s)

B.D. Ripley

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

The next line is optional (for fractions package which gives neater

results.)

has.VR <- require(MASS, quietly = TRUE)

op <- options(contrasts=c("contr.helmert", "contr.poly"))

npk.aov <- aov(yield ~ block + N*P*K, npk)

alias(npk.aov)

if(has.VR) detach(package:MASS)

options(op)# reset

all 17

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

Value

Given a sequence of logical arguments, a logical value indicating whether or not all of the
elements of x are TRUE.

The value returned is TRUE if all the values in x are TRUE, and FALSE if any the values in x
are FALSE.

If x consists of a mix of TRUE and NA values, then value is NA.

See Also

any, the “complement” of all, and stopifnot(*) which is an all(*) “insurance”.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(all(x < 0)) cat("all x values are negative\n")

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing“near equality”. If they are
different, comparison is still made to some extent, and a report of the differences is returned.
Don’t use all.equal directly in if expressions—either use identical or combine the two,
as shown in the documentation for identical.

Usage

all.equal(target, current, ...)

all.equal.numeric(target, current,
tolerance= .Machine$double.eps ^ 0.5, scale=NULL, ...)

18 all.equal

Arguments

target R object.

current other R object, to be compared with target.

... Further arguments for different methods, notably the following two, for
numerical comparison:

tolerance numeric ≥ 0. Differences smaller than tolerance are not considered.

scale numeric scalar > 0 (or NULL). See Details.

Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide comparison
of recursive objects.

Numerical comparisons for scale = NULL (the default) are done by first computing the
mean absolute difference of the two numerical vectors. If this is smaller than tolerance or
not finite, absolute differences are used, otherwise relative differences scaled by the mean
absolute difference.

If scale is positive, absolute comparisons are after scaling (dividing) by scale.

For complex arguments, Mod of difference is used.

attr.all.equal is used for comparing attributes, returning NULL or character.

Value

Either TRUE or a vector of mode "character" describing the differences between target
and current.

Numerical differences are reported by relative error

See Also

==, and all for exact equality testing.

Examples

all.equal(pi, 355/113) # not precise enough (default tol) > relative error

stopifnot(

all.equal(gamma(2:14), cumprod(1:13))) # TRUE, but

all (gamma(2:14) == cumprod(1:13)) # FALSE, since not exactly

all.equal(gamma(2:14), cumprod(1:13), tol=0) # to see difference

all.equal(options(), .Options)

all.equal(options(), as.list(.Options))# TRUE

.Options $ myopt <- TRUE

all.equal(options(), as.list(.Options))

rm(.Options)

all.names 19

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE,
max.names = 200, unique = FALSE)

all.vars(expr, functions = FALSE,
max.names = 200, unique = TRUE)

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in
the result.

max.names the maximum number of names to be returned.

unique a logical value which indicates whether duplicate names should be re-
moved from the value.

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

Examples

all.names(expression(sin(x+y)))

all.vars(expression(sin(x+y)))

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)

20 anova.glm

Arguments

object an object containing the results returned by a model fitting function (e.g.
lm or glm).

... additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-
of-variance and analysis-of-deviance tables. When given a single argument it produces a
table which tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order
specified.

The print method for anova objects prints tables in a “pretty” form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used.

See Also

coefficients, effects, fitted.values, residuals, summary.

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage

anova(object, ..., dispersion = NULL, test = NULL)

Arguments

object, ... objects of class glm, typically the result of a call to glm, or a list of
objects for the "glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained
from glm.obj.

test a character string, (partially) matching one of "Chisq", "F" or "Cp". See
stat.anova.

anova.lm 21

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That
is, the reductions in the residual deviance as each term of the formula is added in turn are
given in as the rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom
and deviance for each model. For all but the first model, the change in degrees of freedom
and deviance is also given. (This only make statistical sense if the models are nested.) It
is conventional to list the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in
deviance for the row to the residuals. For models with known dispersion (e.g. binomial
and Poisson fits) the chi-squared test is most appropriate, and for those with dispersion
estimated by moments (e.g. gaussian, quasibinomial and quasipoisson fits) the F test
is most appropriate. Mallows’ Cp statistic is the residual deviance plus twice the estimate
of σ2 times the residual degrees of freedom, which is closely related to AIC (and a multiple
of it if the dispersion is known).

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid
if they are fitted to the same dataset. This may be a problem if there are missing values
and R’s default of na.action = na.omit is used, and anova.glmlist will detect this with
an error.

See Also

glm, anova.

Examples

--- Continuing the Example from ‘‘?glm’’:

anova(glm.D93)

anova(glm.D93, test = "Cp")

anova(glm.D93, test = "Chisq")

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

anova(object, ...)
anova.lmlist(object, ..., scale = 0, test = "F")

22 anova.lm

Arguments

object, ... objects of class lm, usually, a result of a call to lm.

test a character string specifying the test statistic to be used. Can be one of
"F", "Chisq" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance σ2. If zero this will be esti-
mated from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is,
the reductions in the residual sum of squares as each term of the formula is added in turn
are given in as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row
to the residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom
and sum of squares for each model. For all but the first model, the change in degrees of
freedom and sum of squares is also given. (This only make statistical sense if the models
are nested.) It is conventional to list the models from smallest to largest, but this is up to
the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate,
which compares the mean square for a row to the residual sum of squares for the largest
model considered. If scale is specified chi-squared tests can be used. Mallows’ Cp statistic
is the residual sum of squares plus twice the estimate of σ2 times the residual degrees of
freedom.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same
dataset. This may be a problem if there are missing values and R’s default of na.action
= na.omit is used, and anova.lmlist will detect this with an error.

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can
still be obtained by a direct call to anovalist.lm.

See Also

The model fitting function lm.

Examples

sequential table

data(LifeCycleSavings)

fit <- lm(sr ~ ., data = LifeCycleSavings)

anova(fit)

same effect via separate models

fit0 <- lm(sr ~ 1, data = LifeCycleSavings)

anscombe 23

fit1 <- update(fit0, . ~ . + pop15)

fit2 <- update(fit1, . ~ . + pop75)

fit3 <- update(fit2, . ~ . + dpi)

fit4 <- update(fit3, . ~ . + ddpi)

anova(fit0, fit1, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fit0, test="F") # unconventional order

anscombe Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance,
correlation, regression line, etc.), yet are quite different.

Usage

data(anscombe)

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13–14. Graphics
Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27,
17–21.

Examples

data(anscombe)

summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:

ff <- y ~ x

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

or ff[[2]] <- as.name(paste("y", i, sep=""))

ff[[3]] <- as.name(paste("x", i, sep=""))

assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))

print(anova(lmi))

}

See how close they are (numerically!)

24 any

sapply(objects(pat="lm\.[1-4]$"), function(n) coef(get(n)))

lapply(objects(pat="lm\.[1-4]$"), function(n) summary(get(n))$coef)

Now, do what you should have done in the first place: PLOTS

op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))

for(i in 1:4) {

ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)

plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

xlim=c(3,19), ylim=c(3,13))

abline(get(paste("lm.",i,sep="")), col="blue")

}

mtext("Anscombe’s 4 Regression data sets", outer = TRUE, cex=1.5)

par(op)

any Are Some Values True?

Description

Given a set of logical vectors, are any of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... one or more logical vectors.

na.rm logical. If true NA values are removed before the result is computed.

Value

Given a sequence of logical arguments, a logical value indicating whether or not any of the
elements of x are TRUE.

The value returned is TRUE if any the values in x are TRUE, and FALSE if all the values in x
are FALSE.

If x consists of a mix of FALSE and NA values, the value is NA.

See Also

all, the “complement” of any.

Examples

range(x <- sort(round(rnorm(10) - 1.2,1)))

if(any(x < 0)) cat("x contains negative values\n")

aov 25

aov Summarize an Analysis of Variance Model

Description

Summarize an analysis of variance model.

Usage

summary(object, intercept = FALSE, split,
expand.split = TRUE, keep.zero.df = TRUE, ...)

summary(object, ...)

Arguments

object An object of class "aov" or "aovlist".

intercept logical: should intercept terms be included?

split an optional named list, with names corresponding to terms in the model.
Each component is itself a list with integer components giving contrasts
whose contributions are to be summed.

expand.split logical: should the split apply also to interactions involving the factor?

keep.zero.df logical: should terms with no degrees of freedom be included?

... Arguments to be passed to or from other methods, for summary.aovlist
including those for summary.aov.

Value

An object of class c("summary.aov", "listof") or "summary.aovlist" respectively.

Note

The use of expand.split = TRUE is little tested: it is always possible to set it to FALSE
and specify exactly all the splits required.

Author(s)

B. D. Ripley

See Also

aov, summary, model.tables, TukeyHSD

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

26 aperm

(npk.aov <- aov(yield ~ block + N*P*K, npk))

summary(npk.aov)

coefficients(npk.aov)

Cochran and Cox (1957, p.164)

3x3 factorial with ordered factors, each is average of 12.

CC <- data.frame(

y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,

P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))

)

CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))

summary(CC.aov)

Split both main effects into linear and quadratic parts.

summary(CC.aov, split = list(N = list(L = 1, Q = 2), P = list(L = 1, Q = 2)))

Split only the interaction

summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments

a the array to be transposed.

perm the subscript permutation vector, which must be a permutation of the
integers 1:n, where n is the number of dimensions of a. The default is to
reverse the order of the dimensions.

resize a flag indicating whether the vector should be resized as well as having
its elements reordered (default TRUE).

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if FALSE then the returned object has the same dimensions as a, and
the dimnames are dropped.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉 did the faster C implementation.

append 27

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x

x <- array(1:24, 2:4)

xt <- aperm(x, c(2,1,3))

stopifnot(t(xt[,,2]) == x[,,2],

t(xt[,,3]) == x[,,3],

t(xt[,,4]) == x[,,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after=length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

Examples

stopifnot(

append(1:5, 0:1, after=3)

== append(1:3, c(0:1, 4:5)))

28 apply

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an
array.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X the array to be used.

MARGIN a vector giving the subscripts which the function will be applied over. 1
indicates rows, 2 indicates columns, c(1,2) indicates rows and columns.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.

... optional arguments to FUN.

Details

If X is not an array but has a dimension attribute, apply attempts to coerce it to an array
via as.matrix if it is two-dimensional (e.g. data frames) or via as.array.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension
c(n, dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length
1 and an array of dimension dim(X)[MARGIN] otherwise. If n is 0, the result has length 0
but not necessarily the “correct” dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
dim(X)[MARGIN].

See Also

lapply, tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x,2, is.vector)) # not ok in R <= 0.63.2

Sort the columns of a matrix

approxfun 29

apply(x, 2, sort)

##- function with extra args:

cave <- function(x, c1,c2) c(mean(x[c1]),mean(x[c2]))

apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nr = 2)

ma

apply(ma, 1, table) #--> a list of length 2

apply(ma, 1, quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))## wasn’t ok before R 0.63.1

approxfun Interpolation Functions

Description

Return a list of points which linearly interpolate given data points, or a function performing
the linear (or constant) interpolation.

Usage

approx (x, y, xout, method="linear", n=50,
yleft, yright, rule = 1, f=0, ties = mean)

approxfun(x, y, method="linear",
yleft, yright, rule = 1, f=0, ties = mean)

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.

xout an optional set of values specifying where interpolation is to take place.
method specifies the interpolation method to be used. Choices are "linear" or

"constant".
n If xout is not specified, interpolation takes place at n equally spaced

points spanning the interval [min(x), max(x)].
yleft the value to be returned when input x values less than min(x). The

default is defined by the value of rule given below.
yright the value to be returned when input x values greater than max(x). The

default is defined by the value of rule given below.
rule an integer describing how interpolation is to take place outside the interval

[min(x), max(x)]. If rule is 1 then NAs are returned for such points and
if it is 2, the value at the closest data extreme is used.

f For method="constant" a number between 0 and 1 inclusive, indicating
a compromise between left- and right-continuous step functions. If y0
and y1 are the values to the left and right of the point then the value is
y0*(1-f)+y1*f so that f=0 is right-continuous and f=1 is left-continuous.

ties Handling of tied x values. Either a function with a single vector argument
returning a single number result or the string "ordered".

30 apropos

Details

The inputs can contain missing values which are deleted, so at least two complete (x, y)
pairs are required. If there are duplicated (tied) x values and ties is a function it is applied
to the y values for each distinct x value. Useful functions in this context include mean, min,
and max. If ties="ordered" the x values are assumed to be already ordered. The first y
value will be used for interpolation to the left and the last one for interpolation to the right.

Value

approx returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of
the given data points. For a given set of x values, this function will return the corresponding
interpolated values. This is often more useful than approx.

See Also

spline and splinefun for spline interpolation.

Examples

x <- 1:10

y <- rnorm(10)

par(mfrow = c(2,1))

plot(x, y, main = "approx(.) and approxfun(.)")

points(approx(x, y), col = 2, pch = "*")

points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)

curve(f(x), 0, 10, col = "green")

points(x, y)

is.function(fc <- approxfun(x, y, method = "const")) # TRUE

curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

Show treatment of ‘ties’ :

x <- c(2,2:4,4,4,5,5,7,7,7)

y <- c(1:6, 5:4, 3:1)

approx(x,y, xout=x)$y # warning

(ay <- approx(x,y, xout=x, ties = "ordered")$y)

stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))

approx(x,y, xout=x, ties = min)$y

approx(x,y, xout=x, ties = max)$y

apropos Find Objects by (Partial) Name

Description

apropos returns a character vector giving the names of all objects in the search list matching
what.

find is a different user interface to the same task as apropos.

apropos 31

Usage

apropos(what, where = FALSE, mode = "any")
find(what, mode = "any", numeric. = FALSE, simple.words = TRUE)

Arguments

what name of an object, or regular expression to match against
where, numeric.

a logical indicating whether positions in the search list should also be
returned

mode character; if not "any", only objects who’s mode equals mode are searched.

simple.words logical; if TRUE, the what argument is only searched as whole only word.

Details

If mode != "any" only those objects which are of mode mode are considered. If where is
TRUE, the positions in the search list are returned as the names attribute.

find is a different user interface to the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched.

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, help.search for searching the help system,
search for the search path.

Examples

apropos("lm")

apropos(ls)

apropos("lq")

lm <- 1:pi

find(lm) #> ".GlobalEnv" "package:base"

find(lm, num=TRUE) # numbers with these names

find(lm, num=TRUE, mode="function")# only the second one

rm(lm)

apropos(".", mode="list")

need a DOUBLE backslash ‘\\’ (in case you don’t see it anymore)

apropos("\\[")

everything

length(apropos("."))

those starting with ‘pr’

apropos("^pr")

the 1-letter things

apropos("^.$")

32 args

the 1-2-letter things

apropos("^..?$")

the 2-to-4 letter things

apropos("^.{2,4}$")

the 8-and-more letter things

apropos("^.{8,}$")

table(nchar(apropos("^.{8,}$")))

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function.

Usage

args(name)

Arguments

name an interpreted function. If name is a character string then the function
with that name is found and used.

Details

This function is mainly used interactively. For programming, use formals instead.

Value

A function with identical formal argument list but an empty body if given an interpreted
function; NULL in case of a variable or primitive (non-interpreted) function.

See Also

formals, help.

Examples

args(c) # -> NULL (c is a ‘primitive’ function)

args(plot.default)

Arithmetic 33

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on vector objects.

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Details

1 ^ y and y ^ 0 are 1, always. x ^ y should also give the proper “limit” result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are con-
formable.

Value

They return numeric vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction * for multiplication,
/ for division and ^ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
%% y) + y * (x %/% y) unless y == 0 where the result is NA or NaN (depending on the
typeof of the arguments).

See Also

sqrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

Examples

x <- -1:12

x + 1

2 * x + 3

x %% 2 #-- is periodic

x %/% 5

34 array

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x)
is.array(x)

Arguments

data a vector giving data to fill the array.

dim the dim attribute for the array to be created, that is a vector of length
one or more giving the maximal indices in each dimension.

dimnames the names for the dimensions. This is a list with one component for each
dimension, either NULL or a character vector of the length given by dim
for that dimension. The list can be names, and the names will be used as
names for the dimensions.

x an R object.

Value

array returns an array with the extents specified in dim and naming information in
dimnames. The values in data are taken to be those in the array with the leftmost subscript
moving fastest. If there are too few elements in data to fill the array, then the elements in
data are recycled.

as.array() coerces its argument to be an array by attaching a dim attribute to it. It also
attaches dimnames if x has names. The sole purpose of this is to make it possible to access
the dim[names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has
a dim attribute) or not.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))

array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"

[,1] [,2] [,3] [,4]

#[1,] 1 3 2 1

#[2,] 2 1 3 2

funny object:

str(a0 <- array(1:3, 0))

arrows 35

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), lty = NULL, lwd = par("lwd"), xpd = NULL)

Arguments

x0, y0 coordinates of points from which to draw.

x1, y1 coordinates of points to which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determining kind of arrows to be drawn.
col, lty, lwd, xpd

usual graphical parameters as in par.

Details

For each i, an arrow is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

If code=2 an arrowhead is drawn at (x0[i],y0[i]) and if code=1 an arrowhead is drawn
at (x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow. Unless length =
0, when no head is drawn.

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments which make up the arrows (col may be a vector).

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the
arrowheads. To allow for rounding error, arrowheads are omitted (with a warning) on any
arrow of length less than 1/1000 inch.

See Also

segments to draw segments.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

36 as.function

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search
path.

Usage

as.environment(object)

Arguments

object the object to convert. If it is already an environment, just return it. If
it is a number, return the environment corresponding to that position on
the search list. If it is a character string, match the string to the names
on the search list.

Value

The corresponding environment object.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search.

Examples

as.environment(1) ## the global environment

identical(globalenv(), as.environment(1)) ## is TRUE

as.environment("package:ctest")

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

as.function.default(x, envir = parent.frame(), ...)

as.POSIX* 37

Arguments

x object to convert, a list for the default method.
... additional arguments, depending on object
envir environment in which the function should be defined

Value

The desired function.

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))

as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIXlt" and "POSIXct" representing calendar
dates and times (to the nearest second).

Usage

as.POSIXct(x, tz = "")
as.POSIXlt(x, tz = "")

Arguments

x An object to be converted.
tz A timezone specification to be used for the conversion, if one is required.

System-specific, but "" is the current timezone, and "GMT" is UTC (Co-
ordinated Universal Time, in French).

Details

The as.POSIX* functions convert an object to one of the two classes used to represent
date/times (calendar dates plus time to the nearest second). They can take convert a wide
variety of objects, including objects of the other class and of classes "date" (from package
date), "chron" and "dates" (from package chron) to these classes. They can also convert
character strings of the formats "2001-02-03" and "2001/02/03" optionally followed by
white space and a time in the format "14:52" or "14:52:03". (Formats such as "01/02/03"
are ambiguous but can be converted via a format specification by strptime.)

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

38 AsIs

Value

as.POSIXct and as.POSIXlt return an object of the appropriate class. If tz was specified,
as.POSIXlt will give an appropriate "tzone" attribute.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert
it to class "POSIXlt" and extract the relevant component(s) of the list, or if you want
a character representation (such as a named day of the week) use format.POSIXlt or
format.POSIXct.

If a timezone is needed and that specified is invalid on your system, what happens is system-
specific but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character
representations.

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

unclass(z) # a large integer

floor(unclass(z)/86400) # the number of days since 1970-01-01

(z <- as.POSIXlt(Sys.time())) # the current date, as class "POSIXlt"

unlist(unclass(z)) # a list shown as a named vector

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated “as is”.

Usage

I(x)

Arguments

x an object

Details

Function I has two main uses.

• In function data.frame. Protecting an object by enclosing it in I() in a call to
data.frame inhibits the conversion of character vectors to factors. I can also be used
to protect objects which are to be added to a data frame, or converted to a data frame
via as.data.frame.
It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs"
has a few of its own methods, including for [, as.data.frame, print and format.

assign 39

• In function formula. There it is used to inhibit the interpretation of operators such as
"+", "-", "*" and "^" as formula operators, so they are used as arithmetical operators.
This is interpreted as a symbol by terms.formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

See Also

data.frame, formula

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments

x a variable name (given as a quoted string in the function call).

value a value to be assigned to x.

pos where to do the assignment. By default, assigns into the current environ-
ment. See the details for other possibilities.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

Details

The pos argument can specify the environment in which to assign the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of
vectors, names, attributes, etc.

40 assignOps

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no
envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until
the variable x is encountered. The value is then assigned in the environment in which the
variable is encountered. If the symbol is not encountered then assignment takes place in
the user’s workspace (the global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir.

See Also

<-, get, exists, environment.

Examples

for(i in 1:6) { #-- Create objects ’r1’, ’r2’, ... ’r6’ --

nam <- paste("r",i, sep=".")

assign(nam, 1:i)

}

ls(pat="^r..$")

##-- Global assignment within a function:

myf <- function(x) {

innerf <- function(x) assign("Global.res", x^2, env = .GlobalEnv)

innerf(x+1)

}

myf(3)

Global.res # 16

a <- 1:4

assign("a[1]", 2)

a[1] == 2 #FALSE

get("a[1]") == 2 #TRUE

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

assocplot 41

Arguments

x a variable name (possibly quoted).

value a value to be assigned to x.

Details

There are three different assignment operators: two of them have leftwards and rightwards
forms.

The operators <- and = assign into the environment in which they are evaluated. The <-
can be used anywhere, but the = is only allowed at the top level (that is, in the complete
expression typed by the user) or as one of the subexpressions in a braced list of expressions.

The operators <<- and ->> cause a search to made through the environment for an existing
definition of the variable being assigned. If such a variable is found then its value is redefined,
otherwise assignment takes place globally. Note that their semantics differ from that in the
S language, but is useful in conjunction with the scoping rules of R.

In all the assignment operator expressions, x can be a name or an expression defining a part
of an object to be replaced (e.g., z[[1]]). The name does not need to be quoted, though
it can be.

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <- b <- c <- 6.

See Also

assign, environment.

assocplot Association Plots

Description

Produce a Cohen-Friendly association plot indicating deviations from independence of rows
and columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

Arguments

x a two-dimensional contingency table in matrix form.

col a character vector of length two giving the colors used for drawing positive
and negative Pearson residuals, respectively.

space the amount of space (as a fraction of the average rectangle width and
height) left between each rectange.

main overall title for the plot.

42 attach

xlab a label for the x axis. Defaults to the name of the row variable in x if
non-NULL.

ylab a label for the y axis. Defaults to the column names of the column variable
in x if non-NULL.

Details

For a two-way contingency table, the signed contribution to Pearson’s χ2 for cell i, j is
dij = (fij−eij)/

√
eij , where fij and eij are the observed and expected counts corresponding

to the cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle
that has (signed) height proportional to dij and width proportional to √eij , so that the
area of the box is proportional to the difference in observed and expected frequencies.
The rectangles in each row are positioned relative to a baseline indicating independence
(dij = 0). If the observed frequency of a cell is greater than the expected one, the box rises
above the baseline and is shaded in the color specified by the first element of col, which
defaults to black; otherwise, the box falls below the baseline and is shaded in the color
specified by the second element of col, which defaults to red.

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way
contingency table. Communications in Statistics—Theory and Methods, A9, 1025–1041.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

See Also

mosaicplot; chisq.test.

Examples

data(HairEyeColor)

Aggregate over sex:

x <- margin.table(HairEyeColor, c(1, 2))

x

assocplot(x, main = "Relation between hair and eye color")

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by
R when evaluating a variable, so objects in the database can be accessed by simply giving
their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)))

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html

attenu 43

Arguments

what “database”. This may currently be a data.frame or list or a R data file
created with save.

pos integer specifying position in search() where to attach.

name alternative way to specify the database to be attached.

Details

When evaluating a variable or function name R searches for that name in the databases
listed by search. The first name of the appropriate type is used.

By attaching a data frame to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (eg in the
example below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after
the user’s workspace and before all previously loaded packages and previously attached
databases. This can be altered to attach later in the search path with the pos option, but
you cannot attach at pos=1.

Note that by default assignment is not performed in an attached database. Attempting
to modify a variable or function in an attached database will actually create a modified
version in the user’s workspace (the R global environment). For this reason attach can
lead to confusion.

Value

The environment is returned invisibly with a "name" attribute.

See Also

library, detach, search, objects, environment.

Examples

data(women)

summary(women$height) ## refers to variable ‘height’ in the dataframe

attach(women)

summary(height) ## The same variable now available by name

height<-height*2.54 ## Don’t do this. It creates a new variable

detach("women")

summary(height) ## The new variable created by modifying ‘height’

rm(height)

attenu The Joyner-Boore Attenuation Data

Description

This data gives peak accelerations measured at various observation stations for 23 earth-
quakes in California. The data have been used by various workers to estimate the attenu-
ating affect of distance on ground acceleration.

44 attitude

Usage

data(attenu)

Format

A dataframe with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and veloc-
ity from strong-motion records including records from the 1979 Imperial Valley, California
earthquake. USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull.
Seism. Soc. Am., 72, S269–S268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected
accelerations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Com-
ments on: New attenuation relations for peak and expected accelerations for peak and
expected accelerations of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore
attenuation data, Bull. Seism. Soc. Am. 74, 1441–1449.

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation
data. Manuscript.

Examples

data(attenu)

check the data class of the variables

sapply(attenu, data.class)

summary(attenu)

pairs(attenu, main = "attenu data")

coplot(accel ~ dist | as.factor(event), data = attenu, show = FALSE)

coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude Attitudes Toward Supervisors

attr 45

Description

From a survey of the clerical employees of a large financial organization, the data are aggre-
gated from the questionnaires of the approximately 35 employees for each of 30 (randomly
selected) departments. The numbers give the percent proportion of favourable responses to
seven questions in each department.

Usage

data(attitude)

Format

A dataframe with 30 observations on 7 variables. The first column are the short names
from the reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley.
(Section 3.7, p.68ff of 2nd ed.(1991).)

Examples

data(attitude)

pairs(attitude, main = "attitude data")

summary(attitude)

summary(fm1 <- lm(rating ~ ., data = attitude))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

summary(fm2 <- lm(rating ~ complaints, data = attitude))

plot(fm2)

par(opar)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which)
attr(x, which) <- value

46 attributes

Arguments

x an object whose attributes are to be accessed.

which a character string specifying which attribute is to be accessed.

Value

This function provides access to a single object attribute. The simple form above returns
the value of the named attribute. The assignment form causes the named attribute to take
the value on the right of the assignment symbol.

See Also

attributes

Examples

create a 2 by 5 matrix

x <- 1:10

attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attribute list. The first form above returns the an object’s
attribute list. The assignment forms make the list on the right-hand side of the assignment
the object’s attribute list (if appropriate).

Usage

attributes(obj)
attributes(obj) <- list
mostattributes(obj) <- list

Arguments

obj an object

Details

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when that is valid whereas as attributes assignment would
give an error in that case.

See Also

attr.

autoload 47

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames

str(attributes(x))

strip an object’s attributes:

attributes(x) <- NULL

x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,

dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is
that R behaves as if file was loaded but it does not occupy memory.

Usage

autoload(name, package,...)
autoloader(name, package,...)
.AutoloadEnv

Arguments

name string giving the name of an object

package string giving the name of a package containing the object

... other arguments to library

Value

This function is invoked for its side-effect.

See Also

delay, library

Examples

autoload("line","eda")

search()

ls("Autoloads")

all(ls("Autoloads") == ls(envir = .AutoloadEnv))

data(cars)

plot(cars)

z<-line(cars)

abline(coef(z))

search()

48 ave

detach("package:eda")

search()

z<-line(cars)

search()

ave Group Averages Over Level Combinations of Factors

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same
factor levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the same length as x.

FUN Function to apply for each factor level combination.

Value

A numeric vector, say y of length length(x). If ... is g1,g2, e.g., y[i] is equal to
FUN(x[j], for all j with g1[j]==g1[i] and g2[j]==g2[i]).

See Also

mean, median.

Examples

ave(1:3)# no grouping -> grand mean

data(warpbreaks)

attach(warpbreaks)

ave(breaks, wool)

ave(breaks, tension)

ave(breaks, tension, FUN = function(x)mean(x, trim=.1))

plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")

lines(ave(breaks, wool, tension), type=’s’, col = "blue")

lines(ave(breaks, wool, tension, FUN=median), type=’s’, col = "green")

legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")

detach()

axis 49

axis Add an Axis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and
other options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = 0,
pos = NA, outer = FALSE, font = NA, vfont = NULL,
lty = "solid", lwd = 1, col = NULL, ...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on.
The axis is placed as follows: 1=below, 2=left, 3=above and 4=right.

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN
or NA) values are omitted. By default, when NULL, tickmark locations are
computed, see Details below.

labels this can either be a logical value specifying whether (numerical) annota-
tions are to be made at the tickmarks, or a vector of character strings to
be placed at the tickpoints.

tick a logical value specifying whether tickmarks should be drawn

line the number of lines into the margin which the axis will be drawn. This
overrides the value of the graphical parameter mgp[3]. The relative plac-
ing of tickmarks and tick labels is unchanged.

pos the coordinate at which the axis line is to be drawn. this overrides the
value of both line and mgp[3].

outer a logical value indicating whether the axis should be drawn in the outer
plot margin, rather than the standard plot margin.

font font for text.

vfont vector font for text.

lty, lwd line type, width for the axis line and the tick marks.

col color for the axis line and the tick marks. The default NULL means to use
par("fg").

... other graphical parameters may also be passed as arguments to this func-
tion, e.g., las for vertical/horizontal label orientation, see par(las=.).

Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at
the plot region. Only ticks which are drawn from points within the plot region (up to a
tolerance for rounding error) are plotted, but the ticks and their labels may well extend
outside the plot region.

When at = NULL, pretty tick mark locations are computed internally, from
par("usr","lab"), and par("xlog") (or ylog respectively).

50 axis.POSIXct

Value

This function is invoked for its side effect, which is to add an axis to an already existing
plot.

Examples

plot(1:4, rnorm(4), axes=FALSE)

axis(1, 1:4, LETTERS[1:4])

axis(2)

box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",

type = "s", xaxt="n", frame = FALSE, col = "red")

axis(1, 1:7, LETTERS[1:7], col.axis = "blue")

unusual options:

axis(4, col = "violet", col.axis="dark violet",lwd = 2)

axis(3, col = "gold", lty = 2, lwd = 0.5)

axis.POSIXct Date-time Plotting Functions

Description

Functions to manipulate objects of classes "POSIXlt" and "POSIXct" representing calendar
dates and times (to the nearest second).

Usage

plot.POSIXct(x, y, xlab = "", ...)
plot.POSIXlt(x, y, xlab = "", ...)
axis.POSIXct(side, x, at, format, ...)

Arguments

x, at A date-time object.

y numeric values to be plotted against x.

xlab a character string giving the label for the x axis.

side See axis.

format See strptime.

... Further arguments to be passed from or to other methods, typically graph-
ical parameters.

Details

The functions plot against an x-axis of date-times. axis.POSIXct works quite hard to
choose suitable time units (years, months, days, hours, minutes or seconds) and a sensible
output format, but this can be overridden by supplying a format specification.

If at is supplied for axis.POSIXct it specifies the locations of the ticks and labels: if x is
specified a suitable grid of labels is chosen.

axTicks 51

See Also

DateTimeClasses for details of the classes.

Examples

if(require(MASS, quietly = TRUE)) {

data(beav1)

attach(beav1)

time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")

plot(time, temp, type="l") # axis at 4-hour intervals.

now label every hour on the time axis

plot(time, temp, type="l", xaxt="n")

r <- as.POSIXct(round(range(time), "hours"))

axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format="%H")

rm(time)

detach(beav1)

detach(package:MASS)

}

plot(.leap.seconds, 1:22, type="n", yaxt="n",

xlab="leap seconds", ylab="", bty="n")

rug(.leap.seconds)

axTicks Compute Axis Tickmark Locations

Description

Compute tickmark locations, the same way as R does internally. This is only non-trivial
when log coordinates are active. By default, gives the at values which axis(side) would
use.

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL)

Arguments

side integer in 1:4, as for axis.

axp numeric vector of length three, defaulting to par("Zaxp") where “Z” is
“x” or “y” depending on the side argument.

usr numeric vector of length four, defaulting to par("usr") giving horizontal
(‘x’) and vertical (‘y’) user coordinate limits.

log logical indicating if log coordinates are active; defaults to par("Zlog")
where ‘Z’ is as for the axp argument above.

52 backsolve

Details

The axp, usr, and log arguments must be consistent as their default values (the par(..)
results) are. Note that the meaning of axp alters very much when log is TRUE, see the
documentation on par(xaxp=.).

axTicks() can be regarded as an R implementation of the C function CreateAtVector() in
‘..../src/main/graphics.c’ which is called by axis(side,*) when no argument at is specified.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default,
when only the first argument is specified, these values should be identical to those that
axis(side) would use or has used.

See Also

axis,par.

Examples

plot(1:7, 10*21:27)

axTicks(1)

axTicks(2)

stopifnot(identical(axTicks(1), axTicks(3)),

identical(axTicks(2), axTicks(4)))

Show how axTicks() and axis() correspond :

op <- par(mfrow = c(3,1))

for(x in 9999*c(1,2,8)) {

plot(x,9, log = "x")

cat(formatC(par("xaxp"),wid=5),";",T <- axTicks(1),"\n")

rug(T, col="red")

}

par(op)

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k= ncol(r), upper.tri = TRUE, transpose = FALSE)
forwardsolve(l, x, k= ncol(l), upper.tri = FALSE, transpose = FALSE)

Arguments

r,l an upper (or lower) triangular matrix giving the coefficients for the system
to be solved. Values below (above) the diagonal are ignored.

x a matrix whose columns give “right-hand sides” for the equations.

k The number of columns of r and rows of x to use.

bandwidth 53

upper.tri logical; if TRUE (default), the upper triangular part of r is used. Other-
wise, the lower one.

transpose logical; if TRUE, solve r′ ∗ y = x for y, i.e., t(r) %*% y == x.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a
matrix if x is a matrix.

References

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix ‘r’:

r <- rbind(c(1,2,3),

c(0,1,1),

c(0,0,2))

(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1

r %*% y # == x = (8,4,2)

(y2 <- backsolve(r, x, transpose = TRUE)) # 8 -12 -5

all(t(r) %*% y2 == x)# exactly on Linux (Pentium)

all(y == backsolve(t(r), x, upper = FALSE, transpose = TRUE))

all(y2 == backsolve(t(r), x, upper = FALSE, transpose = FALSE))

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for gaussian windows in density.

Usage

bw.nrd0(x)
bw.nrd(x)
bw.ucv(x, nb = 1000, lower, upper)
bw.bcv(x, nb = 1000, lower, upper)
bw.SJ(x, nb=1000, lower, upper, method=c("ste", "dpi"))

Arguments

x A data vector.

nb number of bins to use.

lower, upper Range over which to minimize. The default is almost always satisfactory.

method Either "ste" (”solve-the-equation”) or "dpi" (”direct plug-in”).

54 bandwidth

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel den-
sity estimator. It defaults to 0.9 times the minimum of the standard deviation and the
interquartile range divided by 1.34 times the sample size to the negative one-fifth power
(= Silverman’s “rule of thumb”, Silverman(1986, page 48, eqn (3.31)) unless the quartiles
coincide when a positive result will be guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.

bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.

bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth using
pilot estimation of derivatives.

Value

A bandwidth on a scale suitable for the bw argument of density.

References

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization.
Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society series B 53, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Springer.

See Also

density.

bandwith.nrd, ucv, bcv and width.SJ in MASS, which are all scaled to the width argument
of density and so give answers four times as large.

Examples

data(precip)

plot(density(precip, n=1000))

rug(precip)

lines(density(precip, bw="nrd"), col = 2)

lines(density(precip, bw="ucv"), col = 3)

lines(density(precip, bw="bcv"), col = 4)

lines(density(precip, bw="SJ-ste"), col = 5)

lines(density(precip, bw="SJ-dpi"), col = 6)

legend(55, 0.035,

legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),

col = 1:6, lty = 1)

barplot 55

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, width = 1, space = NULL,
names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = heat.colors(NR), border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE,
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the
plot. If height is a vector, the plot consists of a sequence of rectangular
bars with heights given by the values in the vector. If height is a matrix
and beside is FALSE then each bar of the plot corresponds to a column
of height, with the values in the column giving the heights of stacked
“sub-bars” making up the bar. If height is a matrix and beside is TRUE,
then the values in each column are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars
drawn. Specifying a single value will no visible effect unless xlim is spec-
ified.

space the amount of space (as a fraction of the average bar width) left before
each bar. May be given as a single number or one number per bar. If
height is a matrix and beside is TRUE, space may be specified by two
numbers, where the first is the space between bars in the same group,
and the second the space between the groups. If not given explicitly, it
defaults to c(0,1) if height is a matrix and beside is TRUE, and to 0.2
otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this
argument is omitted, then the names are taken from the names attribute
of height if this is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot, or a logical in-
dicating whether a legend should be included. This is only useful when
height is a matrix. In that case given legend labels should correspond
to the rows of height; if legend.text is true, the row names of height
will be used as labels if they are non-null.

beside a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

56 barplot

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar
to the left. If TRUE, the bars are drawn horizontally with the first at the
bottom.

density a vector giving the the density of shading lines, in lines per inch, for the
bars or bar components. The default value of NULL means that no shading
lines are drawn. Non-positive values of density also inhibit the drawing
of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise),
for the bars or bar components.

col a vector of colors for the bars or bar components.

border the color to be used for the border of the bars.

main,sub overall and sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

xlim limits for the x axis.

ylim limits for the y axis.

xpd logical. Should bars be allowed to go outside region?

axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.

axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is
drawn (with lty=0) and labeled.

cex.axis expansion factor for numeric axis labels.

cex.names expansion factor for axis names (bar labels).

inside logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will
be drawn. Only applies when space = 0 (which it partly is when beside
= TRUE).

plot logical. If FALSE, nothing is plotted.

axis.lty the graphics parameter lty applied to the axis and tick marks of the
categorical (default horzontal) axis. Note that by default the axis is sup-
pressed.

... further graphical parameters (par) are passed to plot.window(),
title() and axis.

Details

This is a generic function, it currently only has a default method. A formula interface may
be added eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all
the bar midpoints drawn, useful for adding to the graph.

If beside is true, use colMeans(mp) for the midpoints of each group of bars, see example.

Note

Prior to R 1.6.0, barplot behaved as if axis.lty = 1, unintentionally.

BATCH 57

See Also

plot(..., type="h"), dotchart, hist.

Examples

tN <- table(Ni <- rpois(100, lambda=5))

r <- barplot(tN, col=’gray’)

#- type = "h" plotting *is* ‘bar’plot

lines(r, tN, type=’h’, col=’red’, lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,

sub = "barplot(..., space= 1.5, axisnames = FALSE)")

data(VADeaths, package = "base")

barplot(VADeaths, plot = FALSE)

barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default

tot <- colMeans(VADeaths)

text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")

barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",

"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))

title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]

mybarcol <- "gray20"

mp <- barplot(hh, beside = TRUE,

col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),

legend = colnames(VADeaths), ylim= c(0,100),

main = "Death Rates in Virginia", font.main = 4,

sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,

cex.names = 1.5)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)

stopifnot(dim(mp) == dim(hh))# corresponding matrices

mtext(side = 1, at = colMeans(mp), line = -2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

Bar shading example

barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",

legend = rownames(VADeaths))

title(main = list("Death Rates in Virginia", font = 4))

border :

barplot(VADeaths, border = "dark blue")

BATCH Batch Execution of R

Description

Run R non-interactively with input from a given file and place output (stdout/stderr) to
another file.

58 Bessel

Usage

R CMD BATCH [options] infile [outfile]

Arguments

infile the name of a file with R code to be executed.
options a list of R command line options, e.g., for setting the amount of memory

available and controlling the load/save process. If infile starts with a
-, use -- as the final option.

outfile the name of a file to which to write output. If not given, the name used
is the one of infile, with a possible ‘.R’ extension stripped, and ‘.Rout’
appended.

Details

By default, the input commands are printed along with the output. To suppress this
behavior, add options(echo = FALSE) at the beginning of infile.

The infile can have end of line marked by LF or CRLF (but not just CR), and files with
a missing EOL mark are processed correctly.

Using R CMD BATCH sets the GUI to "none", so none of x11, jpeg and png are available.

Note

Unlike Splus BATCH, this does not run the R process in the background. In most shells, R
CMD BATCH [options] infile [outfile] & will do so.

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, Jν and Yν , and
Modified Bessel functions (of first and third kind), Iν and Kν .

gammaCody is the (Γ) function as from the Specfun package and originally used in the Bessel
code.

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)
gammaCody(x)

Arguments

x numeric, ≥ 0.
nu numeric; The order (maybe fractional!) of the corresponding Bessel func-

tion.
expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid

overflow (Iν) or underflow (Kν), respectively.

Bessel 59

Details

The underlying C code stems from Netlib (http://www.netlib.org/specfun/r[ijky]
besl).

If expon.scaled = TRUE, e−xIν(x), or exKν(x) are returned.

gammaCody may be somewhat faster but less precise and/or robust than R’s standard gamma.
It is here for experimental purpose mainly, and may be defunct very soon.

For ν < 0, formulae 9.1.2 and 9.6.2 from the reference below are applied (which is probably
suboptimal), unless for besselK which is symmetric in nu.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of
the corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler 〈maechler@stat.math.ethz.ch.〉

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover,
New York; Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, as the gamma, Γ(x), and beta, B(x).

Examples

nus <- c(0:5,10,20)

x <- seq(0,4, len= 501)

plot(x,x, ylim = c(0,6), ylab="",type=’n’, main = "Bessel Functions I_nu(x)")

for(nu in nus) lines(x,besselI(x,nu=nu), col = nu+2)

legend(0,6, leg=paste("nu=",nus), col = nus+2, lwd=1)

x <- seq(0,40,len=801); yl <- c(-.8,.8)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions J_nu(x)")

for(nu in nus) lines(x,besselJ(x,nu=nu), col = nu+2)

legend(32,-.18, leg=paste("nu=",nus), col = nus+2, lwd=1)

Negative nu’s :

xx <- 2:7

nu <- seq(-10,9, len = 2001)

op <- par(lab = c(16,5,7))

matplot(nu, t(outer(xx,nu, besselI)), type = ’l’, ylim = c(-50,200),

main = expression(paste("Bessel ",I[nu](x)," for fixed ", x,

", as ",f(nu))),

xlab = expression(nu))

abline(v=0, col = "light gray", lty = 3)

legend(5,200, leg = paste("x=",xx), col=seq(xx), lty=seq(xx))

par(op)

x0 <- 2^(-20:10)

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

60 Beta

plot(x0,x0^-8, log=’xy’, ylab="",type=’n’,

main = "Bessel Functions J_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselJ(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

plot(x0,x0^-8, log=’xy’, ylab="",type=’n’,

main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus,nus+.5))) lines(x0,besselK(x0,nu=nu), col = nu+2)

legend(3,1e50, leg=paste("nu=", paste(nus,nus+.5, sep=",")), col=nus+2, lwd=1)

x <- x[x > 0]

plot(x,x, ylim=c(1e-18,1e11),log="y", ylab="",type=’n’,

main = "Bessel Functions K_nu(x)")

for(nu in nus) lines(x,besselK(x,nu=nu), col = nu+2)

legend(0,1e-5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Check the Scaling :

for(nu in nus)

print(all(abs(1- besselK(x,nu)*exp(x) / besselK(x,nu,expo=TRUE)) < 2e-15))

for(nu in nus)

print(all(abs(1- besselI(x,nu)*exp(-x) / besselI(x,nu,expo=TRUE)) < 1e-15))

yl <- c(-1.6, .6)

plot(x,x, ylim = yl, ylab="",type=’n’, main = "Bessel Functions Y_nu(x)")

for(nu in nus){xx <- x[x > .6*nu]; lines(xx,besselY(xx,nu=nu), col = nu+2)}

legend(25,-.5, leg=paste("nu=",nus), col = nus+2, lwd=1)

Beta The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distri-
bution with parameters shape1 and shape2 (and optional non-centrality parameter ncp).

Usage

dbeta(x, shape1, shape2, ncp=0, log = FALSE)
pbeta(q, shape1, shape2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape1, shape2

positive parameters of the Beta distribution.

bindenv 61

ncp non-centrality parameter.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa(1− x)b

for a > 0, b > 0 and 0 < x < 1.

Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and
rbeta generates random deviates.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)

dbeta(x, 1, 1)

pbeta(x, 1, 1)

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and
bindings within environments. They allow for locking environments as well as individual
bindings, and for linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

Arguments

env an environment.
bindings logical specifying whether bindings should be locked.
sym a name object or character string
fun a function taking zero or one arguments

62 bindenv

Details

The function lockEnvironment locks its environment argument, which must be a proper
environment, not NULL. Locking the NULL (base) environment may be supported later.
Locking the environment prevents adding or removing variable bindings from the environ-
ment. Changing the value of a variable is still possible unless the binding has been locked.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless
the environment is locked.

makeActiveBinding installs fun so that getting the value of sym calls fun with no argu-
ments, and assigning to sym calls fun with one argument, the value to be assigned. This
allows things like C variables linked to R variables and variables linked to data bases to be
implemented. It may also be useful for making thread-safe versions of some system globals.

Author(s)

Luke Tierney

Examples

locking environments

e<-new.env()

assign("x",1, env=e)

get("x",env=e)

lockEnvironment(e)

get("x",env=e)

assign("x",2, env=e)

try(assign("y",2, env=e)) # error

locking bindings

e<-new.env()

assign("x",1, env=e)

get("x",env=e)

lockBinding("x", e)

try(assign("x",2, env=e)) # error

active bindings

f<-local({

x <- 1

function(v) {

if (missing(v))

cat("get\n")

else {

cat("set\n")

x <<- v

}

x

}

})

makeActiveBinding("fred", f, .GlobalEnv)

bindingIsActive("fred", .GlobalEnv)

fred

fred<-2

fred

Binomial 63

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial
distribution with parameters size and prob.

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
size number of trials.
prob probability of success on each trial.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The binomial distribution with size = n and prob = p has density

p(x) =
(
n

x

)
px(1− p)n−x

for x = 0, . . . , n.

If an element of x is not integer, the result of dbinom is zero, with a warning. p(x) is
computed using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile
function and rbinom generates random deviates.

If size is not an integer, NaN is returned.

References

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabili-
ties; manuscript available from http://cm.bell-labs.com/cm/ms/departments/sia/
catherine/dbinom

http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom
http://cm.bell-labs.com/cm/ms/departments/sia/catherine/dbinom

64 birthday

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

Examples

Compute P(45 < X < 55) for X Binomial(100,0.5)

sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :

n <- 2000

plot (0:n, dbinom(0:n, n, pi/10, log=TRUE), type=’l’,

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")

lines(0:n, log(dbinom(0:n, n, pi/10)), col=’red’, lwd=2)

mtext("dbinom(k, log=TRUE)", adj=0)

mtext("extended range", adj=0, line = -1, font=4)

mtext("log(dbinom(k))", col="red", adj=1)

birthday Probability of coincidences

Description

Computes approximate answers to a generalised ”birthday paradox” problem. pbirthday
computes the probability of a coincidence and qbirthday computes the number of obser-
vations needed to have a specified probability of coincidence.

Usage

qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments

classes How many distinct categories the people could fall into
prob The desired probability of coincidence
n The number of people
coincident The number of people to fall in the same category

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50-50
chance that two of them have the same birthday. This function generalises the calculation
to probabilities other than 0.5, numbers of coincident events other than 2, and numbers of
classes other than 365.

This formula is approximate, as the example below shows. For coincident=2 the exact
computation is straightforward and may be preferable.

Value

qbirthday Number of people needed for a probability prob that k of them have the
same one out of classes equiprobable labels.

pbirthday Probability of the specified coincidence

body 65

References

Diaconis P, Mosteller F. ”Methods for studying coincidences” JASA 84:853-861

Examples

the standard version

qbirthday()

same 4-digit PIN number

qbirthday(classes=10^4)

0.9 probability of three coincident birthdays

qbirthday(coincident=3,prob=0.9)

Chance of 4 coincident birthdays in 150 people

pbirthday(150,coincident=4)

Accuracy compared to exact calculation

x1<- sapply(10:100, pbirthday)

x2<-1-sapply(10:100, function(n)prod((365:(365-n+1))/rep(365,n)))

par(mfrow=c(2,2))

plot(x1,x2,xlab="approximate",ylab="exact")

abline(0,1)

plot(x1,x1-x2,xlab="approximate",ylab="error")

abline(h=0)

plot(x1,x2,log="xy",xlab="approximate",ylab="exact")

abline(0,1)

plot(1-x1,1-x2,log="xy",xlab="approximate",ylab="exact")

abline(0,1)

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

Usage

body(fun = sys.function(sys.parent()))
body(fun) <- list

Arguments

fun a function object or a character string naming the function to be manip-
ulated. If not specified, the function calling body is used.

list a list of R expressions.

Value

body returns the body of the function specified.

The assignment form sets the body of a function to the list on the right hand side.

See Also

alist, args, function.

66 boxplot

Examples

body(body)

f <- function(x) x^5

body(f) <- expression(5^x)

f(3) # = 125

str(body(f))

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. The bty
parameter determines the type of box drawn. See par for details.

Usage

box(which="plot", lty="solid", ...)

Arguments

which character, one of "plot", "figure", "inner" and "outer".

lty line type of the box.

... further graphical parameters, such as bty, col, or lwd, see par.

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7,abs(rnorm(7)), type=’h’, axes = FALSE)

axis(1, labels = letters[1:7])

box(lty=’137’, col = ’red’)

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,
notch = FALSE, outline = TRUE, names, boxwex = 0.8, plot = TRUE,
border = par("fg"), col = NULL, log = "", pars = NULL,
horizontal = FALSE, add = FALSE, at = NULL)

boxplot 67

Arguments

x, ... for specifying data from which the boxplots are to be produced as well
as for giving graphical parameters. The named arguments in this (more
precisely, in list(x, ...)) are treated as graphical parameters in addi-
tion to the ones given by argument pars. The other arguments specify
the data, either as separate vectors, each corresponding to a component
boxplot, or as a single list containing such vectors. NAs are allowed in the
data.

range this determines how far the plot whiskers extend out from the box. If
range is positive, the whiskers extend to the most extreme data point
which is no more than range times the interquartile range from the box.
A value of zero causes the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

outline if outline is not true, the boxplot lines are not drawn.

names group labels which will be printed under each boxplot.

boxwex a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries
which the boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values
in border are recycled if the length of border is less than the number of
plots.

col if col is non-null it is assumed to contain colors to be used to col the
bodies of the box plots.

log character indicating if x or y or both coordinates should be plotted in log
scale.

pars graphical parameters can also be passed as arguments to boxplot.

horizontal logical indicating if the boxplots should be horizontal; default FALSE
means vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn,
particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

Details

The generic function boxplot currently has a default method (boxplot.default) and a
formula interface (boxplot.formula).

68 boxplot

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the
lower hinge, the median, the upper hinge and the extreme of the upper
whisker for one group/plot.

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the
notch.

out the values of any data points which lie beyond the extremes of the
whiskers.

group a vector of the same length as out whose elements indicate which group
the outlier belongs to

names a vector of names for the groups

See Also

boxplot.formula for the formula interface; boxplot.stats which does the computation,
bxp for the plotting; and stripchart for an alternative (with small data sets).

Examples

boxplot on a formula:

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays, col = "lightgray")

add notches (somewhat funny here):

boxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

data(OrchardSprays)

boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")

title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)

sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)

xi <- 0.3 + seq(rb$n)

points(xi, mn.t, col = "orange", pch = 18)

arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

boxplot on a matrix:

mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

T5 = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))

boxplot(data.frame(mat), main = "boxplot(data.frame(mat), main = ...)")

par(las=1)# all axis labels horizontal

boxplot(data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using ‘at = ’ and adding boxplots -- example idea by Roger Bivand :

data(ToothGrowth)

boxplot.formula 69

boxplot(len ~ dose, data = ToothGrowth,

boxwex = 0.25, at = 1:3 - 0.2,

subset= supp == "VC", col="yellow",

main="Guinea Pigs’ Tooth Growth",

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35))

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,

boxwex = 0.25, at = 1:3 + 0.2,

subset= supp == "OJ", col="orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

boxplot.formula Formula Notation for Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values using formula notation.

Usage

boxplot(formula, data = NULL, ..., subset)

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

... arguments to the default boxplot method and graphical parameters may
also be passed as arguments, see par.

subset an optional vector specifying a subset of observations to be used for plot-
ting.

Details

This is a method of the generic function boxplot. It operates by setting up the data from
the formula specification, and then calling boxplot.default.

See Also

boxplot.default

Examples

data(OrchardSprays)

boxplot(decrease ~ treatment, data = OrchardSprays,

log = "y", col="bisque")

70 boxplot.stats

boxplot.stats Box Plot Statistics

Description

This function is typically called by boxplot to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf=TRUE, do.out=TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs
are allowed and omitted).

coef this determines how far the plot “whiskers” extend out from the box. If
coef is positive, the whiskers extend to the most extreme data point
which is no more than coef times the length of the box away from the
box. A value of zero causes the whiskers to extend to the data extremes
(and no outliers be returned).

do.conf,do.out

logicals; if FALSE, the conf or out component respectively will be empty
in the result.

Details

The two “hinges” are versions of the first and third quartile, i.e. close to quantile(x,
c(1,3)/4). The hinges equal the quartiles for odd n (where n <- length(x)) and differ
for even n. Where the quartiles only equal observations for n %% 4 == 1 (n ≡ 1 mod 4),
the hinges do so additionally for n %% 4 == 2 (n ≡ 2 mod 4), and are in the middle of two
observations otherwise.

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the
lower“hinge”, the median, the upper“hinge”and the extreme of the upper
whisker.

n the number of of non-NA observations in the sample.

conf the lower and upper extremes of the “notch” (if(do.conf)).

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.

See Also

fivenum, boxplot, bxp.

browseEnv 71

Examples

x <- c(1:100, 1000)

str(b1 <- boxplot.stats(x))

str(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))

stopifnot(b1 $ stats == b2 $ stats) # do.out=F is still robust

str(boxplot.stats(x, coef = 3, do.conf=FALSE))

no outlier treatment:

str(boxplot.stats(x, coef = 0))

str(boxplot.stats(c(x, NA))) # slight change : n + 1

str(r <- boxplot.stats(c(x, -1:1/0)))

stopifnot(r$out == c(1000, -Inf, Inf))

browseEnv Browse Objects in Environment

Description

The browseEnv function opens a browser with list of objects currently in sys.frame()
environment.

Usage

browseEnv(envir = .GlobalEnv, pattern, excludepatt = "^last\\.warning",
html = .Platform$OS.type != "mac",
expanded = TRUE, properties = NULL,
main = NULL, debugMe = FALSE)

Arguments

envir an environment the objects of which are to be browsed.

pattern a regular expression for object subselection is passed to the internal ls()
call.

excludepatt a regular expression for dropping objects with matching names.

html is used on non Macintosh machines to display the workspace on a HTML
page in your favorite browser.

expanded whether to show one level of recursion. It can be useful to switch it to
FALSE if your workspace is large. This option is ignored if html is set to
FALSE.

properties a named list of global properties (of the objects chosen) to be showed in the
browser; when NULL (as per default), user, date, and machine information
is used.

main a title string to be used in the browser; when NULL (as per default) a title
is constructed.

debugMe logical switch; if true, some diagnostic output is produced.

72 browser

Details

Very experimental code. Only allows one level of recursion into object structures. The
HTML version is not dynamic.

It can be generalized. See sources (‘..../library/base/R/databrowser.R’) for details.

wsbrowser() is currently just an internally used function; its argument list will certainly
change.

Most probably, this should rather work through using the ‘tkWidget’ package (from www.
Bioconductor.org) but the ‘tcltk’ package is not yet available for the Carbon version for
MacOS.

See Also

str, ls.

Examples

if(interactive()) {

create some interesting objects :

ofa <- ordered(4:1)

ex1 <- expression(1+ 0:9)

ex3 <- expression(u,v, 1+ 0:9)

example(factor, echo = FALSE)

example(table, echo = FALSE)

example(ftable, echo = FALSE)

example(lm, echo = FALSE)

example(str, echo = FALSE)

and browse them:

browseEnv()

a (simple) function’s environment:

af12 <- approxfun(1:2, 1:2, method = "const")

browseEnv(envir = environment(af12))

}

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

www.Bioconductor.org
www.Bioconductor.org

browseURL 73

Details

A call to browser causes a pause in the execution of the current expression and runs a copy
of the R interpreter which has access to variables local to the environment where the call
took place.

Local variables can be listed with ls, and manipulated with R expressions typed to this
sub-interpreter. The interpreter copy is exited by typing c. Execution then resumes at the
statement following the call to browser.

Typing n causes the step-through-debugger, to start and it is possible to step through the
remainder of the function one line at a time.

Typing Q quits the current execution and returns you to the top-level prompt.

See Also

debug, and traceback for the stack on error.

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"))

Arguments

url a non-empty character string giving the URL to be loaded.

browser a non-empty character string giving the name of the program to be used
as hypertext browser. It should be in the PATH, or a full path specified.

Details

If browser supports remote control and R knows how to perform it, the URL is opened in
any already running browser or a new one if necessary. This mechanism currently is avail-
able for browsers which support the "-remote openURL(...)" interface (which includes
Netscape 4.x, 6.2.x (but not 6.0/1), Opera 5/6 and Mozilla >= 0.9.5), Galeon, KDE kon-
queror (via kfmclient) and the GNOME interface to Mozilla. Netscape 7.0 behaves slightly
differently, and you will need to open it first.

Because "-remote" will use any browser displaying on the X server (whatever machine it
is running on), the remote control mechanism is only used if DISPLAY points to the local
host. This may not allow displaying more than one URL at a time.

74 bug.report

bug.report Send a Bug Report

Description

Invokes an editor to write a bug report and optionally mail it to the automated r-bugs
repository at 〈r-bugs@r-project.org〉. Some standard information on the current version
and configuration of R are included automatically.

Usage

bug.report(subject = "", ccaddress = Sys.getenv("USER"),
method = getOption("mailer"), address = "r-bugs@r-project.org",
file = "R.bug.report")

Arguments

subject Subject of the email. Please do not use single quotes (’) in the subject!
File separate bug reports for multiple bugs

ccaddress Optional email address for copies (default is current user). Use ccaddress
= FALSE for no copies.

method Submission method, one of "mailx", "gnudoit", "none", or "ess".

address Recipient’s email address.

file File to use for setting up the email (or storing it when method is "none"
or sending mail fails).

Details

Currently direct submission of bug reports works only on Unix systems. If the submission
method is "mailx", then the default editor is used to write the bug report. Which editor
is used can be controlled using options, type getOption("editor") to see what editor is
currently defined. Please use the help pages of the respective editor for details of usage.
After saving the bug report (in the temporary file opened) and exiting the editor the report
is mailed using a Unix command line mail utility such as mailx. A copy of the mail is sent
to the current user.

If method is "gnudoit", then an emacs mail buffer is opened and used for sending the
email.

If method is "none" or NULL (which is the default on Windows systems), then only an editor
is opened to help writing the bug report. The report can then be copied to your favorite
email program and be sent to the r-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

bug.report 75

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you KNOW it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a
very important sort of problem, but it is also a matter of judgment. Also, it is easy to come
to such a conclusion out of ignorance of some of the existing features. It is probably best
not to complain about such a problem until you have checked the documentation in the
usual ways, feel confident that you understand it, and know for certain that what you want
is not available. The mailing list r-devel@r-project.org is a better place for discussions
of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the
manual this indicates a bug in the manual. The manual’s job is to make everything clear.
It is just as important to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, from when you start R until the problem happens. Always include the version of R,
machine, and operating system that you are using; type ‘version’ in R to print this. To help
us keep track of which bugs have been fixed and which are still open please send a separate
report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; we will have to try to figure out what
the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day
of the week. If this is so then when we got your report we would try out the data.frame()
command on a large data set, probably with no day of the week variable name, and not see
any problem. There is no way in the world that we could guess that we should try a day of
the week variable name.

76 builtins

Or perhaps the command fails because the last command you used was a [method that had
a bug causing R’s internal data structures to be corrupted and making the data.frame()
command fail from then on. This is why we need to know what other commands you have
typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and
somewhat useful to find simple examples that might be expected to produce the bug but
actually do not. If you want to debug the problem and find exactly what caused it, that is
wonderful. You should still report the facts as well as any explanations or solutions.

Invoking R with the --vanilla option may help in isolating a bug. This ensures that the
site profile and saved data files are not read.

On some systems a bug report can be generated using the bug.report() function. This
automatically includes the version information and sends the bug to the correct address.
Alternatively the bug report can be emailed to 〈r-bugs@r-project.org〉 or submitted to the
Web page at http://bugs.r-project.org.

Author(s)

This help page is adapted from the Emacs manual

See Also

R FAQ

builtins Returns the names of all built-in objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol
table of the R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only “internal” functions (which can be called
via .Internal) should be returned.

http://bugs.r-project.org

bxp 77

bxp Box Plots from Summaries

Description

bxp draws box plots based on the given summaries in z. It is usually called from within
boxplot, but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE, outline = TRUE,
notch.frac = 0.5, boxwex = 0.8, border = par("fg"), col = NULL,
log = "", pars = NULL, frame.plot = axes, horizontal = FALSE,
add = FALSE, at = NULL, show.names=NULL, ...)

Arguments

z a list containing data summaries to be used in constructing the plots.
These are usually the result of a call to boxplot, but can be generated in
any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at
the 5 percent level.

width a vector giving the relative widths of the boxes making up the plot.
varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the

square-roots of the number of observations in the groups.
outline if outline is not true, the boxplot lines are not drawn.
boxwex a scale factor to be applied to all boxes. When there are only a few

groups, the appearance of the plot can be improved by making the boxes
narrower.

notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that
the notches should use.

border character, the color of the box borders. Is recycled for multiple boxes.
col character; the color within the box. Is recycled for multiple boxes
log character, indicating if any axis should be drawn in logarithmic scale, as

in plot.default.
frame.plot logical, indicating if a “frame” (box) should be drawn; defaults to TRUE,

unless axes = FALSE is specified.
horizontal logical indicating if the boxplots should be horizontal; default FALSE

means vertical boxes.
add logical, if true add boxplot to current plot.
at numeric vector giving the locations where the boxplots should be drawn,

particularly when add = TRUE; defaults to 1:n where n is the number of
boxes.

show.names Set to TRUE or FALSE to override the defaults on whether an x-axis label
is printed for each group.

pars,... Graphical parameters can be passed as arguments to this function, either
as a list (pars) or normally(...).

78 by

Value

An invisible vector, actually identical to the at argument, with the coordinates (”x” if
horizontal is false, ”y” otherwise) of box centers, useful for adding to the plot.

Examples

set.seed(753)

str(bx.p <- boxplot(split(rt(100, 4), gl(5,20))))

op <- par(mfrow= c(2,2))

bxp(bx.p, xaxt = "n")

bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4)

bxp(bx.p, notch = TRUE, col= "lightblue", frame= FALSE, outl= FALSE,

main = "bxp(*, frame= FALSE, outl= FALSE)")

bxp(bx.p, notch = TRUE, col= "lightblue", border="red", ylim = c(-4,4),

pch = 22, bg = "green", log = "x", main = "... log=’x’, ylim=*")

par(op)

op <- par(mfrow= c(1,2))

data(PlantGrowth)

single group -- no label

boxplot(weight~group,data=PlantGrowth,subset=group=="ctrl")

bx<-boxplot(weight~group,data=PlantGrowth,subset=group=="ctrl",plot=FALSE)

with label

bxp(bx,show.names=TRUE)

par(op)

by Apply a Function to a Data Frame split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ...)

Arguments

data an R object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of length nrow(x).

FUN a function to be applied to data frame subsets of x.

... further arguments to FUN.

Details

A data frame is split by row into data frames subsetted by the values of one or more factors,
and function FUN is applied to each subset in term.

Object data will be coerced to a data frame by default.

Value

A list of class "by", giving the results for each subset.

C 79

See Also

tapply

Examples

data(warpbreaks)

attach(warpbreaks)

by(warpbreaks[, 1:2], tension, summary)

by(warpbreaks[, 1], list(wool=wool, tension=tension), summary)

by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

now suppose we want to extract the coefficients by group

tmp <- by(warpbreaks, tension, function(x) lm(breaks ~ wool, data=x))

sapply(tmp, coef)

detach("warpbreaks")

C Sets Contrasts for a Factor

Description

Sets the "contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the
factor or a suitable function like contr.poly or a character string giving
the name of the function

how.many the number of contrasts to set, by default one less than nlevels(object).

... Additional arguments for the function contr.

Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.

Value

The factor object with the "contrasts" attribute set.

Author(s)

B.D. Ripley

See Also

contrasts, contr.sum, etc.

80 c

Examples

reset contrasts to defaults

options(contrasts=c("contr.treatment", "contr.poly"))

data(warpbreaks)

attach(warpbreaks)

tens <- C(tension, poly, 1)

attributes(tens)

detach()

tension SHOULD be an ordered factor, but as it is not we can use

aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here

summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

data(esoph) # following on from help(esoph)

model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())

summary(model3)

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced
to a common type which is the type of the returned value.

Usage

c(..., recursive=FALSE)

Arguments

... objects to be concatenated.

recursive logical. If recursive=TRUE, the function recursively descends through
lists combining all their elements into a vector.

See Also

unlist and as.vector to produce attribute-free vectors.

Examples

c(1,7:9)

c(1:5, 10.5, "next")

append to a list:

ll <- list(A = 1, c="C")

do *not*

c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))

but rather

call 81

c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)

c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a character string naming the function to be called.

... arguments to be part of the call.

x an arbitrary R object.

Value

call returns an unevaluated function call, that is, an unevaluated expression which consists
of the named function applied to the given arguments (name must be a quoted string which
gives the name of a function to be called).

is.call is used to determine whether x is a call (i.e., of mode "call").

Objects of mode "list" can be coerced to mode "call". The first element of the list
becomes the function part of the call, so should be a function or the name of one (as a
symbol; a quoted string will not do).

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of
functions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5

cl <- call("round", 10.5)

is.call(cl)# TRUE

cl

such a call can also be evaluated.

eval(cl)# [1] 10

82 capabilities

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments

what character vector or NULL, specifying required components. NULL implies
that all are required.

Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?
png Is the png function operational?
tcltk Is the tcltk package operational?
X11 (Unix) Are X11 and the data editor available?
GNOME (Unix) Is the GNOME GUI in use and are GTK and GNOME graphics devices

available?
libz Is gzfile available? From R 1.5.0 this will always be true.
http/ftp Are url and the internal method for download.file available?
sockets Are make.socket and related functions available?
libxml Is there support for integrating libxml with the R event loop?
cledit Is command-line editing available in the current R session? This is false

in non-interactive sessions.
IEEE754 Does this platform have IEEE 754 arithmetic? Note that this is more

correctly known by the international standard IEC 60559.
bzip2 Is bzfile available?
PCRE Is the Perl-Compatible Regular Expression library available? This is

needed for the perl = TRUE option to grep are related function.

See Also

.Platform

Examples

capabilities()

if(!capabilities("http/ftp"))

warning("internal download.file() is not available")

See also the examples for ‘connections’.

cars 83

cars Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were
recorded in the 1920s.

Usage

data(cars)

Format

A data frame with 50 observations on 2 variables.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(cars)

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1)

lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

title(main = "cars data")

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, log = "xy")

title(main = "cars data (logarithmic scales)")

lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

An example of polynomial regression

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, xlim = c(0, 25))

d <- seq(0, 25, len = 200)

for(degree in 1:4) {

fm <- lm(dist ~ poly(speed, degree), data = cars)

assign(paste("cars", degree, sep="."), fm)

lines(d, predict(fm, data.frame(speed=d)), col = degree)

}

anova(cars.1, cars.2, cars.3, cars.4)

84 case/variable.names

case/variable.names Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
case.names.lm(object, full = FALSE, ...)

variable.names(object, ...)
variable.names.lm(object, full = FALSE, ...)

Arguments

object an R object, typically a fitted model.

full logical; if TRUE, all names (including zero weights, . . .) are returned.

... further arguments passed to or from other methods.

Value

A character vector.

See Also

lm

Examples

x <- 1:20

y <- x + (x/4 - 2)^3 + rnorm(20, s=3)

names(y) <- paste("O",x,sep=".")

ww <- rep(1,20); ww[13] <- 0

summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)

variable.names(lmxy)

variable.names(lmxy, full= TRUE)# includes the last

case.names(lmxy)

case.names(lmxy, full = TRUE)# includes the 0-weight case

cat 85

cat Concatenate and Print

Description

Prints the arguments, coercing them if necessary to character mode first.

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

Arguments

... R objects which are coerced to character strings, concatenated, and
printed, with the remaining arguments controlling the output.

file A connection, or a character string naming the file to print to. If "" (the
default), cat prints to the standard output connection, the console unless
redirected by sink. If it is "|cmd", the output is piped to the command
given by ‘cmd’, by opening a pipe connection.

sep character string to insert between the objects to print.

fill a logical or numeric controlling how the output is broken into successive
lines. If FALSE (default), only newlines created explicitly by
n are printed. Otherwise, the output is broken into lines with print width
equal to the option width if fill is TRUE, or the value of fill if this is
numeric.

labels character vector of labels for the lines printed. Ignored if fill is FALSE.

append logical. Only used if the argument file is the name of file (and not a con-
nection or "|cmd"). If TRUE output will be appended to file; otherwise,
it will overwrite the contents of file.

Details

cat converts its arguments to character strings, concatenates them, separating them by the
given sep= string, and then prints them.

No linefeeds are printed unless explicitly requested by "
n" or if generated by filling (if argument fill is TRUE or numeric.)

cat is useful for producing output in user-defined functions.

Value

None (invisible NULL).

See Also

print, format, and paste which concatenates into a string.

86 Cauchy

Examples

print an informative message

cat("iteration = ", iter <- iter + 1, "\n")

‘fill’ and label lines:

cat(paste(letters, 100* 1:26), fill = TRUE,

labels = paste("{",1:10,"}:",sep=""))

Cauchy The Cauchy Distribution

Description

Density, distribution function, quantile function and random generation for the Cauchy
distribution with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

If location or scale are not specified, they assume the default values of 0 and 1 respec-
tively.

The Cauchy distribution with location l and scale s has density

f(x) =
1
πs

(
1 +

(
x− l

s

)2
)−1

for all x.

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and
quantile function of the Cauchy distribution. rcauchy generates random deviates from the
Cauchy.

cbind 87

See Also

dt for the t distribution which generalizes dcauchy(*, l = 0, s = 1).

Examples

all.equal(dcauchy(-1:4), 1 / (pi*(1 + (-1:4)^2)))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or
rows, respectively. There may be methods for other R classes.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... vectors or matrices. These can be given as named arguments.

deparse.level integer controlling the construction of labels; currently, 1 is the only pos-
sible value.

Details

The functions cbind and rbind are generic, with methods for data frames. The data frame
method will be used if an argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects.

If there are several matrix arguments, they must all have the same number of columns (or
rows) and this will be the number of columns (or rows) of the result. If all the arguments
are vectors, the number of columns (rows) in the result is equal to the length of the longest
vector. Values in shorter arguments are recycled to achieve this length (with a warning if
they are recycled only fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows)
of the result is determined by the number of columns (rows) of the matrix arguments. Any
vectors have their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length are ignored unless the result would have zero rows
(columns), for S compatibility. (Zero-extent matrices do not occur in S and are not ignored
in R.)

Value

A matrix or data frame combining the ... arguments column-wise or row-wise.

For cbind (rbind) the column (row) names are taken from the names of the arguments,
or where those are not supplied by deparsing the expressions given (if that gives a sensible
name). The names will depend on whether data frames are included: see the examples.

88 char.expand

Note

The method dispatching is not done via UseMethod(), but by C-internal dispatching.
Therefore, there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an an applicable method.

3. If we find an applicable method we make sure that it is identical to any method
determined for prior arguments. If it is identical, we proceed, otherwise we immediately
drop through to the default code.

If you want to combine other objects with data frames, it may be necessary to coerce them
to data frames first.

See Also

c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as
a data frame.

Examples

cbind(1, 1:7) # the ‘1’ (= shorter vector) is recycled

cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))

cbind(I=0, X=rbind(a=1, b=1:3)) # use some names

xx <- data.frame(I=rep(0,2))

cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)

dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful,
it returns this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.

character 89

Details

This function is particularly useful when abbreviations are allowed in function arguments,
and need to be uniquely expanded with respect to a target table of possible values.

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")

char.expand("me", locPars, warning("Could not expand!"))

char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Value

character creates a character vector of the specified length. The elements of the vector
are all equal to "".

as.character attempts to coerce its argument to character type.

is.character returns TRUE or FALSE depending on whether its argument is of character
type or not.

Note

as.character truncates components of language objects to 500 characters (was about 70
before 1.3.1).

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for char-
acter translation and casefolding (e.g. upper to lower case) and sub, grep etc for string
matching and substitutions. Note that help.search(keyword = "character") gives even
more links. deparse, which is normally preferable to as.character for language objects.

90 charmatch

Examples

form <- y ~ a + b + c

as.character(form) ## length 3

deparse(form) ## like the input

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has
an exact match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the
index of the matching value is returned; if multiple exact or multiple partial matches are
found then 0 is returned and if no match is found then NA is returned.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("", "") # returns 1

charmatch("m", c("mean", "median", "mode")) # returns 0

charmatch("med", c("mean", "median", "mode")) # returns 2

chartr 91

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice
versa.

Usage

chartr(old, new, x)
tolower(x)
toupper(x)
casefold(x, upper = FALSE)

Arguments

x a character vector.

old a character string specifying the characters to be translated.

new a character string specifying the translations.

upper logical: translate to upper or lower case?.

Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and
repreated characters are not. If old contains more characters than new, an error is signaled;
if it contains fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or
vice versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"

chartr("iXs", "why", x)

chartr("a-cX", "D-Fw", x)

tolower(x)

toupper(x)

92 check.options

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. The attributes of
the new settings in new are checked for consistency with the model (often default) list
in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv, check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the “model” (default) list.

reset logical; if TRUE, reset the options from name.opt. If there is more than
one R object with name name.opt, remove the first one in the search()
path.

assign.opt logical; if TRUE, assign the . . .

envir the environment used for get and assign.
check.attributes

character containing the attributes which check.options should check.
override.check

logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are overri-
den and the changes made anyway.

Value

A list of components with the same names as the one called name.opt. The values of the
components are changed from the new list, as long as these pass the checks (when these are
not overridden according to override.check).

Author(s)

Martin Maechler

See Also

ps.options which uses check.options.

Examples

L1 <- list(a=1:3, b=pi, ch="CH")

str(L2 <- check.options(list(a=0:2), name.opt = "L1"))

str(check.options(NULL, reset = TRUE, name.opt = "L1"))

chickwts 93

chickwts Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various feed
supplements on the growth rate of chickens.

Usage

data(chickwts)

Format

A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a
different feed supplement. Their weights in grams after six weeks are given along with feed
types.

Source

Anonymous (1948) Biometrika, 35, p.214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(chickwts)

boxplot(weight ~ feed, data = chickwts, col = "lightgray",

varwidth = TRUE, notch = TRUE, main = "chickwt data",

ylab = "Weight at six weeks (gm)")

anova(fm1 <- lm(weight ~ feed, data = chickwts))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

94 Chisquare

Chisquare The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared
(χ2) distribution with df degrees of freedom and optional non-centrality parameter ncp.

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

df degrees of freedom (positive, but can be non-integer).

ncp non-centrality parameter. For rchisq, ncp=0 is the only possible value.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The chi-squared distribution with df= n degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality
parameter ncp = λ has density

f(x) = e−λ/2
∞∑

r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0. It is the distribution of the sum of squares of n normals each with variance one,
λ being the sum of squares of the normal means.

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

chol 95

See Also

dgamma for the Gamma distribution which generalizes the chi-squared one.

Examples

dchisq(1, df=1:3)

pchisq(1, df= 3)

pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10

Chi-squared(df = 2) is a special exponential distribution

all.equal(dchisq(x, df=2), dexp(x, 1/2))

all.equal(pchisq(x, df=2), pexp(x, 1/2))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, pivot = FALSE)
La.chol(x)

Arguments

x a real symmetric, positive-definite matrix

pivot Should pivoting be used?

Details

chol provides an interface to the LINPACK routine DCHDC. La.chol provides an interface
to the LAPACK routine DPOTRF.

Note that only the upper triangular part of x is used, so that R′R = x when x is symmetric.

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e. some zero eigenvalues) an error will also occur, as a numerical tolerance is
used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be
computed. The rank of x is returned as attr(Q, "rank"), subject to numerical errors. The
pivot is returned as attr(Q, "pivot"). It is no longer the case that t(Q) %*% Q equals
x. However, setting pivot <- attr(Q, "pivot") and oo <- order(pivot), it is true
that t(Q[, oo]) %*% Q[, oo] equals x, or, alternatively, t(Q) %*% Q equals x[pivot,
pivot]. See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that
R′R = x (see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

96 chol

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be no error message but
a meaningless result will occur. So only use pivot = TRUE when x is non-negative definite
by construction.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with
upper triangular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))

(cm <- chol(m))

t(cm) %*% cm #-- = ’m’

all(abs(m - t(cm) %*% cm) < 100* .Machine$double.eps) # TRUE

(Lcm <- La.chol(m))

crossprod(Lcm)

all(abs(m - crossprod(Lcm)) < 100* .Machine$double.eps) # TRUE

x <- matrix(c(1:5, (1:5)^2), 5, 2)

m <- crossprod(x)

Q <- chol(m)

all.equal(t(Q) %*% Q, m) # TRUE

Q <- chol(m, pivot = TRUE)

pivot <- attr(Q, "pivot")

oo <- order(pivot)

all.equal(t(Q[, oo]) %*% Q[, oo], m) # TRUE

all.equal(t(Q) %*% Q, m[pivot, pivot]) # TRUE

now for something positive semi-definite

x <- cbind(x, x[, 1]+3*x[, 2])

m <- crossprod(x)

qr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:

chol() unlike qr() does not use a tolerance.

test <- try(Q <- chol(m))

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here ... see Warning section.

pivot <- attr(Q, "pivot")

oo <- order(pivot)

all.equal(t(Q[, oo]) %*% Q[, oo], m) # TRUE

all.equal(t(Q) %*% Q, m[pivot, pivot]) # TRUE

http://www.netlib.org/lapack/lug/lapack_lug.html

chol2inv 97

chol2inv Inverse from Choleski Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition.

Usage

chol2inv(x, size = ncol(x))
La.chol2inv(x, size = ncol(x))

Arguments

x a matrix. The first nc columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns of x containing the Choleski decomposition.

Details

chol provides an interface to the LINPACK routine DPODI. La.chol provides an interface
to the LAPACK routine DPOTRI.

Value

The inverse of the decomposed matrix.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol, solve.

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))

t(cma) %*% cma # = ma

all.equal(diag(3), ma %*% chol2inv(cma))

all.equal(diag(3), ma %*% La.chol2inv(cma))

http://www.netlib.org/lapack/lug/lapack_lug.html

98 chull

chull Compute Convex Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y=NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectors x and
y, a 2-column matrix x, a list x with components x and y

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given
by Eddy (1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise
order.

Author(s)

B. D. Ripley

References

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on
Mathematical Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar
sets[Z]. ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords,polygon

Examples

X <- matrix(rnorm(2000), ncol=2)

plot(X, cex=0.5)

hpts <- chull(X)

hpts <- c(hpts, hpts[1])

lines(X[hpts,])

class 99

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argument
to the generic function.

Usage

class(x)
class(x) <- names
unclass(x)
inherits(x, what, which = FALSE)

Arguments

x an objects
what a character vector naming classes.
which logical affecting return value: see Details.

Details

An R “object” is a data object which has a class attribute. A class attribute is a character
vector giving the names of the classes which the object “inherits” from. When a generic
function fun is applied to an object with class attribute c("first", "second"), the system
searches for a function called fun.first and, if it finds it, applies it to the object. If no
such function is found, a function called fun.second is tried. If no class name produces a
suitable function, the function fun.default is used.

The function class prints the vector of names of classes an object inherits from. Corre-
spondingly, class<- sets the classes an object inherits from.

unclass returns (a copy of) its argument with its class information removed.

inherits indicates whether its first argument inherits from any of the classes specified in
the what argument. If which is TRUE then an integer vector of the same length as what is
returned. Each element indicates the position in the class(x) matched by the element of
what; zero indicates no match. If which is FALSE then TRUE is returned by inherits if any
of the names in what match with any class.

See Also

UseMethod, NextMethod.

Examples

x <- 10

inherits(x, "a") #FALSE

class(x)<-c("a", "b")

inherits(x,"a") #TRUE

inherits(x, "a", TRUE) # 1

inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

100 co2

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed
immediately.

Usage

close.socket(socket, ...)

Arguments

socket A socket object

... further arguments passed to or from other methods.

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket, read.socket

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported
in the preliminary 1997 SIO manometric mole fraction scale.

Usage

data(co2)

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by
interpolating linearly between the values for January and May of 1964.

codes 101

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

data(co2)

plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)

title(main = "co2 data set")

codes Factor Codes

Description

This (generic) function returns a numeric coding of a factor. It can also be used to assign
to a factor using the coded form.

Usage

codes(x, ...)
codes(x) <- value

Arguments

x an object from which to extract or set the codes.

... further arguments passed to or from other methods.

Value

For an ordered factor, it returns the internal coding (1 for the lowest group, 2 for the second
lowest, etc.).

For an unordered factor, an alphabetical ordering of the levels is assumed, i.e., the level
that is coded 1 is the one whose name is sorted first according to the prevailing collating
sequence. Warning: the sort order may well depend on the locale, and should not be
assumed to be ASCII.

Note

Normally codes is not the appropriate function to use with an unordered factor. Use
unclass or as.numeric to extract the codes used in the internal representation of the
factor, as these do not assume that the codes are sorted.

The behaviour for unordered factors is dubious, but compatible with S version 3. To get
the internal coding of a factor, use as.integer. Note in particular that the codes may not
be the same in different language locales because of collating differences.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

102 coefficients

See Also

factor, levels, nlevels.

Examples

codes(rep(factor(c(20,10)),3))

x <- gl(3,5)

codes(x)[3] <- 2

x

data(esoph)

(ag <- esoph$alcgp[12:1])

codes(ag)

codes(factor(1:10)) # BEWARE!

coefficients Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by mod-
eling functions. coefficients is an alias for it.

Usage

coef(object, ...)
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

Details

All object classes which are returned by model fitting functions should provide a coef
method. (Note that the method is coef and not coefficients.)

Value

Coefficients extracted from the model object object.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))

col 103

col Column Indexes

Description

Returns a matrix of integers indicating their column number in the matrix.

Usage

col(x, as.factor=FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix

ma <- matrix(1:12, 3, 4)

ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

col2rgb Color to RGB Conversion

Description

“Any R color” to RGB (red/green/blue) conversion.

Usage

col2rgb(col)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an
element of colors()), a hexadecimal string of the form "#rrggbb", or an
integer i meaning palette()[i].

104 col2rgb

Details

For integer colors, 0 is shorthand for the current par("bg"), and NA means “nothing”which
effectively does not draw the corresponding item.

For character colors, "NA" is equivalent to NA above.

Value

an integer matrix with three rows and number of columns the length (and names if any) as
col.

Author(s)

Martin Maechler

See Also

rgb, colors, palette, etc.

Examples

col2rgb("peachpuff")

col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette() :

pp <- palette(); names(pp) <- pp # add & use names :

stopifnot(col2rgb(1:8) ==

print(col2rgb(pp)))

col2rgb(paste("gold", 1:4, sep=""))

stopifnot(col2rgb("#08a0ff") == c(8, 160, 255))

all three kind of colors mixed :

col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

##-- NON-INTRODUCTORY examples --

grC <- col2rgb(paste("gray",0:100,sep=""))

stopifnot(grC["red",] == grC["green",],

grC["red",] == grC["blue",],

grC["red", 1:4] == c(0,3,5,8))

table(print(diff(grC["red",])))# ‘2’ or ‘3’: almost equidistant

The ‘named’ grays are in between {"slate gray" is not gray, strictly}

col2rgb(c(g66="gray66", darkg= "dark gray", g67="gray67",

g74="gray74", gray = "gray", g75="gray75",

g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())

colnames(crgb) <- cc

t(crgb)## The whole table

ccodes <- c(256^(2:0) %*% crgb)## = internal codes

How many names are ‘aliases’ of each other:

table(tcc <- table(ccodes))

length(uc <- unique(sort(ccodes))) # 502

All the multiply named colors:

mult <- uc[tcc >= 2]

colors 105

cl <- lapply(mult, function(m) cc[ccodes == m])

names(cl) <- apply(col2rgb(sapply(cl, function(x)x[1])),

2, function(n)paste(n, collapse=","))

str(cl)

if(require(xgobi)) { ## Look at the color cube dynamically :

tc <- t(crgb[, !duplicated(ccodes)])

table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3])# (397, 105)

xgobi(tc, color = c("gold", "gray")[1 + is.gray])

}

colors Color Names

Description

Returns the built-in color names which R knows about.

Usage

colors()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the “palette” of colors for par(col=<num>); rgb, hsv, gray; rainbow
for a nice example; and heat.colors, topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

str(colors())

106 colSums

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (x, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

Arguments

x an array of two or more dimensions, containing numeric, complex, integer
or logical values, or a numeric data frame.

na.rm logical. Should missing values (including NaN) be omitted from the calcu-
lations?

dims Which dimensions are regarded as “rows” or “columns” to sum over. For
col*, the sum or mean is over dimensions dims+1, ...; for row* it is
over dimensions 1:dims.

Details

These functions are equivalent to use of apply with FUN = mean or FUN = sum with appro-
priate margins, but are a lot faster. As they are written for speed, they blur over some of
the subtleties of NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the
result will be one of NaN or NA, but which might be platform-dependent.

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional.
The dimnames (or names for a vector result) are taken from the original array.

If there are no non-missing values in a range to be summed over, the component of the
output is set to NA.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

rowSums(x); colSums(x)

dimnames(x)[[1]] <- letters[1:8]

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

x[] <- as.integer(x)

rowSums(x); colSums(x)

x[] <- x < 3

commandArgs 107

rowSums(x); colSums(x)

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

x[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)

rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array

data(UCBAdmissions)

dim(UCBAdmissions)

rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)

colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case

x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)

x[3,] <- NA; x[4, 2] <- NA

rowSums(x); colSums(x); rowMeans(x); colMeans(x)

rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)

rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was
invoked.

Usage

commandArgs()

Details

These arguments are captured before the standard R command line processing takes place.
This means that they are the unmodified values. If it were useful, we could provide support
an argument which indicated whether we want the unprocessed or processed values.

Value

A character vector containing the name of the executable and the user-supplied command
line arguments. The first element is the name of the executable by which R was invoked.
As far as I am aware, the exact form of this element is platform dependent. It may be the
fully qualified name, or simply the last component (or basename) of the application.

See Also

BATCH

Examples

commandArgs()

Spawn a copy of this application as it was invoked.

system(paste(commandArgs(), collapse=" "))

108 Comparison

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically
useful for data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Usage

comment(x)
comment(x) <- value

Arguments

x any R object

value a character vector

See Also

attributes and attr for “normal” attributes.

Examples

x <- matrix(1:12, 3,4)

comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")

x

comment(x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y

COMPILE 109

Details

Comparison of strings in character vectors is lexicographic within the strings using the
collating sequence of the locale in use: see locales. The collating sequence of locales such
as en_US is normally different from C (which should use ASCII) and can be surprising.

Value

A vector of logicals indicating the result of the element by element comparison. The elements
of shorter vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are con-
formable.

Note

Don’t use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use
the identical function instead.

For numerical values, remember == and != do not allow for the finite representation of frac-
tions, nor for rounding error. Using all.equal with identical is almost always preferable.
See the examples.

See Also

Syntax for operator precedence.

Examples

x <- rnorm(20)

x < 1

x[x > 0]

x1 <- 0.5 - 0.3

x2 <- 0.3 - 0.1

x1 == x2 # FALSE on most machines

identical(all.equal(x1, x2), TRUE) # TRUE everywhere

COMPILE Compile Files for Use with R

Description

Compile given source files so that they can subsequently be collected into a shared library
using R CMD SHLIB and be loaded into R using dyn.load().

Usage

R CMD COMPILE [options] srcfiles

110 complete.cases

Arguments

srcfiles A list of the names of source files to be compiled. Currently, C, C++
and FORTRAN are supported; the corresponding files should have the
extensions ‘.c’, ‘.cc’ (or ‘.cpp’ or ‘.C’), and ‘.f’, respectively.

options A list of compile-relevant settings, such as special values for CFLAGS or
FFLAGS, or for obtaining information about usage and version of the utility.

Details

Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it
to FORTRAN. On many Solaris systems mixing Ratfor and FORTRAN code will work.

See Also

SHLIB, dyn.load

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire
sequence.

See Also

is.na, na.omit, na.fail.

Examples

data(airquality)

x <- airquality[, -1] # x is a regression design matrix

y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))

ok <- complete.cases(x,y)

sum(!ok) # how many are not "ok" ?

x <- x[ok,]

y <- y[ok]

complex 111

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex(x)

Re(x)
Im(x)
Mod(x)
Arg(x)
Conj(x)

Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as
needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

x an object, probably of mode complex.

... further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving
its length, its real and imaginary parts, or modulus and argument. (Giving just the length
generates a vector of complex zeroes.)

Note that is.complex and is.numeric are never both TRUE.

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the
real part, imaginary part, modulus, argument and complex conjugate for complex values.
Modulus and argument are also called the polar coordinates. If z = x+ iy with real x and
y, Mod(z) =

√
x2 + y2, and for φ = Arg(z), x = cos(φ) and y = sin(φ).

In addition, the elementary trigonometric, logarithmic and exponential functions are avail-
able for complex values.

112 conflicts

Examples

(z <- 0i ^ (-3:3))

stopifnot(Re(z) == 0 ^ (-3:3))

matrix(1i^ (-6:5), nr=4)#- all columns are the same

0 ^ 1i # a complex NaN

create a complex normal vector

z <- complex(real = rnorm(100), imag = rnorm(100))

or also (less efficiently):

z2 <- 1:2 + 1i*(8:9)

all(Mod (1 - sin(z) / ((exp(1i*z)-exp(-1i*z))/(2*1i)))

< 100*.Machine$double.eps)

The Arg(.) is an angle:

zz <- (rep(1:4,len=9) + 1i*(9:1))/10

zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)

plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))

abline(h=0,v=0, col="blue", lty=3)

points(zz.shift, col="orange")

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the
search path, usually because an object in the user’s workspace or a package is masking a
system object of the same name. This helps discover unintentional masking.

Usage

conflicts(where=search(), detail=FALSE)

Arguments

where A subset of the search path, by default the whole search path.

detail If TRUE, give the masked or masking functions for all members of the
search path.

Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty
vectors are omitted.

Author(s)

B.D. Ripley

connections 113

Examples

lm <- 1:3

conflicts(, TRUE)

gives something like

$.GlobalEnv

[1] "lm"

#

$package:base

[1] "lm"

Remove things from your "workspace" that mask others:

remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

Usage

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"))

pipe(description, open = "", encoding = getOption("encoding"))
fifo(description = "", open = "", blocking = FALSE,

encoding = getOption("encoding"))
gzfile(description, open = "", encoding = getOption("encoding"),

compression = 6)
unz(description, filename, open = "", encoding = getOption("encoding"))
bzfile(description, open = "", encoding = getOption("encoding"))
url(description, open = "", blocking = TRUE,

encoding = getOption("encoding"))
socketConnection(host = "localhost", port, server = FALSE,

blocking = FALSE, open = "a+",
encoding = getOption("encoding"))

open(con, open = "r", blocking = TRUE, ...)
close(con, type = "rw", ...)

isOpen(con, rw = "")
isIncomplete(con)

Arguments

description character. A description of the connection. For file and pipe this is
a path to the file to be opened. For url it is a complete URL, includ-
ing schemes (http://, ftp:// or file://). file also accepts complete
URLs.

filename a filename within a zip file.

con a connection.

114 connections

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

open character. A description of how to open the connection (if at all). See
Details for possible values.

blocking logical. See ‘Blocking’ section below.

encoding An integer vector of length 256.

compression integer in 0–9. The amount of compression to be applied when writing,
from none to maximal. The default is a good space/time compromise.

type character. Currently ignored.

where integer. A file position (relative to the origin specified by origin), or NA.

rw character. Empty or "read" or "write", partial matches allowed.

... arguments passed to or from other methods.

Details

The first eight functions create connections. By default the connection is not opened (except
for socketConnection), but may be opened by setting a non-empty value of argument open.

gzfile applies to files compressed by ‘gzip’, and bzfile to those compressed by ‘bzip2’:
such connections can only be binary.

unz reads (only) single files within zip files, in binary mode. The description is the full
path, with ‘.zip’ extension if required.

All platforms support (gz)file connections and url("file://") connections. The other
types may be partially implemented or not implemented at all. (They do work on most
Unix platforms, and all but fifo on Windows.)

Proxies can be specified for url connections: see download.file.

open, close and seek are generic functions: the following applies to the methods relevant
to connections.

open opens a connection. In general functions using connections will open them if they are
not open, but then close them again, so to leave a connection open call open explicitly.

close closes and destroys a connection.

Possible values for the mode open to open a connection are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing.

"r+", "r+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

connections 115

Not all modes are applicable to all connections: for example URLs can only be opened for
reading. Only file and socket connections can be opened for reading and writing/appending.
For many connections there is little or no difference between text and binary modes, but
there is for file-like connections on Windows, and pushBack is text-oriented and is only
allowed on connections open for reading in text mode.

If for a file connection the description is "", the file is immediately opened in "w+" mode
and unlinked from the file system. This provides a temporary file to write to and then read
from.

The encoding vector is used to map the input from a file or pipe to the platform’s na-
tive character set. Supplied examples are native.enc as well as MacRoman, WinAnsi and
ISOLatin1, whose actual encoding is platform-dependent. Missing characters are mapped
to a space in these encodings.

Value

file, pipe, fifo, url, gzfile and socketConnection return a connection object which
inherits from class "connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an
output text connection whether there is unflushed output.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In
that mode, functions do not return to the R evaluator until they are complete. In non-
blocking mode, operations return as soon as possible, so on input they will return with
whatever input is available (possibly none) and for output they will return whether or not
the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two
modes: see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does
not block the event loop and hence the operation of GUI parts of R. These do not always
succeed, and the whole process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout"). Note that this is a timeout for no response at all, not for the whole
operation.

Fifos

Fifos default to non-blocking. That follows Svr4 and it probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing
(only) will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos)
connects both sides of the fifo to the R process, and provides an similar facility to file().

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the Svr4 model, for example in output text connections and URL, gzfile, bzfile
and socket connections.

116 connections

The default mode in R is "r" except for socket connections. This differs from Svr4, where
it is the equivalent of "r+", known as "*".

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

textConnection, seek, readLines, showConnections, pushBack.

capabilities to see if gzfile, url, fifo and socketConnection are supported by this
build of R.

Examples

zz <- file("ex.data", "w") # open an output file connection

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

cat("One more line\n", file = zz)

close(zz)

readLines("ex.data")

unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

readLines(gzfile("ex.gz"))

unlink("ex.gz")

if(capabilities("bzip2")) {

zz <- bzfile("ex.bz2", "w") # bzip2-ed file

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")

close(zz)

print(readLines(bzfile("ex.bz2")))

unlink("ex.bz2")

}

An example of a file open for reading and writing

Tfile <- file("test1", "w+")

c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE

cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

seek(Tfile, 0, rw="r") # reset to beginning

readLines(Tfile)

cat("ghi\n", file=Tfile)

readLines(Tfile)

close(Tfile)

unlink("test1")

We can do the same thing with an anonymous file.

Tfile <- file()

cat("abc\ndef\n", file=Tfile)

readLines(Tfile)

close(Tfile)

if(capabilities("fifo")) {

zz <- fifo("foo", "w+")

writeLines("abc", zz)

Constants 117

print(readLines(zz))

close(zz)

unlink("foo")

}

Unix examples of use of pipes

read listing of current directory

readLines(pipe("ls -1"))

remove trailing commas. Suppose

% cat data2

450, 390, 467, 654, 30, 542, 334, 432, 421,

357, 497, 493, 550, 549, 467, 575, 578, 342,

446, 547, 534, 495, 979, 479

Then read this by

scan(pipe("sed -e s/,$// data2"), sep=",")

convert decimal point to comma in output

zz <- pipe(paste("sed s/\\./,/ >", "outfile"), "w")

cat(format(round(rnorm(100), 4)), sep = "\n", file = zz)

close(zz)

file.show("outfile", delete.file=TRUE)

example for Unix machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)

writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)

gsub(" *$", "", readLines(con))

close(con)

two R processes communicating via non-blocking sockets

R process 1

con1 <- socketConnection(port = 6011, server=TRUE)

writeLines(LETTERS, con1)

close(con1)

R process 2

con2 <- socketConnection(Sys.info()["nodename"], port = 6011)

as non-blocking, may need to loop for input

readLines(con2)

while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}

close(con2)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters

118 contour

month.abb
month.name
pi

Details

R has a limited number of built-in constants (there is also a rather larger library of data
sets which can be loaded with the function data).

The following constants are available:

• LETTERS: the 26 upper-case letters of the Roman alphabet;
• letters: the 26 lower-case letters of the Roman alphabet;
• month.abb: the three-letter abbreviations for the English month names;
• month.name: the English names for the months of the year;
• pi: the ratio of the circumference of a circle to its diameter.

See Also

data.

Examples

stopifnot(

nchar(letters) == 1,

month.abb == substr(month.name, 1, 3)

)

eps <- .Machine$double.eps

all.equal(pi, 4*atan(1), tol= 2*eps)

John Machin (1705) computed 100 decimals of pi :

all.equal(pi/4, 4*atan(1/5) - atan(1/239), 4*eps)

contour Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x, ...)
contour(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)),

z,
nlevels = 10, levels = pretty(zlim, nlevels), labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont = c("sans serif", "plain"),
axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

contour 119

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

labels a vector giving the labels for the contour lines. If NULL then the levels are
used as labels.

labcex cex for contour labelling.

drawlabels logical. Contours are labelled if TRUE.

method character string specifying where the labels will be located. Possible values
are "simple", "edge" and "flattest" (the default). See the Details
section.

vfont if a character vector of length 2 is specified, then Hershey vector fonts
are used for the contour labels. The first element of the vector selects a
typeface and the second element selects a fontindex (see text for more
information).

xlim, ylim, zlim

x-, y- and z-limits for the plot.
axes, frame.plot

logical indicating whether axes or a box should be drawn, see
plot.default.

col color for the lines drawn.

lty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

... additional graphical parameters (see par) and the arguments to title
may also be supplied.

Details

contour is a generic function with only a default method in base R.

There is currently no documentation about the algorithm. The source code is in
‘$R HOME/src/main/plot3d.c’.

The methods for positioning the labels on contours are "simple" (draw at the edge of the
plot, overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the
contour line, with no labels overlapping) and "flattest" (draw on the flattest section of
the contour, embedded in the contour line, with no labels overlapping). The second and
third may not draw a label on every contour line.

For information about vector fonts, see the help for text and Hershey.

See Also

filled.contour for “color-filled” contours, image and the graphics demo which can be
invoked as demo(graphics).

120 contrast

Examples

x <- -6:16

op <- par(mfrow = c(2, 2))

contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))

z <- outer(x, sqrt(abs(x)), FUN = "/")

Should not be necessary:

z[!is.finite(z)] <- NA

image(x, x, z)

contour(x, x, z, col = "pink", add = TRUE, method = "edge",

vfont = c("sans serif", "plain"))

contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)

contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")

par(op)

Persian Rug Art:

x <- y <- seq(-4*pi, 4*pi, len = 27)

r <- sqrt(outer(x^2, y^2, "+"))

opar <- par(mfrow = c(2, 2), mar = rep(0, 4))

for(f in pi^(0:3))

contour(cos(r^2)*exp(-r/f),

drawlabels = FALSE, axes = FALSE, frame = TRUE)

data("volcano")

rx <- range(x <- 10*1:nrow(volcano))

ry <- range(y <- 10*1:ncol(volcano))

ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2

tcol <- terrain.colors(12)

par(opar); opar <- par(pty = "s", bg = "lightcyan")

plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")

u <- par("usr")

rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")

contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))

title("A Topographic Map of Maunga Whau", font = 4)

abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

par(opar)

contrast Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)

contrasts 121

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

base an integer specifying which group is considered the baseline group. Ig-
nored if contrasts is FALSE.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance
and regression models. The columns of the resulting matrices contain contrasts which can be
used for coding a factor with n levels. The returned value contains the computed contrasts.
If the argument contrasts is FALSE then a square indicator matrix is returned.

Note that as from R version 0.62.2, contr.poly returns contrasts based on orthogonal
(rather than raw) polynomials.

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts
is FALSE.

See Also

contrasts, C, and aov, glm, lm.

Examples

(cH <- contr.helmert(4))

apply(cH, 2,sum) # column sums are 0!

crossprod(cH) # diagonal -- columns are orthogonal

contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))

all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cP <- contr.poly(3)) # Linear and Quadratic

zapsmall(crossprod(cP), dig=15) # orthonormal up to fuzz

contrasts Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE)
contrasts(x, how.many) <- ctr

122 contributors

Arguments

x a factor.

contrasts logical. See Details.

how.many How many contrasts should be made. Defaults to one less than the number
of levels of x. This need not be the same as the number of columns of
ctr.

ctr either a matrix whose columns give coefficients for contrasts in the levels
of x, or the (quoted) name of a function which computes such matrices.

Details

If contrasts are not set for a factor the default functions from options("contrasts") are
used.

The argument contrasts is ignored if x has a matrix contrasts attribute set. Otherwise
if contrasts = TRUE it is passed to a contrasts function such as contr.treatment and if
contrasts = FALSE an identity matrix is returned.

Note

Prior to R version 1.2.0, contrasts(, FALSE) called a contrasts function with contrasts =
FALSE. This normally gave the same result, but not for contr.poly, the default for ordered
factors.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm.

Examples

example(factor)

(fff <- factor(ff))

contrasts(fff) # treatment contrasts by default

contrasts(C(fff, sum))

contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts

contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts

supply 2 contrasts, compute 2 more to make full set of 4.

contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control 123

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the
same way as control statements in any algol-like language.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr
for(var in seq) expr
while(cond) expr
repeat expr
break
next

Details

Note that expr and cons.expr, etc, in the Usage section above means an expression in a
formal sense. This is either a simple expression or a so called compound expression, usually
of the form { expr1 ; expr2 }.

Note that it is a common mistake to forget putting braces ({ .. }) around your state-
ments, e.g. after if(..) or for(....). For that reason, one (somewhat extreme) attitude
of defensive programming uses braces always, e.g. for if clauses.

The index seq in a for loop is evaluated at the start of the loop; changing it subsequently
does not affect the loop.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces; further,
ifelse, switch.

Examples

for(i in 1:5) print(1:i)

for(n in c(2,5,10,20,50)) {

x <- rnorm(n)

cat(n,":", sum(x^2),"\n")

}

124 convolve

convolve Fast Convolution

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two se-
quences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments

x,y numeric sequences of the same length to be convolved.

conj logical; if TRUE, take the complex conjugate before back-transforming (de-
fault, and used for usual convolution).

type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and
right) first; "filter" returns the middle sub-vector of "open", namely,
the result of running a weighted mean of x with weights y.

Details

The Fast Fourier Transform, fft, is used for efficiency.

The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by
convolve(x, rev(y), type = "o").

Value

If r <- convolve(x,y, type = "open") and n <- length(x), m <- length(y), then

rk =
∑

i

xk−m+iyi

where the sum is over all valid indices i, for k = 1, . . . , n+m− 1

If type == "circular", n = m is required, and the above is true for i, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San
Francisco: Holden-Day.

See Also

fft, nextn, and particularly filter (from the ‘ts’ package) which may be more appropriate.

coplot 125

Examples

x <- c(0,0,0,100,0,0,0)

y <- c(0,0,1, 2 ,1,0,0)/4

zapsmall(convolve(x,y)) # *NOT* what you first thought.

zapsmall(convolve(x, y[3:5], type="f")) # rather

x <- rnorm(50)

y <- rnorm(50)

Circular convolution *has* this symmetry:

all.equal(convolve(x,y, conj = FALSE),

rev(convolve(rev(y),x)))

n <- length(x <- -20:24)

y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning

convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")

lines(x[-c(1 , n)], Han(y), col="red")

lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference
below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of the form y
~ x | a indicates that plots of y versus x should be produced conditional
on the variable a. A formula of the form y ~ x| a * b indicates that
plots of y versus x should be produced conditional on the two variables a
and b.
All three or four variables may be either numeric or factors. When x or y
are factors, the result is almost as if as.numeric() was applied, whereas
for factor a or b, the conditioning (and its graphics if show.given is true)
are adapted.

126 coplot

data a data frame containing values for any variables in the formula. By default
the environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on a
and b is to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix
with two columns each row of which gives an interval, to be conditioned
on, but is can also be a single vector of numbers or a set of factor levels
(if the variable being conditioned on is a factor). In this case (no b), the
result of co.intervals can be used directly as given.values argument.

panel a function(x, y, col, pch, ...) which gives the action to be carried
out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

columns the number of columns in the panel layout array.
show.given logical (possibly of length 2 for 2 conditioning variables): should condi-

tioning plots be shown for the corresponding conditioning variables (de-
fault TRUE)

col a vector of colors to be used to plot the points. If too short, the values
are recycled.

pch a vector of plotting symbols or characters. If too short, the values are
recycled.

bar.bg a named vector with components "num" and "fac" giving the background
colors for the (shingle) bars, for numeric and factor conditioning variables
respectively.

xlab character; labels to use for the x axis and the first conditioning variable.
If only one label is given, it is used for the x axis and the default label is
used for the conditioning variable.

ylab character; labels to use for the y axis and any second conditioning variable.
subscripts logical: if true the panel function is given an additional (third) argument

subscripts giving the subscripts of the data passed to that panel.
axlabels function for creating axis (tick) labels when x or y are factors.
number integer; the number of conditioning intervals, for a and b, possibly of

length 2. It is only used if the corresponding conditioning variable is not
a factor.

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly
of length 2 for x and y direction. When overlap < 0, there will be gaps
between the data slices.

xlim the range for the x axis.
ylim the range for the y axis.
... additional arguments to the panel function.
x a numeric vector.

Details

In the case of a single conditioning variable a, when both rows and columns are unspecified,
a “close to square” layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and from the
left (corresponding to increasing a, typically).

copyright 127

Value

co.intervals(., number, .) returns a (number × 2) matrix, say ci, where ci[k,] is
the range of x values for the k-th interval.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes

data(quakes)

coplot(lat ~ long | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)

coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:

ll.dm <- lat ~ long | depth * mag

coplot(ll.dm, data = quakes)

coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))

coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

data(warpbreaks)

given two factors

coplot(breaks ~ 1:54 | wool * tension, data = warpbreaks, show.given = 0:1)

coplot(breaks ~ 1:54 | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21,

bar.bg = c(fac = "light blue"))

Example with empty panels:

data(state)

attach(data.frame(state.x77))#> don’t need ‘data’ arg. below

coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))

y ~ factor -- not really sensical, but ‘show off’:

coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)

detach() # data.frame(state.x77)

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some
of the software used has conditions that the copyright must be explicitly stated: see the
Details section. We are grateful to these people and other contributors (see contributors)
for the ability to use their work.

128 cor

Details

The file ‘$R HOME/COPYRIGHTS’ lists the copyrights in full detail.

cor Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y
if these are vectors. If x and y are matrices then the covariances (or correlations) between
the columns of x and the columns of y are computed.

Usage

var(x, y = NULL, na.rm = FALSE, use)
cor(x, y = NULL, use = "all.obs")
cov(x, y = NULL, use = "all.obs")

Arguments

x a numeric vector, matrix or data frame.

y NULL (default) or a vector, matrix or data frame with compatible dimen-
sions to x. The default is equivalent to y = x (but more efficient).

use an optional character string giving a method for computing covariances in
the presence of missing values. This must be (an abbreviation of) one of
the strings "all.obs", "complete.obs" or "pairwise.complete.obs".

na.rm logical. Should missing values be removed?

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

var just another interface to cov, where na.rm is used to determine the default for use
when that is unspecified. If na.rm is TRUE then the complete observations (rows) are used
(use = "complete") to compute the variance. Otherwise (use = "all"), var will give an
error if there are missing values.

If use is "all.obs", then the presence of missing observations will produce an error. If use
is "complete.obs" then missing values are handled by casewise deletion. Finally, if use has
the value "pairwise.complete.obs" then the correlation between each pair of variables
is computed using all complete pairs of observations on those variables. This can result in
covariance or correlation matrices which are not positive semidefinite.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for
i.i.d. observations. These functions return NA when there is only one observation (whereas
S-plus has been returning NaN), and from R 1.2.3 fail if x has length zero.

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

count.fields 129

See Also

cov.wt for weighted covariance computation, sd for standard deviation (vectors).

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

Two simple vectors

cor(1:10,2:11)# == 1

Correlation Matrix of Multivariate sample:

data(longley)

(Cl <- cor(longley))

Graphical Correlation Matrix:

symnum(Cl) # highly correlated

##--- Missing value treatment:

data(swiss)

C1 <- cov(swiss)

range(eigen(C1, only=TRUE)$val) # 6.19 1921

swiss[1,2] <- swiss[7,3] <- swiss[25,5] <- NA # create 3 "missing"

C2 <- cov(swiss) # Error: missing obs...

C2 <- cov(swiss, use = "complete")

range(eigen(C2, only=TRUE)$val) # 6.46 1930

C3 <- cov(swiss, use = "pairwise")

range(eigen(C3, only=TRUE)$val) # 6.19 1938

count.fields Count the Number of Fields per Line

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file
read.

Usage

count.fields(file, sep = "", quote = "\"’", skip = 0,
blank.lines.skip = TRUE, comment.char = "#")

Arguments

file a character string naming an ASCII data file, or a connection, which will
be opened if necessary, and if so closed at the end of the function call.

sep the field separator character. Values on each line of the file are sepa-
rated by this character. By default, arbitrary amounts of whitespace can
separate fields.

quote the set of quoting characters

130 cov.wt

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character
or an empty string.

Details

This used to be used by read.table and can still be useful in discovering problems in
reading a file by that function.

For the handling of comments, see scan.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")

count.fields("foo", sep = ":")

unlink("foo")

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the
data, and optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE)

Arguments

x a matrix or data frame. As usual, rows are observations and columns are
variables.

wt a non-negative and non-zero vector of weights for each observation. Its
length must equal the number of rows of x.

cor A logical indicating whether the estimated correlation weighted matrix
will be returned as well.

center Either a logical or a numeric vector specifying the centers to be used when
computing covariances. If TRUE, the (weighted) mean of each variable is
used, if FALSE, zero is used. If center is numeric, its length must equal
the number of columns of x.

crossprod 131

Details

The covariance matrix is divided by one minus the sum of squares of the weights, so if the
weights are the default (1/n) the conventional unbiased estimate of the covariance matrix
with divisor (n− 1) is obtained. This differs from the behaviour in S-PLUS.

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) in x.

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned if cor is TRUE.

See Also

cov and var.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, crossprod returns their matrix cross-product. This
is formally equivalent to, but faster than, the call t(x) %*% y.

Usage

crossprod(x, y = NULL)

Arguments

x, y matrices: y = NULL is taken to be the same matrix as x.

See Also

%*% and outer product %o%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 2^2 + 3^2 + 4^2)

drop(z) # scalar

132 curve

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of
the elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

Arguments

x a numeric object.

Details

An NA value in x causes the corresponding and following elements of the return value to be
NA.

Examples

cumsum(1:10)

cumprod(1:10)

cummin(c(3:1, 2:0, 4:2))

cummax(c(3:1, 2:0, 4:2))

curve Draw Function Plots

Description

Draws a curve corresponding to the given function or expression (in x) over the interval
[from,to].

Usage

curve(expr, from, to, n = 101, add = FALSE, type = "l",
ylab = NULL, log = NULL, xlim = NULL, ...)

plot(x, from = 0, to = 1, xlim = NULL, ...)

curve 133

Arguments

expr an expression written as a function of x, or alternatively a function which
will be plotted.

x a ‘vectorizing’ numeric R function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to already existing plot.

xlim numeric of length 2; if specified, it serves as default for c(from, to).

type, ylab, log, ...

graphical parameters can also be specified as arguments. plot.function
passes all these to curve.

Details

The evaluation of expr is at n points equally spaced over the range [from, to], possibly
adapted to log scale. The points determined in this way are then joined with straight lines.
x(t) or expr (with x inside) must return a numeric of the same length as the argument t
or x.

If add = TRUE, c(from,to) default to xlim which defaults to the current x-limits. Further,
log is taken from the current plot when add is true.

This used to be a quick hack which now seems to serve a useful purpose, but can give bad
results for functions which are not smooth.

For “expensive” expressions, you should use smarter tools.

See Also

splinefun for spline interpolation, lines.

Examples

op <- par(mfrow=c(2,2))

curve(x^3-3*x, -2, 2)

curve(x^2-2, add = TRUE, col = "violet")

plot(cos, xlim = c(-pi,3*pi), n = 1001, col = "blue")

chippy <- function(x) sin(cos(x)*exp(-x/2))

curve(chippy, -8, 7, n=2001)

curve(chippy, -8, -5)

for(ll in c("","x","y","xy"))

curve(log(1+x), 1,100, log=ll, sub=paste("log= ’",ll,"’",sep=""))

par(op)

134 cut

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval
they fall. The leftmost interval corresponds to level one, the next leftmost to level two and
so on.

Usage

cut(x, ...)
cut.default(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3, ...)

Arguments

x a numeric vector which is to be converted to a factor by cutting.

breaks either a vector of cut points or number giving the number of intervals
which x is to be cut into.

labels labels for the levels of the resulting category. By default, labels are con-
structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

include.lowest

logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should closed on the right (and open on
the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number
of digits used in formatting the break numbers.

... further arguments passed to or from other methods.

Details

If a labels parameter is specified, its values are used to name the factor levels. If none
is specified, the factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for
right=TRUE and as "[b1, b2)", . . . if right=FALSE. In this case, dig.lab indicates how
many digits should be used in formatting the numbers b1, b2,

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and less
memory hungry.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table.

cut.POSIXt 135

Examples

Z <- rnorm(10000)

table(cut(Z, br = -6:6))

system.time(print(sum(table(cut(Z, br = -6:6, labels=FALSE)))))

system.time(print(sum(hist (Z, br = -6:6, plot=FALSE)$counts)))

cut(rep(1,5),4)#-- dummy

tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)

x <- rep(0:8, tx0)

stopifnot(table(x) == tx0)

table(cut(x, b = 8))

table(cut(x, br = 3*(-2:5)))

table(cut(x, br = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :

table(cx <- cut(x, br = 2*(0:4)))

table(cxl <- cut(x, br = 2*(0:4), right = FALSE))

which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0

which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:

y <- rnorm(100)

table(cut(y, breaks = pi/3*(-3:3)))

table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))# extra digits don’t "harm" here

table(cut(y, breaks = 1*(-3:3), right = FALSE))#- the same, since no exact INT!

cut.POSIXt Convert a Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

cut(x, breaks, labels=NULL, start.on.monday=TRUE, ...)

Arguments

x an object inheriting from class "POSIXt".
breaks a vector of cut points or number giving the number of intervals which

x is to be cut into or an interval specification, one of "secs", "mins",
"hours", "days", "weeks", "months" or "years".

labels labels for the levels of the resulting category. By default, labels are con-
structed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

... arguments to be passed to or from other methods.

136 data

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, cut

Examples

random dates in a 10-week period

cut(ISOdate(2001, 1, 1) + 70*86400*runif(100), "weeks")

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage

data(..., list = character(0), package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"))

Arguments

... a sequence of names or character strings.

list a character vector.

package a name or character vector giving the packages to look into for data sets.
By default, all packages in the search path are used, then the ‘data’ di-
rectory (if present) of the current working directory.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

verbose a logical. If TRUE, additional diagnostics are printed.

Details

Currently, four formats of data files are supported:

1. files ending ‘.RData’ or ‘.rda’ are load()ed.

2. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed tem-
porarily to the directory containing the respective file.

3. files ending ‘.tab’ or ‘.txt’ are read using read.table(..., header = TRUE), and
hence result in a data frame.

4. files ending ‘.csv’ are read using read.table(..., header = TRUE, sep = ";"), and
also result in a data frame.

data.class 137

The data sets to be loaded can be specified as a sequence of names or character strings, or
as the character vector list, or as both.

If no data sets are specified, data lists the available data sets. It looks for a file ‘00Index’
in a ‘data’ directory of each specified package, and uses these files to prepare a listing. If
there is a ‘data’ area but no index a warning is given: such packages are incomplete. The
information about available data sets is returned in an object of class "packageIQR". The
structure of this class is experimental. In earlier versions of R, an empty character vector
was returned along with listing available data sets.

If lib.loc is not specified, the datasets are searched for amongst those packages already
loaded, followed by the ‘data’ directory (if any) of the current working directory and then
packages in the specified libraries. If lib.loc is specified, packages are searched for in the
specified libraries, even if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, set package = NULL.

Value

a character vector of all data sets specified, or information about all available data sets in
an object of class "packageIQR" if none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space,
and the files in the ‘data’ directory of an installed package can be zipped up as a zip archive
‘Rdata.zip’. You will need to provide a single-column file ‘filelist’ of file names in that
directory.

One can take advantage of the search order and the fact that a ‘.R’ file will change directory.
If raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’
and pre-process it, e.g. using transform. For instance one can convert numeric vectors to
factors with the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata
specification for the plaintext formats.

See Also

help for obtaining documentation on data sets, save for creating the first (‘.rda’) kind of
data, typically the most efficient one.

Examples

data() # list all available data sets

data(package = base) # list the data sets in the base package

data(USArrests, "VADeaths") # load the data sets ‘USArrests’ and ‘VADeaths’

help(USArrests) # give information on data set ‘USArrests’

data.class Object Classes

Description

Determine the class of an arbitrary R object.

138 data.frame

Usage

data.class(x)

Arguments

x an R object.

Value

character string giving the “class” of x.
The “class” is the (first element) of the class attribute if this is non-NULL, or inferred from
the object’s dim attribute if this is non-NULL, or mode(x).
Simply speaking, data.class(x) returns what is typically useful for method dispatching.
(Or, what the basic creator functions already and maybe eventually all will attach as a class
attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the
result of data.class(x) is "numeric" even when x is classed.

See Also

class

Examples

x <- LETTERS

data.class(factor(x)) # has a class attribute

data.class(matrix(x, nc = 13)) # has a dim attribute

data.class(list(x)) # the same as mode(x)

data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame Data Frames

Description

These functions create or manipulate data frames, tightly coupled collections of variables
which share many of the properties of matrices and of lists, used as the fundamental data
structure by most of R’s modeling software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE)

as.data.frame(x, row.names = NULL, optional = FALSE)
is.data.frame(x)

row.names(x)
row.names(x) <- names

data.frame 139

Arguments

... these arguments are of either the form value or tag=value. Component
names are created based on the tag (if present) or the deparsed argument
itself.

row.names NULL or a character vector giving the row names for the data frame. Miss-
ing values are not allowed.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are
checked to ensure that they are syntactically valid variable names. If
necessary they are adjusted (by make.names) so that they are.

optional logical. If TRUE, setting row names is optional.

x object of class data.frame.

Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame".

Character variables passed to data.frame are converted to factor columns unless protected
by I. It also applies to adding columns to a data frame.

If a list or data frame or matrix is passed to data.frame it is as if each column had been
passed as a separate argument, with the exception of matrices of class model.matrix.

Objects passed to data.frame should have the same number of rows, but atomic vectors
and factors will be recycled a whole number of times if necessary.

Value

For data.frame(.) a data frame, a matrix-like stucture whose columns may be of differing
types (numeric, factor and character).

as.data.frame is generic function with many methods. It attempts to coerce its argument
to be a data frame.

is.data.frame returns TRUE if its argument is a data frame and FALSE otherwise.

row.names can be used to set and retrieve the row names of a data frame, similarly to
rownames for arrays (and it is a generic function that calls rownames for an array argument.

Note

In versions of R prior to 1.4.0 (and in S3 but not S4) logical columns were converted to
factors.

See Also

I, print.data.frame, read.table, Math.data.frame etc, about Group methods for
data.frames; make.names.

Examples

L3 <- LETTERS[1:3]

str(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, repl=TRUE)))

The same with automatic column names:

140 dataentry

str(data.frame(cbind(1, 1:10), sample(L3, 10, repl=TRUE)))

is.data.frame(d)

do not convert to factor, using I() :

str(cbind(d, char = I(letters[1:10])), vec.len = 10)

stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL dataframe with 10 rows

(d.0 <- d[FALSE,]) # <0 rows> dataframe (3 cols)

(d00 <- d0[FALSE,]) # NULL dataframe with 0 rows

data.matrix Data Frame to Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode
and then binding them together as the columns of a matrix. Factors and ordered factors
are replaced by their codes.

Usage

data.matrix(frame)

Arguments

frame a data frame whose components are logical vectors, factors or numeric
vectors.

See Also

as.matrix, codes, data.frame, matrix.

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

dataentry 141

Arguments

... A list of variables: currently these should be numeric or character vectors
or list containing such vectors.

Modes The modes to be used for the variables.

Names The names to be used for the variables.

data A list of numeric and/or character vectors.

modes A list of length up to that of data giving the modes of (some of) the
variables. list() is allowed.

Details

The data entry editor is only available on some platforms and GUIs. Where available it
provides a means to visually edit a matrix or a collection of variables (including a data
frame) as described in the “Notes” section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the
variables. The functions de, de.ncols, de.setup and de.restore are designed to help
achieve these side effects. If the user passes in a matrix, X say, then the matrix is broken
into columns before dataentry is called. Then on return the columns are collected and glued
back together and the result assigned to the variable X. If you don’t want this behaviour
use dataentry directly.

The primitive function is dataentry. It takes a list of vectors of possibly different lengths
and modes (the second argument) and opens a spreadsheet with these variables being the
columns. The columns of the dataentry window are returned as vectors in a list when the
spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so
that on return the columns can be regrouped and reassigned to the correct name. This is
handled by de.restore.

Value

de and dataentry return the edited value of their arguments. data.entry invisibly returns
a vector of variable names but its main value is its side effect of assigning new version of
those variables in the user’s workspace.

Note

The details of interface to the data grid may differ by platform and GUI. The following
description applies to the X11-based implementation under Unix.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse
button on any cell. The active cell is highlighted by thickening the surrounding rectangle.
Moving to the right or down will scroll the grid as needed: there is no constraint to the
rows or columns currently in use.

The are alternative ways to navigate using the keys. Return and (keypad) Enter and
LineFeed all move down. Tab moves right and Shift-Tab move left. Home moves to the top
left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End
will show the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away
from that cell enters the edited value whereas Esc cancels the edit and restores the previous

142 date

value. When the editing process starts the cell is cleared. In numerical columns (the default)
only letters making up a valid number (including -.eE) are accepted, and entering an invalid
edited value (such as blank) enters NA in that cell. The last entered value can be deleted
using the BackSpace or Del(ete) key. Only a limited number of characters (currently 29)
can be entered in a cell, and if necessary only the start or end of the string will be displayed,
with the omissions indicated by > or <. (The start is shown except when editing.)

Entering a value in a cell further down a column than the last used cell extends the variable
and fills the gap (if any) by NAs (not shown on screen).

The column names can only be selected by clicking in them. This gives a popup menu
to select the column type (currently Real (numeric) or Character) or to change the name.
Changing the type converts the current contents of the column (and converting from Char-
acter to Real may generate NAs.) If changing the name is selected the header cell becomes
editable (and is cleared). As with all cells, the value is entered by moving away from the
cell by clicking elsewhere or by any of the keys for moving down (only).

New columns are created by entering values in them (and not by just assigning a new
name). The mode of the column is auto-detected from the first value entered: if this is a
valid number it gives a numeric column. Unused columns are ignored, so adding data in
var5 to a three-column grid adds one extra variable, not two.

The Copy button copies the currently selected cell: paste copies the last copied value to
the current cell, and right-clicking selects a cell and copies in the value. Initially the value
is blank, and attempts to paste a blank value will have no effect.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a
default of 10 characters for empty columns. you can specify fixed column widths by setting
option de.cellwidth to the required fixed width (in characters). (set it to zero to return
to variable widths). The displayed width of any field is limited to 600 pixels (and by the
window width).

See Also

vi, edit: edit uses dataentry to edit data frames.

Examples

call data entry with variables x and y

data.entry(x,y)

date System Date and Time

Description

Returns a character string of the current system date and time.

Usage

date()

DateTimeClasses 143

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e. length 24, since it relies on
POSIX’ ctime ensuring the above fixed format. Timezone and Daylight Saving Time are
taken account of, but not indicated in the result.

Examples

(d <- date())

nchar(d) == 24

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIXlt" and "POSIXct" representing calendar dates and times
(to the nearest second).

Usage

print.POSIXct(x, ...)
print.POSIXlt(x, ...)

summary.POSIXct(object, digits = 15, ...)
summary.POSIXlt(object, digits = 15, ...)

time + number
time - number
time1 lop time2

Arguments

x, object An object to be printed or summarized.

digits Number of significant digits for the computations: should be high enough
to represent the least important time unit exactly.

... Further arguments to be passed from or to other methods.
time, time1, time2

date-time objects.

number a numeric object.

lop One of ==, !=, <, <=, > or >=.

Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number
of seconds since the beginning of 1970 as a numeric vector. Class "POSIXlt" is a named
list of vectors representing

sec 0–61: seconds

min 0–59: minutes

hour 0–23: hours

144 DateTimeClasses

mday 1–31: day of the month

mon 0–11: months after the first of the year.

year Years since 1900.

wday 0–6 day of the week, starting on Sunday.

yday 0–365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the ANSI C constructs of “calendar time” (the time_t data type)
and “local time” (or broken-down time, the struct tm data type), from which they also
inherit their names.

"POSIXct" is more convenient for including in data frames, and "POSIXlt" is closer to
human-readable forms. A virtual class "POSIXt" inherits from both of the classes: it is
used to allow operations such as subtraction to mix the two classes.

Logical comparisons and limited arithmetic are available for both classes. One can add or
subtract a number of seconds or a difftime object from a date-time object, but not add two
date-time objects. Subtraction of two date-time objects is equivalent to using difftime.
Be aware that "POSIXlt" objects will be interpreted as being in the current timezone for
these operations, unless a timezone has been specified.

"POSIXlt" objects will often have an attribute "tzone", a character vector of length 3
giving the timezone name from the "TZ" environment variable and the names of the base
timezone and the alternate (daylight-saving) timezone. Sometimes this may just be of
length one, giving the timezone name.

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(22 days have been 86401 seconds long so far: the times of the extra seconds are in the
object .leap.seconds). The details of this are entrusted to the OS services where possible.
This will usually cover the period 1970–2037, and on Unix machines back to 1902 (when
time zones were in their infancy). Outside those ranges we use our own C code. This uses
the offset from GMT in use in the timezone in 2000, and uses the alternate (daylight-saving)
timezone only if isdst is positive.

It seems that some systems use leap seconds but most do not. This is detected and cor-
rected for at build time, so all "POSIXct" times used by R do not include leap seconds.
(Conceivably this could be wrong if the system has changed since build time, just possibly
by changing locales.)

Using c on "POSIXlt" objects converts them to the current time zone.

Warning

Some Unix-like systems (especially Linux ones) do not have "TZ" set, yet have internal
code that expects it (as does POSIX). We have tried to work around this, but if you get
unexpected results try setting "TZ".

See Also

as.POSIXct and as.POSIXlt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these classes.

weekdays.POSIXt for convenience extraction functions.

dcf 145

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

Sys.time() - 3600 # an hour ago

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT

format(.leap.seconds) # all 22 leapseconds in your timezone

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields=NULL)
write.dcf(x, file = "", append = FALSE,

indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments

file either a character string naming a file or a connection. "" indicates output
to the console.

fields Fields to read from the DCF file. Default is to read all fields.

x the object to be written, typically a data frame. If not, it is attempted to
coerce x to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing
file of the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in out-
put entries.

width a positive integer giving the target column for wrapping lines in the out-
put.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly
read and written by humans. DCF is used in various places to store R system information,
like descriptions and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not
every record must contain each field.

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field,
seperated by : (only the first : counts). The value can be empty (=whitespace only).

146 debug

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least
one character in the line is non-whitespace.

5. Records are seperated by one or more empty (=whitespace only) lines.

read.dcf returns a character matrix with one line per record and one column per field.
Leading and trailing whitespace of field values is ignored. If a tag name is specified, but
the corresponding value is empty, then an empty string of length 0 is returned. If the tag
name of a fields is never used in a record, then NA is returned.

See Also

write.table.

Examples

Create a reduced version of the ‘CONTENTS’ file in package ‘eda’

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),

fields = c("Entry", "Description"))

write.dcf(x)

debug Debug a function

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the
body of function is executed one statement at a time. A new browser context is initiated for
each step (and the previous one destroyed). Currently you can only debug functions that
have bodies enclosed in braces. This is a bug and will be fixed soon. You take the next step
by typing carriage return, n or next. You can see the values of variables by typing their
names. Typing c or cont causes the debugger to continue to the end of the function. You
can debug new functions before you step in to them from inside the debugger. Typing Q
quits the current execution and returns you to the top–level prompt. Typing where causes
the debugger to print out the current stack trace (all functions that are active). If you have
variables with names that are identical to the controls (eg. c or n) then you need to use
print(c) and print(n) to evaluate them.

See Also

browser, traceback to see the stack after an Error: ... message; recover for another
debugging approach.

debugger 147

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames.

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By
default this dumps to an R object "last.dump" in the workspace, but it can be set to
dump to a file (as dump of the object produced by a call to save). The dumped object
contain the call stack, the active environments and the last error message as returned by
geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has
.rda appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will
give the error message and a list of environments from which to select repeatedly. When
an environment is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-
interactive sessions. See the examples for how to dump and then quit.

Value

None.

Note

Functions such as sys.parent and environment applied to closures will not work correctly
inside debugger.

Of course post-mortem debugging will not work if R is too damaged to produce and save
the dump, for example if it has run out of workspace.

Author(s)

B. D. Ripley

148 Defunct

See Also

options for setting error options; recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {

g <- function() stop("test dump.frames")

g()

}

f() # will generate a dump on file "testdump.rda"

options(error=NULL)

possibly in another R session

load("testdump.rda")

debugger(testdump)

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 1

Browsing in the environment with call:

f()

Called from: debugger.look(ind)

Browse[1]> ls()

[1] "g"

Browse[1]> g

function() stop("test dump.frames")

<environment: 759818>

Browse[1]>

Available environments had calls:

1: f()

2: g()

3: stop("test dump.frames")

Enter an environment number, or 0 to exit

Selection: 0

A possible setting for non-interactive sessions

options(error=quote({dump.frames(to.file=TRUE); q()}))

Defunct Defunct Functions

Description

The functions or variables listed here are no longer part of R as they are not needed (any
more).

Defunct 149

Usage

.Defunct()

Version()
provide(package)
.Provided
category(...)
dnchisq(.)
pnchisq(.)
qnchisq(.)
rnchisq(.)
print.anova.glm(.)
print.anova.lm(.)
print.tabular(.)
print.plot(.)
save.plot(.)
system.test(.)
dotplot(...)
stripplot(...)
getenv(...)
read.table.url(url, method,...)
scan.url(url, file = tempfile(), method, ...)
source.url(url, file = tempfile(), method, ...)
httpclient(url, port=80, error.is.fatal=TRUE, check.MIME.type=TRUE,

file=tempfile(), drop.ctrl.z=TRUE)
parse.dcf(text = NULL, file = "", fields = NULL, versionfix = FALSE)
.Alias(expr)
reshapeWide(x, i = reshape.i, j = reshape.j, val = reshape.v,

jnames = levels(j))
reshapeLong(x,jvars, ilev = row.names(x),

jlev = names(x)[jvars], iname = "reshape.i",
jname = "reshape.j", vname = "reshape.v")

piechart(x, labels = names(x), edges = 200, radius = 0.8,
density = NULL, angle = 45, col = NULL, main = NULL, ...)

print.ordered(.)
.Dyn.libs
.lib.loc

Details

.Defunct is the function to which defunct functions are set.

category has been an old-S function before there were factors; should be replaced by factor
throughout!

The *chisq() functions now take an optional non-centrality argument, so the *nchisq()
functions are no longer needed.

The new function dev.print() should now be used for saving plots to a file or printing
them.

provide and its object .Provided have been removed. They were never used for their
intended purpose, to allow one package to subsume another.

dotplot and stripplot have been renamed to dotchart and stripchart, respectively.

150 delay

getenv has been replaced by Sys.getenv.

*.url are replaced by calling read.table, scan or source on a url connection.

httpclient was used by the deprecated "socket" method of download.file.

parse.dcf has been replaced by read.dcf, which is much faster, but has a slightly different
interface.

.Alias provided an unreliable way to create duplicate references to the same object. There
is no direct replacement. Where multiple references to a single object are required for
semantic reasons consider using environments or external pointers. There are some notes
on http://developer.r-project.org.

reshape*, which were experimental, are replaced by reshape. This has a different syntax
and allows multiple time-varying variables.

piechart is the old name for pie, but clashed with usage in Trellis.

.Dyn.libs and .lib.loc were internal variables used for storing and manipulating the
information about packages with dynloaded shared libs, and the known R library trees.
These are now dynamic variables which one can get or set using .dynLibs and .libPaths,
respectively.

See Also

Deprecated

delay Delay Evaluation

Description

delay creates a promise to evaluate the given expression in the specified environment if its
value is requested. This provides direct access to lazy evaluation mechanism used by R for
the evaluation of (interpreted) functions.

Usage

delay(x, env=.GlobalEnv)

Arguments

x an expression.

env an evaluation environment

Details

This is an experimental feature and its addition is purely for evaluation purposes.

Value

A promise to evaluate the expression. The value which is returned by delay can be assigned
without forcing its evaluation, but any further accesses will cause evaluation.

http://developer.r-project.org

delete.response 151

Examples

x <- delay({

for(i in 1:7)

cat("yippee!\n")

10

})

x^2#- yippee

x^2#- simple number

delete.response Modify Terms Objects

Description

delete.response returns a terms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model.

reformulate creates a formula from a character vector.

Usage

delete.response(termobj)
reformulate(termlabels, response = NULL)
drop.terms(termobj, dropx = NULL, keep.response = FALSE)

Arguments

termobj A terms object

termlabels character vector giving the right-hand side of a model formula.

response character string, symbol or call giving the left-hand side of a model for-
mula.

dropx vector of positions of variables to drop from the right-hand side of the
model.

keep.response Keep the response in the resulting object?

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

152 demo

Examples

ff <- y ~ z + x + w

tt <- terms(ff)

tt

delete.response(tt)

drop.terms(tt, 2:3, keep.response = TRUE)

reformulate(attr(tt, "term.labels"))

keep LHS :

reformulate("x*w", ff[[2]])

fS <- surv(ft, case) ~ a + b

reformulate(c("a", "b*f"), fS[[2]])

stopifnot(identical(~ var, reformulate("var")),

identical(~ a + b + c, reformulate(letters[1:3])),

identical(y ~ a + b, reformulate(letters[1:2], "y"))

)

demo Demonstrations of R functionality

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the
list of available topics.

Usage

demo(topic, device = getOption("device"),
package = .packages(), lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"))

Arguments

topic the topic which should be demonstrated. If omitted, the list of available
topics is displayed.

device the graphics device to be used.

package a name or character vector giving the packages to look into for data sets.
By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

character.only

logical; if TRUE, use topic as character string instead of name.

verbose a logical. If TRUE, additional diagnostics are printed.

Details

If no topics are given, demo lists the available demos. The corresponding information is
returned in an object of class "packageIQR". The structure of this class is experimental.
In earlier versions of R, an empty character vector was returned along with listing available
demos.

density 153

See Also

source which is called by demo.

Examples

demo() # for attached packages

All available demos:

demo(package = .packages(all.available = TRUE))

demo(lm.glm)

ch <- "scoping"

demo(ch, character = TRUE)

density Kernel Density Estimation

Description

The function density computes kernel density estimates with the given kernel and band-
width.

Usage

density(x, bw = "nrd0", adjust = 1,
kernel = c("gaussian", "epanechnikov", "rectangular", "triangular",

"biweight", "cosine", "optcosine"),
window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE)

Arguments

x the data from which the estimate is to be computed.
bw the smoothing bandwidth to be used. The kernels are scaled such that

this is the standard deviation of the smoothing kernel. (Note this differs
from the reference books cited below, and from S-PLUS.)
bw can also be a character string giving a rule to choose the bandwidth.
See bw.nrd.
The specified (or computed) value of bw is multiplied by adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify
values like “half the default” bandwidth.

kernel, window

a character string giving the smoothing kernel to be used. This must
be one of "gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian", and
may be abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual “cosine” ker-
nel in the literature and almost MSE-efficient. However, "cosine" is the
version used by S.

154 density

width this exists for compatibility with S; if given, and bw is not, will set bw to
width if this is a character string, or to a kernel-dependent multiple of
width if this is numeric.

give.Rkern logical; if true, no density is estimated, and the “canonical bandwidth” of
the chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be es-
timated. When n > 512, it is rounded up to the next power of 2 for
efficiency reasons (fft).

from,to the left and right-most points of the grid at which the density is to be
estimated.

cut by default, the values of left and right are cut bandwidths beyond
the extremes of the data. This allows the estimated density to drop to
approximately zero at the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

Details

The algorithm used in density disperses the mass of the empirical distribution function over
a regular grid of at least 512 points and then uses the fast Fourier transform to convolve this
approximation with a discretized version of the kernel and then uses linear approximation
to evaluate the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel)
and R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is
scale invariant and for our kernels equal to R(K). This value is returned when give.Rkern
= TRUE. See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density
estimate is of the sub-density on (-Inf, +Inf).

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

x the n coordinates of the points where the density is estimated.

y the estimated density values.

bw the bandwidth used.

N the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

References

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization.
New York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method
for kernel density estimation. J. Roy. Statist. Soc. B, 683–690.

density 155

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. New
York: Springer.

See Also

bw.nrd, plot.density, hist.

Examples

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The Old Faithful geyser data

data(faithful)

d <- density(faithful$eruptions, bw = "sj")

d

plot(d)

plot(d, type = "n")

polygon(d, col = "wheat")

Missing values:

x <- xx <- faithful$eruptions

x[i.out <- sample(length(x), 10)] <- NA

doR <- density(x, bw = 0.15, na.rm = TRUE)

lines(doR, col = "blue")

points(xx[i.out], rep(0.01, 10))

(kernels <- eval(formals(density)$kernel))

show the kernels in the R parametrization

plot (density(0, bw = 1), xlab = "",

main="R’s density() kernels with bw = 1")

for(i in 2:length(kernels))

lines(density(0, bw = 1, kern = kernels[i]), col = i)

legend(1.5,.4, legend = kernels, col = seq(kernels),

lty = 1, cex = .8, y.int = 1)

show the kernels in the S parametrization

plot(density(0, from=-1.2, to=1.2, width=2, kern="gaussian"), type="l",

ylim = c(0, 1), xlab="", main="R’s density() kernels with width = 1")

for(i in 2:length(kernels))

lines(density(0, width=2, kern = kernels[i]), col = i)

legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

(RKs <- cbind(sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

data(precip)

bw <- bw.SJ(precip) ## sensible automatic choice

plot(density(precip, bw = bw, n = 2^13),

main = "same sd bandwidths, 7 different kernels")

for(i in 2:length(kernels))

lines(density(precip, bw = bw, kern = kernels[i], n = 2^13), col = i)

Bandwidth Adjustment for "Exactly Equivalent Kernels"

h.f <- sapply(kernels, function(k)density(kern = k, give.Rkern = TRUE))

156 deparse

(h.f <- (h.f["gaussian"] / h.f)^ .2)

-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw, n = 2^13),

main = "equivalent bandwidths, 7 different kernels")

for(i in 2:length(kernels))

lines(density(precip, bw = bw, adjust = h.f[i], kern = kernels[i],

n = 2^13), col = i)

legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60)

Arguments

expr any R expression.

width.cutoff integer in [20, 500] determining the cutoff at which line-breaking is tried.

Details

This function turns unevaluated expressions (where “expression” is taken in a wider sense
than the strict concept of a vector of mode "expression" used in expression) into char-
acter strings (a kind of inverse parse).

A typical use of this is to create informative labels for data sets and plots. The example
shows a simple use of this facility. It uses the functions deparse and substitute to create
labels for a plot which are character string versions of the actual arguments to the function
myplot.

See Also

substitute, parse, expression.

Examples

deparse(args(lm))

deparse(args(lm), width = 500)

myplot <-

function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Deprecated 157

Deprecated Deprecated Functions

Description

These functions are provided for compatibility with older versions of R only, and may be
defunct as soon as of the next release.

Usage

.Deprecated(new)

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help("oldName-deprecated") (note the quotes).

Machine() and Platform() are functions returning the variables .Machine and .Platform
respectively.

restart() should be replaced by try(), in preparation for an exception-based implemen-
tation. If you use restart() in a way that cannot be replaced with try() then ask for
help on r-devel.

See Also

Defunct,

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, namevec, function.arg, tag = ".expr", hessian = FALSE)
deriv3(expr, namevec, function.arg, tag = ".expr", hessian = TRUE)

Arguments

expr expression or call to be differentiated.
name,namevec character vector, giving the variable names (only one for D()) with respect

to which derivatives will be computed.
function.arg If specified, a character vector of arguments for a function return, or a

function (with empty body) or TRUE, the latter indicating that a function
with argument names namevec should be used.

tag character; the prefix to be used for the locally created variables in result.
hessian a logical value indicating whether the second derivatives should be calcu-

lated and incorporated in the return value.

158 deriv

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for
computing the expr and its (partial) derivatives, simultaneously. It uses so-called “algo-
rithmic derivatives”. If function.arg is a function, its arguments can have default values,
see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the
right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian
defaults to TRUE for deriv3.

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the
function values with a "gradient" attribute containing the gradient matrix. If hessian is
TRUE the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is specified, deriv and deriv3 return a function with those arguments
rather than an expression.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM proceedings, Philadelphia.

See Also

nlm and optim for numeric minimization which could make use of derivatives, nls in package
nls.

Examples

formula argument :

dx2x <- deriv(~ x^2, "x") ; dx2x

expression({

.value <- x^2

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x

attr(.value, "gradient") <- .grad

.value

})

mode(dx2x)

x <- -1:2

eval(dx2x)

Something ‘tougher’:

trig.exp <- expression(sin(cos(x + y^2)))

(D.sc <- D(trig.exp, "x"))

all.equal(D(trig.exp[[1]], "x"), D.sc)

(dxy <- deriv(trig.exp, c("x", "y")))

y <- 1

eval(dxy)

det 159

eval(D.sc)

stopifnot(eval(D.sc) ==

attr(eval(dxy),"gradient")[,"x"])

function returned:

deriv((ff <- y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

stopifnot(all.equal(deriv(ff, c("x","y"), func = TRUE),

deriv(ff, c("x","y"), func = function(x,y){ })))

function with defaulted arguments:

(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x = 1:7){}))

fx(2,3,4)

Higher derivatives

deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

c("b0", "b1", "th", "x"))

Higher derivatives:

DD <- function(expr,name, order = 1) {

if(order < 1) stop("‘order’ must be >= 1")

if(order == 1) D(expr,name)

else DD(D(expr, name), name, order - 1)

}

DD(expression(sin(x^2)), "x", 3)

showing the limits of the internal "simplify()" :

-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *

2) * (2 * x) + sin(x^2) * (2 * x) * 2)

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix either by QR decomposition or from the eigen-
values, see qr and eigen.

Usage

det(x, method = c("qr", "eigenvalues"), tol = 1e-07)

Arguments

x numeric matrix.

method "qr" (default) or "eigenvalues".

tol tolerance, used only for method "qr".

Value

The determinant, or zero if qr determines the matrix to be numerically singular.

160 detach

Note

Often, computing the determinant is not what you should be doing to solve a given problem.

The "qr" method is much faster for large matrices.

See Also

eigen, qr, svd

Examples

(x <- matrix(1:4, ncol=2))

det(x)

det(x, method="eigenvalues")

det(print(cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usu-
ally, this either a data.frame which has been attached or a package which was required
previously.

Usage

detach(name, pos = 2)

Arguments

name The object to detach. Defaults to search()[pos]. This can be a name
or a character string but not a character vector.

pos Index position in search() of database to detach. When name is numeric,
pos = name is used.

Value

The attached database is returned invisibly, either as data.frame or as list.

Note

You cannot detach either the workspace (position 1) or the base package (the last item in
the search list).

See Also

attach, library, search, objects.

dev.xxx 161

Examples

require(eda)#package

detach(package:eda)

could equally well use detach("package:eda")

but NOT pkg <- "package:eda"; detach(pkg)

Instead, use

library(eda)

pkg <- "package:eda"

detach(pos = match(pkg, search()))

library(mva)

detach(2)# ‘pos’ used for ‘name’

dev.xxx Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Only one device is the active device. This is the device in which all graphics operations
occur.

Devices are associated with a name (e.g., "X11" or "postscript") and a number; the "null
device" is always device 1.

dev.off shuts down the specified (by default the current) device. graphics.off() shuts
down all open graphics devices.

dev.set makes the specified device the active device.

A list of the names of the open devices is stored in .Devices. The name of the active device
is stored in .Device.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
graphics.off()

Arguments

which An integer specifying a device number

Value

dev.cur returns the number and name of the active device, or 1, the null device, if none is
active.

dev.list returns the numbers of all open devices, except device 1, the null device. This
is a numeric vector with a names attribute giving the names, or NULL is there is no open
device.

162 dev2

dev.next and dev.prev return the number and name of the next / previous device in the
list of devices. The list is regarded as a circular list, and "null device" will be included
only if there are no open devices.

dev.off returns the name and number of the new active device (after the specified device
has been shut down).

dev.set returns the name and number of the new active device.

See Also

Devices, such as postscript, etc; layout and its links for setting up plotting regions on
the current device.

Examples

Unix-specific example

x11()

plot(1:10)

x11()

plot(rnorm(10))

dev.set(dev.prev())

abline(0,1)# through the 1:10 points

dev.set(dev.next())

abline(h=0, col="gray")# for the residual plot

dev.set(dev.prev())

dev.off(); dev.off()#- close the two X devices

dev2 Copy Graphics Between Multiple Devices

Description

dev.copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an
error to specify both which and device).

dev.print copies the graphics contents of the current device to a new device which has
been created by the function specified by device and then shuts the new device.

dev.copy2eps is similar to dev.print but produces an EPSF output file, in portrait ori-
entation (horizontal = FALSE)

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" then recording is turned off.

Usage

dev.copy(device, ..., which=dev.next())
dev.print(device=postscript, ...)
dev.copy2eps(...)
dev.control(displaylist)

dev2 163

Arguments

device A device function (e.g., x11, postscript, . . .)

... Arguments to the device function above. For dev.print, this includes
which and by default any postscript arguments.

which A device number specifying the device to copy to

displaylist A character string: the only valid value is "inhibit".

Details

For dev.copy2eps, width and height are taken from the current device unless otherwise
specified. If just one of width and height is specified, the other is adjusted to preserve the
aspect ratio of the device being copied. The default file name is Rplot.eps.

The default for dev.print is to produce and print a postscript copy, if
options("printcmd") is set suitably.

dev.print is most useful for producing a postscript print (its default) when the following
applies. Unless file is specified, the plot will be printed. Unless width, height and
pointsize are specified the plot dimensions will be taken from the current device, shrunk
if necessary to fit on the paper. (pointsize is rescaled if the plot is shrunk.) If horizontal
is not specified and the plot can be printed at full size by switching its value this is done
instead of shrinking the plot region.

If dev.print is used with a specified device (even postscript) it sets the width and height
in the same way as dev.copy2eps.

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print and dev.copy2eps return the name and number of the device which has been
copied from.

Note

Most devices (including all screen devices) have a display list which records all of the
graphics operations that occur in the device. dev.copy copies graphics contents by copying
the display list from one device to another device. Also, automatic redrawing of graphics
contents following the resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.print will not copy anything and the contents of a
device will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the
command dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions

Examples

x11()

plot(rnorm(10), main="Plot 1")

dev.copy(device=x11)

164 dev2bitmap

mtext("Copy 1", 3)

dev.print(width=6, height=6, horizontal=FALSE) # prints it

dev.off(dev.prev())

dev.off()

dev2bitmap Graphics Device for Bitmap Files via GhostScript

Description

bitmap generates a graphics file. dev2bitmap copies the current graphics device to a file in
a graphics format.

Usage

bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)

dev2bitmap(file, type = "png256", height = 6, width = 6, res = 72,
pointsize, ...)

Arguments

file The output file name, with an appropriate extension.

type The type of bitmap. the default is "png256".

height The plot height, in inches.

width The plot width, in inches.

res Resolution, in dots per inch.

pointsize The pointsize to be used for text: defaults to something reasonable given
the width and height

... Other parameters passed to postscript.

Details

dev2bitmap works by copying the current device to a postscript device, and post-
processing the output file using ghostscript. bitmap works in the same way using a
postscript device and postprocessing the output as “printing”.

You will need a recent version of ghostscript (5.10 and later have been tested): the full
path to the executable can be set by the environment variable "R_GSCMD".

The types available will depend on the version of ghostscript, but are likely to in-
clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm", "pbmraw",
"pgm", "pgmraw", "pgnm", "pgnmraw", "pnm", "pnmraw", "ppm", "ppmraw", "pkm",
"pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffg4", "tifflzw", "tiffpack",
"tiff12nc", "tiff24nc", "psmono", "psgray", "psrgb", "bit", "bitrgb", "bitcmyk",
"pngmono", "pnggray", "png16", "png256", "png16m", "jpeg", "jpeggray", "pdfwrite".

Note: despite the name of the functions they can produce PDF via type = "pdfwrite",
and the PDF produced is not bitmapped.

For dev2bitmap if just one of width and height is specified, the other is chosen to preserve
aspect ratio of the device being copied.

deviance 165

Value

None.

Author(s)

B. D. Ripley

See Also

postscript, png and jpeg and on Windows bmp.

pdf generate PDF directly.

deviance Model Deviance

Description

Returns the deviance of a fitted model object.

Usage

deviance(object, ...)
deviance.lm (object, ...)
deviance.glm(object, ...)
deviance.mlm(object, ...)
deviance.default(object, ...)

Arguments

object an object for which the deviance is desired.

... additional optional argument.

Details

This is a generic function which can be used to extract deviances for fitted models. Consult
the individual modeling functions for details on how to use this function.

There is no default method for this function.

Value

The value of the deviance extracted from the object object.

See Also

df.residual, extractAIC, glm, lm.

166 Devices

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

• postscript Writes PostScript graphics commands to a file

• pdf Write PDF graphics commands to a file

• pictex Writes LaTeX/PicTeX graphics commands to a file

• xfig Device for XFIG graphics file format

• bitmap bitmap pseudo-device via GhostScript (if available).

The following devices will be available if R was compiled to use them and started with the
appropriate --gui argument:

• X11 The graphics driver for the X11 Window system

• png PNG bitmap device

• jpeg JPEG bitmap device

• GTK, GNOME Graphics drivers for the GNOME GUI.

None of these are available under R CMD BATCH.

Usage

X11(...)
postscript(...)
pdf(...)
pictex(...)
png(...)
jpeg(...)
GTK(...)
GNOME(...)
xfig(...)
bitmap(...)

dev.interactive()

Details

If no device is open, using a high-level graphics function will cause a device to be opened.
Which device is given by options("device") which is initially set as the most appropriate
for each platform: a screen device in interactive use and postscript otherwise.

Value

dev.interactive() returns a logical, TRUE iff an interactive (screen) device is in use.

df.residual 167

See Also

The individual help files for further information on any of the devices listed here;

dev.cur, dev.print, graphics.off, image, dev2bitmap.

capabilities to see if X11, jpeg and png are available.

Examples

open the default screen device on this platform if no device is

open

if(dev.cur() == 1) get(getOption("device"))()

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df.residual(object, ...)

Arguments

object an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted
models. Consult the individual modeling functions for details details on how to use this
function.

The default method just extracts the df.residual component.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, lm.

168 diag

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments

x a matrix, vector or 1D array.

nrow, ncol Optional dimensions for the result.

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have
names if the matrix x has matching column and row names.

If x is a vector (or 1D array) of length two or more, then diag(x) returns a diagonal matrix
whose diagonal is x.

If x is a vector of length one then diag(x) returns an identity matrix of order the nearest
integer to x. The dimension of the returned matrix can be specified by nrow and ncol (the
default is square).

The assignment form sets the diagonal of the matrix x to the given value(s).

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

See Also

matrix.

Examples

dim(diag(3))

diag(10,3,4) # guess what?

all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X=1:5, Y=rnorm(5))))#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));

M; diag(M) # named as well

diff 169

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)
diff.default(x, lag=1, differences=1, ...)

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... further arguments to be passed to or from methods.

Details

diff is a generic function with a default method and one for class ts objects. NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the
successive differences x[(1+lag):n] - x[1:(n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the
returned value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

See Also

diff.ts.

Examples

diff(1:10, 2)

diff(1:10, 2, 2)

x <- cumsum(cumsum(1:10))

stopifnot(diff(x, lag = 2) == x[(1+2):10] - x[1:(10 - 2)],

diff(x, lag = 2) == (3:10)^2,

diff(diff(x)) == diff(x, differences = 2))

170 difftime

difftime Time Intervals

Description

Create, print and round time intervals.

Usage

time1 - time2
difftime(time1, time2, tz = "",

units = c("auto", "secs", "mins", "hours", "days", "weeks"))
round(x, digits = 0)

Arguments

time1, time2 date-time objects.

tz A timezone specification to be used for the conversion. System-specific,
but "" is the current time zone, and "GMT" is UTC.

units character. Units in which the results are desired. Can be abbreviated.

x An object inheriting from class "difftime".

digits integer. Number of significant digits to retain.

Details

Function difftime takes a difference of two date/time objects (of either class) and returns
an object of class "difftime" with an attribute indicating the units. There is a round
method for objects of this class.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of two date-time objects gives an object of this class, by calling difftime with
units="auto".

See Also

DateTimeClasses.

Examples

(z <- Sys.time() - 3600)

Sys.time() - z # just over 3600 seconds.

time interval between releases of 1.2.2 and 1.2.3.

ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

dim 171

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- values

Arguments

x an R object, for example a matrix, array or data frame.

Details

The functions dim and dim<- are generic.

For an array (and hence in particular, for a matrix) they retrieve or set the dim attribute
of the object. It is always integer or NULL.

dim has a method for data.frames, which returns the length of the row.names attribute of
x and the length of x (the numbers of “rows” and “columns”).

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)

x

simple versions of nrow and ncol could be defined as follows

nrow0 <- function(x) dim(x)[1]

ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- nlist

172 discoveries

Arguments

x an R object, for example a matrix, array or data frame.
nlist a list of the length dim(x) whose components are either null or character

vectors the length of the appropriate dimension of x.

Details

The functions dimnames and dimnames<- are generic.
For an array (and hence in particular, for a matrix), they retrieve or set the dimnames
attribute (see attributes) of the object. The list nlist can have names, and these will be
used to label the dimensions of the array where appropriate.
Both have methods for data frames. The dimnames of a data frame are its row.names
attribute and its names.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames

could be defined as follows

rownames0 <- function(x) dimnames(x)[[1]]

colnames0 <- function(x) dimnames(x)[[2]]

discoveries Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

data(discoveries)

Format

A time series of 100 values.

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(discoveries)

plot(discoveries, ylab = "Number of important discoveries",

las = 1)

title(main = "discoveries data set")

do.call 173

do.call Execute a Function Call

Description

do.call executes a function call from the name of the function and a list of arguments to
be passed to it.

Usage

do.call(what, args)

Arguments

what a character string naming the function to be called.

args a list of arguments to the function call. The names attribute of args gives
the argument names.

Value

The result of the (evaluated) function call.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

dotchart Cleveland Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

174 dotchart

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a
matrix the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to use names(x)
and for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a
matrix, groups will default to the columns of x.

gdata data values for the groups. This is typically a summary such as the median
or mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can
be a useful way of avoiding label overlap.

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color to be used.

color the color(s) to be used for points an labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

xlim horizontal range for the plot, see plot.window, e.g.

main overall title for the plot, see title.

xlab, ylab axis annotations as in title.

... graphical parameters can also be specified as arguments.

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as
described in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Examples

data(VADeaths)

dotchart(VADeaths, main = "Death Rates in Virginia - 1940")

op <- par(xaxs="i")# 0 -- 100%

dotchart(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")

par(op)

double 175

double Double Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

Usage

double(length = 0)
as.double(x, ...)
is.double(x)
single(length = 0)
as.single(x, ...)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Value

double creates a double precision vector of the specified length. The elements of the vector
are all equal to 0.

as.double attempts to coerce its argument to be of double type.

is.double returns TRUE or FALSE depending on whether its argument is of double type or
not.

Note

R has no single precision data type. All real numbers are stored in double precision format.
The functions as.single and single are identical to as.double and double except they
set the attribute Csingle that is used in the .C and .Fortran interface, and they are
intended only to be used in that context.

See Also

integer.

Examples

is.double(1)

all(double(3) == 0)

176 download.file

download.file Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode="w",
cacheOK = TRUE)

Arguments

url A character string naming the URL of a resource to be downloaded.

destfile A character string with the name where the downloaded file is saved.
Tilde-expansion is performed.

method Method to be used for downloading files. Currently download methods
"internal", "wget" and "lynx" are available. The default is to choose
the first of these which will be "internal". The method can also be set
through the option "download.file.method": see options().

quiet If TRUE, suppress status messages (if any).

mode character. The mode with which to write the file. Useful values are "w",
"wb" (binary), "a" (append) and "ab". Only used for the "internal"
method.

cacheOK logical. Is a server-side cached value acceptable? Implemented for the
"internal" and "wget" methods.

Details

The function download.file can be used to download a single file as described by url
from the internet and store it in destfile. The url must start with a scheme such as
"http://", "ftp://" or "file://".

cacheOK = FALSE is useful for "http://" URLs, and will attempt to get a copy directly
from the site rather than from an intermediate cache. (Not all platforms support it.) It is
used by CRAN.packages.

The remaining details apply to method "internal" only.

The timeout for many parts of the transder can be set by the option timeout which defaults
to 60 seconds.

The level of detail provided during transfer can be set by the quiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2
(the default) gives only serious messages, and 3 or more suppresses all messages.

Method "wget" can be used with proxy firewalls which require user/password authentication
if proper values are stored in the configuration file for wget.

dput 177

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting "no_proxy" stops any proxy
being tried. Otherwise the setting of "http_proxy" or "ftp_proxy" (or failing that, the
all upper-case version) is consulted and if non-empty used as a proxy site. For FTP trans-
fers, the username and password on the proxy can be specified by "ftp_proxy_user" and
"ftp_proxy_password". The form of "http_proxy" should be "http://proxy.dom.com/"
or "http://proxy.dom.com:8080/" where the port defaults to 80 and the trailing slash
may be omitted. For "ftp_proxy" use the form "ftp://proxy.dom.com:3128/" where the
default port is 21. These environment variables must be set before the download code is
first used: they cannot be altered later by calling Sys.putenv.

Note

Methods "wget" and "lynx" are for historical compatibility. They will block all other
activity on the R process.

For methods "wget" and "lynx" a system call is made to the tool given by method, and
the respective program must be installed on your system and be in the search path for
executables.

See Also

options to set the timeout and internet.info options.

url for a finer-grained way to read data from URLs.

url.show, CRAN.packages, download.packages for applications

dput Write an Internal Object to a File

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to
recreate the object.

Usage

dput(x, file = "")
dget(file)

Arguments

x an object.

file either a character string naming a file or a connection. "" indicates output
to the console.

178 drop

Details

dput opens file and deparses the object x into that file. The object name is not written
(contrary to dump). If x is a function the associated environment is stripped. Hence scoping
information can be lost.

Using dget, the object can be recreated (with the limitations mentioned above).

dput will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"

dput(mean, "foo")

And read it back into ‘bar’

bar <- dget("foo")

unlink("foo")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Arguments

x an array (including a matrix).

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object
like x, but with any extents of length one removed. Any accompanying dimnames attribute
is adjusted and returned with x.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes
it is useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2

drop(1:3 %*% 2:4)# scalar product

dummy.coef 179

dummy.coef Extract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the
coded variables.

Usage

dummy.coef(object, ...)
dummy.coef.lm(object, use.na = FALSE, ...)
dummy.coef.aovlist(object, use.na = FALSE, ...)

Arguments

object a linear model fit.

use.na logical flag for coefficients in a singular model. If use.na is true, unde-
termined coefficients will be missing; if false they will get one possible
value.

... arguments passed to or from other methods.

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in
number than the number of levels. This function re-expresses the coefficients in the original
coding; as the coefficients will have been fitted in the reduced basis, any implied constraints
(e.g. zero sum for contr.helmert or contr.sum will be respected. There will be little
point in using dummy.coef for contr.treatment contrasts, as the missing coefficients are
by definition zero.

The method used has some limitations, and will give incomplete results for terms such as
poly(x, 2)). However, it is adequate for its main purpose, aov models.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model,
such a list for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for
calculations. Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

Author(s)

B.D. Ripley

See Also

aov, model.tables

180 dump

Examples

options(contrasts=c("contr.helmert", "contr.poly"))

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

dummy.coef(npk.aovE)

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the
objects on a file or connection. A dump file can be sourced into another R (or S) session.

Usage

dump(list, file="dumpdata.R", append=FALSE)

Arguments

list character. The names of one or more R objects to be dumped.

file either a character string naming a file or a connection. "" indicates output
to the console.

append if TRUE, output will be appended to file; otherwise, it will overwrite the
contents of file.

Details

At present the implementation of dump is very incomplete and it really only works for
functions and simple vectors.

dump will warn if fewer characters were written to a file than expected, which may indicate
a full or corrupt file system.

The function save is designed to be used for transporting R data between machines.

See Also

dput, dget,write.

duplicated 181

Examples

x <- 1; y <- 1:10

dump(ls(patt=’^[xyz]’), "xyz.Rdmped")

unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector of data frame are duplicates of elements with smaller
subscripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)
duplicated.array(x, incomparables = FALSE, MARGIN = 1, ...)

Arguments

x an atomic vector or a data frame or an array.

incomparables a vector of values that cannot be compared. Currently, FALSE is the only
possible value, meaning that all values can be compared.

... arguments for particular methods.

MARGIN the array margin to be held fixed: see apply.

Details

This is a generic function with methods for vectors, data frames and arrays (including
matrices).

The data frame method works by pasting together a character representation of the rows
separated by
r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

The array method calculates for each element of the sub-array specified by MARGIN if the
remaining dimensions are identical to those for an earlier element (in row-major order).
This would most commonly be used to find duplicated rows (the default) or columns (with
MARGIN = 2).

See Also

unique.

182 dyn.load

Examples

x <- c(9:20, 1:5, 3:7, 0:8)

extract unique elements

(xu <- x[!duplicated(x)])

stopifnot(xu == unique(x), # but unique(x) is more efficient

0:20 == sort(x[!duplicated(x)]))

data(iris)

stopifnot(duplicated(iris)[143] == TRUE)

data(iris3)

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface

Description

Load or unload shared libraries, and test whether a C function or Fortran subroutine is
available.

Usage

dyn.load(x, local = TRUE, now = TRUE)
dyn.unload(x)

is.loaded(symbol, PACKAGE="")
symbol.C(name)
symbol.For(name)

Arguments

x a character string giving the pathname to a shared library or DLL.
local a logical value controlling whether the symbols in the shared library are

stored in their own local table and not shared across shared libraries, or
added to the global symbol table. Whether this has any effect is system-
dependent.

now a logical controlling whether all symbols are resolved (and relocated) im-
mediately the library is loaded or deferred until they are used. This
control is useful for developers testing whether a library is complete and
has all the necessary symbols and for users to ignore missing symbols.
Whether this has any effect is system-dependent.

symbol a character string giving a symbol name.
PACKAGE if supplied, confine the search for the name to the DLL given by this

argument (plus the conventional extension, .so, .sl, .dll, . . .). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R. This is used in the same way
as in .C, .Call, .Fortran and .External functions

name a character string giving either the name of a C function or Fortran sub-
routine. Fortran names probably need to be given entirely in lower case
(but this may be system-dependent).

dyn.load 183

Details

See ‘See Also’ and the Writing R Extensions manual for how to create a suitable shared
library. Note that unlike some versions of S-PLUS, dyn.load does not load an object (.o)
file but a shared library or DLL.

Unfortunately a very few platforms (Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument
to the dlopen() routine on UNIX systems. They are available so that users can exercise
greater control over the loading process for an individual library. In general, the defaults
values are appropriate and one should override them only if there is good reason and you
understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached
are visible to other DLLs. While maintaining the symbols in their own namespace is good
practice, the ability to share symbols across related “chapters” is useful in many cases.
Additionally, on certain platforms and versions of an operating system, certain libraries
must have their symbols loaded globally to successfully resolve all symbols.

One should be careful of the potential side-effect of using lazy loading via the ‘now’ argu-
ment as FALSE. If a routine is called that has a missing symbol, the process will terminate
immediately and unsaved session variables will be lost. The intended use is for library
developers to call specify a value TRUE to check that all symbols are actually resolved and
for regular users to all with FALSE so that missing symbols can be ignored and the available
ones can be called.

The initial motivation for adding these was to avoid such termination in the _init() rou-
tines of the Java virtual machine library. However, symbols loaded locally may not be (read
probably) available to other DLLs. Those added to the global table are available to all other
elements of the application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol
resolution. This can be the source of subtle bugs. One can arrange to have warning
messages emitted when unsupported options are used. This is done by setting either of
the options verbose or warn to be non-zero via the options function. Currently, we know
of only 2 platforms that do not provide a value for local load (RTLD LOCAL). These are
IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available
at http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified shared library to
the executing R image. Calls to .C, .Fortran and .External can then be used to execute
compiled C functions or Fortran subroutines contained in the library.

The function dyn.unload unlinks the shared library.

Functions symbol.C and symbol.For map function or subroutine names to the symbol name
in the compiled code: is.loaded checks if the symbol name is loaded and hence available
for use in .C or .Fortran.

Note

The creation of shared libraries and the runtime linking of them into executing programs is
very platform dependent. In recent years there has been some simplification in the process
because the C subroutine call dlopen has become the standard for doing this under UNIX.

http://cm.bell-labs.com/stat/duncan/R/dynload

184 edit

Under UNIX dyn.load uses the dlopen mechanism and should work on all platforms which
support it. On Windows it uses the standard mechanisms for loading 32-bit DLLs.

The original code for loading DLLs in UNIX was provided by Heiner Schwarte. The com-
patibility code for HP-UX was provided by Luke Tierney.

See Also

library.dynam to be used inside a package’s .First.lib initialization.

SHLIB for how to create suitable shared libraries.

.C, .Fortran, .External, .Call.

Examples

is.loaded(symbol.For("hcass2")) #-> probably FALSE

library(mva)

is.loaded(symbol.For("hcass2")) #-> TRUE

edit Invoke a Text Editor

Description

Invoke a text editor on an R object.

Usage

edit(name = NULL, file = "", editor = getOption("editor"), ...)
vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file
specified by file is opened for editing.

file a string naming the file to write the edited version to.

editor a string naming the text editor you want to use. On Unix the default
is set from the environment variables EDITOR or VISUAL if either is set,
otherwise vi is used. On Windows it defaults to notepad.

... further arguments to be passed to or from methods.

edit.data.frame 185

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a
generic function, currently with a default method and one for data frames.

data.entry can be used to edit data, and is used by edit to edit matrices and data frames
on systems for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy
of name is made and it is that copy which is changed. Should you want the changes to
apply to the object name you must assign the result of edit to name. (Try fix if you want
to make permanent changes to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quitting from the editor causes file to be parsed and that value
returned. Should an error occur in parsing, possibly due to incorrect syntax, no value
is returned. Calling edit(), with no arguments, will result in the temporary file being
reopened for further editing.

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being
available and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

Examples

use xedit on the function mean and assign the changes

mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out

vi(mean, file = "mean.out")

edit.data.frame Edit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

edit(name, factor.mode = c("character", "numeric"),
edit.row.names = any(row.names(name) != 1:nrow(name)),
...)

edit(name, edit.row.names = any(rownames(name) != 1:nrow(name))), ...)

186 edit.data.frame

Arguments

name A data frame or matrix.

factor.mode How to handle factors (as integers or using character levels) in a data
frame.

edit.row.names

logical. Show the row names be displayed as a separate editable column?

... further arguments passed to or from other methods.

Details

At present, this only works on simple data frames containing numeric or character vectors
and factors. Factors are represented in the spreadsheet as either numeric vectors (which
is more suitable for data entry) or character vectors (better for browsing). After editing,
vectors are padded with NA to have the same length and factor attributes are restored. The
set of factor levels can not be changed by editing in numeric mode; invalid levels are changed
to NA and a warning is issued. If new factor levels are introduced in character mode, they
are added at the end of the list of levels in the order in which they encountered.

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix
to character will cause the result to be coerced to a character matrix.

Value

The edited data frame.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the
default method of edit.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

Examples

data(InsectSprays)

edit(InsectSprays)

edit(InsectSprays, factor.mode="numeric")

eff.aovlist 187

eff.aovlist Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple
strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with a Error term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in
more than one stratum, in which case there is less than complete information in each. The
efficiency is the fraction of the maximum possible precision (inverse variance) obtainable by
estimating in just that stratum.

This is used to pick strata in which to estimate terms in model.tables.aovlist and
elsewhere.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect
term in the model.

Author(s)

B.D. Ripley

See Also

aov, model.tables.aovlist, se.contrast.aovlist

Examples

for balanced designs all efficiencies are zero or one.

so as a statistically meaningless test:

options(contrasts=c("contr.helmert", "contr.poly"))

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

eff.aovlist(npk.aovE)

188 effects

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic
function, but currently only has a method for objects inheriting from class "lm".

Usage

effects(object, ...)
effects.lm(object, set.sign=FALSE, ...)

Arguments

object an R object; typically, the result of a model fitting function such as lm.

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients,
otherwise the sign is arbitrary.

... arguments passed to or from other methods.

Details

For a linear model fitted by lm or aov, the effects are the uncorrelated single-degree-of-
freedom values obtained by projecting the data onto the successive orthogonal subspaces
generated by the QR decomposition during the fitting process. The first r (the rank of the
model) are associated with coefficients and the remainder span the space of residuals (but
are not associated with particular residuals).

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were
multiple responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are
unlabelled. Note that in rank-deficient models the “corresponding” coefficients will be in a
different order if pivoting occurred.

See Also

coef

Examples

y <- c(1:3,7,5)

x <- c(1:3,6:7)

(ee <- effects(lm(y ~ x)))

c(round(ee - effects(lm(y+10 ~ I(x-3.8))),3))# just the first is different

eigen 189

eigen Spectral Decomposition of a Matrix

Description

Function eigen computes eigenvalues and eigenvectors by providing an interface to the
EISPACK routines RS, RG, CH and CG.

Function La.eigen uses the LAPACK routines DSYEV/DSYEVR, DGEEV, ZHEEV and
ZGEEV.

Usage

eigen(x, symmetric, only.values = FALSE)
La.eigen(x, symmetric, only.values = FALSE,

method = c("dsyevr", "dsyev"))

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex)
and only its lower triangle is used. If symmetric is not specified, the
matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both
eigenvalues and eigenvectors are returned.

method The LAPACK routine to use in the real symmetric case.

Details

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up
to plausible numerical inaccuracies. It is faster and surer to set the value yourself.

La.eigen is preferred to eigen for new projects, but its eigenvectors may differ in sign and
(in the asymmetric case) in normalization. (They may also differ between methods and
between platforms.)

The LAPACK routine DSYEVR is usually substantially faster than DSYEV: see http://
www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html. Most benefits are seen with
an optimized BLAS system.

Computing the eigenvectors is the slow part for large matrices.

Using method="dsyevr" requires IEEE 754 arithmetic. Should this not be supported on
your platform, method="dsyev" is used, with a warning.

Value

The spectral decomposition of x is returned as components of a list.

values a vector containing the p eigenvalues of x, sorted in decreasing order,
according to Mod(values) if they are complex.

http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html

190 eigen

vectors a p × p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE.
For eigen(, symmetric = FALSE) the choice of length of the eigenvec-
tors is not defined by LINPACK. In all other cases the vectors are nor-
malized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when
the length is specified they are still only defined up to a scalar of modulus
one (the sign for real matrices).

References

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler,
C. B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture
Notes in Computer Science.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

capabilities to test for IEEE 754 arithmetic.

Examples

eigen(cbind(c(1,-1),c(-1,1)))

eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)# same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)

eigen(cbind(-1,2:1)) # complex values

eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values

3 x 3:

eigen(cbind(1,3:1,1:3))

eigen(cbind(-1,c(1:2,0),0:2)) # complex values

Meps <- .Machine$double.eps

set.seed(321, kind = "default") # force a particular seed

m <- matrix(round(rnorm(25),3), 5,5)

sm <- m + t(m) #- symmetric matrix

em <- eigen(sm); V <- em$vect

print(lam <- em$values) # ordered DEcreasingly

stopifnot(

abs(sm %*% V - V %*% diag(lam)) < 60*Meps,

abs(sm - V %*% diag(lam) %*% t(V)) < 60*Meps)

##------- Symmetric = FALSE: -- different to above : ---

em <- eigen(sm, symmetric = FALSE); V2 <- em$vect

print(lam2 <- em$values) # ordered decreasingly in ABSolute value !

and V2 is not normalized (where V is):

print(i <- rev(order(lam2)))

stopifnot(abs(lam - lam2[i]) < 60 * Meps)

zapsmall(Diag <- t(V2) %*% V2) # orthogonal, but not normalized

http://www.netlib.org/lapack/lug/lapack_lug.html

environment 191

print(norm2V <- colSums(V2 * V2))

stopifnot(abs(1- norm2V / diag(Diag)) < 60*Meps)

V2n <- sweep(V2,2, STATS= sqrt(norm2V), FUN="/")## V2n are now Normalized EV

apply(V2n * V2n, 2, sum)

##[1] 1 1 1 1 1

Both are now TRUE:

stopifnot(abs(sm %*% V2n - V2n %*% diag(lam2)) < 60*Meps,

abs(sm - V2n %*% diag(lam2) %*% t(V2n)) < 60*Meps)

Re-ordered as with symmetric:

sV <- V2n[,i]

slam <- lam2[i]

all(abs(sm %*% sV - sV %*% diag(slam)) < 60*Meps)

all(abs(sm - sV %*% diag(slam) %*% t(sV)) < 60*Meps)

sV *is* now equal to V -- up to sign (+-) and rounding errors

all(abs(c(1 - abs(sV / V))) < 1000*Meps) # TRUE (P ~ 0.95)

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value
is.environment(obj)
.GlobalEnv
globalenv()
new.env(hash=FALSE, parent=parent.frame())
parent.env(env)
parent.env(env) <- value

Arguments

fun a function, a formula, or NULL, which is the default.

value an environment to associate with the function

obj an arbitrary R object.

hash a logical, if TRUE the environment will be hashed

parent an environment to be used as the parent of the environment created.

env an environment

192 environment

Details

The global environment .GlobalEnv is the first item on the search path, more often known
as the user’s workspace. It can also be accessed by globalenv().

The variable .BaseNamespaceEnv is part of some experimental support for name space
management.

The assignment function parent.env<- is extremely dangerous as it can be used to de-
structively change environments in ways that violate assumptions made by the internal C
code. It may be removed in the near future.

Value

If fun is a function or a formula then environment(fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is
returned.

The assignment form sets the environment of the function or formula fun to the value
given.

is.environment(obj) returns TRUE iff obj is an environment.

new.env returns a new (empty) environment enclosed in the parent’s environment, by de-
fault.

parent.env returns the parent environment of its argument.

parent.env<- sets the parent environment of its first argument.

See Also

The envir argument of eval.

Examples

##-- all three give the same:

environment()

environment(environment)

.GlobalEnv

ls(envir=environment(approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv)# TRUE

e1 <- new.env(TRUE, NULL)

e2 <- new.env(FALSE, NULL)

assign("a", 3, env=e2)

parent.env(e1) <- e2

get("a", env=e1)

esoph 193

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage

data(esoph)

Format

data frame with records for 88 age/alcohol/tobacco combinations.

[,1] ”agegp” Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] ”alcgp” Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] ”tobgp” Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29
4 30+

[,4] ”ncases” Number of cases
[,5] ”ncontrols” Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The
Analysis of Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

data(esoph)

summary(esoph)

effects of alcohol, tobacco and interaction, age-adjusted

model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,

data = esoph, family = binomial())

anova(model1)

Try a linear effect of alcohol and tobacco

model2 <- glm(cbind(ncases, ncontrols) ~ agegp + codes(tobgp)

+ codes(alcgp),

data = esoph, family = binomial())

194 euro

summary(model2)

Re-arrange data for a mosaic plot

ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

ttt[ttt == 1] <- esoph$ncases

tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)

tt1[tt1 == 1] <- esoph$ncontrols

tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))

mosaicplot(tt, main = "esoph data set", color = TRUE)

euro Euro Conversion Rates

Description

Conversion rates between the various Euro currencies.

Usage

data(euro)

Format

euro is a named vector of length 11, euro.cross a named matrix of size 11 by 11.

Details

The data set euro contains the value of 1 Euro in all currencies participating in the Euro-
pean monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM,
Spanish Peseta ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira
ITL, Luxembourg Franc LUF, Dutch Guilder NLG and Portugese Escudo PTE). These
conversion rates were fixed by the European Union on December 31, 1998. To convert old
prices to Euro prices, divide by the respective rate and round to 2 digits.

The data set euro.cross contains conversion rates between the various Euro currencies,
i.e., the result of outer(1 / euro, euro).

Examples

data(euro)

cbind(euro)

These relations hold:

euro == signif(euro,6) # [6 digit precision in Euro’s definition]

all(euro.cross == outer(1/euro, euro))

Convert 20 Euro to Belgian Franc

20 * euro["BEF"]

Convert 20 Austrian Schilling to Euro

20 / euro["ATS"]

Convert 20 Spanish Pesetas to Italian Lira

20 * euro.cross["ESP", "ITL"]

dotchart(euro,

eurodist 195

main = "euro data: 1 Euro in currency unit")

dotchart(1/euro,

main = "euro data: 1 currency unit in Euros")

dotchart(log(euro, 10),

main = "euro data: log10(1 Euro in currency unit)")

eurodist Distances Between Cities in Europe

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken
from a table in “The Cambridge Encyclopaedia”.

Usage

data(eurodist)

Format

A dist object based on 21 objects. (You must have the mva package loaded to have the
methods for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University
Press,

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir)) parent.frame())

evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

Arguments

expr object of mode expression orcall or an “unevaluated expression”.

envir the environment in which expr is to be evaluated. May also be a list, a
data frame, or an integer as in sys.call.

enclos Relevant when envir is a list or a data frame. Specifies the enclosure,
i.e., where R looks for objects not found in envir.

n parent generations to go back

196 eval

Details

eval evaluates the expression expr argument in the environment specified by envir and
returns the computed value. If envir is not specified, then sys.frame(sys.frame()), the
environment where the call to eval was made is used.

The evalq form is equivalent to eval(quote(expr), ...).

As eval evaluates its first argument before passing it to the evaluator, it allows you to
assign complicated expressions to symbols and then evaluate them. evalq avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n)).

local evaluates an expression in a local environment. It is equivalent to evalq except the
its default argument creates a new, empty environment. This is useful to create anonymous
recursive functions and as a kind of limited namespace feature since variables defined in the
environment are not visible from the outside.

Note

Due to the difference in scoping rules, there are some differences between R and S in this
area. In particular, the default enclosure in S is the global environment.

When evaluating expressions in dataframes that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needs eval(x, data,
parent.frame()).

See Also

expression, quote, sys.frame, parent.frame, environment.

Examples

eval(2 ^ 2 ^ 3)

mEx <- expression(2^2^3); mEx; 1 + eval(mEx)

eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, -1), list(b=5)) # == 12

ev <- function() {

e1 <- parent.frame()

Evaluate a in e1

aa <- eval(expression(a),e1)

evaluate the expression bound to a in e1

a <- expression(x+y)

list(aa = aa, eval = eval(a, e1))

}

tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }

tst.ev()#-> aa : 7, eval : 4.14

##

Uses of local()

##

Mutual recursives.

gg gets value of last assignment, an anonymous version of f.

gg <- local({

example 197

k <- function(y)f(y)

f <- function(x) if(x) x*k(x-1) else 1

})

gg(10)

sapply(1:5, gg)

Nesting locals. a is private storage accessible to k

gg <- local({

k <- local({

a <- 1

function(y){print(a <<- a+1);f(y)}

})

f <- function(x) if(x) x*k(x-1) else 1

})

sapply(1:5, gg)

ls(envir=environment(gg))

ls(envir=environment(get("k", envir=environment(gg))))

example Run an Examples Section from the Online Help

Description

Run all the R code from the Examples part of R’s online help topic topic with two possible
exceptions, dontrun and testonly, see Details below.

Usage

example(topic, package = .packages(), lib.loc = NULL,
echo = TRUE, verbose = getOption("verbose"),
prompt.echo = paste(abbreviate(topic, 6),"> ", sep=""))

Arguments

topic name or character: The online help topic the examples of which should
be run.

package a character vector with package names. By default, all packages in the
search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

prompt.echo character; gives the prompt to be used if echo = TRUE.

198 exists

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded,
then in the specified libraries. If lib.loc is specified, they are searched for only in the
specified libraries, even if they are already loaded from another library.

An attempt is made to load the package before running the examples, but this will not
replace a package loaded from another location.

As detailed in the manual Writing R Extensions, the author of the help page can markup
parts of the examples for two exception rules

dontrun encloses code that should not be run.

testonly encloses code that is invisible on help pages, but will be run both by the package
checking tools, and the example() function.

Value

(the value of the last evaluated expression).

Note

The examples can be many small files. On some file systems it is desirable to save space,
and the files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive
‘Rex.zip’.

Author(s)

Martin Maechler and others

See Also

demo

Examples

example(dbinom)

force use of the standard package eda:

example("smooth", package="eda", lib.loc=.Library)

exists Is an Object Defined?

Description

Search for an R object of the given name on the search path.

Usage

exists(x, where = -1, envir = parent.frame(),
frame = NULL, mode = "any", inherits = TRUE)

exists 199

Arguments

x a variable name (given as a character string).

where where to look for the object (see the details section); if omitted, the
function will search, as if the name of the object appeared in unquoted in
an expression.

envir an alternative way to specify an environment to look in, but it’s usually
simpler to just use the where argument.

frame a frame in the calling list. Equivalent to giving where as
sys.frame(frame).

mode the mode of object sought.

inherits should the enclosing frames of the environment be inspected.

Details

The where argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

This function looks to see if the name x has a value bound to it. If inherits is TRUE and a
value is not found for x, then the parent frames of the environment are searched until the
name x is encountered. Warning: This is the default behaviour for R but not for S.

If mode is specified then only objects of that mode are sought. The function returns TRUE
if the variable is encountered and FALSE if not.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.

Value

Logical, true if and only if the object is found on the search path.

See Also

get.

Examples

Define a substitute function if necessary:

if(!exists("some.fun", mode="function"))

some.fun <- function(x) { cat("some.fun(x)\n"); x }

search()

exists("ls", 2) # true even though ls is in pos=3

exists("ls", 2, inherits=FALSE) # false

200 expand.model.frame

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the
description of the return value for precise details of the way this is done.

Usage

expand.grid(...)

Arguments

... Vectors, factors or a list containing these.

Value

A data frame containing one row for each combination of the supplied factors. The first
factors vary fastest. The columns are labelled by the factors if these are supplied as named
arguments or named components of a list.

Author(s)

B.D. Ripley

Examples

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),

sex = c("Male","Female"))

expand.model.frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model. This
ensures that the same na.action and subset arguments are applied and allows e.g. x to
be recovered for a model using sin(x) as a predictor.

Usage

expand.model.frame(model, extras, envir=environment(formula(model)),
na.expand = FALSE)

Arguments

model a fitted model
extras one-sided formula or vector of character strings describing new variables

to be added
envir an environment to evaluate things in
na.expand logical; see below

Exponential 201

Details

If na.expand=FALSE then NA values in the extra variables will be passed to the na.action
function used in model. This may result in a shorter data frame (with na.omit) or an error
(with na.fail). If na.expand=TRUE the returned data frame will have precisely the same
rows as model.frame(model), but the columns corresponding to the extra variables may
contain NA.

Value

A data frame.

See Also

model.frame,predict

Examples

data(trees)

model <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)

expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))

model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)

expand.model.frame(model, "z", na.expand=FALSE) # = default

expand.model.frame(model, "z", na.expand=TRUE)

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential
distribution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

202 expression

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function,
and rexp generates random deviates.

Note

The cumulative hazard H(t) = − log(1 − F (t)) is -pexp(t, r, lower = FALSE, log =
TRUE).

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

r <- rexp(100)

all(abs(1 - dexp(1, r) / (r*exp(-r))) < 1e-14)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments

... valid R expressions.

x an arbitrary R object.

Extract 203

Value

expression returns a vector of mode "expression" containing its arguments as unevalu-
ated “calls”.

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object.

See Also

call, eval, function. Further, text and legend for plotting math expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1

ex1

eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3

mode(ex3 [3]) # expression

mode(ex3[[3]])# call

rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators act on vectors, arrays, dataframes and lists to extract or replace subsets.

Usage

x[i]
x[i, j, ...]
x[i, j, ... , drop=TRUE]
x[[i]]
x[[i, j, ...]]
x$name
.subset(x, ...)
.subset2(x, ...)

Arguments

x object from which to extract elements

i,j,...,name elements to extract or replace

drop For data frames, matrices, and arrays. If TRUE the result is coerced to the
lowest possible dimension (see examples below).

204 extractAIC

Details

If one of these expressions appears on the left side of an assignment then that part of x is
set to the value of the right hand side of the assignment.

These operators are generic. You can write methods to handle subsetting of specific classes
of data.

The [[operator requires all relevant subscripts be supplied. With the [operator a comma
separated blank indicates that all entries in that dimension are selected.

When [.data.frame is used for subsetting rows of a data.frame, it returns a dataframe
with unique (and non-missing)row names, if necessary transforming the names using
make.names(* , unique = TRUE). See the swiss example below.

When operating on a list, the [[operator gives the specified element of the list while the
[operator returns a list with the specified element(s) in it.

The operators $ and $<- do not evaluate their second argument. It is translated to a string
and that string is used to locate the correct component of the first argument.

The functions .subset and .subset2 are essentially equivalent to the [and [[operators,
except that methods dispatch does not take place. This is to avoid expensive unclassing in
order to apply the default method to an object. They should not normally be invoked by
end users.

See Also

list, array, matrix.

Syntax for operator precedence.

Examples

x <- 1:12; m <- matrix(1:6,nr=2); li <- list(pi=pi, e = exp(1))

x[10] # the tenth element of x

m[1,] # the first row of matrix m

m[1, , drop = FALSE] # is a 1-row matrix

li[[1]] # the first element of list li

y <- list(1,2,a=4,5)

y[c(3,4)] # a list containing elements 3 and 4 of y

y$a # the element of y named a

data(swiss)

swiss[c(1, 1:2),] # duplicate row, unique row names

extractAIC Extract AIC from a Fitted Model

Description

Computes the (generalized) Akaike Information Criterion for a fitted parametric model.

extractAIC 205

Usage

extractAIC (fit, scale, k = 2, ...)
extractAIC.lm (fit, scale = 0, k = 2, ...)
extractAIC.glm(fit, scale = 0, k = 2, ...)
extractAIC.aov(fit, scale = 0, k = 2, ...)
extractAIC.coxph (fit, scale, k = 2, ...)
extractAIC.negbin (fit, scale, k = 2, ...)
extractAIC.survreg(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter like lm.

scale optional numeric specifying the scale parameter of the model, see scale
in step.

k numeric specifying the “weight” of the equivalent degrees of freedom
(≡edf) part in the AIC formula.

... further arguments (currently unused in base R).

Details

The criterion used is
AIC = −2 logL+ k × edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of
parameters for usual parametric models) of fit.

For generalized linear models (i.e., for lm, aov, and glm), −2 logL is the deviance, as
computed by deviance(fit), plus a constant.

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayes IC)
instead.

For further information, particularly about scale, see step.

Value

A numeric vector of length 2, giving

edf the “equivalent degrees of freedom” of the fitted model fit.

AIC the (generalized) Akaike Information Criterion for fit.

Note

These functions are used in add1, drop1 and step and that may be their main use.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (1997) Modern Applied Statistics with S-PLUS. New
York: Springer (2nd ed).

206 Extremes

See Also

deviance, add1, step

Examples

example(glm)

extractAIC(glm.D93)#>> 5 15.129

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm=FALSE)
min(..., na.rm=FALSE)

pmax(..., na.rm=FALSE)
pmin(..., na.rm=FALSE)

Arguments

... numeric arguments.

na.rm a logical indicating whether missing values should be removed.

Value

max and min return the maximum or minimum of all the values present in their arguments,
as integer if all are integer, or as double otherwise.

The minimum and maximum of an empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1, min(x2)) == min(x1,x2). In R versions before 1.5,
min(integer(0)) == .Machine$integer.max, and analogously for max, preserving argu-
ment type, whereas from R version 1.5.0, max(x) == -Inf and min(x) == +Inf whenever
length(x) == 0 (after removing missing values if requested).

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

pmax and pmin take several vectors as arguments and return a single vector giving the
parallel maxima (or minima) of the vectors. The first element of the result is the maximum
(minimum) of the first elements of all the arguments, the second element of the result is
the maximum (minimum) of the second elements of all the arguments and so on. Shorter
vectors are recycled if necessary. If na.rm is FALSE, NA values in the input vectors will
produce NA values in the output. If na.rm is TRUE, NA values are ignored. attributes
(such as names or dim) are transferred from the first argument (if applicable).

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

factor 207

Examples

min(5:1,pi)

pmin(5:1, pi)

x <- sort(rnorm(100)); cH <- 1.35

pmin(cH, quantile(x)) # no names

pmin(quantile(x), cH) # has names

plot(x, pmin(cH, pmax(-cH, x)), type=’b’, main= "Huber’s function")

factor Factors

Description

The function factor is used to encode a vector as a factor (the names category and enu-
merated type are also used for factors). If ordered is TRUE, the factor levels are assumed
to be ordered. For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

Usage

factor(x, levels = sort(unique(x), na.last = TRUE), labels = levels,
exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

Arguments

x a vector of data, usually taking a small number of distinct values

levels an optional vector of the values that x might have taken. The default is
the set of values taken by x, sorted into increasing order.

labels either an optional vector of labels for the levels (in the same order as
levels after removing those in exclude), or a character string of length
1.

exclude a vector of values to be excluded when forming the set of levels. This
should be of the same type as x, and will be coerced if necessary.

ordered logical flag to determine if the levels should be regarded as ordered (in
the order given).

... (in ordered(.)): any of the above, apart from ordered itself.

208 factor

Details

The type of the vector x is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting
functions treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed
from levels. If x[i] equals levels[j], then the i-th element of the result is j. If no
match is found for x[i] in levels, then the i-th element of the result is set to NA.

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after
removing those in exclude, but this can be altered by supplying labels. This should either
be a set of new labels for the levels, or a character string, in which case the levels are that
character string with a sequence number appended.

factor(x) applied to a factor is a no-operation unless there are unused levels: in that case,
a factor with the reduced level set is returned. If exclude is used it should also be a factor
with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an
extra level ("NA"), by default the last level.

If "NA" is a level, the way to set a code to be missing is to use is.na on the left-hand-side
of an assignment. Under those circumstances missing values are printed as <NA>.

Value

factor returns an object of class "factor" which has a set of numeric codes the length of
x with a "levels" attribute of mode character. If ordered is true (or ordered is used)
the result has class c("ordered", "factor").

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or
not. Correspondingly, is.ordered returns TRUE when its argument is ordered and FALSE
otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be
careful only to compare factors with the same set of levels (in the same order). In particular,
as.numeric applied to a factor is meaningless, and may happen by implicit coercion.

The levels of a factor are by default sorted, but the sort order may well depend on the locale
at the time of creation, and should not be assumed to be ASCII.

See Also

gl for construction of “balanced” factors and C for factors with specified contrasts. levels
and nlevels for accessing the levels, and codes to get integer codes.

Examples

ff <- factor(substring("statistics", 1:10, 1:10), levels=letters)

ff

codes(ff)

factor(ff)# drops the levels that do not occur

factor(factor(letters[7:10])[2:3]) # exercise indexing and reduction

factor.scope 209

factor(letters[1:20], label="letter")

class(ordered(4:1))# "ordered", inheriting from "factor"

suppose you want "NA" as a level, and to allowing missing values.

(x <- factor(c(1, 2, "NA"), exclude = ""))

is.na(x)[2] <- TRUE

x # [1] 1 <NA> NA, <NA> used because NA is a level.

is.na(x)

[1] FALSE TRUE FALSE

factor.scope Compute Allowed Changes in Adding to or Dropping from a For-
mula

Description

add.scope and drop.scope compute those terms that can be individually added to or
dropped from a model while respecting the hierarchy of terms.

Usage

add.scope(terms1, terms2)
drop.scope(terms1, terms2)
factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing for drop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.

factor the "factor" attribute of the terms of the base object.

scope a list with one or both components drop and add giving the "factor"
attribute of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a
list with components drop and add, character vectors of terms labels.

Author(s)

B.D. Ripley

See Also

add1, drop1, aov, lm

210 faithful

Examples

add.scope(~ a + b + c + a:b, ~ (a + b + c)^3)

[1] "a:c" "b:c"

drop.scope(~ a + b + c + a:b)

[1] "c" "a:b"

faithful Old Faithful Geyser Data

Description

The ‘faithful’ data frame has 272 rows and 2 columns; the waiting time between eruptions
and the duration of the eruption for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA.

Usage

data(faithful)

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times origi-
nally in seconds, where multiples of 5 are more frequent than expected under non-human
measurement. For a “better” version of the eruptions times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more
complete version.

Source

W. Härdle.

References

Härdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser.
Applied Statistics 39, 357–365.

See Also

geyser in package MASS for the Azzalini-Bowman version.

Examples

data(faithful)

f.tit <- "faithful data: Eruptions of Old Faithful"

family 211

ne60 <- round(e60 <- 60 * faithful$eruptions)

all.equal(e60, ne60) # relative diff. ~ 1/10000

table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04

faithful$better.eruptions <- ne60 / 60

te <- table(ne60)

te[te >= 4] # (too) many multiples of 5 !

plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

plot(faithful[, -3], main = f.tit,

xlab = "Eruption time (min)",

ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),

col = "red")

family Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by func-
tions such as glm. See the documentation for glm for the details on how such model fitting
takes place.

Usage

family(object, ...)

binomial(link = "logit")
gaussian(link ="identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

Arguments

link a specification for the model link function. The binomial family admits
the links "logit", "probit", "log", and "cloglog" (complementary log-
log); the Gamma family the links "identity", "inverse", and "log"; the
poisson family the links "identity", "log", and "sqrt"; the quasi
family the links "logit", "probit", "cloglog", "identity", "inverse",
"log", "1/mu^2" and "sqrt". The function power can also be used to
create a power link function for the quasi family.
The other families have only one permissible link function: "identity"
for the gaussian family, and "1/mu^2" for the inverse.gaussian family.

variance for all families, other than quasi, the variance function is determined by
the family. The quasi family will accept the specifications "constant",
"mu(1-mu)", "mu", "mu^2" and "mu^3" for the variance function.

212 family

object the function family accesses the family objects which are stored within
objects created by modelling functions (e.g. glm).

... further arguments passed to methods.

Details

The quasibinomial and quasipoisson families differ from the binomial and poisson
families only in that the dispersion parameter is not fixed at one, so they can “model” over-
dispersion. For the binomial case see McCullagh and Nelder (1989, pp. 124–8). Although
they show that there is (under some restrictions) a model with variance proportional to
mean as in the quasi-binomial model, note that glm does not compute maximum-likelihood
estimates in that model. The behaviour of S-PLUS is closer to the quasi- variants.

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London:
Chapman and Hall.

See Also

glm, power.

Examples

nf <- gaussian()# Normal family

nf

str(nf)# internal STRucture

gf <- Gamma()

gf

str(gf)

gf$linkinv

all(1:10 == gf$linkfun(gf$linkinv(1:10)))# is TRUE

gf$variance(-3:4) #- == (.)^2

quasipoisson. compare with example(glm)

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

d.AD <- data.frame(treatment, outcome, counts)

glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())

glm.qD93

anova(glm.qD93, test="F")

summary(glm.qD93)

for Poisson results use

anova(glm.qD93, dispersion = 1, test="Chisq")

summary(glm.qD93, dispersion = 1)

tests of quasi

x <- rnorm(100)

y <- rpois(100, exp(1+x))

glm(y ~x, family=quasi(var="mu", link="log"))

FDist 213

which is the same as

glm(y ~x, family=poisson)

glm(y ~x, family=quasi(var="mu^2", link="log"))

glm(y ~x, family=quasi(var="mu^3", link="log")) # should fail

y <- rbinom(100, 1, plogis(x))

needs to set a starting value for the next fit

glm(y ~x, family=quasi(var="mu(1-mu)", link="logit"), start=c(0,1))

FDist The F Distribution

Description

Density, distribution function, quantile function and random generation for the F distribu-
tion with df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

df(x, df1, df2, log = FALSE)
pf(q, df1, df2, ncp=0, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

df1, df2 degrees of freedom.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)
Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

It is the distribution of the ratio of the mean squares of n1 and n2 independent standard
normals, and hence of the ratio of two independent chi-squared variates each divided by its
degrees of freedom. Since the ratio of a normal and the root mean-square of m independent
normals has a Student’s tm distribution, the square of a tm variate has a F distribution on
1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of
unit variance, but those in the numerator are allowed to have non-zero means and ncp is the
sum of squares of the means. See Chisquare for further details on non-central distributions.

214 fft

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and
rf generates random deviates.

See Also

dchisq for chi-squared and dt for Student’s t distributions.

Examples

the density of the square of a t_m is 2*dt(x, m)/(2*x)

check this is the same as the density of F_{1,m}

x <- seq(0.001, 5, len=100)

all.equal(df(x^2, 1, 5), dt(x, 5)/x)

Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2

p <- seq(1/2, .99, length=50); df <- 10

rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))

quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has
a + in the exponent of e, but here, we do not divide by 1/length(x)).

Value

When z is a vector, the value computed and returned by fft is the unnormalized univariate
Fourier transform of the sequence of values in z. When z contains an array, fft computes
and returns the multivariate (spatial) transform. If inverse is TRUE, the (unnormalized)
inverse Fourier transform is returned, i.e., if y <- fft(z), then z is fft(y, inverse =
TRUE) / length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar
shaped matrix, but with each column replaced by its discrete Fourier transform. This is
useful for analyzing vector-valued series.

The FFT is fastest when the length of of the series being transformed is highly composite
(i.e. has many factors). If this is not the case, the transform may take a long time to
compute and will use a large amount of memory.

file.access 215

References

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal
Processing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve, nextn.

Examples

x <- 1:4

fft(x)

all(fft(fft(x), inverse = TRUE)/(x*length(x)) == 1+0i)

eps <- 1e-11 ## In general, not exactly, but still:

for(N in 1:130) {

cat("N=",formatC(N,wid=3),": ")

x <- rnorm(N)

if(N %% 5 == 0) {

m5 <- matrix(x,ncol=5)

cat("mvfft:",all(apply(m5,2,fft) == mvfft(m5)),"")

}

dd <- Mod(1 - (f2 <- fft(fft(x), inverse=TRUE)/(x*length(x))))

cat(if(all(dd < eps))paste(" all < ", formatC(eps)) else

paste("NO: range=",paste(formatC(range(dd)),collapse=",")),"\n")

}

plot(fft(c(9:0,0:13, numeric(301))), type = "l")

periodogram <- function(x, mean.x = mean(x)) { # simple periodogram

n <- length(x)

x <- unclass(x) - mean.x

Mod(fft(x))[2:(n%/%2 + 1)]^2 / (2*pi*n) # drop I(0)

}

data(sunspots)

plot(10*log10(periodogram(sunspots)), type = "b", col = "blue")

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names.

mode integer specifying access mode required.

216 file.choose

Details

The mode value can be the exclusive or of the following values

0 test for existence.
1 test for execute permission.
2 test for write permission.
4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective
IDs).

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C
function of the same name, which explains the return value encoding. Note that the return
value is false for success.

Author(s)

B. D. Ripley

See Also

file.info

Examples

fa <- file.access(dir("."))

table(fa) # count successes & failures

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new=FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present
only new = FALSE is used.

Value

A character vector of length one giving the file path.

file.info 217

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

... character vectors containing file names.

Details

What is meant by “file access” and hence the last access time is system-dependent.

On most systems symbolic links are followed, so information is given about the file to which
the link points rather than about the link.

Value

A data frame with row names the file names and columns

size integer: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for
example 644.

mtime, ctime, atime

integer of class "POSIXct": file modification, creation and last access
times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.

uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid

Note

This function will only be operational on systems with the stat system call, but that seems
very widely available.

Author(s)

B. D. Ripley

218 file.show

See Also

files, file.access, list.files, and DateTimeClasses for the date formats.

Examples

ncol(finf <- file.info(dir()))# at least six

finf # the whole list

Those that are more than 100 days old :

finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep=.Platform$file.sep)

Arguments

... Character vectors

fsep The path separator to use

Value

A character vector of length one.

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header, title="R Information",
delete.file=FALSE, pager=getOption("pager"))

file.show 219

Arguments

... one or more character vectors containing the names of the files to be
displayed.

header character vector (of the same length as the number of files specified in
...) giving a header for each file being displayed. Defaults to empty
strings.

title an overall title for the display. If a single separate window is used for the
display, title will be used as the window title. If multiple windows are
used, their titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.

pager the pager to be used.

Details

This function provides the core of the R help system, but it can be used for other purposes
as well.

Note

How the pager is implemented is highly system dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and
displays it in the pager selected by the pager argument, which is a character vector speci-
fying a system command to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up
while R continues running. The selection of such pagers could either be done using “magic”
pager names being intercepted by lower-level code (such as "internal" and "console"
on Windows), or by letting pager be an R function which will be called with the same
arguments as file.show and take care of interfacing to the GUI.

Not all implementations will honour delete.file.

Author(s)

Ross Ihaka, Brian Ripley.

See Also

files, list.files, help.

Examples

file.show(file.path(R.home(), "COPYRIGHTS"))

220 files

files File Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(...)
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to, overwrite = FALSE)
dir.create(path)
basename(path)
dirname(path)
path.expand(path)

Arguments

..., file1, file2, from, to, path

character vectors, containing file names.

overwrite logical; should the destination files be overwritten?

Details

The ... arguments are concatenated to form one character string: you can specify the files
separately or as one vector.

file.create creates files with the given names if they do not already exist and truncates
them if they do. It returns a logical vector indicating the success or failure of the operation
for each file.

file.exists returns a logical vector indicating whether the files named by its argument
exist.

file.remove attempts to remove the files named in its argument. It returns a logical vector
indicating whether or not it succeeded in removing each file.

file.rename attempts to rename a file. It returns a logical value indicating whether the
operation succeeded.

file.append attempts to append the files named by its second argument to those named
by its first. The R subscript recycling rule is used to align names given in vectors of different
lengths.

file.copy works in a similar way to file.append but with the arguments in the natural
order for copying. Copying to existing destination files is skipped unless overwrite = TRUE.
The to argument can specify a single existing directory.

dir.create creates the last element of the path. It returns a logical, true for success.

basename removes all of the path up to the last path separator (if any).

filled.contour 221

dirname returns the part of the path up to (but excluding) the last path separator, or "."
if there is no path separator. Tilde expansion is done: see the description for path.expand
below.

In both basename and dirname trailing file separators are removed before dissecting the
path, and for dirname any trailing file separators are removed from the result.

path.expand expands path(s) by replacing a leading tilde by the user’s home directory (if
defined on that platform). On some Unix versions, a leading ~user will expand to the
home directory of user, but not on Unix versions without readline installed.

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access, file.path, file.show, list.files, unlink.

Examples

cat("file A\n", file="A")

cat("file B\n", file="B")

file.append("A", "B")

file.create("A")

file.append("A", rep("B", 10))

if(interactive()) file.show("A")

file.copy("A", "C")

dir.create("tmp")

file.copy(c("A", "B"), "tmp")

unlink("tmp", recursive=TRUE)

file.remove("A", "B", "C")

basename(file.path("","p1","p2","p3","filename"))

dirname(file.path("","p1","p2","p3","filename"))

path.expand("~/foo")

filled.contour Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid
color (Cleveland calls this a level plot). A key showing how the colors map to z values is
shown to the right of the plot.

Usage

filled.contour(x = seq(0, 1, len = nrow(z)),
y = seq(0, 1, len = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),

222 filled.contour

levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1, axes = TRUE,
...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim x limits for the plot.
ylim y limits for the plot.
zlim z limits for the plot.
levels a set of levels which are used to partition the range of z. Must be strictly

increasing (and finite). Areas with z values between consecutive levels are
painted with the same color.

nlevels if levels is not specified, the range of z, values is divided into approxi-
mately this many levels.

color.palette a color palette function to be used to assign colors in the plot.
col an explicit set of colors to be used in the plot. This argument overrides

any palette function specification.
plot.title statements which add titles the main plot.
plot.axes statements which draw axes on the main plot. This overrides the default

axes.
key.title statements which add titles for the plot key.
key.axes statements which draw axes on the plot key. This overrides the default

axis.
asp the y/x aspect ratio, see plot.window.
xaxs the x axis style. The default is to use internal labeling.
yaxs the y axis style. The default is to use internal labeling.
las the style of labeling to be used. The default is to use horizontal labeling.
axes, ... additional graphical parameters.

Note

This function currently uses the layout function and so is restricted to a full page display.
In future it is likely to be replaced by a genuine levelplot function which will work in
multipanel displays.

The ouput produced by filled.contour is actually a combination of two plots; one is
the filled contour and one is the legend. Two separate coordinate systems are set up for
these two plots, but they are only used internally - once the function has returned these
coordinate systems are lost. If you want to annotate the main contour plot, for example to
add points, you can specify graphics commands in the plot.axes argument. An example is
given below.

findInterval 223

Author(s)

Ross Ihaka.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)

y <- 10*1:ncol(volcano)

filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",

xlab = "Meters North", ylab = "Meters West"),

plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },

key.title = title(main="Height\n(meters)"),

key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),

side = 1, line = 4, adj = 1, cex = .66)

Annotating a filled contour plot

a <- expand.grid(1:20, 1:20)

b <- matrix(a[,1] + a[,2], 20)

filled.contour(x = 1:20, y = 1:20, z = b,

plot.axes={ axis(1); axis(2); points(10,10) })

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if i <-
findInterval(x,v), we have vij

≤ xj < vij+1 where v0 := −∞, vN+1 := +∞, and N <-
length(vec). At the two boundaries, the returned index may differ by 1, depending on
the optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

224 findInterval

Arguments

x numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed

logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated
as closed, see below.

all.inside logical; if true, the returned indices are coerced into {1, . . . , N − 1}, i.e. 0
is mapped to 1 and N to N-1.

Details

The function findInterval finds the index of one vector x in another, vec, where the
latter must be non-decreasing. Where this is trivial, equivalent to apply(outer(x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensur-
ing O(n logN) complexity where n <- length(x) (and N <- length(vec)). For (almost)
sorted x, it will be even faster, basically O(n).
This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nFn(t;X1, . . . , Xn) where Fn is the empirical
distribution function of X1, . . . , Xn.
When rightmost.closed = TRUE, the result for x[j] = vec[N] (= max(vec)), is N - 1
as for all other values in the last interval.

Value

vector of length length(x) with values in 0:N where N <- length(vec), or values coerced
to 1:(N-1) iff all.inside = TRUE (equivalently coercing all x values inside the intervals).

Author(s)

Martin Maechler

See Also

approx(*, method = "constant") which is a generalization of findInterval(), ecdf for
computing the empirical distribution function which is (up to a factor of n) also basically
the same as findInterval(.).

Examples

N <- 100

X <- sort(round(rt(N, df=2), 2))

tt <- c(-100, seq(-2,2, len=201), +100)

it <- findInterval(tt, X)

tt[it < 1 | it >= N] # only first and last are outside range(X)

See that this is N * Fn(.) :

tt <- c(tt,X)

eps <- 100 * .Machine$double.eps

require(stepfun)

stopifnot(it[c(1,203)] == c(0, 100),

all.equal(N * ecdf(X)(tt),

findInterval(tt, X), tol = eps),

findInterval(tt,X) == apply(outer(tt, X, ">="), 1, sum)

)

fitted.values 225

fitted.values Extract Model Fitted Values

Description

fitted is a generic function which extracts fitted values from objects returned by modeling
functions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted
method. (Note that the generic is fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing
values. The default, lm and glm methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

Arguments

object an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the object x.

See Also

coefficients, glm, lm, residuals.

fivenum Tukey Five-Number Summaries

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, max-
imum) for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe including NAs and +/-Infs.

na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are
computed.

226 fix

Value

A numeric vector of length 5 containing the summary information. See boxplot.stats for
more details.

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

fix Fix an Object

Description

fix invokes the editor specified in options("editor") on x and then assigns the new
(edited) version of x in the user’s workspace.

Usage

fix(x, ...)

Arguments

x an R object.

... arguments to pass to editor.

See Also

edit, edit.data.frame

Examples

Assume ‘my.fun’ is a user defined function :

fix(my.fun)

now my.fun is changed

Also,

fix(my.data.frame) # calls up data editor

fix(my.data.frame, factor.mode="char") # use of ...

Foreign 227

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE)
.External(name, ..., PACKAGE)

.Call(name, ..., PACKAGE)
.External.graphics(name, ..., PACKAGE)

.Call.graphics(name, ..., PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine.

... arguments to be passed to the foreign function.

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on
to the foreign function. If FALSE, the presence of NA or NaN or Inf values
is regarded as an error.

DUP if TRUE then arguments are “duplicated” before their address is passed to
C or Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this
argument (plus the conventional extension, .so, .sl, .dll, . . .). This
is intended to add safety for packages, which can ensure by using this
argument that no other package can override their external symbols. Use
PACKAGE="base" for symbols linked in to R.

Details

The functions .C and .Fortran can be used to make calls to C and Fortran code.

.External and .External.graphics can be used to call compiled code that uses R objects
in the same way as internal R functions.

.Call and .Call.graphics can be used call compiled code which makes use of internal R
objects. The arguments are passed to the C code as a sequence of R objects. It is included
to provide compatibility with S version 4.

For details about how to write code to use with .Call and .External, see the chapter
on “System and foreign language interfaces” in “Writing R Extensions” in the ‘doc/manual’
subdirectory of the R source tree).

Value

The functions .C and .Fortran return a list similar to the ... list of arguments passed in,
but reflecting any changes made by the C or Fortran code.

.External, .Call, .External.graphics, and .Call.graphics return an R object.

These calls are typically made in conjunction with dyn.load which links DLLs to R.

228 Foreign

The .graphics versions of .Call and .External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display
lists are updated correctly.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
list SEXP * not allowed
other SEXP not allowed

Numeric vectors in R will be passed as type double * to C (and as double precision
to Fortran) unless (i) .C or .Fortran is used, (ii) DUP is false and (iii) the argument has
attribute Csingle set to TRUE (use as.single or single). This mechanism is only intended
to be used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r; double
i;}. Fortran type double complex is an extension to the Fortran standard, and the avail-
ability of a mapping of complex to Fortran may be compiler dependent.

Note: The C types corresponding to integer and logical are int, not long as in S.

The first character string of a character vector is passed as a C character array to Fortran:
that string may be usable as character*255 if its true length is passed separately. Only
up to 255 characters of the string are passed back. (How well this works, or even if it works
at all, depends on the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to .C as the string ”NA”. As the C char type can
represent all possible bit patterns there appears to be no way to distinguish missing strings
from the string "NA". If this distinction is important use .Call.

Functions, expressions, environments and other language elements are passed as the internal
R pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared
as generic pointers, void *. Lists are passed as C arrays of SEXP and can be declared as
void * or SEXP *.

R functions can be invoked using call_S or call_R and can be passed lists or the simple
types as arguments.

Header files for external code

Writing code for use with .External and .Call will use internal R structures. If possible
use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.

Note

DUP=FALSE is dangerous.

There are two dangers with using DUP=FALSE.

Formaldehyde 229

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you
pass a local variable that is a formal parameter of the calling function, you may be able to
change not only the local variable but the variable one level up. This will be very hard to
trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of
SEXP. This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements
and the lists cannot be passed to call_S/call_R. New code using R objects should be
written using .Call or .External, so this is now only a minor issue.

(Prior to R version 1.2.0 there has a third danger, that objects could be moved in memory
by the garbage collector. The current garbage collector never moves objects.)

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might
be affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).

In this case the output variable did not exist before the call so it cannot cause trouble. If
the input variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

See Also

dyn.load.

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determina-
tion of formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid
and the reading of the resulting purple color on a spectophotometer.

Usage

data(Formaldehyde)

Format

A data frame with 6 observations on 2 variables.

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical
Industry. New York: Wiley.

230 formals

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(Formaldehyde)

plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",

main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

par(opar)

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun) <- list

Arguments

fun a function object or a character string naming the function to be manip-
ulated. If not specified, the function calling body is used.

list a list of R expressions.

Value

formals returns the formal argument list of the function specified.

The assignment form sets the formals of a function to the list on the right hand side.

See Also

args for a “human-readable” version, alist, body, function.

Examples

length(formals(lm)) # the number of formal arguments

names(formals(boxplot)) # formal arguments names

f <- function(x)a+b

formals(f) <- alist(a=,b=3) # function(a,b=3)a+b

f(2) # result = 5

format 231

format Encode in a Common Format

Description

Format an R object for pretty printing: format.pval is intended for formatting p-values.

Usage

format(x, ...)
format.AsIs(x, width = 12, ...)
format.data.frame(x, ..., justify = "none")
format.default(x, trim = FALSE, digits = getOption("digits"),

nsmall = 0, justify = c("left", "right", "none"),
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", ...)

format.factor(x, ...)
format.pval(pv, digits = max(1, getOption("digits") - 2),

eps = .Machine$double.eps, na.form = "NA")

prettyNum(x, big.mark = "", big.interval = 3,
small.mark = "", small.interval = 5,

decimal.mark = ".", ...)

Arguments

x any R object (conceptually); typically numeric.
trim logical; if TRUE, leading blanks are trimmed off the strings.
digits how many significant digits are to be used for numeric x. This is a

suggestion: enough decimal places will be used so that the smallest (in
magnitude) number has this many significant digits.

nsmall number of digits which will always appear to the right of the decimal point
in formatting real/complex numbers in non-scientific formats. Allowed
values 0 <= nsmall <= 20.

justify should character vector be left-justified, right-justified or left alone. When
justifying, the field width is that of the longest string.

big.mark character; if not empty used as mark between every big.interval deci-
mals before (hence big) the decimal point.

big.interval see big.mark above; defaults to 3.
small.mark character; if not empty used as mark between every small.interval

decimals after (hence small) the decimal point.
small.interval

see small.mark above; defaults to 5.
decimal.mark the character used to indicate the numeric decimal point.
pv a numeric vector.
eps a numerical tolerance: see Details.
na.form character representation of NAs.
width the returned vector has elements of at most width.
... further arguments passed to or from other methods.

232 format

Details

These functions convert their first argument to a vector (or array) of character strings
which have a common format (as is done by print), fulfilling length(format*(x, *)) ==
length(x). The trimming with trim = TRUE is useful when the strings are to be used for
plot axis annotation.

format.AsIs deals with columns of complicated objects that have been extracted from a
data frame.

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted
as "< [eps]" (where “[eps]” stands for format(eps, digits).

The function formatC provides a rather more flexible formatting facility for numbers, but
does not provide a common format for several numbers, nor it is platform-independent.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column.

prettyNum is the utility function for prettifying x. If x is not a character, format(x[i],
...) is applied to each element, and then it is left unchanged if all the other arguments are
at their defaults. Note that prettyNum(x) may behave unexpectedly if x is a character
not resulting from something like format(<number>).

Note

Currently format drops trailing zeroes, so format(6.001, digits=2) gives "6" and
format(c(6.0, 13.1), digits=2) gives c(" 6", "13").

Character(s) " in input strings x are escaped to \".

See Also

format.info indicates how something would be formatted; formatC, paste, as.character.

Examples

format(1:10)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)

format(zz)

format(zz, justify="left")

use of nsmall

format(13.7)

format(13.7, nsmall=3)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")

American:

prettyNum(r, big.mark = ",")

Some Europeans:

prettyNum(r, big.mark = "’", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))

prettyNum(dd, big.mark="’")

pN <- pnorm(1:7, lower=FALSE)

cbind(format (pN, small.mark = " ", digits = 15))

format.info 233

cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

handling of quotes

zz <- data.frame(a=I("abc"), b=I("def\"gh"))

format(zz)

p <- c(47,13,2,.1,.023,.0045, 1e-100)/1000

format.pval(p)

format.pval(p / 0.9)

format.pval(p / 0.9, dig=3)

format.info format(.) Information

Description

Information is returned on how format(x, digits = options("digits")) would be for-
matted.

Usage

format.info(x)

Arguments

x (numeric) vector; potential argument of format(x,...).

Value

An integer vector of length 3, say r.

r[1] width (number of characters) used for format(x)

r[2] number of digits after decimal point.

r[3] in 0:2; if ≥1, exponential representation would be used, with exponent
length of r[3]+1.

Note

The result depends on the value of options("digits").

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following

format.info(123) # 3 0 0

format.info(pi) # 8 6 0

format.info(1e8) # 5 0 1 - exponential "1e+08"

format.info(1e222)#6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)

names(x) <- formatC(x,w=1,dig=3,format="g")

234 formatC

cbind(sapply(x,format))

t(sapply(x, format.info))

Reset old options:

options(dd)

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.
format.char is a helper function for formatC.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".")

format.char(x, width = NULL, flag = "-")

Arguments

x an atomic numerical or character object, typically a vector of real num-
bers.

digits the desired number of digits after the decimal point (format = "f") or
significant digits (format = "g", = "e" or = "fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of
6 digits is used.

width the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width =
digits, width < 0 means left justify the number in this field (equivalent
to flag ="-"). If necessary, the result will have more characters than
width.

format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.
"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x[i] into
scientific format only if it saves space to do so.
"fg" uses fixed format as "f", but digits as number of significant digits.
Note that this can lead to quite long result strings, see examples below.

flag format modifier as in Kernighan and Ritchie (1988, page 243). "0" pads
leading zeros; "-" does left adjustment, others are "+", " ", and "#".

mode "double" (or "real"), "integer" or "character". Default: Determined
from the storage mode of x.

big.mark, big.interval, small.mark, small.interval, decimal.mark

used for prettying longer decimal sequences, passed to prettyNum the help
page explains details.

formatC 235

Details

If you set format it over-rides the setting of mode, so formatC(123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want common format-
ting for several numbers, use format.

Value

A character object of same size and attributes as x. Unlike format, each number is for-
matted individually. Looping over each element of x, sprintf(...) is called (inside the C
function str_signif).

format.char(x) and formatC, for character x, do simple (left or right) padding with white
space.

Author(s)

Originally written by Bill Dunlap, later much improved by Martin Maechler, it was first
adapted for R by Friedrich Leisch.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition.
Prentice Hall.

See Also

format, sprintf for more general C like formatting.

Examples

xx <- pi * 10^(-5:4)

dd <- options(digits = 4) # only for format

cbind(format(xx), formatC(xx))

cbind(formatC(xx, wid = 9, flag = "-"))

cbind(formatC(xx, dig = 5, wid = 8, format = "f", flag = "0"))

format.char(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC(c("a", "Abc", "no way"), wid = -7) # <=> flag = "-"

formatC(c((-1:1)/0,c(1,100)*pi), wid=8, dig=1)

xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)

1 2 3 4 5 6

formatC(xx)

formatC(xx, format="fg") # special "fixed" format.

formatC(xx, format="f", dig=80)#>> also long strings

options(dd) # reset

236 formatDL

formatDL Format Description Lists

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description
lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

x a vector giving the items to be described, or a list of length 2 or a matrix
with 2 columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only
used if x does not already give the descriptions.

style a character string specifying the rendering style of the description infor-
mation. If "table", a two-column table with items and descriptions as
columns is produced (similar to Texinfo’s @table environment. If "list",
a LaTeX-style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the out-
put.

indent a positive integer specifying the indentation of the second column in table
style, and the indentation of continuation lines in list style. Must not
be greater than width/2, and defaults to width/3 for table style and
width/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments,
both are coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their
own.

Value

a character vector with the formatted entries.

Examples

Use R to create the ‘INDEX’ for package ‘eda’ from its ‘CONTENTS’

x <- read.dcf(file = system.file("CONTENTS", package = "eda"),

fields = c("Entry", "Description"))

x <- as.data.frame(x)

writeLines(formatDL(x$Entry, x$Description))

or equivalently: writeLines(formatDL(x))

Same information in tagged description list style:

writeLines(formatDL(x$Entry, x$Description, style = "list"))

or equivalently: writeLines(formatDL(x, style = "list"))

formula 237

formula Model Formulae

Description

The generic function formula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already
inherits from "formula". The default value of the env argument is used only when the
formula would otherwise lack an environment.

Usage

y ~ model
formula(x, ...)
as.formula(object, env = parent.frame())

Arguments

x, object an object

... further arguments passed to or from other methods.

env the environment to associate with the result.

Details

The models fit by, e.g., the lm and glm functions are specified in a compact symbolic form.
The ~ operator is basic in the formation of such models. An expression of the form y ~
model is interpreted as a specification that the response y is modelled by a linear predictor
specified symbolically by model. Such a model consists of a series of terms separated by
+ operators. The terms themselves consist of variable and factor names separated by :
operators. Such a term is interpreted as the interaction of all the variables and factors
appearing in the term.

In addition to + and :, a number of other operators are useful in model formulae. The
* operator denotes factor crossing: a*b interpreted as a+b+a:b. The ^ operator indicates
crossing to the specified degree. For example (a+b+c)^2 is identical to (a+b+c)*(a+b+c)
which in turn expands to a formula containing the main effects for a, b and c together with
their second-order interactions. The %in% operator indicates that the terms on its left are
nested within those on the right. For example a+b%in%a expands to the formula a+a:b.
The - operator removes the specified terms, so that (a+b+c)^2 - a:b is identical to a + b
+ c + b:c + a:c. It can also used to remove the intercept term: y~x - 1 is a line through
the origin. A model with no intercept can be also specified as y~x + 0 or 0 + y~x.

While formulae usually involve just variable and factor names, they can also involve arith-
metic expressions. The formula log(y) ~ a + log(x) is quite legal. When such arithmetic
expressions involve operators which are also used symbolically in model formulae, there can
be confusion between arithmetic and symbolic operator use.

To avoid this confusion, the function I() can be used to bracket those portions of a model
formula where the operators are used in their arithmetic sense. For example, in the formula
y ~ a + I(b+c), the term b+c is to be interpreted as the sum of b and c.

238 fourfoldplot

Value

All the functions above produce an object of class "formula" which contains a symbolic
model formula.

Environments

A formula object has an associated environment, and this environment (rather than the
parent environment) is used by model.frame to evaluate variables that are not found in
the supplied data argument.

Formulas created with the ~ operator use the environment in which they were created.
Formulas created with as.formula will use the env argument for their environment. Pre-
existing formulas extracted with as.formula will only have their environment changed if
env is explicitly given.

See Also

I.

For formula manipulation: terms, and all.vars; for typical use: lm, glm, and coplot.

Examples

class(fo <- y ~ x1*x2) # "formula"

fo

typeof(fo)# R internal : "language"

terms(fo)

environment(fo)

environment(as.formula("y ~ x"))

environment(as.formula("y ~ x",env=new.env()))

Create a formula for a model with a large number of variables:

xnam <- paste("x", 1:25, sep="")

(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

fourfoldplot Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 by k contingency table on the current graphics device,
allowing for the visual inspection of the association between two dichotomous variables in
one or several populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"), conf.level = 0.95,
std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

fourfoldplot 239

Arguments

x a 2 by 2 by k contingency table in array form, or as a 2 by 2 matrix if k
is 1.

color a vector of length 2 specifying the colors to use for the smaller and larger
diagonals of each 2 by 2 table.

conf.level confidence level used for the confidence rings on the odds ratios. Must be
a single nonnegative number less than 1; if set to 0, confidence rings are
suppressed.

std a character string specifying how to standardize the table. Must be one
of "margins", "ind.max", or "all.max", and can be abbreviated by the
initial letter. If set to "margins", each 2 by 2 table is standardized to
equate the margins specified by margin while preserving the odds ratio.
If "ind.max" or "all.max", the tables are either individually or simulta-
neously standardized to a maximal cell frequency of 1.

margin a numeric vector with the margins to equate. Must be one of 1, 2, or c(1,
2) (the default), which corresponds to standardizing the row, column, or
both margins in each 2 by 2 table. Only used if std equals "margins".

space the amount of space (as a fraction of the maximal radius of the quarter
circles) used for the row and column lebals.

main character string for the fourfold title.
mfrow a numeric vector of the form c(nr, nc), indicating that the displays for

the 2 by 2 tables should be arranged in an nr by nc layout, filled by rows.
mfcol a numeric vector of the form c(nr, nc), indicating that the displays for

the 2 by 2 tables should be arranged in an nr by nc layout, filled by
columns.

Details

The fourfold display is designed for the display of 2 by 2 by k tables.
Following suitable standardization, the cell frequencies fij of each 2 by 2 table are shown
as a quarter circle whose radius is proportional to

√
fij so that its area is proportional to

the cell frequency. An association (odds ratio different from 1) between the binary row and
column variables is indicated by the tendency of diagonally opposite cells in one direction
to differ in size from those in the other direction; color is used to show this direction.
Confidence rings for the odds ratio allow a visual test of the null of no association; the
rings for adjacent quadrants overlap iff the observed counts are consistent with the null
hypothesis.
Typically, the number k corresponds to the number of levels of a stratifying variable, and it is
of interest to see whether the association is homogeneous across strata. The fourfold display
visualizes the pattern of association. Note that the confidence rings for the individual odds
ratios are not adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 by k tables. Technical Report 217,
York University, Psychology Department. http://hotspur.psych.yorku.ca/ftp/sas/
catdata/4fold.ps.gz

See Also

mosaicplot

http://hotspur.psych.yorku.ca/ftp/sas/catdata/4fold.ps.gz
http://hotspur.psych.yorku.ca/ftp/sas/catdata/4fold.ps.gz

240 frame

Examples

data(UCBAdmissions)

Use the Berkeley admission data as in Friendly (1995).

x <- aperm(UCBAdmissions, c(2, 1, 3))

dimnames(x)[[2]] <- c("Yes", "No")

names(dimnames(x)) <- c("Sex", "Admit?", "Department")

ftable(x)

Fourfold display of data aggregated over departments, with

frequencies standardized to equate the margins for admission

and sex.

Figure 1 in Friendly (1994).

fourfoldplot(margin.table(x, c(1, 2)))

Fourfold display of x, with frequencies in each table

standardized to equate the margins for admission and sex.

Figure 2 in Friendly (1994).

fourfoldplot(x)

Fourfold display of x, with frequencies in each table

standardized to equate the margins for admission. but not

for sex.

Figure 3 in Friendly (1994).

fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description

This function (frame is an alias for plot.new) causes the completion of plotting in the
current plot (if there is one) and an advance to a new graphics frame. This is used in all
high-level plotting functions and also useful for skipping plots when a multi-figure region is
in use.

Usage

plot.new()
frame()

See Also

plot.window, plot.default.

freeny 241

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

data(freeny)

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to
(1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue, price.index,
income.level, and market.potential obtained from the above two data objects.

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Lab-
oratories memorandum.

Examples

data(freeny)

summary(freeny)

pairs(freeny, main = "freeny data")

summary(fm1 <- lm(y ~ ., data = freeny))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

ftable Flat Contingency Tables

Description

Create “flat” contingency tables.

Usage

ftable(..., exclude = c(NA, NaN), row.vars = NULL, col.vars = NULL)

242 ftable

Arguments

... R objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted, or a
contingency table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-
factor objects.

row.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the rows of the flat
contingency table.

col.vars a vector of integers giving the numbers of the variables, or a character
vector giving the names of the variables to be used for the columns of the
flat contingency table.

Details

ftable creates “flat” contingency tables. Similar to the usual contingency tables, these
contain the counts of each combination of the levels of the variables (factors) involved.
This information is then re-arranged as a matrix whose rows and columns correspond to
unique combinations of the levels of the row and column variables (as specified by row.vars
and col.vars, respectively). The combinations are created by looping over the variables in
reverse order (so that the levels of the “left-most” variable vary the slowest). Displaying a
contingency table in this flat matrix form (via print.ftable, the print method for objects
of class "ftable") is often preferable to showing it as a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contin-
gency table in array form from all arguments except row.vars and col.vars. If the first
argument is of class "table", it represents a contingency table and is used as is; if it is
a flat table of class "ftable", the information it contains is converted to the usual array
representation using as.ftable. Otherwise, the arguments should be R objects which can
be interpreted as factors (including character strings), or a list (or data frame) whose com-
ponents can be so interpreted, which are cross-tabulated using table. Then, the arguments
row.vars and col.vars are used to collapse the contingency table into flat form. If neither
of these two is given, the last variable is used for the columns. If both are given and their
union is a proper subset of all variables involved, the other variables are summed out.

Function ftable.formula provides a formula method for creating flat contingency tables.

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combi-
nation of the levels of variables with information on the names and levels of the (row and
columns) variables stored as attributes "row.vars" and "col.vars".

See Also

ftable.formula for the formula interface (which allows a data = . argument);
read.ftable for information on reading, writing and coercing flat contingency tables; table
for “ordinary” cross-tabulation; xtabs for formula-based cross-tabulation.

Examples

Start with a contingency table.

data(Titanic)

ftable(Titanic, row.vars = 1:3)

ftable.formula 243

ftable(Titanic, row.vars = 1:2, col.vars = "Survived")

ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

Start with a data frame.

data(mtcars)

x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])

x

ftable(x, row.vars = c(2, 4))

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column
and row variables of the flat table.

data a data frame, list or environment containing the variables to be cross-
tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored
if data is a contingency table.

na.action a function which indicates what should happen when the data contain
NAs. Ignored if data is a contingency table.

... further arguments to the default ftable method may also be passed as
arguments, see ftable.default.

Details

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively,
of the flat contingency table to be created. Only the + operator is allowed for combining the
variables. A . may be used once in the formula to indicate inclusion of all the “remaining”
variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken
as a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not
a flat contingency table (i.e., an object of class "ftable"), it should be a data frame or
matrix, list or environment containing the variables to be cross-tabulated. In this case,
na.action is applied to the data to handle missing values, and, after possibly selecting a
subset of the data as specified by the subset argument, a contingency table is computed
from the variables.

The contingency table is then collapsed to a flat table, according to the row and column
variables specified by formula.

244 function

Value

A flat contingency table which contains the counts of each combination of the levels of the
variables, collapsed into a matrix for suitably displaying the counts.

See Also

ftable, ftable.default; table.

Examples

data(Titanic)

Titanic

x <- ftable(Survived ~ ., data = Titanic)

x

ftable(Sex ~ Class + Age, data = x)

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.

value An expression, or a series of expressions separated by commas.

Details

In R (unlike S) the names in an argument list cannot be quoted non-standard names.

If value is a series of expressions, the value returned is a list of the evaluated expressions,
with names set to the expressions where these are the names of R objects.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; invisible for return(.)ing invisibly.

Examples

norm <- function(x) sqrt(x%*%x)

norm(1:4)

An anonymous function:

(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

GammaDist 245

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma
distribution with parameters shape and scale.

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE, log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x > 0, α > 0 and σ > 0. The mean and variance are E(X) = ασ and V ar(X) = ασ2.

Value

dgamma gives the density, pgamma gives the distribution function qgamma gives the quantile
function, and rgamma generates random deviates.

Note

The S parametrization is via shape and rate: S has no scale parameter. Prior to 1.4.0 R
only had scale.

The cumulative hazard H(t) = − log(1− F (t)) is -pgamma(t, ..., lower = FALSE, log
= TRUE).

246 gc

See Also

gamma for the Gamma function, dbeta for the Beta distribution and dchisq for the chi-
squared distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))

p <- (1:9)/10

pgamma(qgamma(p,shape=2), shape=2)

1 - 1/exp(qgamma(p, shape=1))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that
automatic collection is either silent (verbose=FALSE) or prints memory usage statistics
(verbose=TRUE).

Usage

gc(verbose = getOption("verbose"))
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells
and the vector heap.

Details

A call of gc causes a garbage collection to take place. This takes place automatically without
user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may
prompt R to return memory to the operating system.

Value

gc returns a matrix with rows "Ncells" (cons cells, usually 28 bytes each on 32-bit systems
and 56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns
"used" and "gc trigger", each also interpreted in megabytes (rounded up to the next
0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving
the current limits in Mb (with NA denoting no limit).

gcinfo returns the previous value of the flag.

See Also

Memory on R’s memory management and gctorture if you are an R hacker.

gc.time 247

Examples

gc() #- do it now

gcinfo(TRUE) #-- in the future, show when R does it

x <- integer(100000); for(i in 1:18) x <- c(x,i)

gcinfo(verbose = FALSE)#-- don’t show it anymore

gc(TRUE)

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session.

Usage

gc.time()

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed
time and children’s user and system CPU times (normally both zero).

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely
to be over-estimates.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time()

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out
memory protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)

248 Geometric

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric
distribution with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)

Arguments

x, q vector of quantiles representing the number of failures in a sequence of
Bernoulli trials before success occurs.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

prob probability of success in each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The geometric distribution with prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . .

If an element of x is not integer, the result of pgeom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

get 249

Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile
function, and rgeom generates random deviates.

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

pp <- sort(c((1:9)/10, 1 - .2^(2:8)))

print(qg <- qgeom(pp, prob = .2))

test that qgeom is an inverse of pgeom

print(qg1 <- qgeom(pgeom(qg, prob=.2), prob =.2))

all(qg == qg1)

Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

get Return a Variable’s Value

Description

Search for an R object with a given name and return it if found.

Usage

get(x, pos=-1, envir=as.environment(pos), mode="any", inherits=TRUE)

Arguments

x a variable name (given as a quoted character string).

pos where to look for the object (see the details section); if omitted, the
function will search, as if the name of the object appeared in unquoted in
an expression.

envir an alternative way to specify an environment to look in; see the details
section.

mode the mode of object sought.

inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment in which to look for the object in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

The mode includes collections such as "numeric" and "function": any member of the
collection will suffice.

250 getNativeSymbolInfo

Value

This function searches the specified environment for a bound variable whose name is given
by the character string x. If the variable’s value is not of the correct mode, it is ignored.

If inherits is FALSE, only the first frame of the specified environment is inspected. If
inherits is TRUE, the search is continued up through the parent frames until a bound value
of the right mode is found.

Using a NULL environment is equivalent to using the current environment.

See Also

exists.

Examples

get("%o%")

getNativeSymbolInfo Obtain a description of a native (C/Fortran) symbol

Description

This finds and returns as comprehensive a description of a dynamically loaded or“exported”
built-in native symbol. It returns information about the name of the symbol, the library in
which it is located and, if available, the number of arguments it expects and by which inter-
face it should be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke.
Specifically, this provides a way to explicitly share symbols between different dynamically
loaded package libraries. Also, it provides a way to query where symbols were resolved, and
aids diagnosing strange behavior associated with dynamic resolution.

Usage

getNativeSymbolInfo(name, PACKAGE)

Arguments

name the name of the native symbol as used in a call to is.loaded, etc.

PACKAGE an optional argument that specifies to which dynamically loaded library
we restrict the search for this symbol. If this is "base", we search in the
R executable itself.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces
(.Call, etc.). If the symbol has been explicitly registered by the shared library in which
it is contained, information about the number of arguments and the interface by which it
should be called will be returned. Otherwise, a generic native symbol object is returned.

getNativeSymbolInfo 251

Value

If the symbol is not found, an error is raised. Otherwise, the value is a list containing the
following elements:

name the name of the symbol, as given by the name argument.

address the native memory address of the symbol which can be used to invoke the
routine, and also compare with other symbol address. This is an external
pointer object and of class NativeSymbol.

package a list containing 3 elements:

name the short form of the library name which can be used as the value
of the PACKAGE argument in the different native interface functions.

path the fully qualified name of the shared library file.
dynamicLookup a logical value indicating whether dynamic resolution

is used when looking for symbols in this library, or only registered
routines can be located.

numParameters the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

Note

One motivation for accessing this reflectance information is to be able to pass native routines
to C routines as “function pointers” in C. This allows us to treat native routines and R
functions in a similar manner, such as when passing an R function to C code that makes
callbacks to that function at different points in its computation (e.g. nls). Additionally,
we can resolve the symbol just once and avoid resolving it repeatedly or using the internal
cache. In the future, one may be able to treat NativeSymbol objects as directly callback
objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN
Routines”, R News, volume 1, number 3, 2001, p20–23 (http://CRAN.R-project.org/
doc/Rnews/).

See Also

is.loaded, .C, .Fortran, .External, .Call, dyn.load.

Examples

getNativeSymbolInfo("dansari")

library(mva)

getNativeSymbolInfo(symbol.For("hcass2"))

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

252 getNumCConverters

getNumCConverters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate
R objects to C pointers for use in .C calls. The number and a description of each element
in the list can be retrieved. One can also query and set the activity status of individual
elements, temporarily ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

Arguments

id either a number or a string identifying the element of interest in the
converter list. A string sis matched against the description strings for
each element to identify the element. Integers are specified starting at 1
(rather than 0).

status a logical value specifying whether the element is to be considered active
(TRUE) or not (FALSE).

Details

The internal list of converters is potentially used when converting individual arguments
in a .C call. If an argument has a non-trivial class attribute, we iterate over the list of
converters looking for the first that “matches”. If we find a matching converter, we have it
create the C-level pointer corresponding to the R object. When the call to the C routine is
complete, we use the same converter for that argument to reverse the conversion and create
an R object from the current value in the C pointer. This is done separately for all the
arguments.

The functions documented here provide R user-level capabilities for investigating and man-
aging the list of converters. There is currently no mechanism for adding an element to
the converter list within the R language. This must be done in C code using the routine
R_addToCConverter().

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string
of each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The
names of the elements are the description strings returned by getCConverterDescriptions.

getwd 253

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and re-
moved. In the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters()

getCConverterDescriptions()

getCConverterStatus()

old <- setCConverterStatus(1,FALSE)

setCConverterStatus(1,old)

removeCConverter(1)

removeCConverter(getCConverterDescriptions()[1])

getwd Get or Set Working Directory

Description

getwd returns an absolute filename representing the current working directory of the R
process; setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

Arguments

dir A character string.

Value

getwd returns a character vector, or NULL if the working directory is not available on that
platform.

setwd returns NULL invisibly. It will give an error if it does not succeed.

http://developer.R-project.org/CObjectConversion.pdf

254 gl

Note

These functions are not implemented on all platforms.

Examples

(WD <- getwd())

if (!is.null(WD)) setwd(WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a
total length of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor().

Examples

First control, then treatment:

gl(2, 8, label = c("Control", "Treat"))

20 alternating 1s and 2s

gl(2, 1, 20)

alternating pairs of 1s and 2s

gl(2, 2, 20)

glm 255

glm Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of
the linear predictor and a description of the error distribution.

Usage

glm(formula, family = gaussian, data, weights = NULL, subset = NULL,
na.action, start = NULL, offset = NULL,
control = glm.control(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)

glm.fit(x, y, weights = rep(1, nrow(x)),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nrow(x)),
family = gaussian(), control = glm.control(),
intercept = TRUE)

glm.fit.null(x, y, weights = rep(1, nrow(x)),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nrow(x)),
family = gaussian(), control = glm.control(),
intercept = FALSE)

weights(object, type = c("prior", "working"), ...)

Arguments

formula a symbolic description of the model to be fit. The details of model speci-
fication are given below.

family a description of the error distribution and link function to be used in the
model. See family for details.

data an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment(formula), typically the
environment from which glm is called.

weights an optional vector of weights to be used in the fitting process.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

offset this can be used to specify an a priori known component to be included
in the linear predictor during fitting.

256 glm

control a list of parameters for controlling the fitting process. See the documen-
tation for glm.control for details.

model a logical value indicating whether model frame should be included as a
component of the returned value.

method the method to be used in fitting the model. The default (and presently
only) method glm.fit uses iteratively reweighted least squares (IWLS).

x, y For glm: logical values indicating whether the response vector and model
matrix used in the fitting process should be returned as components of
the returned value.
For glm.fit: x is a design matrix of dimension n * p, and y is a vector
of observations of length n.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

object an object inheriting from class "glm".

type character, partial matching allowed. Type of weights to extract from the
fitted model object.

intercept logical. Should an intercept be included?

... further arguments passed to or from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial models the response can also be specified as a factor (when the first level
denotes failure and all others success) or as a two-column matrix with the columns giving
the numbers of successes and failures. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed.

A specification of the form first:second indicates the the set of terms obtained by tak-
ing the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second.

glm.fit and glm.fit.null are the workhorse functions: the former calls the latter for a
null model (with no intercept).

If more than one of etastart, start and mustart is specified, the first in the list will be
used.

Value

glm returns an object of class glm which inherits from the class lm. See later in this section.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and
na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

glm 257

residuals the working residuals, that is the residuals in the final iteration of the
IWLS fit.

fitted.values the fitted mean values, obtained by transforming the linear predictors by
the inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sen-
sible, the constant is chosen so that a saturated model has deviance zero.

aic Akaike’s An Information Criterion, minus twice the maximized log-
likelihood plus twice the number of coefficients (so assuming that the
dispersion is known.

null.deviance The deviance for the null model, comparable with deviance. The null
model will include the offset, and an intercept if there is one in the model

iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS
fit.

prior.weights the case weights initially supplied.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y the y vector used. (It is a vector even for a binomial model.)

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms the terms object used.

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, in R always "glm.fit".

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

In addition, non-null fits will have components qr, R and effects relating to the final
weighted linear fit.

Objects of class "glm" are normally of class c("glm", "lm"), that is inherit from class "lm",
and well-designed methods for class "lm" will be applied to the weighted linear model at
the final iteration of IWLS. However, care is needed, as extractor functions for class "glm"
such as residuals and weights do not just pick out the component of the fit with the
same name.

If a binomial glm model is specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights)
and the component y of the result is the proportion of successes.

258 glm.control

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman
and Hall.

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. New
York: Springer.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova, summary,
effects, fitted.values, and residuals. Further, lm for non-generalized linear models.

esoph, infert and predict.glm have examples of fitting binomial glms.

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

print(d.AD <- data.frame(treatment, outcome, counts))

glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())

anova(glm.D93)

summary(glm.D93)

an example with offsets from Venables & Ripley (1999, pp.217-8)

Need the anorexia data from a recent version of the package MASS:

library(MASS)

data(anorexia)

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),

family = gaussian, data = anorexia)

summary(anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)

clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12))

summary(glm(lot1 ~ log(u), data=clotting, family=Gamma))

summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))

glm.control Auxiliary for Controlling GLM Fitting

Description

Auxiliary function as user interface for glm fitting. Typically only used when calling glm or
glm.fit.

glm.summaries 259

Usage

glm.control(epsilon=1e-04, maxit=10, trace=FALSE)

Arguments

epsilon positive convergence tolerance epsilon; the iterations converge when
|dev − devold|/(|dev|+ 0.1) < epsilon.

maxit integer giving the maximal number of IWLS iterations.

trace logical indicating if output should be produced for each iteration.

Details

If epsilon is small, it is also used as the tolerance for the least squares solution.

When trace is true, calls to cat produce the output for each IWLS iteration. Hence,
options(digits = *) can be used to increase the precision, see the example.

Value

A list with the arguments as components.

See Also

glm.fit, the fitting procedure used by glm.

Examples

A variation on example(glm) :

Annette Dobson’s example ...

counts <- c(18,17,15,20,10,20,25,13,12)

outcome <- gl(3,1,9)

treatment <- gl(3,3)

oo <- options(digits = 12) # to see more when tracing :

glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),

trace = TRUE, epsilon = 1e-14)

options(oo)

coef(glm.D93X) # the last two are closer to 0 than in ?glm’s glm.D93

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

coefficients(x) ; coef(x)
family(object, ...)
fitted.values(x) ; fitted(x)
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

260 glm.summary

Arguments

object, x an object of class glm, typically the result of a call to glm.

test a character string, matching one of "Chisq", "F" or "Cp". See
stat.anova.

type the type of residuals which should be returned. The alternatives
are: "deviance" (default), "pearson", "working", "response", and
"partial".

... further arguments passed to or from other methods.

See Also

glm for computing glm.obj, anova.glm; the corresponding generic functions, summary.glm,
coefficients, deviance, df.residual, effects, fitted.values, residuals.

glm.summary Summarizing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

summary(object, dispersion = NULL, correlation = FALSE, ...)

print(x, digits = max(3, getOption("digits") - 3),
na.print = "", symbolic.cor = p > 4,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "glm", usually, a result of a call to glm.

x an object of class "summary.glm", usually, a result of a call to
summary.glm.

dispersion the dispersion parameter for the fitting family. By default it is obtained
from object.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is
returned and printed.

digits the number of significant digits to use when printing.

na.print Unused.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum
rather than as numbers.

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.glm tries to be smart about formatting the coefficients, standard errors,
etc. and additionally gives “significance stars” if signif.stars is TRUE.

Gnome 261

See Also

glm, summary.

Examples

--- Continuing the Example from ‘‘?glm’’:

summary(glm.D93)

Gnome GNOME Desktop Graphics Device

Description

gnome starts a GNOME compatible device driver. ‘GNOME’ is an acronym for GNU Network
Object Model Environment.

Usage

gnome(display="", width=7, height=7, pointsize=12)
GNOME(display="", width=7, height=7, pointsize=12)

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.
height the height of the plotting window in inches.
pointsize the default pointsize to be used.

Note

This is still in development state.

The GNOME device is only available when explicitly desired at configure/compile time, see
the toplevel ‘INSTALL’ file.

Author(s)

Lyndon Drake 〈lyndon@stat.auckland.ac.nz〉

References

http://www.gnome.org and http://www.gtk.org for the GTK+ (GIMP Tool Kit) libraries.

See Also

x11, Devices.

Examples

gnome(width=9)

http://www.gnome.org
http://www.gtk.org

262 grep

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black"
and one indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or
in par.

grey is an alias for gray.

Value

A vector of “colors” of the same length as level.

See Also

rainbow, hsv, rgb.

Examples

gray(0:8 / 8)

grep Pattern Matching and Replacement

Description

grep searches for matches to pattern (its first argument) within the character vector x
(second argument). regexpr does too, but returns more detail in a different format.

sub and gsub perform replacement of matches determined by regular expression matching.

Usage

grep(pattern, x, ignore.case=FALSE, extended=TRUE, perl=FALSE, value=FALSE)
sub(pattern, replacement, x,

ignore.case=FALSE, extended=TRUE, perl=FALSE)
gsub(pattern, replacement, x,

ignore.case=FALSE, extended=TRUE, perl=FALSE)
regexpr(pattern, text, extended=TRUE, perl=FALSE)

grep 263

Arguments

pattern character string containing a regular expression to be matched in the given
character vector.

x, text a character vector where matches are sought.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.

perl logical. Should perl-compatible regexps be used if available? Has priority
over extended.

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching
elements themselves is returned.

replacement a replacement for matched pattern in sub and gsub.

Details

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic,
depending on the value of the extended argument, unless perl = TRUE when they are those
of PCRE, ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/.

Value

For grep a vector giving either the indices of the elements of x that yielded a match or, if
value is TRUE, the matched elements.

For sub and gsub a character vector of the same length as the original.

For regexpr an integer vector of the same length as text giving the starting position of
the first match, or −1 if there is none, with attribute "match.length" giving the length of
the matched text (or −1 for no match).

Note

perl=TRUE will only be available if R was compiled against PCRE: this is detected at
configure time.

See Also

agrep for approximate matching.

tolower, toupper and chartr for character translations. charmatch, pmatch, match.
apropos uses regexps and has nice examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")

if(any(i <- grep("foo",txt)))

cat("‘foo’ appears at least once in\n\t",txt,"\n")

i # 2 and 4

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

264 grid

txt[i]

Double all ’a’ or ’b’s; "\" must be escaped, i.e. ‘doubled’

gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",

"designed", "to", "take", "away", "your", "freedom",

"to", "share", "and", "change", "it.",

"", "By", "contrast,", "the", "GNU", "General", "Public", "License",

"is", "intended", "to", "guarantee", "your", "freedom", "to",

"share", "and", "change", "free", "software", "--",

"to", "make", "sure", "the", "software", "is",

"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices

stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

(ot <- sub("[b-e]",".", txt))

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=

gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

trim trailing white space

str = ’Now is the time ’

sub(’ +$’, ’’, str) ## spaces only

sub(’[[:space:]]+$’, ’’, str) ## white space, POSIX-style

if(capabilities("PCRE"))

sub(’\\s+$’, ’’, str, perl = TRUE) ## perl-style white space

grid Add Grid to a Plot

Description

grid adds an nx by ny rectangular grid to an existing plot, using lines of type lty and color
col.

If more fine tuning is required, use abline(h = ., v = .) directly.

Usage

grid(nx = NULL, ny = nx, col="lightgray", lty="dotted", lwd = NULL,
equilogs = TRUE)

Arguments

nx,ny number of cells of the grid in x and y direction. When NULL, as per default,
the grid aligns with the tick marks on the corresponding axis, when NA,
no grid lines are drawn in the corresponding direction.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines; defaults to
par("lwd").

gtk 265

equilogs logical, only used when log coordinates and alignment with the axis tick
marks are active. Settingequilogs = FALSE in that case gives non equidis-
tant tick aligned grid lines.

See Also

plot, abline, lines, points.

Examples

plot(1:3)

grid(NA,5, lwd = 2) # grid only in y-direction

data(iris)

maybe change the desired number of tick marks: par(lab=c(mx,my,7))

op <- par(mfcol = 1:2)

with(iris,

{

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),

main = "with(iris, plot(...., panel.first = grid(), ..))")

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

panel.first = grid(3, lty=1,lwd=2),

main = "... panel.first = grid(3, lty=1,lwd=2), ..")

}

)

par(op)

gtk GTK+ Graphics Device

Description

A variant of the X11 graphics device for use with the GNOME GUI.

Usage

gtk(display="", width=7, height=7, pointsize=12)
GTK(display="", width=7, height=7, pointsize=12)

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.
height the height of the plotting window in inches.
pointsize the default pointsize to be used.

Details

The GTK device is only available when running under UNIX with --gui=gnome. Under
that circumstance it is the default (auto-launched) device, but x11 can also be used.

The device has a toolbar in the GNOME style.

266 HairEyeColor

Author(s)

Lyndon Drake 〈lyndon@stat.auckland.ac.nz〉

References

http://www.gtk.org for the GTK+ (GIMP Tool Kit) libraries.

See Also

x11, Devices.

HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

data(HairEyeColor)

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female

Details

This data set is useful for illustrating various techniques for the analysis of contingency
tables, such as the standard chi-squared test or, more generally, log-linear modelling, and
graphical methods such as mosaic plots, sieve diagrams or association plots.

References

Snee, R. D. (1974), Graphical display of two-way contingency tables. The American Statis-
tician, 28, 9–12.
Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Inter-
national Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Friendly, M. (1992), Mosaic displays for loglinear models. Proceedings of the Statistical
Graphics Section, American Statistical Association, pp. 61–68. http://www.math.yorku.
ca/SCS/Papers/asa92.html

See Also

chisq.test, loglin, mosaicplot

http://www.gtk.org
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

help 267

Examples

data(HairEyeColor)

Full mosaic

mosaicplot(HairEyeColor)

Aggregate over sex:

x <- apply(HairEyeColor, c(1, 2), sum)

x

mosaicplot(x, main = "Relation between hair and eye color")

help Documentation

Description

These functions provide access to documentation. Documentation on a topic with name
name (typically, an R object or a data set) can be printed with either help(name) or ?name.

Usage

help(topic, offline = FALSE, package = .packages(),
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic
type?topic

Arguments

topic a name or character string on which documentation is sought (but not a
variable containing a character string!).

offline a logical indicating whether documentation should be displayed on-line to
the screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for documen-
tation. By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

verbose logical; if TRUE, the file name is reported.
try.all.packages

logical; see Notes.

htmlhelp logical (or NULL). If TRUE (which is the default after help.start has been
called), the HTML version of the help will be shown in the browser spec-
ified by options("browser"). See browseURL for details of the browsers
that are supported. Where possible an existing browser window is re-used.

pager the pager to be used for file.show.

type the special type of documentation to use for this topic; for example, if the
type is class, documentation is provided for the class with name topic.
The function topicName returns the actual name used in this case.

268 help

Details

In the case of unary and binary operators and control-flow special forms, the name may
need to be quoted.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX ver-
sion of the help page through latex (note that LaTeX 2e is needed) and dvips. Depending
on your dvips configuration, hardcopy will be sent to the printer or saved in a file. If the
programs are in non-standard locations and hence were not found at compile time, you can
either set the options latexcmd and dvipscmd, or the environment variables R_LATEXCMD
and R_DVIPSCMD appropriately. The appearance of the output can be customized through
a file ‘Rhelp.cfg’ somewhere in your LaTeX search path.

Note

Unless lib.loc is specified explicitly, the loaded packages are searched before those in the
specified libraries. This ensures that if a library is loaded from a library not in the known
library trees, then the help from the loaded library is used. If lib.loc is specified explicitly,
the loaded packages are not searched.

If this search fails and argument try.all.packages is TRUE and neither packages nor
lib.loc is specified, then all the packages in the known library trees are searched for help
on topic and a list of (any) packages where help may be found is printed (but no help is
shown). N.B. searching all packages can be slow.

The help files can be many small files. On some file systems it is desirable to save space,
and the text files in the ‘help’ directory of an installed package can be zipped up as a zip
archive ‘Rhelp.zip’. Ensure that file ‘AnIndex’ remains un-zipped. Similarly, all the files in
the ‘latex’ directory can be zipped to ‘Rhelp.zip’.

See Also

help.search() for finding help pages on a “vague” topic. help.start() which opens the
HTML version of the R help pages; library() for listing available packages and the user-
level objects they contain; data() for listing available data sets; methods().

See prompt() to get a prototype for writing help pages of private packages.

Examples

help()

help(help) # the same

help(lapply)

?lapply # the same

help("for") # or ?"for", but the quotes are needed

?"+"

help(package = stepfun) # get help even when package is not loaded

data() # list all available data sets

?women # information about data set "women"

topi <- "women"

help(topi) ##--> Error: No documentation for ‘topi’

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)

help.search 269

help("bs", try.all.packages=TRUE) # reports can be found in package ‘splines’

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string
in the (file) name, alias, title, or keyword entries (or any combination thereof), using either
fuzzy matching or regular expression matching. Names and titles of the matched help
entries are nicely displayed.

Usage

help.search(pattern, fields = c("alias", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL)

Arguments

pattern a character string to be matched in the specified fields. If this is given,
the arguments apropos, keyword, and whatis are ignored.

fields a character vector specifying the fields of the help data bases to be
searched. The entries must be abbreviations of "name", "alias",
"title", and "keyword", corresponding to the help page’s (file) name,
the topics it provides documentation for, its title, and the keywords it can
be classified to.

apropos a character string to be matched in the help page topics and title.

keyword a character string to be matched in the help page keywords.

whatis a character string to be matched in the help page topics.

ignore.case a logical. If TRUE, case is ignored during matching; if FALSE, pattern
matching is case sensitive.

package a character vector with the names of packages to search through, or NULL
in which case all available packages in the specified library trees lib.loc
are searched.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

help.db a character string giving the file path to a previously built and saved help
data base, or NULL.

verbose logical; if TRUE, the search process is traced.

rebuild a logical indicating whether the help data base should be rebuilt.

270 help.search

agrep if NULL (the default) and the character string to be matched consists of
alphanumeric characters, whitespace or a dash only, approximate (fuzzy)
matching via agrep is used; otherwise, it is taken to contain a regular
expression to be matched via grep. If FALSE, approximate matching is not
used. Otherwise, one can give a numeric or a list specifying the maximal
distance for the approximate match, see argument max.distance in the
documentation for agrep.

Details

Upon installation of a package, the Perl script ‘Rd2contents.pl’ creates a ‘CONTENTS’ data
base which contains the information on name, aliases, title and keywords (as well as the
URL of the HTML version of the help file) in Debian Control Format. This is the data base
searched by help.search().

The arguments apropos and whatis play a role similar to the Unix commands with the
same names.

If possible, the help data base is saved to the file ‘help.db’ in the ‘.R’ subdirectory of the
user’s home directory or the current working directory.

Note that currently, the aliases in the matching help files are not displayed.

Value

The results are returned in an object of class "hsearch", which has a print method for
nicely displaying the results of the query. This mechanism is experimental, and may change
in future versions of R.

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online doc-
umentation, which offers a similar search mechanism.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear

models

help.search("non-existent topic")

help.search("print") # All help pages with topics or title

matching ‘print’

help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level

plots.

Help pages with documented topics starting with ‘try’.

help.search("\\btry", fields = "alias")

Do not use ‘^’ or ‘$’ when matching aliases or keywords.

help.start 271

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage

help.start(gui = "irrelevant", browser = getOption("browser"),
remote = NULL)

Arguments

gui just for compatibility with S-PLUS.

browser the name of the program to be used as hypertext browser. It should be
in the PATH, or a full path specified.

remote A character giving a valid URL for the ‘$R HOME’ directory on a remote
location.

Details

All the packages in the known library trees are linked to directory ‘.R’ in the per-session
temporary directory. The links are re-made each time help.start is run, which should be
done after packages are installed, updated or removed.

If the browser given by the browser argument is different from the default browser as
specified by options("browser"), the default is changed to the given browser so that it
gets used for all future help requests.

See Also

help() for on- and off-line help in ASCII/Editor or PostScript format.

browseURL for how the help file is displayed.

Examples

help.start()

Hershey Hershey Vector Fonts in R

272 Hershey

Description

If the vfont argument to one of the text-drawing functions (text, mtext, title, axis, and
contour) is a character vector of length 2, hershey vector fonts are used to render the text.

These fonts have two advantages:

1. vector fonts describe each character in terms of a set of points; R renders the character
by joining up the points with straight lines. This intimate knowledge of the outline of
each character means that R can arbitrarily transform the characters, which can mean
that the vector fonts look better for rotated and 3d text.

2. this implementation was adapted from the GNU libplot library which provides support
for non-ASCII and non-English fonts. This means that it is possible, for example, to
produce weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

Usage

Hershey

Details

The Hershey characters are organised into a set of fonts, which are specified by a typeface
(e.g., serif or sans serif) and a fontindex or “style” (e.g., plain or italic). The first
element of vfont specifies the typeface and the second element specifies the fontindex. The
first table produced by example(Hershey) shows the character a produced by each of the
different fonts.

The available typeface and fontindex values are available as list components of the vari-
able Hershey. The allowed pairs for (typeface, fontindex) are:

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic

Hershey 273

sans serif symbol plain
sans serif symbol italic

and the indices of these are available as Hershey$allowed.

Escape sequences: The string to be drawn can include escape sequences, which all begin
with a \. When R encounters a \, rather than drawing the \, it treats the subsequent
character(s) as a coded description of what to draw.
One useful escape sequence (in the current context) is of the form: \123. The three
digits following the \ specify an octal code for a character. For example, the octal code
for p is 160 so the strings "p" and "\160" are equivalent. This is useful for producing
characters when there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with \\. These are described below.

Symbols: an entire string of Greek symbols can be produced by selecting the Serif Symbol
or Sans Serif Symbol typeface. To allow Greek symbols to be embedded in a string
which uses a non-symbol typeface, there are a set of symbol escape sequences of the
form \\ab. For example, the escape sequence *a produces a Greek alpha. The
second table in example(Hershey) shows all of the symbol escape sequences and the
symbols that they produce.

ISO Latin-1: further escape sequences of the form \\ab are provided for producing ISO
Latin-1 characters (for example, if you only have a US keyboard). Another option is
to use the appropriate octal code. The (non-ASCII) ISO Latin-1 characters are in the
range 241...377. For example, \366 produces the character o with an umlaut. The
third table in example(Hershey) shows all of the ISO Latin-1 escape sequences.

Special Characters: a set of characters are provided which do not fall into any standard
font. These can only be accessed by escape sequence. For example, \\LI produces the
zodiac sign for Libra, and \\JU produces the astronomical sign for Jupiter. The fourth
table in example(Hershey) shows all of the special character escape sequences.

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encod-
ing. On a US keyboard, these can be produced using the Serif typeface and Cyrillic
(or Oblique Cyrillic) fontindex and specifying an octal code in the range 300 to 337
for lower case characters or 340 to 377 for upper case characters. The fifth table in
example(Hershey) shows the octal codes for the available cyrillic characters.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are imple-
mented according to the EUC (Extended Unix Code) encoding. Each character is
idenitified by a unique hexadecimal code. The Hiragana characters are in the range
0x2421 to 0x2473, Katakana are in the range 0x2521 to 0x2576, and Kanji are (scat-
tered about) in the range 0x3021 to 0x6d55.
When using the Serif typeface and EUC fontindex, these characters can be produced
by a pair of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two
digits and add 0x80 and do the same to the second two digits (e.g., 0x21 and 0x24
become 0xa4 and 0xa1), then convert both to octal (e.g., 0xa4 and 0xa1 become 244
and 241). For example, the first Hiragana character is produced by \244\241.
It is also possible to use the hexadecimal code directly. This works for all non-EUC
fonts by specifying an escape sequence of the form \\#J1234. For example, the first
Hiragana character is produced by \\#J2421.
The Kanji characters may be specified in a third way, using the so-called ”Nelson
Index”, by specifying an escape sequence of the form \\#N1234. For example, the
Kanji for “one” is produced by \\#N0001.

274 Hershey

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large
array. Some characters are not accessible in any of the Hershey fonts. These char-
acters can only be accessed via an escape sequence of the form \\#H1234. For ex-
ample, the fleur-de-lys is produced by \\#H0746. The sixth and seventh tables of
example(Hershey) shows all of the available raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

text, contour, Japanese

Examples

str(Hershey)

######

create tables of vector font functionality

######

make.table <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*2 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=FALSE)

savepar

}

get.r <- function(i, nr) i %% nr + 1

get.c <- function(i, nr) i %/% nr + 1

draw.title <- function(title, i = 0, nr, nc) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text((nc*2 + 1)/2, 0, title, font=2)

}

draw.sample.cell <- function(typeface, fontindex, string, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text(2*(c - 1) + 1, -r, paste(typeface, fontindex))

text(2*c, -r, string, vfont=c(typeface, fontindex), cex=1.5)

rect(2*(c - 1) + .5, -(r - .5), 2*c + .5, -(r + .5), border="grey")

}

draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

if (is.null(raw.string))

raw.string <- paste("\\", string, sep="")

text(2*(c - 1) + 1, -r, raw.string, col="grey")

text(2*c, -r, string, vfont=c(typeface, fontindex))

rect(2*(c - 1) + .5, -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

nr <- 23

nc <- 1

http://www.gnu.org/software/plotutils/plotutils.html

Hershey 275

oldpar <- make.table(nr, nc)

i <- 0

draw.title("Sample ’a’ for each available font", i, nr, nc)

draw.sample.cell("serif", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "cyrillic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "oblique cyrillic", "a", i, nr); i <- i + 1

draw.sample.cell("serif", "EUC", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("script", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("script", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("script", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("gothic english", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("gothic german", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("gothic italian", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "italic", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "bold", "a", i, nr); i <- i + 1

draw.sample.cell("serif symbol", "bold italic", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif symbol", "plain", "a", i, nr); i <- i + 1

draw.sample.cell("sans serif symbol", "italic", "a", i, nr); i <- i + 1

nr <- 25

nc <- 6

tf <- "serif"

fi <- "plain"

make.table(nr, nc)

i <- 0

draw.title("Symbol (incl. Greek) Escape Sequences", i, nr, nc)

Greek alphabet in order

draw.vf.cell(tf, fi, "*A", i, nr); i<-i+1; { "Alpha"}

draw.vf.cell(tf, fi, "*B", i, nr); i<-i+1; { "Beta"}

draw.vf.cell(tf, fi, "*G", i, nr); i<-i+1; { "Gamma"}

draw.vf.cell(tf, fi, "*D", i, nr); i<-i+1; { "Delta"}

draw.vf.cell(tf, fi, "*E", i, nr); i<-i+1; { "Epsilon"}

draw.vf.cell(tf, fi, "*Z", i, nr); i<-i+1; { "Zeta"}

draw.vf.cell(tf, fi, "*Y", i, nr); i<-i+1; { "Eta"}

draw.vf.cell(tf, fi, "*H", i, nr); i<-i+1; { "Theta"}

draw.vf.cell(tf, fi, "*I", i, nr); i<-i+1; { "Iota"}

draw.vf.cell(tf, fi, "*K", i, nr); i<-i+1; { "Kappa"}

draw.vf.cell(tf, fi, "*L", i, nr); i<-i+1; { "Lambda"}

draw.vf.cell(tf, fi, "*M", i, nr); i<-i+1; { "Mu"}

draw.vf.cell(tf, fi, "*N", i, nr); i<-i+1; { "Nu"}

draw.vf.cell(tf, fi, "*C", i, nr); i<-i+1; { "Xi"}

draw.vf.cell(tf, fi, "*O", i, nr); i<-i+1; { "Omicron"}

draw.vf.cell(tf, fi, "*P", i, nr); i<-i+1; { "Pi"}

draw.vf.cell(tf, fi, "*R", i, nr); i<-i+1; { "Rho"}

draw.vf.cell(tf, fi, "*S", i, nr); i<-i+1; { "Sigma"}

draw.vf.cell(tf, fi, "*T", i, nr); i<-i+1; { "Tau"}

draw.vf.cell(tf, fi, "*U", i, nr); i<-i+1; { "Upsilon"}

draw.vf.cell(tf, fi, "\\+U", i, nr); i<-i+1; { "Upsilon1"}

draw.vf.cell(tf, fi, "*F", i, nr); i<-i+1; { "Phi"}

276 Hershey

draw.vf.cell(tf, fi, "*X", i, nr); i<-i+1; { "Chi"}

draw.vf.cell(tf, fi, "*Q", i, nr); i<-i+1; { "Psi"}

draw.vf.cell(tf, fi, "*W", i, nr); i<-i+1; { "Omega"}

#

draw.vf.cell(tf, fi, "*a", i, nr); i<-i+1; { "alpha"}

draw.vf.cell(tf, fi, "*b", i, nr); i<-i+1; { "beta"}

draw.vf.cell(tf, fi, "*g", i, nr); i<-i+1; { "gamma"}

draw.vf.cell(tf, fi, "*d", i, nr); i<-i+1; { "delta"}

draw.vf.cell(tf, fi, "*e", i, nr); i<-i+1; { "epsilon"}

draw.vf.cell(tf, fi, "*z", i, nr); i<-i+1; { "zeta"}

draw.vf.cell(tf, fi, "*y", i, nr); i<-i+1; { "eta"}

draw.vf.cell(tf, fi, "*h", i, nr); i<-i+1; { "theta"}

draw.vf.cell(tf, fi, "\\+h", i, nr); i<-i+1; { "theta1"}

draw.vf.cell(tf, fi, "*i", i, nr); i<-i+1; { "iota"}

draw.vf.cell(tf, fi, "*k", i, nr); i<-i+1; { "kappa"}

draw.vf.cell(tf, fi, "*l", i, nr); i<-i+1; { "lambda"}

draw.vf.cell(tf, fi, "*m", i, nr); i<-i+1; { "mu"}

draw.vf.cell(tf, fi, "*n", i, nr); i<-i+1; { "nu"}

draw.vf.cell(tf, fi, "*c", i, nr); i<-i+1; { "xi"}

draw.vf.cell(tf, fi, "*o", i, nr); i<-i+1; { "omicron"}

draw.vf.cell(tf, fi, "*p", i, nr); i<-i+1; { "pi"}

draw.vf.cell(tf, fi, "*r", i, nr); i<-i+1; { "rho"}

draw.vf.cell(tf, fi, "*s", i, nr); i<-i+1; { "sigma"}

draw.vf.cell(tf, fi, "\\ts", i, nr); i<-i+1; { "sigma1"}

draw.vf.cell(tf, fi, "*t", i, nr); i<-i+1; { "tau"}

draw.vf.cell(tf, fi, "*u", i, nr); i<-i+1; { "upsilon"}

draw.vf.cell(tf, fi, "*f", i, nr); i<-i+1; { "phi"}

draw.vf.cell(tf, fi, "\\+f", i, nr); i<-i+1; { "phi1"}

draw.vf.cell(tf, fi, "*x", i, nr); i<-i+1; { "chi"}

draw.vf.cell(tf, fi, "*q", i, nr); i<-i+1; { "psi"}

draw.vf.cell(tf, fi, "*w", i, nr); i<-i+1; { "omega"}

draw.vf.cell(tf, fi, "\\+p", i, nr); i<-i+1; { "omega1"}

#

draw.vf.cell(tf, fi, "\\fa", i, nr); i<-i+1; { "universal"}

draw.vf.cell(tf, fi, "\\te", i, nr); i<-i+1; { "existential"}

draw.vf.cell(tf, fi, "\\st", i, nr); i<-i+1; { "suchthat"}

draw.vf.cell(tf, fi, "**", i, nr); i<-i+1; { "asteriskmath"}

draw.vf.cell(tf, fi, "\\=~", i, nr); i<-i+1; { "congruent"}

draw.vf.cell(tf, fi, "\\tf", i, nr); i<-i+1; { "therefore"}

draw.vf.cell(tf, fi, "\\pp", i, nr); i<-i+1; { "perpendicular"}

draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underline"}

draw.vf.cell(tf, fi, "\\rx", i, nr); i<-i+1; { "radicalex"}

draw.vf.cell(tf, fi, "\\ap", i, nr); i<-i+1; { "similar"}

draw.vf.cell(tf, fi, "\\fm", i, nr); i<-i+1; { "minute"}

draw.vf.cell(tf, fi, "\\<=", i, nr); i<-i+1; { "lessequal"}

draw.vf.cell(tf, fi, "\\f/", i, nr); i<-i+1; { "fraction"}

draw.vf.cell(tf, fi, "\\if", i, nr); i<-i+1; { "infinity"}

draw.vf.cell(tf, fi, "\\Fn", i, nr); i<-i+1; { "florin"}

draw.vf.cell(tf, fi, "\\CL", i, nr); i<-i+1; { "club"}

draw.vf.cell(tf, fi, "\\DI", i, nr); i<-i+1; { "diamond"}

draw.vf.cell(tf, fi, "\\HE", i, nr); i<-i+1; { "heart"}

draw.vf.cell(tf, fi, "\\SP", i, nr); i<-i+1; { "spade"}

draw.vf.cell(tf, fi, "\\<>", i, nr); i<-i+1; { "arrowboth"}

draw.vf.cell(tf, fi, "\\<-", i, nr); i<-i+1; { "arrowleft"}

draw.vf.cell(tf, fi, "\\ua", i, nr); i<-i+1; { "arrowup"}

draw.vf.cell(tf, fi, "\\->", i, nr); i<-i+1; { "arrowright"}

Hershey 277

draw.vf.cell(tf, fi, "\\da", i, nr); i<-i+1; { "arrowdown"}

draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}

draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}

draw.vf.cell(tf, fi, "\\sd", i, nr); i<-i+1; { "second"}

draw.vf.cell(tf, fi, "\\>=", i, nr); i<-i+1; { "greaterequal"}

draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}

draw.vf.cell(tf, fi, "\\pt", i, nr); i<-i+1; { "proportional"}

draw.vf.cell(tf, fi, "\\pd", i, nr); i<-i+1; { "partialdiff"}

draw.vf.cell(tf, fi, "\\bu", i, nr); i<-i+1; { "bullet"}

draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}

draw.vf.cell(tf, fi, "\\!=", i, nr); i<-i+1; { "notequal"}

draw.vf.cell(tf, fi, "\\==", i, nr); i<-i+1; { "equivalence"}

draw.vf.cell(tf, fi, "\\~~", i, nr); i<-i+1; { "approxequal"}

draw.vf.cell(tf, fi, "\\..", i, nr); i<-i+1; { "ellipsis"}

draw.vf.cell(tf, fi, "\\an", i, nr); i<-i+1; { "arrowhorizex"}

draw.vf.cell(tf, fi, "\\CR", i, nr); i<-i+1; { "carriagereturn"}

draw.vf.cell(tf, fi, "\\Ah", i, nr); i<-i+1; { "aleph"}

draw.vf.cell(tf, fi, "\\Im", i, nr); i<-i+1; { "Ifraktur"}

draw.vf.cell(tf, fi, "\\Re", i, nr); i<-i+1; { "Rfraktur"}

draw.vf.cell(tf, fi, "\\wp", i, nr); i<-i+1; { "weierstrass"}

draw.vf.cell(tf, fi, "\\c*", i, nr); i<-i+1; { "circlemultiply"}

draw.vf.cell(tf, fi, "\\c+", i, nr); i<-i+1; { "circleplus"}

draw.vf.cell(tf, fi, "\\es", i, nr); i<-i+1; { "emptyset"}

draw.vf.cell(tf, fi, "\\ca", i, nr); i<-i+1; { "cap"}

draw.vf.cell(tf, fi, "\\cu", i, nr); i<-i+1; { "cup"}

draw.vf.cell(tf, fi, "\\SS", i, nr); i<-i+1; { "superset"}

draw.vf.cell(tf, fi, "\\ip", i, nr); i<-i+1; { "reflexsuperset"}

draw.vf.cell(tf, fi, "\\n<", i, nr); i<-i+1; { "notsubset"}

draw.vf.cell(tf, fi, "\\SB", i, nr); i<-i+1; { "subset"}

draw.vf.cell(tf, fi, "\\ib", i, nr); i<-i+1; { "reflexsubset"}

draw.vf.cell(tf, fi, "\\mo", i, nr); i<-i+1; { "element"}

draw.vf.cell(tf, fi, "\\nm", i, nr); i<-i+1; { "notelement"}

draw.vf.cell(tf, fi, "\\/_", i, nr); i<-i+1; { "angle"}

draw.vf.cell(tf, fi, "\\gr", i, nr); i<-i+1; { "nabla"}

draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registerserif"}

draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyrightserif"}

draw.vf.cell(tf, fi, "\\tm", i, nr); i<-i+1; { "trademarkserif"}

draw.vf.cell(tf, fi, "\\PR", i, nr); i<-i+1; { "product"}

draw.vf.cell(tf, fi, "\\sr", i, nr); i<-i+1; { "radical"}

draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "dotmath"}

draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}

draw.vf.cell(tf, fi, "\\AN", i, nr); i<-i+1; { "logicaland"}

draw.vf.cell(tf, fi, "\\OR", i, nr); i<-i+1; { "logicalor"}

draw.vf.cell(tf, fi, "\\hA", i, nr); i<-i+1; { "arrowdblboth"}

draw.vf.cell(tf, fi, "\\lA", i, nr); i<-i+1; { "arrowdblleft"}

draw.vf.cell(tf, fi, "\\uA", i, nr); i<-i+1; { "arrowdblup"}

draw.vf.cell(tf, fi, "\\rA", i, nr); i<-i+1; { "arrowdblright"}

draw.vf.cell(tf, fi, "\\dA", i, nr); i<-i+1; { "arrowdbldown"}

draw.vf.cell(tf, fi, "\\lz", i, nr); i<-i+1; { "lozenge"}

draw.vf.cell(tf, fi, "\\la", i, nr); i<-i+1; { "angleleft"}

draw.vf.cell(tf, fi, "\\RG", i, nr); i<-i+1; { "registersans"}

draw.vf.cell(tf, fi, "\\CO", i, nr); i<-i+1; { "copyrightsans"}

draw.vf.cell(tf, fi, "\\TM", i, nr); i<-i+1; { "trademarksans"}

draw.vf.cell(tf, fi, "\\SU", i, nr); i<-i+1; { "summation"}

draw.vf.cell(tf, fi, "\\lc", i, nr); i<-i+1; { "bracketlefttp"}

draw.vf.cell(tf, fi, "\\lf", i, nr); i<-i+1; { "bracketleftbt"}

draw.vf.cell(tf, fi, "\\ra", i, nr); i<-i+1; { "angleright"}

278 Hershey

draw.vf.cell(tf, fi, "\\is", i, nr); i<-i+1; { "integral"}

draw.vf.cell(tf, fi, "\\rc", i, nr); i<-i+1; { "bracketrighttp"}

draw.vf.cell(tf, fi, "\\rf", i, nr); i<-i+1; { "bracketrightbt"}

draw.vf.cell(tf, fi, "\\~=", i, nr); i<-i+1; { "congruent"}

draw.vf.cell(tf, fi, "\\pr", i, nr); i<-i+1; { "minute"}

draw.vf.cell(tf, fi, "\\in", i, nr); i<-i+1; { "infinity"}

draw.vf.cell(tf, fi, "\\n=", i, nr); i<-i+1; { "notequal"}

draw.vf.cell(tf, fi, "\\dl", i, nr); i<-i+1; { "nabla"}

nr <- 25

nc <- 4

make.table(nr, nc)

i <- 0

draw.title("ISO Latin-1 Escape Sequences", i, nr, nc)

draw.vf.cell(tf, fi, "\\r!", i, nr); i<-i+1; { "exclamdown"}

draw.vf.cell(tf, fi, "\\ct", i, nr); i<-i+1; { "cent"}

draw.vf.cell(tf, fi, "\\Po", i, nr); i<-i+1; { "sterling"}

draw.vf.cell(tf, fi, "\\Ye", i, nr); i<-i+1; { "yen"}

draw.vf.cell(tf, fi, "\\bb", i, nr); i<-i+1; { "brokenbar"}

draw.vf.cell(tf, fi, "\\sc", i, nr); i<-i+1; { "section"}

draw.vf.cell(tf, fi, "\\ad", i, nr); i<-i+1; { "dieresis"}

draw.vf.cell(tf, fi, "\\co", i, nr); i<-i+1; { "copyright"}

draw.vf.cell(tf, fi, "\\Of", i, nr); i<-i+1; { "ordfeminine"}

draw.vf.cell(tf, fi, "\\no", i, nr); i<-i+1; { "logicalnot"}

draw.vf.cell(tf, fi, "\\hy", i, nr); i<-i+1; { "hyphen"}

draw.vf.cell(tf, fi, "\\rg", i, nr); i<-i+1; { "registered"}

draw.vf.cell(tf, fi, "\\a-", i, nr); i<-i+1; { "macron"}

draw.vf.cell(tf, fi, "\\de", i, nr); i<-i+1; { "degree"}

draw.vf.cell(tf, fi, "\\+-", i, nr); i<-i+1; { "plusminus"}

draw.vf.cell(tf, fi, "\\S2", i, nr); i<-i+1; { "twosuperior"}

draw.vf.cell(tf, fi, "\\S3", i, nr); i<-i+1; { "threesuperior"}

draw.vf.cell(tf, fi, "\\aa", i, nr); i<-i+1; { "acute"}

draw.vf.cell(tf, fi, "*m", i, nr); i<-i+1; { "mu"}

draw.vf.cell(tf, fi, "\\md", i, nr); i<-i+1; { "periodcentered"}

draw.vf.cell(tf, fi, "\\S1", i, nr); i<-i+1; { "onesuperior"}

draw.vf.cell(tf, fi, "\\Om", i, nr); i<-i+1; { "ordmasculine"}

draw.vf.cell(tf, fi, "\\14", i, nr); i<-i+1; { "onequarter"}

draw.vf.cell(tf, fi, "\\12", i, nr); i<-i+1; { "onehalf"}

draw.vf.cell(tf, fi, "\\34", i, nr); i<-i+1; { "threequarters"}

draw.vf.cell(tf, fi, "\\r?", i, nr); i<-i+1; { "questiondown"}

draw.vf.cell(tf, fi, "\\‘A", i, nr); i<-i+1; { "Agrave"}

draw.vf.cell(tf, fi, "\\’A", i, nr); i<-i+1; { "Aacute"}

draw.vf.cell(tf, fi, "\\^A", i, nr); i<-i+1; { "Acircumflex"}

draw.vf.cell(tf, fi, "\\~A", i, nr); i<-i+1; { "Atilde"}

draw.vf.cell(tf, fi, "\\:A", i, nr); i<-i+1; { "Adieresis"}

draw.vf.cell(tf, fi, "\\oA", i, nr); i<-i+1; { "Aring"}

draw.vf.cell(tf, fi, "\\AE", i, nr); i<-i+1; { "AE"}

draw.vf.cell(tf, fi, "\\,C", i, nr); i<-i+1; { "Ccedilla"}

draw.vf.cell(tf, fi, "\\‘E", i, nr); i<-i+1; { "Egrave"}

draw.vf.cell(tf, fi, "\\’E", i, nr); i<-i+1; { "Eacute"}

draw.vf.cell(tf, fi, "\\^E", i, nr); i<-i+1; { "Ecircumflex"}

draw.vf.cell(tf, fi, "\\:E", i, nr); i<-i+1; { "Edieresis"}

draw.vf.cell(tf, fi, "\\‘I", i, nr); i<-i+1; { "Igrave"}

draw.vf.cell(tf, fi, "\\’I", i, nr); i<-i+1; { "Iacute"}

draw.vf.cell(tf, fi, "\\^I", i, nr); i<-i+1; { "Icircumflex"}

draw.vf.cell(tf, fi, "\\:I", i, nr); i<-i+1; { "Idieresis"}

draw.vf.cell(tf, fi, "\\~N", i, nr); i<-i+1; { "Ntilde"}

Hershey 279

draw.vf.cell(tf, fi, "\\‘O", i, nr); i<-i+1; { "Ograve"}

draw.vf.cell(tf, fi, "\\’O", i, nr); i<-i+1; { "Oacute"}

draw.vf.cell(tf, fi, "\\^O", i, nr); i<-i+1; { "Ocircumflex"}

draw.vf.cell(tf, fi, "\\~O", i, nr); i<-i+1; { "Otilde"}

draw.vf.cell(tf, fi, "\\:O", i, nr); i<-i+1; { "Odieresis"}

draw.vf.cell(tf, fi, "\\mu", i, nr); i<-i+1; { "multiply"}

draw.vf.cell(tf, fi, "\\/O", i, nr); i<-i+1; { "Oslash"}

draw.vf.cell(tf, fi, "\\‘U", i, nr); i<-i+1; { "Ugrave"}

draw.vf.cell(tf, fi, "\\’U", i, nr); i<-i+1; { "Uacute"}

draw.vf.cell(tf, fi, "\\^U", i, nr); i<-i+1; { "Ucircumflex"}

draw.vf.cell(tf, fi, "\\:U", i, nr); i<-i+1; { "Udieresis"}

draw.vf.cell(tf, fi, "\\’Y", i, nr); i<-i+1; { "Yacute"}

draw.vf.cell(tf, fi, "\\ss", i, nr); i<-i+1; { "germandbls"} # WRONG!

draw.vf.cell(tf, fi, "\\‘a", i, nr); i<-i+1; { "agrave"}

draw.vf.cell(tf, fi, "\\’a", i, nr); i<-i+1; { "aacute"}

draw.vf.cell(tf, fi, "\\^a", i, nr); i<-i+1; { "acircumflex"}

draw.vf.cell(tf, fi, "\\~a", i, nr); i<-i+1; { "atilde"}

draw.vf.cell(tf, fi, "\\:a", i, nr); i<-i+1; { "adieresis"}

draw.vf.cell(tf, fi, "\\oa", i, nr); i<-i+1; { "aring"}

draw.vf.cell(tf, fi, "\\ae", i, nr); i<-i+1; { "ae"}

draw.vf.cell(tf, fi, "\\,c", i, nr); i<-i+1; { "ccedilla"}

draw.vf.cell(tf, fi, "\\‘e", i, nr); i<-i+1; { "egrave"}

draw.vf.cell(tf, fi, "\\’e", i, nr); i<-i+1; { "eacute"}

draw.vf.cell(tf, fi, "\\^e", i, nr); i<-i+1; { "ecircumflex"}

draw.vf.cell(tf, fi, "\\:e", i, nr); i<-i+1; { "edieresis"}

draw.vf.cell(tf, fi, "\\‘i", i, nr); i<-i+1; { "igrave"}

draw.vf.cell(tf, fi, "\\’i", i, nr); i<-i+1; { "iacute"}

draw.vf.cell(tf, fi, "\\^i", i, nr); i<-i+1; { "icircumflex"}

draw.vf.cell(tf, fi, "\\:i", i, nr); i<-i+1; { "idieresis"}

draw.vf.cell(tf, fi, "\\~n", i, nr); i<-i+1; { "ntilde"}

draw.vf.cell(tf, fi, "\\‘o", i, nr); i<-i+1; { "ograve"}

draw.vf.cell(tf, fi, "\\’o", i, nr); i<-i+1; { "oacute"}

draw.vf.cell(tf, fi, "\\^o", i, nr); i<-i+1; { "ocircumflex"}

draw.vf.cell(tf, fi, "\\~o", i, nr); i<-i+1; { "otilde"}

draw.vf.cell(tf, fi, "\\:o", i, nr); i<-i+1; { "odieresis"}

draw.vf.cell(tf, fi, "\\di", i, nr); i<-i+1; { "divide"}

draw.vf.cell(tf, fi, "\\/o", i, nr); i<-i+1; { "oslash"}

draw.vf.cell(tf, fi, "\\‘u", i, nr); i<-i+1; { "ugrave"}

draw.vf.cell(tf, fi, "\\’u", i, nr); i<-i+1; { "uacute"}

draw.vf.cell(tf, fi, "\\^u", i, nr); i<-i+1; { "ucircumflex"}

draw.vf.cell(tf, fi, "\\:u", i, nr); i<-i+1; { "udieresis"}

draw.vf.cell(tf, fi, "\\’y", i, nr); i<-i+1; { "yacute"}

draw.vf.cell(tf, fi, "\\:y", i, nr); i<-i+1; { "ydieresis"}

nr <- 25

nc <- 2

make.table(nr, nc)

i <- 0

draw.title("Special Escape Sequences", i, nr, nc)

draw.vf.cell(tf, fi, "\\AR", i, nr); i<-i+1; { "aries"}

draw.vf.cell(tf, fi, "\\TA", i, nr); i<-i+1; { "taurus"}

draw.vf.cell(tf, fi, "\\GE", i, nr); i<-i+1; { "gemini"}

draw.vf.cell(tf, fi, "\\CA", i, nr); i<-i+1; { "cancer"}

draw.vf.cell(tf, fi, "\\LE", i, nr); i<-i+1; { "leo"}

draw.vf.cell(tf, fi, "\\VI", i, nr); i<-i+1; { "virgo"}

draw.vf.cell(tf, fi, "\\LI", i, nr); i<-i+1; { "libra"}

draw.vf.cell(tf, fi, "\\SC", i, nr); i<-i+1; { "scorpio"}

280 Hershey

draw.vf.cell(tf, fi, "\\SG", i, nr); i<-i+1; { "sagittarius"}

draw.vf.cell(tf, fi, "\\CP", i, nr); i<-i+1; { "capricornus"}

draw.vf.cell(tf, fi, "\\AQ", i, nr); i<-i+1; { "aquarius"}

draw.vf.cell(tf, fi, "\\PI", i, nr); i<-i+1; { "pisces"}

draw.vf.cell(tf, fi, "\\~-", i, nr); i<-i+1; { "modifiedcongruent"}

draw.vf.cell(tf, fi, "\\hb", i, nr); i<-i+1; { "hbar"}

draw.vf.cell(tf, fi, "\\IB", i, nr); i<-i+1; { "interbang"}

draw.vf.cell(tf, fi, "\\Lb", i, nr); i<-i+1; { "lambdabar"}

draw.vf.cell(tf, fi, "\\UD", i, nr); i<-i+1; { "undefined"}

draw.vf.cell(tf, fi, "\\SO", i, nr); i<-i+1; { "sun"}

draw.vf.cell(tf, fi, "\\ME", i, nr); i<-i+1; { "mercury"}

draw.vf.cell(tf, fi, "\\VE", i, nr); i<-i+1; { "venus"}

draw.vf.cell(tf, fi, "\\EA", i, nr); i<-i+1; { "earth"}

draw.vf.cell(tf, fi, "\\MA", i, nr); i<-i+1; { "mars"}

draw.vf.cell(tf, fi, "\\JU", i, nr); i<-i+1; { "jupiter"}

draw.vf.cell(tf, fi, "\\SA", i, nr); i<-i+1; { "saturn"}

draw.vf.cell(tf, fi, "\\UR", i, nr); i<-i+1; { "uranus"}

draw.vf.cell(tf, fi, "\\NE", i, nr); i<-i+1; { "neptune"}

draw.vf.cell(tf, fi, "\\PL", i, nr); i<-i+1; { "pluto"}

draw.vf.cell(tf, fi, "\\LU", i, nr); i<-i+1; { "moon"}

draw.vf.cell(tf, fi, "\\CT", i, nr); i<-i+1; { "comet"}

draw.vf.cell(tf, fi, "\\ST", i, nr); i<-i+1; { "star"}

draw.vf.cell(tf, fi, "\\AS", i, nr); i<-i+1; { "ascendingnode"}

draw.vf.cell(tf, fi, "\\DE", i, nr); i<-i+1; { "descendingnode"}

draw.vf.cell(tf, fi, "\\s-", i, nr); i<-i+1; { "s1"}

draw.vf.cell(tf, fi, "\\dg", i, nr); i<-i+1; { "dagger"}

draw.vf.cell(tf, fi, "\\dd", i, nr); i<-i+1; { "daggerdbl"}

draw.vf.cell(tf, fi, "\\li", i, nr); i<-i+1; { "line integral"}

draw.vf.cell(tf, fi, "\\-+", i, nr); i<-i+1; { "minusplus"}

draw.vf.cell(tf, fi, "\\||", i, nr); i<-i+1; { "parallel"}

draw.vf.cell(tf, fi, "\\rn", i, nr); i<-i+1; { "overscore"}

draw.vf.cell(tf, fi, "\\ul", i, nr); i<-i+1; { "underscore"}

nr <- 25

nc <- 3

make.table(nr, nc)

code <- c(300:307,310:317,320:327,330:337,340:347,350:357,360:367,370:377,

243,263)

string <- c(

"\300","\301","\302","\303","\304","\305","\306","\307",

"\310","\311","\312","\313","\314","\315",

"\316","\317","\320","\321","\322","\323",

"\324","\325","\326","\327","\330","\331",

"\332","\333","\334","\335","\336","\337",

"\340","\341","\342","\343","\344","\345","\346","\347",

"\350","\351","\352","\353","\354","\355",

"\356","\357","\360","\361","\362","\363",

"\364","\365","\366","\367","\370","\371",

"\372","\373","\374","\375","\376","\377","\243","\263")

draw.title("Cyrillic Octal Codes", i = 0, nr ,nc)

for (i in 1:66)

draw.vf.cell(tf, "cyrillic", string[i], i-1, nr,

raw.string=paste("\\", as.character(code[i]), sep=""))

nr <- 25

nc <- 3

make.table(nr, nc)

hist 281

code <- c(252,254,256,262:269,275,278:281,284,745,746,750:768,796:802,

804:807,809,814:828,830:834,840:844)

draw.title("Raw Hershey Escape Sequences", i=0, nr, nc)

for (i in 1:75)

draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),

i-1, nr)

make.table(nr, nc)

code <- c(845:847,850:856,860:874,899:909,2296:2299,2318:2332,2367:2382,

4014,4109)

draw.title("More Raw Hershey Escape Sequences", i=0, nr, nc)

for (i in 1:73)

draw.vf.cell(tf, fi, paste("\\#H",formatC(code[i],wid=4,flag=0),sep=""),

i-1, nr)

par(oldpar)

hist Histograms

Description

The generic function hist computes a histogram of the given data values. If plot=TRUE, the
resulting object of class "histogram" is plotted by plot.histogram, before it is returned.

Usage

hist(x, ...)
hist.default(x, breaks = "Sturges", freq = NULL, probability = !freq,

include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, ...)

Arguments

x a vector of values for which the histogram is desired.

breaks one of:

• a vector giving the breakpoints between histogram cells,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of

cells (see Details),
• a function to compute the number of cells.

In the last three cases the number is a suggestion only.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,
the counts component of the result; if FALSE, relative frequencies (“prob-
abilities”), componentdensity, are plotted. Defaults to TRUE iff breaks
are equidistant (and probability is not specified).

probability an alias for !freq, for S compatibility.

282 hist

include.lowest

logical; if TRUE, an ‘x[i]’ equal to the ‘breaks’ value will be included in the
first (or last, for right = FALSE) bar.

right logical; if TRUE, the histograms cells are right-closed (left open) intervals.
density the density of shading lines, in lines per inch. The default value of NULL

means that no shading lines are drawn. Non-positive values of ‘density’
also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).
col a colour to be used to fill the bars. The default of NULL yields unfilled

bars.
border the color of the border around the bars. The default is to use the standard

foreground color.
main, xlab, ylab

these arguments to title have useful defaults here.
xlim, ylim the range of x and y values with sensible defaults.
axes logical. If TRUE (default), axes are draw if the plot is drawn.
plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks

and counts is returned.
labels logical or character. Additionally draw labels on top of bars, if not FALSE;

see plot.histogram.
nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent

to breaks for a scalar or character argument.
... further graphical parameters to title and axis.

Details

If right = TRUE (default), the histogram cells are intervals of the form (a, b], i.e. they
include their right-hand endpoint, but not their left one, with the exception of the first cell
when include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a, b), and include.lowest really has
the meaning of “include highest”.

The default for breaks is "Sturges": see nclass.Sturges. Other names for which algo-
rithms are supplied are "Scott" and "FD" / "Friedman-Diaconis". Case is ignored and
partial matching is used. Alternatively, a function can be supplied which will compute the
intended number of breaks as a function of x.

Value

an object of class "histogram" which is a list with components:

breaks the n+ 1 cell boundaries (= breaks if that was a vector).
counts n integers; for each cell, the number of x[] inside.
density values f̂(xi), as estimated density values. If all(diff(breaks) ==

1), they are the relative frequencies counts/n and in general satisfy∑
i f̂(xi)(bi+1 − bi) = 1, where bi = breaks[i].

intensities same as density. Deprecated, but retained for compatibility.
mids the n cell midpoints.
xname a character string with the actual x argument name.
equidist logical, indicating if the distances between breaks are all the same.

hist.POSIXt 283

Note

The resulting value does not depend on the values of the arguments freq (or probability)
or plot. This is intentionally different from S.

References

Venables, W. N. and Ripley. B. D. (1999) Modern Applied Statistics with S-PLUS. Springer.

See Also

nclass.Sturges, stem, density.

Examples

data(islands)

op <- par(mfrow=c(2, 2))

hist(islands)

str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), br = 12, col="lightblue", border="pink")

##-- For non-equidistant breaks, counts should NOT be graphed unscaled:

r <- hist(sqrt(islands), br = c(4*0:5, 10*3:5, 70, 100, 140), col=’blue1’)

text(r$mids, r$density, r$counts, adj=c(.5, -.5), col=’blue3’)

sapply(r[2:3], sum)

sum(r$density * diff(r$breaks)) # == 1

lines(r, lty = 3, border = "purple") # -> lines.histogram(*)

par(op)

str(hist(islands, plot= FALSE)) #-> 5 breaks

str(hist(islands, br=12, plot= FALSE)) #-> 10 (~= 12) breaks

str(hist(islands, br=c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, br=c(12,20,36,80,200,1000,17000), freq = TRUE,

main = "WRONG histogram") # and warning

hist.POSIXt Histogram of a Date-Time Object

Description

Method for hist applied to date-time objects.

Usage

hist(x, breaks, ..., plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

Arguments

x an object inheriting from class "POSIXt".

breaks a vector of cut points or number giving the number of intervals which
x is to be cut into or an interval specification, one of "secs", "mins",
"hours", "days", "weeks", "months" or "years".

... graphical parameters.

284 hsv

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks
and counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies,
i.e, the counts component of the result; if FALSE, relative frequencies
(“probabilities”) are plotted.

start.on.monday

logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

format for the x-axis labels. See strptime.

Value

An object of class "histogram": see hist.

See Also

seq.POSIXt, axis.POSIXct, hist

Examples

hist(.leap.seconds, "years", freq = TRUE)

hist(.leap.seconds,

seq(ISOdate(1970, 1, 10), ISOdate(2002, 1, 1), "5 years"))

100 random dates in a 10-week period

random.dates <- ISOdate(2001, 1, 1) + 70*86400*runif(100)

hist(random.dates, "weeks", format = "%d %b")

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h=1, s=1, v=1, gamma=1)

Arguments

h,s,v numeric vectors of values in the range [0,1] for “hue”, “saturation” and
“value” to be combined to form a vector of colors. Values in shorter
arguments are recycled.

gamma a “gamma correction”

Value

This function creates a vector of “colors” corresponding to the given values in HSV space.
The values returned by hsv can be used with a col= specification in graphics functions or
in par.

Hyperbolic 285

See Also

rainbow, rgb, gray.

Examples

hsv(.5,.5,.5)

Look at gamma effect:

n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)

op <- par(mfrow=c(3,2),mar=rep(1.5,4))

for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))

plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,

bg = rainbow(n, start=.85, end=.1, gamma = gamma),

main = paste("Red tones; gamma=",format(gamma)))

par(op)

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the
hyperbolic cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent.

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

x a numeric vector

See Also

cos, sin, tan, acos, asin, atan.

Examples

Ceps <- .Machine$double.eps # ‘‘Computer epsilon’’

x <- seq(-3, 3, len=200)

stopifnot(

abs(cosh(x) - (exp(x) + exp(-x))/2) < 20*Ceps,

abs(sinh(x) - (exp(x) - exp(-x))/2) < 20*Ceps,

Mod(cosh(x) - cos(1i*x)) < 20*Ceps,

Mod(sinh(x) - sin(1i*x)/1i) < 20*Ceps,

abs(tanh(x)*cosh(x) - sinh(x)) < 20*Ceps

)

286 Hypergeometric

Inverse:

all(abs(asinh(sinh(x)) - x) < 10*Ceps)

x[abs(acosh(cosh(x)) - abs(x)) > 100*Ceps] #- imprecise for small x

all(abs(atanh(tanh(x)) - x) < 100*Ceps)

all(abs(asinh(x) - log(x + sqrt(x^2 + 1))) < 10*Ceps)

cx <- cosh(x)

all(abs(acosh(cx) - log(cx + sqrt(cx^2 - 1))) < 1000*Ceps)

Hypergeometric The Hypergeometric Distribution

Description

Density, distribution function, quantile function and random generation for the hypergeo-
metric distribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without
replacement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The hypergeometric distribution is used for sampling without replacement. The density of
this distribution with parameters m, n and k (named Np, N − Np, and n, respectively in
the reference below) is given by

p(x) =
(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

identical 287

Value

dhyper gives the density, phyper gives the distribution function, qhyper gives the quantile
function, and rhyper generates random deviates.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second
Edition. New York: Wiley.

Examples

m <- 10; n <- 7; k <- 8

x <- 0:(k+1)

rbind(phyper(x, m, n, k), dhyper(x, m, n, k))

all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE

but error is very small:

signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), dig=3)

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in
this case, FALSE in every other case.

Usage

identical(x, y)

Arguments

x, y any R objects.

Details

A call to identical is the way to test exact equality in if and while statements, as well
as in logical expressions that use && or ||. In all these applications you need to be assured
of getting a single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks
natural, but it is not what these operators are designed to do in R. They return an object
like the arguments. If you expected x and y to be of length 1, but it happened that one of
them wasn’t, you will not get a single FALSE. Similarly, if one of the arguments is NA, the
result is also NA. In either case, the expression if(x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but it was intended
for something different. First, it tries to allow for“reasonable”differences in numeric results.
Second, it returns a descriptive character vector instead of FALSE when the objects do not
match. Therefore, it is not the right function to use for reliable testing either. (If you do
want to allow for numeric fuzziness in comparing objects, you can combine all.equal and
identical, as shown in the examples below.)

The computations in identical are also reliable and usually fast. There should never
be an error. The only known way to kill identical is by having an invalid pointer at

288 identify

the C level, generating a memory fault. It will usually find inequality quickly. Checking
equality for two large, complicated objects can take longer if the objects are identical or
nearly so, but represent completely independent copies. For most applications, however,
the computational cost should be negligible.

As from R 1.6.0, identical sees NaN as different from as.double(NA), but all NaNs are
equal (and all NA of the same type are equal).

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

John Chambers

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons.

Examples

identical(1, NULL) ## FALSE -- don’t try this with ==

identical(1, 1.) ## TRUE in R (both are stored as doubles)

identical(1, as.integer(1)) ## FALSE, stored as different types

how to test for object equality allowing for numeric fuzz

identical(all.equal(x, y), TRUE)

If all.equal thinks the objects are different, it returns a

character string, and this expression evaluates to FALSE

even for unusual R objects :

identical(.GlobalEnv, environment())

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer. If this
point is close to the pointer, its index will be returned as part of the value of the call.

Usage

identify(x, ...)
identify.default(x, y = NULL, labels = seq(along = x), pos = FALSE,

n = length(x), plot = TRUE, offset = 0.5, ...)

ifelse 289

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which
defines coordinates (a plotting structure, time series etc.) can be given as
x and y left undefined.

labels an optional vector, the same length as x and y, giving labels for the points.

pos if pos is TRUE, a component is added to the return value which indicates
where text was plotted relative to each identified point (1=below, 2=left,
3=above and 4=right).

n the maximum number of points to be identified.

plot if plot is TRUE, the labels are printed at the points and if FALSE they are
omitted.

offset the distance (in character widths) which separates the label from identified
points.

... further arguments to par(.).

Details

If in addition, plot is TRUE, the point is labelled with the corresponding element of text.

The labels are placed either below, to the left, above or to the right of the identified point,
depending on where the cursor was.

The identification process is terminated by pressing any mouse button other than the first.

If the window is resized or hidden and then exposed before the identification process has
terminated, any labels drawn by identify will disappear. These will reappear once the
identification process has terminated and the window is resized or hidden and exposed again.
This is because the labels drawn by identify are not recorded in the device’s display list
until the identification process has terminated.

Value

If pos is FALSE, an integer vector containing the indexes of the identified points.

If pos is TRUE, a list containing a component ind, indicating which points were identified
and a component pos, indicating where the labels were placed relative to the identified
points.

See Also

locator

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected
from either yes or no depending on whether the element of test is TRUE or FALSE. If yes
or no are too short, their elements are recycled.

290 image

Usage

ifelse(test, yes, no)

Arguments

test a logical vector

yes return values for true elements of test.

no return values for false elements of test.

See Also

if.

Examples

x <- c(6:-4)

sqrt(x)#- gives warning

sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !

ifelse(x >= 0, sqrt(x), NA)

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in
z. This can be used to display three-dimensional or spatial data aka “images”. This is a
generic function.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum (red
to white) and topographical color schemes suitable for displaying ordered data, with n giving
the number of colors desired.

Usage

image(x, ...)
image.default(x, y, z, zlim, xlim, ylim, col = heat.colors(12),

add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must
be in (strictly) ascending order. By default, equally spaced values from 0
to 1 are used. If x is a list, its components x$x and x$y are used for x
and y, respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

image 291

zlim the minimum and maximum z values for which colors should be plotted.
Each of the given colors will be used to color an equispaced interval of
this range. The midpoints of the intervals cover the range, so that values
just outside the range will be plotted.

xlim, ylim ranges for the plotted x and y values, defaulting to the range of the finite
values of x and y.

col a list of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following argu-
ments). This is rarely useful because image “paints” over existing graph-
ics.

xaxs, yaxs style of x and y axis. The default "i" is appropriate for images. See par.

xlab, ylab each a character string giving the labels for the x and y axis. Default to
the ‘call names’ of x or y, or to "" if these where unspecified.

breaks a set of breakpoints for the colours: must give one more breakpoint than
colour.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced,
and zlim[1] and zlim[2] were taken to be midpoints. (This was the
default prior to R 1.1.0.) The current default is to have colour intervals
of equal lengths between the limits.

... graphical parameters for plot may also be passed as arguments to this
function.

Details

The length of x should be equal to the nrow(x)+1 or nrow(x). In the first case x specifies
the boundaries between the cells: in the second case x specifies the midpoints of the cells.
Similar reasoning applies to y. It probably only makes sense to specify the midpoints of
an equally-spaced grid. If you specify just one row or column and a length-one x or y, the
whole user area in the corresponding direction is filled.

If breaks is specified then zlim is unused and the algorithm used follows cut, so intervals
are closed on the right and open on the left except for the lowest interval.

Note

Based on a function by Thomas Lumley 〈tlumley@u.washington.edu〉.

See Also

contour, heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

Examples

x <- y <- seq(-4*pi, 4*pi, len=27)

r <- sqrt(outer(x^2, y^2, "+"))

image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))

image(z, axes = FALSE, main = "Math can be beautiful ...",

xlab = expression(cos(r^2) * e^{-r/6}))

contour(z, add = TRUE, drawlabels = FALSE)

data(volcano)

292 index.search

x <- 10*(1:nrow(volcano))

y <- 10*(1:ncol(volcano))

image(x, y, volcano, col = terrain.colors(100), axes = FALSE)

contour(x, y, volcano, levels = seq(90, 200, by=5), add = TRUE, col = "peru")

axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box()

title(main = "Maunga Whau Volcano", font.main = 4)

index.search Search Indices for Help Files

Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments

topic The keyword to be searched for in the indices.

path The path(s) to the packages to be searched.

file The index file to be searched. Normally ‘”AnIndex”’.

type The type of file required.

Details

For each package in path, examine the file file in directory ‘type’, and look up the matching
file stem for topic topic, if any.

Value

A character vector of matching files, as if they are in directory type of the corresponding
package. In the special cases of type = "html", "R-ex" and "latex" the file extensions
".html", ".R" and ".tex" are added.

See Also

help, example

infert 293

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional
logistic regression.

Usage

data(infert)

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645–650.

Examples

data(infert)

model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())

summary(model1)

adjusted for other potential confounders:

summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))

Really should be analysed by conditional logistic regression

which is in the survival package

if(require(survival)){

oT <- T; oF <- F; T <- TRUE; F <- FALSE # survival fails otherwise

294 influence.measures

model3 <- clogit(case~spontaneous+induced+strata(stratum),data=infert)

summary(model3)

detach()# survival (conflicts)

T <- oT; F <- oF

}

influence.measures Regression Diagnostics

Description

This suite of functions can be used to compute some of the regression diagnostics discussed
in Belsley, Kuh and Welsch (1980), and in Cook and Weisberg (1982).

Usage

influence.measures(lm.obj)

rstandard(lm.obj,
infl = lm.influence(lm.obj),
res = weighted.residuals(lm.obj),
sd = sqrt(deviance(lm.obj)/df.residual(lm.obj)))

rstudent (lm.obj, infl = ..., res = ...)
dffits (lm.obj, infl = ..., res = ...)
dfbetas (lm.obj, infl = ...)
covratio (lm.obj, infl = ..., res = ...)
cooks.distance(lm.obj, infl = ..., res = ..., sd = ...)

hat(x, intercept = TRUE)

Arguments

lm.obj the resulting object returned by lm.

infl influence structure as returned by lm.influence.

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

x the X or design matrix.

intercept should an intercept column be pre-prended to x?

Details

The primary function is influence.measures which produces a class "infl" object tabular
display showing the DFBETAS for each model variable, DFFITS, covariance ratios, Cook’s
distances and the diagonal elements of the hat matrix. Cases which are influential with
respect to any of these measures are marked with an asterisk.

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to
the corresponding diagnostic quantities. Functions rstandard and rstudent give the stan-
dardized and Studentized residuals respectively. (These re-normalize the residuals to have
unit variance, using an overall and leave-one-out measure of the error variance respectively.)

InsectSprays 295

The optional infl, res and sd arguments are there to encourage the use of these direct
access functions, in situations where, e.g., the underlying basic influence measures (from
lm.influence) are already available.
Note that cases with weights == 0 are dropped from all these functions, but that if a linear
model has been fitted with na.action = na.exclude, suitable values are filled it for the
cases excluded during fitting.
The function hat() exists mainly for S (version 2) compatibility.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.
Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

See Also

lm.influence.

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

summary(inflm.SR <- influence.measures(lm.SR))

inflm.SR

which(apply(inflm.SR$is.inf, 1, any)) # which observations ‘are’ influential

dim(dfb <- dfbetas(lm.SR)) # the 1st columns of influence.measures

all(dfb == inflm.SR$infmat[, 1:5])

rstandard(lm.SR)

rstudent(lm.SR)

dffits(lm.SR)

covratio(lm.SR)

Huber’s data [Atkinson 1985]

xh <- c(-4:0, 10)

yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)

summary(lmH <- lm(yh ~ xh))

influence.measures(lmH)

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

data(InsectSprays)

Format

A data frame with 72 observations on 2 variables.

296 INSTALL

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments,
Biometrika, 29, 243–262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(InsectSprays)

boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",

main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)

summary(fm1)

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(fm1)

fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)

summary(fm2)

plot(fm2)

par(opar)

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.

Usage

R CMD INSTALL [options] [-l lib] pkgs

Arguments

pkgs A list with the path names of the packages to be installed.

lib the path name of the R library tree to install to.

options a list of options through which in particular the process for building the
help files can be controlled.

INSTALL 297

Details

If used as R CMD INSTALL pkgs without explicitly specifying lib, packages are installed into
the library tree rooted at the first directory given in the environment variable R_LIBS if this
is set and non-null, and to the default library tree (which is rooted at ‘$R HOME/library’)
otherwise.

To install into the library tree lib, use R CMD INSTALL -l lib pkgs.

Both lib and the elements of pkgs may be absolute or relative path names. pkgs can
also contain name of package archive files of the form ‘pkg version.tar.gz’ as obtained from
CRAN, these are then extracted in a temporary directory.

Some package sources contain a ‘configure’ script that can be passed arguments or variables
via the option --configure-args and --configure-vars, respectively, if necessary. The
latter is useful in particular if libraries or header files needed for the package are in non-
system directories. In this case, one can use the configure variables LIBS and CPPFLAGS to
specify these locations (and set these via --configure-vars), see section ‘Configuration
variables’ in“R Installation and Administration” for more information. One can also bypass
the configure mechanism using the option --no-configure.

If --no-docs is given, no help files are built. Options --no-text, --no-html, and --no-
latex suppress creating the text, HTML, and LaTeX versions, respectively. The default is
to build help files in all three versions.

If the option --save is used, the installation procedure creates a binary image of the
package code, which is then loaded when the package is attached, rather than evaluating
the package source at that time. Having a file ‘install.R’ in the package directory makes this
the default behavior for the package (option --no-save overrides). You may need --save
if your package requires other packages to evaluate its own source. If the file ‘install.R’ is
non-empty, it should contain R expressions to be executed when the package is attached,
after loading the saved image. Options to be passed to R when creating the save image can
be specified via --save=ARGS.

Use R CMD INSTALL --help for more usage information.

Packages using the methods package

Packages that require the methods package, and that use functions such as setMethod or
setClass, should be installed by creating a binary image.

The package should require the methods package, both during installation and when
the user attaches the package. A good solution for most cases is to include the line
require("methods") twice, once at the beginning of the package’s R source, and once
in the file ‘install.R’ in the package directory (the top-level directory, not in the ‘R’ direc-
tory below that). The ‘install.R’ file causes an image to be saved, and the contents will
ensure that methods are available when the package is attached.

See Also

REMOVE, update.packages for automatic update of packages using the internet; the chapter
on “Creating R packages” in “Writing R Extensions” (see the ‘doc/manual’ subdirectory of
the R source tree).

298 integrate

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Value

integer creates a integer vector of the specified length. Each element of the vector is equal
to 0. Integer vectors exist so that data can be passed to C or Fortran code which expects
them.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA
unless the coercion succeeds. Real values larger in modulus than the largest integer are
coerced to NA (unlike S which gives the most extreme integer of the same sign).

is.integer returns TRUE or FALSE depending on whether its argument is of integer type
or not.

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

Usage

integrate(f, lower, upper, subdivisions=100,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL, ...)

integrate 299

Arguments

f An R function taking a numeric first argument and returning a numeric
vector of the same length. Returning a non-finite element will generate
an error.

lower, upper The limits of integration. Can be infinite.

subdivisions the maximum number of subintervals.

rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.

stop.on.error logical. If true (the default) an error stops the function. If false some
errors will give a result with a warning in the message component.

keep.xy unused. For compatibility with S.

aux unused. For compatibility with S.

... additional arguments to be passes to f.

Details

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with ex-
trapolation by the Epsilon algorithm.

rel.tol cannot be less than max(50*.Machine$double.eps, 0.5e-28) if abs.tol <= 0.

Value

A list of class "integrate" with components

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions the number of subintervals produced in the subdivision process.

message "OK" or a character string giving the error message.

call the matched call.

Note

Like all numerical integration routines, these evaluate the function on a finite set of points.
If the function is approximately constant (in particular, zero) over nearly all its range it is
possible that the result and error estimate may be seriously wrong.

When integrating over infinite intervals do so explicitly, rather than just using a large
number as the endpoint. This increases the chance of a correct answer – any function
whose integral over an infinite interval is finite must be near zero for most of that interval.

References

Based on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-
Kapenga, available from Netlib.

See
R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983) Quadpack: a Sub-
routine Package for Automatic Integration; Springer Verlag.

300 interaction

See Also

The function adapt in the adapt package on CRAN, for multivariate integration.

Examples

integrate(dnorm, -1.96, 1.96)

integrate(dnorm, -Inf, Inf)

a slowly-convergent integral

integrand <- function(x) {1/((x+1)*sqrt(x))}

integrate(integrand, lower = 0, upper = Inf)

don’t do this if you really want the integral from 0 to Inf

integrate(integrand, lower = 0, upper = 10)

integrate(integrand, lower = 0, upper = 100000)

integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)

try(integrate(function(x) 2, 0, 1)) ## no vectorizable function

integrate(function(x) rep(2, length(x)), 0, 1) ## correct

integrate can fail if misused

integrate(dnorm,0,2)

integrate(dnorm,0,20)

integrate(dnorm,0,200)

integrate(dnorm,0,2000)

integrate(dnorm,0,20000) ## fails on many systems

integrate(dnorm,0,Inf) ## works

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The
result of interaction is always unordered.

Usage

interaction(..., drop=FALSE)

Arguments

... The factors for which interaction is to be computed, or a single list giving
those factors.

drop If drop is TRUE, empty factor levels are dropped from the result. The
default is to retain all factor levels.

Value

A factor which represents the interaction of the given factors.

interaction.plot 301

See Also

factor.

Examples

a <- gl(2, 2, 8)

b <- gl(2, 4, 8)

interaction(a, b)

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors,
thereby illustrating possible interactions.

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("l", "p"), legend = TRUE,
trace.label = deparse(substitute(trace.factor)),
fixed = FALSE, xlab, ylab, ylim, lty, col = 1,
pch = c(1:9, 0, letters), ...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot: lines or points.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed Should the legend be in the order of the levels of trace.factor or in the
order of the traces at their right-hand ends?

xlab the x label of the plot.

ylab the y label of the plot.

ylim numeric of length 2 giving the y limits for the plot.

lty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

... graphics parameters to be passed to the plotting routines.

302 interactive

Details

By default the levels of x.factor are plotted on the x axis in their given order, with extra
space left at the right for the legend (if specified). If x.factor is an ordered factor and the
levels are numeric, these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values
and the line segments joining them are omitted from the plot (and this can be somewhat
disconcerting).

The graphics parameters xlab, ylab, ylim, lty, col and pch are given suitable defaults
(and xlim and xaxs are set and cannot be overriden). The defaults are to cycle through
the line types, use the foreground colour, and to use the symbols 1:9, 0, and the capital
letters to plot the traces.

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

Examples

data(ToothGrowth)

attach(ToothGrowth)

interaction.plot(dose, supp, len, fixed=TRUE)

dose <- ordered(dose)

interaction.plot(dose, supp, len, fixed=TRUE)

detach()

data(OrchardSprays)

attach(OrchardSprays)

interaction.plot(treatment, rowpos, decrease)

interaction.plot(rowpos, treatment, decrease)

order the rows by their mean effect

rowpos <- factor(rowpos, levels=sort.list(tapply(decrease, rowpos, mean)))

interaction.plot(rowpos, treatment, decrease)

detach()

data(esoph)

attach(esoph)

interaction.plot(agegp, alcgp, ncases/ncontrols)

interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",

fixed=TRUE)

detach()

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

Internal 303

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter. Only
true R wizards should even consider using this function.

Usage

.Internal(call)

Arguments

call a call expression

See Also

.Primitive, .C, .Fortran.

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be
assigned, but which do not print when they are not assigned.

See Also

return, function.

304 IQR

Examples

These functions both return their argument

f1 <- function(x) x

f2 <- function(x) invisible(x)

f1(1)# prints

f2(1)# does not

IQR The Interquartile Range

Description

computes interquartile range of the x values.

Usage

IQR(x, na.rm = FALSE)

Arguments

x a numeric vector.

na.rm logical. Should missing values be removed?

Details

Note that this function computes the quartiles using the quantile function rather than fol-
lowing Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m, 1) distributed X, the expected value of IQR(X) is 2*qnorm(3/4) =
1.3490, i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) /
1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

data(rivers)

IQR(rivers)

iris 305

iris Edgar Anderson’s Iris Data

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of
the variables sepal length and width and petal length and width, respectively, for 50 flowers
from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

data(iris)
data(iris3)

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as repre-
sented by S-PLUS. The first dimension gives the case number within the species subsample,
the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W.,
and the third the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula,
Bulletin of the American Iris Society, 59, 2–5.

See Also

matplot some examples of which use iris.

Examples

data(iris3)

dni3 <- dimnames(iris3)

ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4,

dimnames=list(NULL, sub(" L.",".Length",

sub(" W.",".Width", dni3[[2]])))),

Species = gl(3,50,lab=sub("S","s",sub("V","v",dni3[[3]]))))

data(iris)

all.equal(ii, iris) # TRUE

306 is.finite

is.empty.model Check if a Model is Empty

Description

R model notation allows models with no intercept and no predictors. These require spe-
cial handling internally. is.empty.model() checks whether an object describes an empty
model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

lm,glm

Examples

y <- rnorm(20)

is.empty.model(y ~ 0)

is.empty.model(y ~ -1)

is.empty.model(lm(y ~ 0))

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which
elements are finite or not.

Inf and -Inf are positive and negative ‘infinity’ whereas NaN means “Not a Number”.

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

is.finite 307

Arguments

x (numerical) object to be tested.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is finite (i.e. it is not one of the values NA, NaN, Inf or -Inf).

is.infinite returns a vector of the same length as x the jth element of which is TRUE if
x[j] is infinite (i.e. equal to one of Inf or -Inf).

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to
work properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a
proper mathematical limit, see the many examples below.

References

ANSI/IEEE 754 Floating-Point Standard.

Currently (6/2002), Bill Metzenthen’s 〈billm@suburbia.net〉 tutorial and examples at
http://www.suburbia.net/~billm/

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values.

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity

0 / 0 ## = NaN

1/0 + 1/0# Inf

1/0 - 1/0# NaN

stopifnot(

1/0 == Inf,

1/Inf == 0

)

exp(-Inf) == 0

(actually, the last one seems to give NA on not-very-new

versions of Linux, which is a Linux bug and seems to be

corrected in newer ’libc6’ based Linuxen).

stopifnot(

is.na(0/0),

!is.na(Inf),

is.nan(0/0),

!is.nan(NA) && !is.infinite(NA) && !is.finite(NA),

is.nan(NaN) && !is.infinite(NaN) && !is.finite(NaN),

!is.nan(c(1,NA)),

c(FALSE,TRUE,FALSE) == is.nan(c (1,NaN,NA)),

c(FALSE,TRUE,FALSE) == is.nan(list(1,NaN,NA))#-> FALSE in older versions

)

http://www.suburbia.net/~billm/

308 is.finite

lgamma(Inf) == Inf

Inf + Inf == Inf

Inf - Inf == NaN # NA --- should test with ’is.nan()

(1/0) * (1/0)# Inf

(1/0) / (1/0)# NaN

pm <- c(-1,1) # ’pm’ = plus/minus

log(0) == - 1/0

exp(-Inf) == 0

sin(Inf)

cos(Inf)

tan(Inf)

all(atan(Inf*pm) == pm*pi/2) # TRUE

x <- c(100,-1e-13,Inf,-Inf, NaN, pi, NA)

x # 1.000000 -3.000000 Inf -Inf NA 3.141593 NA

names(x) <- formatC(x, dig=3)

is.finite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T T . . . T .

is.na(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T . T

which(is.na(x) & !is.nan(x))# only ’NA’: 7

is.na(x) | is.finite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- T T . . T T T

is.infinite(x)

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- . . T T . . .

##-- either finite or infinite or NA:

all(is.na(x) != is.finite(x) | is.infinite(x)) # TRUE

all(is.nan(x) != is.finite(x) | is.infinite(x)) # FALSE: have ’real’ NA

##--- Integer

(ix <- structure(as.integer(x),names= names(x)))

##- 100 -1e-13 Inf -Inf NaN 3.14 NA

##- 100 0 NA NA NA 3 NA

all(is.na(ix) != is.finite(ix) | is.infinite(ix)) # TRUE (still)

ix[3] == (iI <- as.integer(Inf))#> warning: NAs introduced by coercion

ix[4] == (imI<- as.integer(-Inf))

iI == .Machine$integer.max # TRUE

imI == -.Machine$integer.max # TRUE

##--- Overflow in simple integer arithmetic:

as.integer(2)*iI # -2

as.integer(3)*iI # 2147483645

as.integer(3)*iI == iI-2 # TRUE

is.function 309

storage.mode(ii <- -3:5)

storage.mode(zm <- outer(ii,ii, FUN="*"))# integer

storage.mode(zd <- outer(ii,ii, FUN="/"))# double

range(zd, na.rm=TRUE)# -Inf Inf

zd[,ii==0]

(storage.mode(print(1:1 / 0:0)))# Inf "double"

(storage.mode(print(1:1 / 1:1)))# 1 "double"

(storage.mode(print(1:1 + 1:1)))# 2 "integer"

(storage.mode(print(2:2 * 2:2)))# 4 "integer"

is.function Is an Object of Type Function?

Description

Checks whether its argument is a function.

Usage

is.function(x)

Arguments

x an R object.

Value

TRUE if x is a function, and FALSE otherwise.

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is either a variable name, a call, or an expression.

Usage

is.language(x)

Arguments

x object to be tested.

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),

c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)

sapply(ll, mode)

stopifnot(sapply(ll, is.language))

310 is.R

is.object Is an Object “internally classed”?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT
attribute set, and FALSE otherwise.

Usage

is.object(x)

Arguments

x object to be tested.

See Also

class, and methods.

Examples

is.object(1) # FALSE

is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS.
In order for code to be runnable in both R and S dialects, either your the code must define
is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code
} else {
S-version of code
}

Value

is.R returns TRUE if we are using R and FALSE otherwise.

is.recursive 311

See Also

R.version, system.

Examples

x <- runif(20); small <- x < 0.4

‘which()’ only exists in R:

if(is.R()) which(small) else seq(along=small)[small]

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x does not have a list structure and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments

x object to be tested.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3))# TRUE FALSE

is.a.r(list()) # FALSE TRUE ??

is.a.r(list(2)) # FALSE TRUE

is.a.r(lm) # "

is.a.r(y ~ x) # "

is.a.r(expression(x+1))# should be F-T (not in 0.62.3!)

312 islands

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

x object to be tested.

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

data(islands)

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(islands)

dotchart(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")

dotchart(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

Japanese 313

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters
(Hiragana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these
characters is to use special escape sequences.

For example, the Hiragana character for the sound ”ka” is produced by \\#J242b and the
Katakana character for this sound is produced by \\#J252b. The Kanji ideograph for ”one”
is produced by \\#J306c or \\#N0001.

The output from example(Japanese) shows tables of the escape sequences for the available
Japanese characters.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

Hershey, text, contour

Examples

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",

main= "example(Japanese)", xlab= "using Hershey fonts")

par(cex=3)

Vf <- c("serif", "plain")

text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)

text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)

text(4, 6, "\\#J467c\\#J4b5c", vfont = Vf)

text(4, 8, "Japan", vfont = Vf)

par(cex=1)

text(8, 2, "Hiragana")

text(8, 4, "Katakana")

text(8, 6, "Kanji")

text(8, 8, "English")

######

create tables of Japanese characters

######

make.table <- function(nr, nc) {

opar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*(10%/%nc) + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=FALSE)

invisible(opar)

}

get.r <- function(i, nr) i %% nr + 1

http://www.gnu.org/software/plotutils/plotutils.html

314 Japanese

get.c <- function(i, nr) i %/% nr + 1

Esc2 <- function(str) paste("\\", str, sep="")

draw.title <- function(title, nc)

text((nc*(10%/%nc) + 1)/2, 0, title, font=2)

draw.vf.cell <- function(typeface, fontindex, string, i, nr, raw.string=NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

x0 <- 2*(c - 1)

if (is.null(raw.string)) raw.string <- Esc2(string)

text(x0 + 1.1, -r, raw.string, col="grey")

text(x0 + 2, -r, string, vfont=c(typeface, fontindex))

rect(x0 + .5, -(r - .5), x0 + 2.5, -(r + .5), border="grey")

}

draw.vf.cell2 <- function(string, alt, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

x0 <- 3*(c - 1)

text(x0 + 1.1, -r, Esc2(string <- Esc2(string)), col="grey")

text(x0 + 2.2, -r, Esc2(Esc2(alt)), col="grey", cex=.6)

text(x0 + 3, -r, string, vfont=c("serif", "plain"))

rect(x0 + .5, -(r - .5), x0 + 3.5, -(r + .5), border="grey")

}

tf <- "serif"

fi <- "plain"

nr <- 25

nc <- 4

oldpar <- make.table(nr, nc)

index <- 0

digits <- c(0:9,"a","b","c","d","e","f")

draw.title("Hiragana : \\\\#J24nn", nc)

for (i in 2:7) {

for (j in 1:16) {

if (!((i == 2 && j == 1) || (i == 7 && j > 4))) {

draw.vf.cell(tf, fi, paste("\\#J24", i, digits[j], sep=""),

index, nr)

index <- index + 1

}

}

}

nr <- 25

nc <- 4

make.table(nr, nc)

index <- 0

digits <- c(0:9,"a","b","c","d","e","f")

draw.title("Katakana : \\\\#J25nn", nc)

for (i in 2:7) {

for (j in 1:16) {

if (!((i == 2 && j == 1) || (i == 7 && j > 7))) {

draw.vf.cell(tf, fi, paste("\\#J25", i, digits[j], sep=""),

index, nr)

index <- index + 1

}

Japanese 315

}

}

nr <- 26

nc <- 3

make.table(nr, nc)

i <- 0

draw.title("Kanji (1)", nc)

draw.vf.cell2("#J3021", "#N0043", i, nr); i <- i + 1

draw.vf.cell2("#J3026", "#N2829", i, nr); i <- i + 1

draw.vf.cell2("#J302d", "#N0062", i, nr); i <- i + 1

draw.vf.cell2("#J3035", "#N0818", i, nr); i <- i + 1

draw.vf.cell2("#J303f", "#N1802", i, nr); i <- i + 1

draw.vf.cell2("#J3045", "#N2154", i, nr); i <- i + 1

draw.vf.cell2("#J304c", "#N0401", i, nr); i <- i + 1

draw.vf.cell2("#J3057", "#N2107", i, nr); i <- i + 1

draw.vf.cell2("#J3059", "#N0138", i, nr); i <- i + 1

draw.vf.cell2("#J305b", "#N3008", i, nr); i <- i + 1

draw.vf.cell2("#J305e", "#N3579", i, nr); i <- i + 1

draw.vf.cell2("#J3061", "#N4214", i, nr); i <- i + 1

draw.vf.cell2("#J306c", "#N0001", i, nr); i <- i + 1

draw.vf.cell2("#J3070", "#N3294", i, nr); i <- i + 1

draw.vf.cell2("#J3078", "#N1026", i, nr); i <- i + 1

draw.vf.cell2("#J307a", "#N1562", i, nr); i <- i + 1

draw.vf.cell2("#J3122", "#N5006", i, nr); i <- i + 1

draw.vf.cell2("#J3126", "#N0878", i, nr); i <- i + 1

draw.vf.cell2("#J3127", "#N1280", i, nr); i <- i + 1

draw.vf.cell2("#J3129", "#N3673", i, nr); i <- i + 1

draw.vf.cell2("#J312b", "#N5042", i, nr); i <- i + 1

draw.vf.cell2("#J3132", "#N2629", i, nr); i <- i + 1

draw.vf.cell2("#J313b", "#N2973", i, nr); i <- i + 1

draw.vf.cell2("#J313f", "#N4725", i, nr); i <- i + 1

draw.vf.cell2("#J3140", "#N5046", i, nr); i <- i + 1

draw.vf.cell2("#J314a", "#N0130", i, nr); i <- i + 1

draw.vf.cell2("#J3155", "#N2599", i, nr); i <- i + 1

draw.vf.cell2("#J315f", "#N0617", i, nr); i <- i + 1

draw.vf.cell2("#J3173", "#N4733", i, nr); i <- i + 1

draw.vf.cell2("#J3176", "#N1125", i, nr); i <- i + 1

draw.vf.cell2("#J3177", "#N2083", i, nr); i <- i + 1

draw.vf.cell2("#J317e", "#N1504", i, nr); i <- i + 1

draw.vf.cell2("#J3221", "#N1885", i, nr); i <- i + 1

draw.vf.cell2("#J3223", "#N2361", i, nr); i <- i + 1

draw.vf.cell2("#J3226", "#N2922", i, nr); i <- i + 1

draw.vf.cell2("#J322b", "#N5399", i, nr); i <- i + 1

draw.vf.cell2("#J322f", "#N0551", i, nr); i <- i + 1

draw.vf.cell2("#J3235", "#N0260", i, nr); i <- i + 1

draw.vf.cell2("#J3239", "#N2634", i, nr); i <- i + 1

draw.vf.cell2("#J323b", "#N5110", i, nr); i <- i + 1

draw.vf.cell2("#J323c", "#N0009", i, nr); i <- i + 1

draw.vf.cell2("#J323d", "#N0350", i, nr); i <- i + 1

draw.vf.cell2("#J323f", "#N0409", i, nr); i <- i + 1

draw.vf.cell2("#J3241", "#N0422", i, nr); i <- i + 1

draw.vf.cell2("#J3243", "#N0716", i, nr); i <- i + 1

draw.vf.cell2("#J3244", "#N0024", i, nr); i <- i + 1

draw.vf.cell2("#J3246", "#N0058", i, nr); i <- i + 1

draw.vf.cell2("#J3248", "#N1311", i, nr); i <- i + 1

draw.vf.cell2("#J324a", "#N3272", i, nr); i <- i + 1

316 Japanese

draw.vf.cell2("#J324c", "#N0107", i, nr); i <- i + 1

draw.vf.cell2("#J324f", "#N2530", i, nr); i <- i + 1

draw.vf.cell2("#J3250", "#N2743", i, nr); i <- i + 1

draw.vf.cell2("#J3256", "#N3909", i, nr); i <- i + 1

draw.vf.cell2("#J3259", "#N3956", i, nr); i <- i + 1

draw.vf.cell2("#J3261", "#N4723", i, nr); i <- i + 1

draw.vf.cell2("#J3267", "#N2848", i, nr); i <- i + 1

draw.vf.cell2("#J3268", "#N0050", i, nr); i <- i + 1

draw.vf.cell2("#J3272", "#N4306", i, nr); i <- i + 1

draw.vf.cell2("#J3273", "#N1028", i, nr); i <- i + 1

draw.vf.cell2("#J3323", "#N2264", i, nr); i <- i + 1

draw.vf.cell2("#J3324", "#N2553", i, nr); i <- i + 1

draw.vf.cell2("#J3326", "#N2998", i, nr); i <- i + 1

draw.vf.cell2("#J3328", "#N3537", i, nr); i <- i + 1

draw.vf.cell2("#J332b", "#N4950", i, nr); i <- i + 1

draw.vf.cell2("#J332d", "#N4486", i, nr); i <- i + 1

draw.vf.cell2("#J3330", "#N1168", i, nr); i <- i + 1

draw.vf.cell2("#J3346", "#N1163", i, nr); i <- i + 1

draw.vf.cell2("#J334b", "#N2254", i, nr); i <- i + 1

draw.vf.cell2("#J3351", "#N4301", i, nr); i <- i + 1

draw.vf.cell2("#J3353", "#N4623", i, nr); i <- i + 1

draw.vf.cell2("#J3357", "#N5088", i, nr); i <- i + 1

draw.vf.cell2("#J3358", "#N1271", i, nr); i <- i + 1

draw.vf.cell2("#J335a", "#N2324", i, nr); i <- i + 1

draw.vf.cell2("#J3364", "#N0703", i, nr); i <- i + 1

draw.vf.cell2("#J3424", "#N2977", i, nr); i <- i + 1

draw.vf.cell2("#J3428", "#N1322", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (2)", nc)

draw.vf.cell2("#J342c", "#N1466", i, nr); i <- i + 1

draw.vf.cell2("#J3433", "#N1492", i, nr); i <- i + 1

draw.vf.cell2("#J3434", "#N0790", i, nr); i <- i + 1

draw.vf.cell2("#J3436", "#N1731", i, nr); i <- i + 1

draw.vf.cell2("#J3437", "#N1756", i, nr); i <- i + 1

draw.vf.cell2("#J3445", "#N2988", i, nr); i <- i + 1

draw.vf.cell2("#J3449", "#N3416", i, nr); i <- i + 1

draw.vf.cell2("#J3454", "#N4750", i, nr); i <- i + 1

draw.vf.cell2("#J3456", "#N4949", i, nr); i <- i + 1

draw.vf.cell2("#J3458", "#N4958", i, nr); i <- i + 1

draw.vf.cell2("#J346f", "#N0994", i, nr); i <- i + 1

draw.vf.cell2("#J3470", "#N1098", i, nr); i <- i + 1

draw.vf.cell2("#J3476", "#N1496", i, nr); i <- i + 1

draw.vf.cell2("#J347c", "#N3785", i, nr); i <- i + 1

draw.vf.cell2("#J3521", "#N2379", i, nr); i <- i + 1

draw.vf.cell2("#J3522", "#N1582", i, nr); i <- i + 1

draw.vf.cell2("#J3524", "#N2480", i, nr); i <- i + 1

draw.vf.cell2("#J3525", "#N2507", i, nr); i <- i + 1

draw.vf.cell2("#J352d", "#N4318", i, nr); i <- i + 1

draw.vf.cell2("#J3530", "#N4610", i, nr); i <- i + 1

draw.vf.cell2("#J3534", "#N5276", i, nr); i <- i + 1

draw.vf.cell2("#J3535", "#N5445", i, nr); i <- i + 1

draw.vf.cell2("#J3546", "#N3981", i, nr); i <- i + 1

draw.vf.cell2("#J3555", "#N4685", i, nr); i <- i + 1

draw.vf.cell2("#J355a", "#N0154", i, nr); i <- i + 1

draw.vf.cell2("#J355b", "#N0885", i, nr); i <- i + 1

Japanese 317

draw.vf.cell2("#J355d", "#N1560", i, nr); i <- i + 1

draw.vf.cell2("#J3565", "#N2941", i, nr); i <- i + 1

draw.vf.cell2("#J3566", "#N3314", i, nr); i <- i + 1

draw.vf.cell2("#J3569", "#N3496", i, nr); i <- i + 1

draw.vf.cell2("#J356d", "#N2852", i, nr); i <- i + 1

draw.vf.cell2("#J356e", "#N1051", i, nr); i <- i + 1

draw.vf.cell2("#J356f", "#N1387", i, nr); i <- i + 1

draw.vf.cell2("#J3575", "#N4109", i, nr); i <- i + 1

draw.vf.cell2("#J3577", "#N4548", i, nr); i <- i + 1

draw.vf.cell2("#J357b", "#N5281", i, nr); i <- i + 1

draw.vf.cell2("#J357e", "#N0295", i, nr); i <- i + 1

draw.vf.cell2("#J3621", "#N0431", i, nr); i <- i + 1

draw.vf.cell2("#J3626", "#N0581", i, nr); i <- i + 1

draw.vf.cell2("#J362d", "#N1135", i, nr); i <- i + 1

draw.vf.cell2("#J362f", "#N1571", i, nr); i <- i + 1

draw.vf.cell2("#J3635", "#N2052", i, nr); i <- i + 1

draw.vf.cell2("#J3636", "#N2378", i, nr); i <- i + 1

draw.vf.cell2("#J364a", "#N0103", i, nr); i <- i + 1

draw.vf.cell2("#J364b", "#N2305", i, nr); i <- i + 1

draw.vf.cell2("#J364c", "#N2923", i, nr); i <- i + 1

draw.vf.cell2("#J3651", "#N1065", i, nr); i <- i + 1

draw.vf.cell2("#J3661", "#N4671", i, nr); i <- i + 1

draw.vf.cell2("#J3662", "#N4815", i, nr); i <- i + 1

draw.vf.cell2("#J3664", "#N4855", i, nr); i <- i + 1

draw.vf.cell2("#J3665", "#N0146", i, nr); i <- i + 1

draw.vf.cell2("#J3671", "#N3128", i, nr); i <- i + 1

draw.vf.cell2("#J3675", "#N3317", i, nr); i <- i + 1

draw.vf.cell2("#J367e", "#N1386", i, nr); i <- i + 1

draw.vf.cell2("#J3738", "#N0449", i, nr); i <- i + 1

draw.vf.cell2("#J3739", "#N0534", i, nr); i <- i + 1

draw.vf.cell2("#J373e", "#N2937", i, nr); i <- i + 1

draw.vf.cell2("#J373f", "#N1077", i, nr); i <- i + 1

draw.vf.cell2("#J3741", "#N1589", i, nr); i <- i + 1

draw.vf.cell2("#J3742", "#N1602", i, nr); i <- i + 1

draw.vf.cell2("#J374f", "#N0195", i, nr); i <- i + 1

draw.vf.cell2("#J3750", "#N3523", i, nr); i <- i + 1

draw.vf.cell2("#J3757", "#N4312", i, nr); i <- i + 1

draw.vf.cell2("#J375a", "#N4620", i, nr); i <- i + 1

draw.vf.cell2("#J3767", "#N2412", i, nr); i <- i + 1

draw.vf.cell2("#J3768", "#N2509", i, nr); i <- i + 1

draw.vf.cell2("#J376a", "#N3313", i, nr); i <- i + 1

draw.vf.cell2("#J376b", "#N3540", i, nr); i <- i + 1

draw.vf.cell2("#J376c", "#N4205", i, nr); i <- i + 1

draw.vf.cell2("#J376e", "#N2169", i, nr); i <- i + 1

draw.vf.cell2("#J3777", "#N1045", i, nr); i <- i + 1

draw.vf.cell2("#J3824", "#N2868", i, nr); i <- i + 1

draw.vf.cell2("#J3826", "#N3180", i, nr); i <- i + 1

draw.vf.cell2("#J3828", "#N3543", i, nr); i <- i + 1

draw.vf.cell2("#J382b", "#N4284", i, nr); i <- i + 1

draw.vf.cell2("#J3833", "#N5220", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (3)", nc)

draw.vf.cell2("#J3835", "#N0275", i, nr); i <- i + 1

draw.vf.cell2("#J3836", "#N0825", i, nr); i <- i + 1

draw.vf.cell2("#J3839", "#N1568", i, nr); i <- i + 1

318 Japanese

draw.vf.cell2("#J383a", "#N2637", i, nr); i <- i + 1

draw.vf.cell2("#J383b", "#N2656", i, nr); i <- i + 1

draw.vf.cell2("#J383d", "#N2943", i, nr); i <- i + 1

draw.vf.cell2("#J3840", "#N4309", i, nr); i <- i + 1

draw.vf.cell2("#J3842", "#N4987", i, nr); i <- i + 1

draw.vf.cell2("#J3845", "#N0770", i, nr); i <- i + 1

draw.vf.cell2("#J3847", "#N1036", i, nr); i <- i + 1

draw.vf.cell2("#J384c", "#N1567", i, nr); i <- i + 1

draw.vf.cell2("#J384d", "#N1817", i, nr); i <- i + 1

draw.vf.cell2("#J384e", "#N2044", i, nr); i <- i + 1

draw.vf.cell2("#J385d", "#N5415", i, nr); i <- i + 1

draw.vf.cell2("#J385e", "#N0015", i, nr); i <- i + 1

draw.vf.cell2("#J3861", "#N0162", i, nr); i <- i + 1

draw.vf.cell2("#J3865", "#N1610", i, nr); i <- i + 1

draw.vf.cell2("#J3866", "#N1628", i, nr); i <- i + 1

draw.vf.cell2("#J386c", "#N4374", i, nr); i <- i + 1

draw.vf.cell2("#J3872", "#N0290", i, nr); i <- i + 1

draw.vf.cell2("#J3877", "#N1358", i, nr); i <- i + 1

draw.vf.cell2("#J3878", "#N0579", i, nr); i <- i + 1

draw.vf.cell2("#J387d", "#N0868", i, nr); i <- i + 1

draw.vf.cell2("#J387e", "#N0101", i, nr); i <- i + 1

draw.vf.cell2("#J3929", "#N1451", i, nr); i <- i + 1

draw.vf.cell2("#J3931", "#N1683", i, nr); i <- i + 1

draw.vf.cell2("#J393d", "#N2343", i, nr); i <- i + 1

draw.vf.cell2("#J3943", "#N0092", i, nr); i <- i + 1

draw.vf.cell2("#J394d", "#N3684", i, nr); i <- i + 1

draw.vf.cell2("#J3954", "#N4213", i, nr); i <- i + 1

draw.vf.cell2("#J3955", "#N1641", i, nr); i <- i + 1

draw.vf.cell2("#J395b", "#N4843", i, nr); i <- i + 1

draw.vf.cell2("#J395d", "#N4883", i, nr); i <- i + 1

draw.vf.cell2("#J395f", "#N4994", i, nr); i <- i + 1

draw.vf.cell2("#J3960", "#N1459", i, nr); i <- i + 1

draw.vf.cell2("#J3961", "#N5188", i, nr); i <- i + 1

draw.vf.cell2("#J3962", "#N5248", i, nr); i <- i + 1

draw.vf.cell2("#J3966", "#N0882", i, nr); i <- i + 1

draw.vf.cell2("#J3967", "#N0383", i, nr); i <- i + 1

draw.vf.cell2("#J3971", "#N1037", i, nr); i <- i + 1

draw.vf.cell2("#J3975", "#N5403", i, nr); i <- i + 1

draw.vf.cell2("#J397c", "#N5236", i, nr); i <- i + 1

draw.vf.cell2("#J397e", "#N4660", i, nr); i <- i + 1

draw.vf.cell2("#J3a21", "#N2430", i, nr); i <- i + 1

draw.vf.cell2("#J3a23", "#N0352", i, nr); i <- i + 1

draw.vf.cell2("#J3a2c", "#N2261", i, nr); i <- i + 1

draw.vf.cell2("#J3a38", "#N1455", i, nr); i <- i + 1

draw.vf.cell2("#J3a39", "#N3662", i, nr); i <- i + 1

draw.vf.cell2("#J3a42", "#N1515", i, nr); i <- i + 1

draw.vf.cell2("#J3a46", "#N0035", i, nr); i <- i + 1

draw.vf.cell2("#J3a47", "#N2146", i, nr); i <- i + 1

draw.vf.cell2("#J3a59", "#N3522", i, nr); i <- i + 1

draw.vf.cell2("#J3a5f", "#N1055", i, nr); i <- i + 1

draw.vf.cell2("#J3a6e", "#N0407", i, nr); i <- i + 1

draw.vf.cell2("#J3a72", "#N2119", i, nr); i <- i + 1

draw.vf.cell2("#J3a79", "#N2256", i, nr); i <- i + 1

draw.vf.cell2("#J3b2e", "#N3113", i, nr); i <- i + 1

draw.vf.cell2("#J3b30", "#N0008", i, nr); i <- i + 1

draw.vf.cell2("#J3b33", "#N1407", i, nr); i <- i + 1

draw.vf.cell2("#J3b36", "#N2056", i, nr); i <- i + 1

Japanese 319

draw.vf.cell2("#J3b3b", "#N3415", i, nr); i <- i + 1

draw.vf.cell2("#J3b40", "#N4789", i, nr); i <- i + 1

draw.vf.cell2("#J3b45", "#N0362", i, nr); i <- i + 1

draw.vf.cell2("#J3b4d", "#N1025", i, nr); i <- i + 1

draw.vf.cell2("#J3b4e", "#N1160", i, nr); i <- i + 1

draw.vf.cell2("#J3b4f", "#N1208", i, nr); i <- i + 1

draw.vf.cell2("#J3b52", "#N1264", i, nr); i <- i + 1

draw.vf.cell2("#J3b54", "#N0284", i, nr); i <- i + 1

draw.vf.cell2("#J3b57", "#N3001", i, nr); i <- i + 1

draw.vf.cell2("#J3b58", "#N1904", i, nr); i <- i + 1

draw.vf.cell2("#J3b59", "#N2039", i, nr); i <- i + 1

draw.vf.cell2("#J3b5e", "#N2211", i, nr); i <- i + 1

draw.vf.cell2("#J3b5f", "#N2429", i, nr); i <- i + 1

draw.vf.cell2("#J3b60", "#N2439", i, nr); i <- i + 1

draw.vf.cell2("#J3b61", "#N2478", i, nr); i <- i + 1

draw.vf.cell2("#J3b64", "#N3265", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (4)", nc)

draw.vf.cell2("#J3b65", "#N3492", i, nr); i <- i + 1

draw.vf.cell2("#J3b66", "#N3510", i, nr); i <- i + 1

draw.vf.cell2("#J3b6a", "#N3845", i, nr); i <- i + 1

draw.vf.cell2("#J3b73", "#N2435", i, nr); i <- i + 1

draw.vf.cell2("#J3b75", "#N5428", i, nr); i <- i + 1

draw.vf.cell2("#J3b76", "#N0272", i, nr); i <- i + 1

draw.vf.cell2("#J3b7a", "#N1281", i, nr); i <- i + 1

draw.vf.cell2("#J3b7d", "#N1903", i, nr); i <- i + 1

draw.vf.cell2("#J3b7e", "#N2126", i, nr); i <- i + 1

draw.vf.cell2("#J3c21", "#N0638", i, nr); i <- i + 1

draw.vf.cell2("#J3c27", "#N3209", i, nr); i <- i + 1

draw.vf.cell2("#J3c28", "#N3228", i, nr); i <- i + 1

draw.vf.cell2("#J3c2a", "#N3697", i, nr); i <- i + 1

draw.vf.cell2("#J3c2b", "#N3841", i, nr); i <- i + 1

draw.vf.cell2("#J3c2d", "#N3860", i, nr); i <- i + 1

draw.vf.cell2("#J3c2f", "#N5375", i, nr); i <- i + 1

draw.vf.cell2("#J3c30", "#N1556", i, nr); i <- i + 1

draw.vf.cell2("#J3c34", "#N4619", i, nr); i <- i + 1

draw.vf.cell2("#J3c37", "#N0261", i, nr); i <- i + 1

draw.vf.cell2("#J3c3c", "#N1300", i, nr); i <- i + 1

draw.vf.cell2("#J3c3e", "#N2631", i, nr); i <- i + 1

draw.vf.cell2("#J3c41", "#N4518", i, nr); i <- i + 1

draw.vf.cell2("#J3c42", "#N1297", i, nr); i <- i + 1

draw.vf.cell2("#J3c4d", "#N4603", i, nr); i <- i + 1

draw.vf.cell2("#J3c50", "#N2074", i, nr); i <- i + 1

draw.vf.cell2("#J3c54", "#N3685", i, nr); i <- i + 1

draw.vf.cell2("#J3c56", "#N4608", i, nr); i <- i + 1

draw.vf.cell2("#J3c5c", "#N1377", i, nr); i <- i + 1

draw.vf.cell2("#J3c61", "#N4809", i, nr); i <- i + 1

draw.vf.cell2("#J3c63", "#N3926", i, nr); i <- i + 1

draw.vf.cell2("#J3c67", "#N0285", i, nr); i <- i + 1

draw.vf.cell2("#J3c68", "#N3699", i, nr); i <- i + 1

draw.vf.cell2("#J3c6a", "#N1827", i, nr); i <- i + 1

draw.vf.cell2("#J3c6f", "#N3295", i, nr); i <- i + 1

draw.vf.cell2("#J3c72", "#N2573", i, nr); i <- i + 1

draw.vf.cell2("#J3c73", "#N5186", i, nr); i <- i + 1

draw.vf.cell2("#J3c7e", "#N0622", i, nr); i <- i + 1

320 Japanese

draw.vf.cell2("#J3d29", "#N3273", i, nr); i <- i + 1

draw.vf.cell2("#J3d2a", "#N3521", i, nr); i <- i + 1

draw.vf.cell2("#J3d2e", "#N3863", i, nr); i <- i + 1

draw.vf.cell2("#J3d39", "#N4798", i, nr); i <- i + 1

draw.vf.cell2("#J3d3d", "#N0768", i, nr); i <- i + 1

draw.vf.cell2("#J3d3e", "#N1613", i, nr); i <- i + 1

draw.vf.cell2("#J3d44", "#N3597", i, nr); i <- i + 1

draw.vf.cell2("#J3d45", "#N0224", i, nr); i <- i + 1

draw.vf.cell2("#J3d50", "#N0097", i, nr); i <- i + 1

draw.vf.cell2("#J3d51", "#N1621", i, nr); i <- i + 1

draw.vf.cell2("#J3d55", "#N2122", i, nr); i <- i + 1

draw.vf.cell2("#J3d60", "#N0791", i, nr); i <- i + 1

draw.vf.cell2("#J3d63", "#N3509", i, nr); i <- i + 1

draw.vf.cell2("#J3d68", "#N1162", i, nr); i <- i + 1

draw.vf.cell2("#J3d6b", "#N2138", i, nr); i <- i + 1

draw.vf.cell2("#J3d71", "#N3719", i, nr); i <- i + 1

draw.vf.cell2("#J3d77", "#N1185", i, nr); i <- i + 1

draw.vf.cell2("#J3d7c", "#N4993", i, nr); i <- i + 1

draw.vf.cell2("#J3e26", "#N0321", i, nr); i <- i + 1

draw.vf.cell2("#J3e2e", "#N1355", i, nr); i <- i + 1

draw.vf.cell2("#J3e2f", "#N0166", i, nr); i <- i + 1

draw.vf.cell2("#J3e3d", "#N2137", i, nr); i <- i + 1

draw.vf.cell2("#J3e3e", "#N2212", i, nr); i <- i + 1

draw.vf.cell2("#J3e46", "#N2772", i, nr); i <- i + 1

draw.vf.cell2("#J3e4b", "#N3192", i, nr); i <- i + 1

draw.vf.cell2("#J3e4e", "#N3280", i, nr); i <- i + 1

draw.vf.cell2("#J3e57", "#N1638", i, nr); i <- i + 1

draw.vf.cell2("#J3e5a", "#N4341", i, nr); i <- i + 1

draw.vf.cell2("#J3e5d", "#N4472", i, nr); i <- i + 1

draw.vf.cell2("#J3e65", "#N0798", i, nr); i <- i + 1

draw.vf.cell2("#J3e68", "#N0223", i, nr); i <- i + 1

draw.vf.cell2("#J3e6c", "#N1113", i, nr); i <- i + 1

draw.vf.cell2("#J3e6f", "#N1364", i, nr); i <- i + 1

draw.vf.cell2("#J3e75", "#N2839", i, nr); i <- i + 1

draw.vf.cell2("#J3e78", "#N4002", i, nr); i <- i + 1

draw.vf.cell2("#J3f22", "#N2303", i, nr); i <- i + 1

draw.vf.cell2("#J3f27", "#N3889", i, nr); i <- i + 1

draw.vf.cell2("#J3f29", "#N5154", i, nr); i <- i + 1

draw.vf.cell2("#J3f2d", "#N0403", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (5)", nc)

draw.vf.cell2("#J3f34", "#N1645", i, nr); i <- i + 1

draw.vf.cell2("#J3f36", "#N1920", i, nr); i <- i + 1

draw.vf.cell2("#J3f37", "#N2080", i, nr); i <- i + 1

draw.vf.cell2("#J3f39", "#N2301", i, nr); i <- i + 1

draw.vf.cell2("#J3f3f", "#N0783", i, nr); i <- i + 1

draw.vf.cell2("#J3f43", "#N3837", i, nr); i <- i + 1

draw.vf.cell2("#J3f48", "#N4601", i, nr); i <- i + 1

draw.vf.cell2("#J3f49", "#N4646", i, nr); i <- i + 1

draw.vf.cell2("#J3f4a", "#N4709", i, nr); i <- i + 1

draw.vf.cell2("#J3f4c", "#N5055", i, nr); i <- i + 1

draw.vf.cell2("#J3f4d", "#N0339", i, nr); i <- i + 1

draw.vf.cell2("#J3f5e", "#N1034", i, nr); i <- i + 1

draw.vf.cell2("#J3f62", "#N0211", i, nr); i <- i + 1

draw.vf.cell2("#J3f65", "#N2482", i, nr); i <- i + 1

Japanese 321

draw.vf.cell2("#J3f69", "#N3676", i, nr); i <- i + 1

draw.vf.cell2("#J3f74", "#N2057", i, nr); i <- i + 1

draw.vf.cell2("#J402d", "#N1666", i, nr); i <- i + 1

draw.vf.cell2("#J402e", "#N1799", i, nr); i <- i + 1

draw.vf.cell2("#J4030", "#N2436", i, nr); i <- i + 1

draw.vf.cell2("#J4031", "#N2121", i, nr); i <- i + 1

draw.vf.cell2("#J4032", "#N2143", i, nr); i <- i + 1

draw.vf.cell2("#J4035", "#N0027", i, nr); i <- i + 1

draw.vf.cell2("#J4038", "#N2991", i, nr); i <- i + 1

draw.vf.cell2("#J403e", "#N4273", i, nr); i <- i + 1

draw.vf.cell2("#J4044", "#N5076", i, nr); i <- i + 1

draw.vf.cell2("#J4045", "#N5077", i, nr); i <- i + 1

draw.vf.cell2("#J404e", "#N2108", i, nr); i <- i + 1

draw.vf.cell2("#J404f", "#N2194", i, nr); i <- i + 1

draw.vf.cell2("#J4050", "#N3176", i, nr); i <- i + 1

draw.vf.cell2("#J4051", "#N3306", i, nr); i <- i + 1

draw.vf.cell2("#J4056", "#N4534", i, nr); i <- i + 1

draw.vf.cell2("#J405a", "#N0667", i, nr); i <- i + 1

draw.vf.cell2("#J405c", "#N1951", i, nr); i <- i + 1

draw.vf.cell2("#J405e", "#N1855", i, nr); i <- i + 1

draw.vf.cell2("#J4063", "#N5044", i, nr); i <- i + 1

draw.vf.cell2("#J4064", "#N3539", i, nr); i <- i + 1

draw.vf.cell2("#J4065", "#N3855", i, nr); i <- i + 1

draw.vf.cell2("#J4068", "#N0571", i, nr); i <- i + 1

draw.vf.cell2("#J4069", "#N0156", i, nr); i <- i + 1

draw.vf.cell2("#J406e", "#N1447", i, nr); i <- i + 1

draw.vf.cell2("#J4070", "#N1823", i, nr); i <- i + 1

draw.vf.cell2("#J407e", "#N3580", i, nr); i <- i + 1

draw.vf.cell2("#J4125", "#N3873", i, nr); i <- i + 1

draw.vf.cell2("#J4130", "#N0595", i, nr); i <- i + 1

draw.vf.cell2("#J4133", "#N2770", i, nr); i <- i + 1

draw.vf.cell2("#J4134", "#N0384", i, nr); i <- i + 1

draw.vf.cell2("#J4147", "#N3511", i, nr); i <- i + 1

draw.vf.cell2("#J4148", "#N3520", i, nr); i <- i + 1

draw.vf.cell2("#J4150", "#N0859", i, nr); i <- i + 1

draw.vf.cell2("#J4158", "#N1402", i, nr); i <- i + 1

draw.vf.cell2("#J415b", "#N1728", i, nr); i <- i + 1

draw.vf.cell2("#J4161", "#N2100", i, nr); i <- i + 1

draw.vf.cell2("#J416a", "#N2241", i, nr); i <- i + 1

draw.vf.cell2("#J416d", "#N3567", i, nr); i <- i + 1

draw.vf.cell2("#J4170", "#N3939", i, nr); i <- i + 1

draw.vf.cell2("#J4175", "#N4234", i, nr); i <- i + 1

draw.vf.cell2("#J4176", "#N4539", i, nr); i <- i + 1

draw.vf.cell2("#J417c", "#N0540", i, nr); i <- i + 1

draw.vf.cell2("#J417d", "#N1137", i, nr); i <- i + 1

draw.vf.cell2("#J4224", "#N4701", i, nr); i <- i + 1

draw.vf.cell2("#J4226", "#N0509", i, nr); i <- i + 1

draw.vf.cell2("#J422b", "#N0196", i, nr); i <- i + 1

draw.vf.cell2("#J422c", "#N2632", i, nr); i <- i + 1

draw.vf.cell2("#J422d", "#N4546", i, nr); i <- i + 1

draw.vf.cell2("#J422e", "#N4700", i, nr); i <- i + 1

draw.vf.cell2("#J4233", "#N3544", i, nr); i <- i + 1

draw.vf.cell2("#J4236", "#N0590", i, nr); i <- i + 1

draw.vf.cell2("#J4238", "#N1267", i, nr); i <- i + 1

draw.vf.cell2("#J423e", "#N0361", i, nr); i <- i + 1

draw.vf.cell2("#J423f", "#N1169", i, nr); i <- i + 1

draw.vf.cell2("#J4240", "#N1172", i, nr); i <- i + 1

322 Japanese

draw.vf.cell2("#J424a", "#N2313", i, nr); i <- i + 1

draw.vf.cell2("#J424e", "#N0405", i, nr); i <- i + 1

draw.vf.cell2("#J4250", "#N2067", i, nr); i <- i + 1

draw.vf.cell2("#J4256", "#N1743", i, nr); i <- i + 1

draw.vf.cell2("#J4265", "#N0364", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (6)", nc)

draw.vf.cell2("#J4267", "#N1171", i, nr); i <- i + 1

draw.vf.cell2("#J4268", "#N3385", i, nr); i <- i + 1

draw.vf.cell2("#J426a", "#N2164", i, nr); i <- i + 1

draw.vf.cell2("#J426c", "#N2655", i, nr); i <- i + 1

draw.vf.cell2("#J4274", "#N2503", i, nr); i <- i + 1

draw.vf.cell2("#J4323", "#N4721", i, nr); i <- i + 1

draw.vf.cell2("#J432b", "#N4458", i, nr); i <- i + 1

draw.vf.cell2("#J432f", "#N4384", i, nr); i <- i + 1

draw.vf.cell2("#J4331", "#N0139", i, nr); i <- i + 1

draw.vf.cell2("#J433a", "#N1418", i, nr); i <- i + 1

draw.vf.cell2("#J433b", "#N3172", i, nr); i <- i + 1

draw.vf.cell2("#J4346", "#N1575", i, nr); i <- i + 1

draw.vf.cell2("#J434b", "#N2996", i, nr); i <- i + 1

draw.vf.cell2("#J434d", "#N0488", i, nr); i <- i + 1

draw.vf.cell2("#J434e", "#N3169", i, nr); i <- i + 1

draw.vf.cell2("#J434f", "#N1056", i, nr); i <- i + 1

draw.vf.cell2("#J4356", "#N3644", i, nr); i <- i + 1

draw.vf.cell2("#J4359", "#N4722", i, nr); i <- i + 1

draw.vf.cell2("#J435d", "#N3366", i, nr); i <- i + 1

draw.vf.cell2("#J4362", "#N3325", i, nr); i <- i + 1

draw.vf.cell2("#J4363", "#N3940", i, nr); i <- i + 1

draw.vf.cell2("#J4365", "#N3665", i, nr); i <- i + 1

draw.vf.cell2("#J4366", "#N0081", i, nr); i <- i + 1

draw.vf.cell2("#J4368", "#N1291", i, nr); i <- i + 1

draw.vf.cell2("#J436b", "#N0053", i, nr); i <- i + 1

draw.vf.cell2("#J436c", "#N2236", i, nr); i <- i + 1

draw.vf.cell2("#J436e", "#N4115", i, nr); i <- i + 1

draw.vf.cell2("#J442b", "#N3788", i, nr); i <- i + 1

draw.vf.cell2("#J442c", "#N2702", i, nr); i <- i + 1

draw.vf.cell2("#J4436", "#N4543", i, nr); i <- i + 1

draw.vf.cell2("#J4439", "#N4938", i, nr); i <- i + 1

draw.vf.cell2("#J443b", "#N5340", i, nr); i <- i + 1

draw.vf.cell2("#J443e", "#N0775", i, nr); i <- i + 1

draw.vf.cell2("#J444c", "#N4703", i, nr); i <- i + 1

draw.vf.cell2("#J4463", "#N0406", i, nr); i <- i + 1

draw.vf.cell2("#J446a", "#N1296", i, nr); i <- i + 1

draw.vf.cell2("#J446c", "#N1508", i, nr); i <- i + 1

draw.vf.cell2("#J446d", "#N1514", i, nr); i <- i + 1

draw.vf.cell2("#J4472", "#N1914", i, nr); i <- i + 1

draw.vf.cell2("#J4478", "#N3285", i, nr); i <- i + 1

draw.vf.cell2("#J4479", "#N3581", i, nr); i <- i + 1

draw.vf.cell2("#J4526", "#N1987", i, nr); i <- i + 1

draw.vf.cell2("#J452a", "#N3097", i, nr); i <- i + 1

draw.vf.cell2("#J452f", "#N0931", i, nr); i <- i + 1

draw.vf.cell2("#J4534", "#N4844", i, nr); i <- i + 1

draw.vf.cell2("#J4535", "#N0588", i, nr); i <- i + 1

draw.vf.cell2("#J4537", "#N0016", i, nr); i <- i + 1

draw.vf.cell2("#J453e", "#N4615", i, nr); i <- i + 1

Japanese 323

draw.vf.cell2("#J4540", "#N0804", i, nr); i <- i + 1

draw.vf.cell2("#J4544", "#N2994", i, nr); i <- i + 1

draw.vf.cell2("#J4545", "#N5050", i, nr); i <- i + 1

draw.vf.cell2("#J454c", "#N1614", i, nr); i <- i + 1

draw.vf.cell2("#J4559", "#N1511", i, nr); i <- i + 1

draw.vf.cell2("#J455a", "#N1050", i, nr); i <- i + 1

draw.vf.cell2("#J455f", "#N1161", i, nr); i <- i + 1

draw.vf.cell2("#J4561", "#N0665", i, nr); i <- i + 1

draw.vf.cell2("#J4563", "#N1109", i, nr); i <- i + 1

draw.vf.cell2("#J4567", "#N0230", i, nr); i <- i + 1

draw.vf.cell2("#J456c", "#N0213", i, nr); i <- i + 1

draw.vf.cell2("#J4574", "#N2745", i, nr); i <- i + 1

draw.vf.cell2("#J4576", "#N1359", i, nr); i <- i + 1

draw.vf.cell2("#J4579", "#N3396", i, nr); i <- i + 1

draw.vf.cell2("#J4626", "#N4465", i, nr); i <- i + 1

draw.vf.cell2("#J4630", "#N0730", i, nr); i <- i + 1

draw.vf.cell2("#J4631", "#N0619", i, nr); i <- i + 1

draw.vf.cell2("#J4633", "#N1354", i, nr); i <- i + 1

draw.vf.cell2("#J463b", "#N4724", i, nr); i <- i + 1

draw.vf.cell2("#J463c", "#N4853", i, nr); i <- i + 1

draw.vf.cell2("#J4643", "#N2860", i, nr); i <- i + 1

draw.vf.cell2("#J4649", "#N4375", i, nr); i <- i + 1

draw.vf.cell2("#J465e", "#N2160", i, nr); i <- i + 1

draw.vf.cell2("#J4662", "#N0082", i, nr); i <- i + 1

draw.vf.cell2("#J466e", "#N0778", i, nr); i <- i + 1

draw.vf.cell2("#J4671", "#N5038", i, nr); i <- i + 1

draw.vf.cell2("#J4673", "#N0273", i, nr); i <- i + 1

draw.vf.cell2("#J4679", "#N3724", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (7)", nc)

draw.vf.cell2("#J467c", "#N2097", i, nr); i <- i + 1

draw.vf.cell2("#J467e", "#N0574", i, nr); i <- i + 1

draw.vf.cell2("#J4721", "#N1189", i, nr); i <- i + 1

draw.vf.cell2("#J472e", "#N2797", i, nr); i <- i + 1

draw.vf.cell2("#J472f", "#N0188", i, nr); i <- i + 1

draw.vf.cell2("#J4733", "#N2808", i, nr); i <- i + 1

draw.vf.cell2("#J4734", "#N3472", i, nr); i <- i + 1

draw.vf.cell2("#J4748", "#N2529", i, nr); i <- i + 1

draw.vf.cell2("#J474f", "#N5191", i, nr); i <- i + 1

draw.vf.cell2("#J4769", "#N3275", i, nr); i <- i + 1

draw.vf.cell2("#J4772", "#N3095", i, nr); i <- i + 1

draw.vf.cell2("#J477e", "#N5385", i, nr); i <- i + 1

draw.vf.cell2("#J4821", "#N0049", i, nr); i <- i + 1

draw.vf.cell2("#J482c", "#N0577", i, nr); i <- i + 1

draw.vf.cell2("#J482f", "#N3092", i, nr); i <- i + 1

draw.vf.cell2("#J483e", "#N0132", i, nr); i <- i + 1

draw.vf.cell2("#J483f", "#N0817", i, nr); i <- i + 1

draw.vf.cell2("#J4841", "#N1469", i, nr); i <- i + 1

draw.vf.cell2("#J484c", "#N3865", i, nr); i <- i + 1

draw.vf.cell2("#J4856", "#N4811", i, nr); i <- i + 1

draw.vf.cell2("#J4860", "#N1604", i, nr); i <- i + 1

draw.vf.cell2("#J4866", "#N2470", i, nr); i <- i + 1

draw.vf.cell2("#J4869", "#N3109", i, nr); i <- i + 1

draw.vf.cell2("#J4873", "#N5080", i, nr); i <- i + 1

draw.vf.cell2("#J4874", "#N5152", i, nr); i <- i + 1

324 Japanese

draw.vf.cell2("#J4878", "#N1383", i, nr); i <- i + 1

draw.vf.cell2("#J4879", "#N1631", i, nr); i <- i + 1

draw.vf.cell2("#J487e", "#N3658", i, nr); i <- i + 1

draw.vf.cell2("#J4921", "#N5421", i, nr); i <- i + 1

draw.vf.cell2("#J492e", "#N3397", i, nr); i <- i + 1

draw.vf.cell2("#J4934", "#N0033", i, nr); i <- i + 1

draw.vf.cell2("#J4938", "#N2359", i, nr); i <- i + 1

draw.vf.cell2("#J4939", "#N0131", i, nr); i <- i + 1

draw.vf.cell2("#J493d", "#N0108", i, nr); i <- i + 1

draw.vf.cell2("#J4942", "#N3042", i, nr); i <- i + 1

draw.vf.cell2("#J4943", "#N3271", i, nr); i <- i + 1

draw.vf.cell2("#J494a", "#N0923", i, nr); i <- i + 1

draw.vf.cell2("#J4954", "#N0017", i, nr); i <- i + 1

draw.vf.cell2("#J495b", "#N1468", i, nr); i <- i + 1

draw.vf.cell2("#J4963", "#N2832", i, nr); i <- i + 1

draw.vf.cell2("#J4969", "#N4488", i, nr); i <- i + 1

draw.vf.cell2("#J4977", "#N5148", i, nr); i <- i + 1

draw.vf.cell2("#J497d", "#N1484", i, nr); i <- i + 1

draw.vf.cell2("#J4a23", "#N4255", i, nr); i <- i + 1

draw.vf.cell2("#J4a26", "#N0173", i, nr); i <- i + 1

draw.vf.cell2("#J4a2a", "#N2857", i, nr); i <- i + 1

draw.vf.cell2("#J4a2c", "#N0578", i, nr); i <- i + 1

draw.vf.cell2("#J4a38", "#N2064", i, nr); i <- i + 1

draw.vf.cell2("#J4a39", "#N4959", i, nr); i <- i + 1

draw.vf.cell2("#J4a3f", "#N0026", i, nr); i <- i + 1

draw.vf.cell2("#J4a42", "#N0589", i, nr); i <- i + 1

draw.vf.cell2("#J4a44", "#N4945", i, nr); i <- i + 1

draw.vf.cell2("#J4a46", "#N3461", i, nr); i <- i + 1

draw.vf.cell2("#J4a50", "#N0511", i, nr); i <- i + 1

draw.vf.cell2("#J4a51", "#N0306", i, nr); i <- i + 1

draw.vf.cell2("#J4a52", "#N2842", i, nr); i <- i + 1

draw.vf.cell2("#J4a55", "#N4661", i, nr); i <- i + 1

draw.vf.cell2("#J4a6c", "#N2466", i, nr); i <- i + 1

draw.vf.cell2("#J4a7c", "#N2084", i, nr); i <- i + 1

draw.vf.cell2("#J4a7d", "#N2082", i, nr); i <- i + 1

draw.vf.cell2("#J4b21", "#N2535", i, nr); i <- i + 1

draw.vf.cell2("#J4b26", "#N3749", i, nr); i <- i + 1

draw.vf.cell2("#J4b4c", "#N0751", i, nr); i <- i + 1

draw.vf.cell2("#J4b4f", "#N5404", i, nr); i <- i + 1

draw.vf.cell2("#J4b5c", "#N0096", i, nr); i <- i + 1

draw.vf.cell2("#J4b63", "#N5390", i, nr); i <- i + 1

draw.vf.cell2("#J4b68", "#N2467", i, nr); i <- i + 1

draw.vf.cell2("#J4b74", "#N0855", i, nr); i <- i + 1

draw.vf.cell2("#J4b7c", "#N0007", i, nr); i <- i + 1

draw.vf.cell2("#J4c23", "#N0913", i, nr); i <- i + 1

draw.vf.cell2("#J4c24", "#N0179", i, nr); i <- i + 1

draw.vf.cell2("#J4c29", "#N1316", i, nr); i <- i + 1

draw.vf.cell2("#J4c35", "#N2773", i, nr); i <- i + 1

draw.vf.cell2("#J4c37", "#N3164", i, nr); i <- i + 1

draw.vf.cell2("#J4c3e", "#N1170", i, nr); i <- i + 1

draw.vf.cell2("#J4c40", "#N2110", i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title("Kanji (8)", nc)

draw.vf.cell2("#J4c4c", "#N5087", i, nr); i <- i + 1

draw.vf.cell2("#J4c53", "#N2473", i, nr); i <- i + 1

Japanese 325

draw.vf.cell2("#J4c5a", "#N2170", i, nr); i <- i + 1

draw.vf.cell2("#J4c5c", "#N3127", i, nr); i <- i + 1

draw.vf.cell2("#J4c64", "#N4944", i, nr); i <- i + 1

draw.vf.cell2("#J4c67", "#N4940", i, nr); i <- i + 1

draw.vf.cell2("#J4c6b", "#N0298", i, nr); i <- i + 1

draw.vf.cell2("#J4c70", "#N3168", i, nr); i <- i + 1

draw.vf.cell2("#J4c72", "#N1598", i, nr); i <- i + 1

draw.vf.cell2("#J4c74", "#N4074", i, nr); i <- i + 1

draw.vf.cell2("#J4c78", "#N2233", i, nr); i <- i + 1

draw.vf.cell2("#J4c7d", "#N2534", i, nr); i <- i + 1

draw.vf.cell2("#J4d2d", "#N3727", i, nr); i <- i + 1

draw.vf.cell2("#J4d30", "#N2565", i, nr); i <- i + 1

draw.vf.cell2("#J4d3a", "#N5030", i, nr); i <- i + 1

draw.vf.cell2("#J4d3c", "#N1167", i, nr); i <- i + 1

draw.vf.cell2("#J4d3e", "#N0408", i, nr); i <- i + 1

draw.vf.cell2("#J4d4f", "#N2659", i, nr); i <- i + 1

draw.vf.cell2("#J4d51", "#N2993", i, nr); i <- i + 1

draw.vf.cell2("#J4d53", "#N3656", i, nr); i <- i + 1

draw.vf.cell2("#J4d55", "#N4001", i, nr); i <- i + 1

draw.vf.cell2("#J4d57", "#N4274", i, nr); i <- i + 1

draw.vf.cell2("#J4d5b", "#N5012", i, nr); i <- i + 1

draw.vf.cell2("#J4d63", "#N3680", i, nr); i <- i + 1

draw.vf.cell2("#J4d68", "#N0202", i, nr); i <- i + 1

draw.vf.cell2("#J4d6b", "#N5049", i, nr); i <- i + 1

draw.vf.cell2("#J4d70", "#N3856", i, nr); i <- i + 1

draw.vf.cell2("#J4d71", "#N0199", i, nr); i <- i + 1

draw.vf.cell2("#J4d72", "#N1431", i, nr); i <- i + 1

draw.vf.cell2("#J4d78", "#N3264", i, nr); i <- i + 1

draw.vf.cell2("#J4d7d", "#N2942", i, nr); i <- i + 1

draw.vf.cell2("#J4e24", "#N4813", i, nr); i <- i + 1

draw.vf.cell2("#J4e25", "#N5040", i, nr); i <- i + 1

draw.vf.cell2("#J4e26", "#N5005", i, nr); i <- i + 1

draw.vf.cell2("#J4e28", "#N0319", i, nr); i <- i + 1

draw.vf.cell2("#J4e29", "#N3343", i, nr); i <- i + 1

draw.vf.cell2("#J4e2e", "#N2576", i, nr); i <- i + 1

draw.vf.cell2("#J4e32", "#N3191", i, nr); i <- i + 1

draw.vf.cell2("#J4e33", "#N3471", i, nr); i <- i + 1

draw.vf.cell2("#J4e35", "#N5440", i, nr); i <- i + 1

draw.vf.cell2("#J4e3e", "#N0034", i, nr); i <- i + 1

draw.vf.cell2("#J4e41", "#N3468", i, nr); i <- i + 1

draw.vf.cell2("#J4e49", "#N3885", i, nr); i <- i + 1

draw.vf.cell2("#J4e4c", "#N2141", i, nr); i <- i + 1

draw.vf.cell2("#J4e4f", "#N0715", i, nr); i <- i + 1

draw.vf.cell2("#J4e53", "#N2210", i, nr); i <- i + 1

draw.vf.cell2("#J4e55", "#N2807", i, nr); i <- i + 1

draw.vf.cell2("#J4e58", "#N4630", i, nr); i <- i + 1

draw.vf.cell2("#J4e60", "#N5138", i, nr); i <- i + 1

draw.vf.cell2("#J4e63", "#N0428", i, nr); i <- i + 1

draw.vf.cell2("#J4e64", "#N0642", i, nr); i <- i + 1

draw.vf.cell2("#J4e6d", "#N5048", i, nr); i <- i + 1

draw.vf.cell2("#J4e6e", "#N5056", i, nr); i <- i + 1

draw.vf.cell2("#J4e73", "#N2438", i, nr); i <- i + 1

draw.vf.cell2("#J4f22", "#N4702", i, nr); i <- i + 1

draw.vf.cell2("#J4f27", "#N2750", i, nr); i <- i + 1

draw.vf.cell2("#J4f29", "#N4561", i, nr); i <- i + 1

draw.vf.cell2("#J4f37", "#N3683", i, nr); i <- i + 1

draw.vf.cell2("#J4f3b", "#N0283", i, nr); i <- i + 1

326 jitter

draw.vf.cell2("#J4f40", "#N4391", i, nr); i <- i + 1

draw.vf.cell2("#J4f42", "#N3268", i, nr); i <- i + 1

draw.vf.cell2("#J4f43", "#N4358", i, nr); i <- i + 1

draw.vf.cell2("#J4f44", "#N0054", i, nr); i <- i + 1

draw.vf.cell2("#J4f47", "#N1710", i, nr); i <- i + 1

draw.vf.cell2("#J534c", "#N0973", i, nr); i <- i + 1

draw.vf.cell2("#J5879", "#N1794", i, nr); i <- i + 1

draw.vf.cell2("#J5960", "#N1942", i, nr); i <- i + 1

draw.vf.cell2("#J626f", "#N3200", i, nr); i <- i + 1

draw.vf.cell2("#J6446", "#N3458", i, nr); i <- i + 1

draw.vf.cell2("#J6647", "#N5083", i, nr); i <- i + 1

draw.vf.cell2("#J6d55", "#N4633", i, nr); i <- i + 1

par(oldpar)

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

x numeric to which jitter should be added.

factor numeric

amount numeric; if positive, used as amount (see below), otherwise, if = 0 the
default is factor * z/50.
Default (NULL): factor * d/5 where d is about the smallest difference
between x values.

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise
added in order to break ties.

kappa 327

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods
for Data Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

See Also

rug which you may want to combine with jitter.

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)

These two ‘fail’ with S-plus 3.x:

jitter(rep(0, 7))

jitter(rep(10000,5))

kappa Estimate the Condition Number

Description

An estimate of the condition number of a matrix or of the R matrix of a QR decomposition,
perhaps of a linear fit. The condition number is defined as the ratio of the largest to the
smallest non-zero singular value of the matrix.

Usage

kappa(z, ...)
kappa.lm (z, ...)
kappa.default(z, exact = FALSE, ...)
kappa.qr (z, ...)
kappa.tri (z, exact = FALSE, ...)

Arguments

z A matrix or a the result of qr or a fit from a class inheriting from "lm".

exact logical. Should the result be exact?

... further arguments passed to or from other methods.

Details

If exact = FALSE (the default) the condition number is estimated by a cheap approxima-
tion. Following S, this uses the LINPACK routine ‘dtrco.f’. However, in R (or S) the exact
calculation is also likely to be quick enough.

Value

The condition number, kappa, or an approximation if exact=FALSE.

328 kronecker

Author(s)

B.D. Ripley

See Also

svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71

kappa(x1, exact = TRUE) # 13.68

kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

sv9 <- svd(h9 <- hilbert(9))$ d

kappa(h9)# pretty high!

kappa(h9, exact = TRUE) == max(sv9) / min(sv9)

kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e. rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker(X, Y)
returns an array A with dimensions dim(X) * dim(Y).

Usage

kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %x% Y

Arguments

X A vector or array.

Y A vector or array.

FUN a function; it may be a quoted string.

make.dimnames Provide dimnames that are the product of the dimnames of X and Y.

... optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with
dimensions of size one. The returned array comprises submatrices constructed by taking X
one term at a time and expanding that term as FUN(x, Y, ...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉

labels 329

References

Matrix Algebra Useful for Statistics, Shayle R. Searle, John Wiley and Sons, 1982.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

simple scalar multiplication

(M <- matrix(1:6, ncol=2))

stopifnot(kronecker(4, M)==4 * M)

Block diagonal matrix:

stopifnot(kronecker(diag(1, 3), M) == diag(1, 3) %x% M)

ask for dimnames

fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))

bill <- c("happy" = 100, "sad" = 1000)

kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))

kronecker(fred, bill, make.dimnames = TRUE)

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example.

Usage

labels(object, ...)
labels.default(object, ...)
labels.terms(object, ...)
labels.lm(object, ...)

Arguments

object Any R object: the function is generic.

... further arguments passed to or from other methods.

Value

A character vector or list of such vectors. For a vector the results is the names or
seq(along=x), for a data frame or array it is the dimnames (with NULL expanded to
seq(len=d[i])), for a terms object it is the term labels and for an lm object it is the
term labels for estimable terms.

330 lapply

Author(s)

B.D. Ripley

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X. Each element of which is the result of applying
FUN to the corresponding element of X.

sapply is a “user-friendly” version of lapply also accepting vectors as X, and returning a
vector or array with dimnames if appropriate.

Usage

lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

Arguments

X list or vector to be used.

FUN the function to be applied. In the case of functions like +, %*%, etc., the
function name must be quoted.

... optional arguments to FUN.

simplify logical; should the result be simplified to a vector if possible?

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless
it had names already.

See Also

apply, tapply.

Examples

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))

compute the list mean for each list element

lapply(x,mean)

median and quartiles for each list element

lapply(x, quantile, probs = 1:3/4)

sapply(x, quantile)

str(i39 <- sapply(3:9, seq))# list of vectors

sapply(i39, fivenum)

Last.value 331

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-level R expression is always assigned to
.Last.value (in package:base) before further processing (e.g. printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object
of the same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),

but they will in make check or if pasted in,

as example() does not run them at the top level

gamma(1:15) # think of some intensive calculation...

fac14 <- .Last.value # keep them

library("eda") # returns invisibly

.Last.value # shows what library(.) above returned

layout Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrix mat,
with the column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat,
widths = rep(1, dim(mat)[2]),
heights= rep(1, dim(mat)[1]),
respect= FALSE)

layout.show(n = 1)
lcm(x)

332 layout

Arguments

mat a matrix object specifying the location of the next N figures on the output
device. Each value in the matrix must be 0 or a positive integer. If N is
the largest positive integer in the matrix, then the integers {1, . . . , N −1}
must also appear at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths
are specified with numeric values. Absolute widths (in centimetres) are
specified with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and
absolute heights can be specified, see widths above.

respect either a logical value or a matrix object. If the latter, then it must have
the same dimensions as mat and each value in the matrix must be either
0 or 1.

n number of figures to plot.

x a dimension to be intepreted as a number of centimetres.

Details

Figure i is allocated a region composed from a subset of these rows and columns, based on
the rows and columns in which i occurs in mat.

The respect argument controls whether a unit column-width is the same physical mea-
surement on the device as a unit row-height.

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for
the widths and heights arguments of layout().

Value

layout returns the number of figures, N , see above.

Author(s)

Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page. Journal of
Computational and Graphical Statistics, 8, 121-134. Chapter 5 of Paul Murrell’s Ph.D.
thesis.

See Also

par with arguments mfrow, mfcol, or mfg.

Examples

def.par <- par(no.readonly = TRUE)# save default, for resetting...

divide the device into two rows and two columns

allocate figure 1 all of row 1

allocate figure 2 the intersection of column 2 and row 2

layout(matrix(c(1,1,0,2), 2, 2, byrow = TRUE))

legend 333

show the regions that have been allocated to each plot

layout.show(2)

divide device into two rows and two columns

allocate figure 1 and figure 2 as above

respect relations between widths and heights

nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)

layout.show(nf)

create single figure which is 5cm square

nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))

layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, rnorm(50)))

y <- pmin(3, pmax(-3, rnorm(50)))

xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)

yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

top <- max(c(xhist$counts, yhist$counts))

xrange <- c(-3,3)

yrange <- c(-3,3)

nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)

layout.show(nf)

par(mar=c(3,3,1,1))

plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")

par(mar=c(0,3,1,1))

barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)

par(mar=c(3,0,1,1))

barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def.par)#- reset to default

legend Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the function locator
can be used in place of the x and y arguments.

Usage

legend(x, y, legend, fill, col = "black", lty, lwd, pch,
angle = NULL, density = NULL,
bty = "o", bg = par("bg"), pt.bg = NA, cex = 1,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1, adj = 0,
text.width = NULL, merge = do.lines && has.pch, trace = FALSE,
ncol = 1, horiz = FALSE)

334 legend

Arguments

x,y the x and y location of the legend. x can be a list with x and y components.

legend a vector of text values or an expression of length ≥ 1 to appear in the
legend.

fill if specified, this argument will cause boxes filled with the specified colors
to appear beside the legend text.

col the color of points or lines appearing in the legend.

lty,lwd the line types and widths for lines appearing in the legend. One of these
two must be specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-
character strings, or one (multi character) string. Must be specified for
symbol drawing.

angle angle of shading lines.

density the density of shading lines, if numeric and positive.

bty the type of box to be drawn around the legend.

bg the background color for the legend box.

pt.bg the background color for the points.

cex character expansion factor relative to current par("cex").

xjust how the legend is to be justified relative to the legend x location. A value
of 0 means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for
y-adjustment when labels are plotmath expressions.

text.width the width of the legend text in x ("user") coordinates. Defaults to the
proper value computed by strwidth(legend).

merge logical; if TRUE, “merge” points and lines but not filled boxes. Defaults to
TRUE if there are points and lines.

trace logical; if TRUE, shows how legend does all its magical computations.

ncol the number of columns in which to set the legend items (default is 1, a
vertical legend).

horiz logical; if TRUE, set the legend horizontally rather than vertically (speci-
fying horiz overrides the ncol specification).

Details

“Attribute” arguments such as col, pch, lty, etc, are recycled if necessary. merge is not.

Points are drawn after lines in order that they can cover the line with their background
color pt.bg, if applicable.

legend 335

Value

A (invisible) list with list components

rect a list with components

w,h positive numbers giving width and height of the legend’s box.
left,top x and y coordinates of upper left corner of the box.

text a list with components

x,y numeric vectors of length length(legend), giving the x and y coor-
dinates of the legend’s text(s).

See Also

plot, barplot which uses legend(), and text for more examples of math expressions.

Examples

Run the example in ‘?matplot’ or the following:

leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")

y.leg <- c(4.5, 3, 2.1, 1.4, .7)

cexv <- c(1.2, 1, 4/5, 2/3, 1/2)

matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

for (i in seq(cexv)) {

text (1, y.leg[i]-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)

legend(3, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

‘merge = TRUE’ for merging lines & points:

x <- seq(-pi, pi, len = 65)

plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)

points(x, cos(x), pch = 3, col = 4)

lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)

title("legend(..., lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)

legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

lty = c(2, -1, 1), pch = c(-1, 3, 4), merge = TRUE, bg=’gray90’)

##--- log scaled Examples ------------------------------

leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))

for(ll in c("","x","y","xy")) {

plot(2:10, log=ll, main=paste("log = ’",ll,"’", sep=""))

abline(1,1)

lines(2:3,3:4, col=2) #

points(2,2, col=3) #

rect(2,3,3,2, col=4)

text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))

legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=TRUE)#, trace=TRUE)

}

par(mfrow=c(1,1))

##-- Math expressions: ------------------------------

336 length

plot(x, sin(x), type="l", col = 2,xlab=expression(phi),ylab=expression(f(phi)))

abline(h=-1:1, v=pi/2*(-6:6), col="gray90")

lines(x, cos(x), col = 3, lty = 2)

ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways

str(legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6)))# adj y !

x <- rexp(100, rate = .5)

hist(x, main = "Mean and Median of a Skewed Distribution")

abline(v = mean(x), col=2, lty=2, lwd=2)

abline(v = median(x), col=3, lty=3, lwd=2)

ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))

str(legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2))

‘Filled’ boxes -- for more, see example(plotfactor)

data(PlantGrowth)

plot(cut(weight, 3) ~ group, data = PlantGrowth,

col = NULL, density = 16*(1:3))

Using ‘ncol’ :

x <- 0:64/64

matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),

type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "*")

op <- par(bg="antiquewhite1")

legend(0, 1.5, paste("sin(",1:7,"pi * x)"), col=1:7, lty=1:7, pch = "*",

ncol = 4, cex=.8)

legend(.8,1.2, paste("sin(",1:7,"pi * x)"), col=1:7, lty=1:7, pch = "*",cex=.8)

legend(0, -.1, paste("sin(",1:4,"pi * x)"), col=1:4, lty=1:4, ncol=2, cex=.8)

legend(0, -.4, paste("sin(",5:7,"pi * x)"), col=5:7, pch=24, ncol=2, cex=1.5,

pt.bg="pink")

par(op)

point covering line :

y <- sin(3*pi*x)

plot(x,y,type="l",col="blue", main = "points with bg & legend(*, pt.bg)")

points(x,y,pch=21,bg="white")

legend(.4,1,"sin(c x)",pch=21,pt.bg="white",lty=1, col = "blue")

length Length of a Vector or List

Description

Get or set the length of vectors (including lists).

Usage

length(x)
length(x) <- n

Arguments

x a vector or list.

n an integer.

levels 337

Details

The replacement form can be used to reset the length of a vector. If a vector is shortened,
extra values are discarded and when a vector is lengthened, it is padded out to its new
length with NAs.

Value

The length of x as an integer of length 1, if x is (or can be coerced to) a vector or list.
Otherwise, length returns NA.

Examples

length(diag(4))# = 16 (4 x 4)

length(options())# 12 or more

length(y ~ x1 + x2 + x3)# 3

length(expression(x, {y <- x^2; y+2}, x^y)) # 3

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value
of the levels of its argument and the second sets the attribute.

The assignment form ("levels<-") of levels is a generic function and new methods can
be written for it. The most important method is that for factors:

Usage

levels(x)
levels(x) <- value

Arguments

x an object, for example a factor.

See Also

levels<-.factor, nlevels.

338 levels.factor

levels.factor Factor Levels Assignment

Description

levels<- provides a way to alter the levels attribute of factor. value can be a vector of
character strings with length at least the the number of levels of x, or a named list specifying
how to rename the levels.

Usage

levels(x) <- value

See Also

factor, levels, levels<-, nlevels.

Examples

assign individual levels

x <- gl(2, 4, 8)

levels(x)[1] <- "low"

levels(x)[2] <- "high"

x

or as a group

y <- gl(2, 4, 8)

levels(y) <- c("low", "high")

y

combine some levels

z <- gl(3, 2, 12)

levels(z) <- c("A", "B", "A")

z

same, using a named list

z <- gl(3, 2, 12)

levels(z) <- list(A=c(1,3), B=2)

z

we can add levels this way:

f <- factor(c("a","b"))

levels(f) <- c("c", "a", "b")

f

f <- factor(c("a","b"))

levels(f) <- list(C="C", A="a", B="b")

f

library 339

library Loading and Listing of Packages

Description

library and require load add-on packages. .First.lib is called when a package is loaded;
.Last.lib is called when a package is detached. .packages returns information about
package availability. .path.package returns information about where a package was loaded
from. .find.package returns the directory paths of installed packages.

Usage

library(package, help, lib.loc = NULL, character.only = FALSE,
logical.return = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"))

require(package, quietly = FALSE, warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"))

.First.lib(libname, pkgname)

.Last.lib(libpath)

.packages(all.available = FALSE, lib.loc = NULL)

.path.package(package = .packages(), quiet = FALSE)

.find.package(package, lib.loc = NULL, quiet = FALSE,
verbose = getOption("verbose"))

.libPaths(new)

.Library

.Autoloaded

Arguments

package, help name or character string giving the name of a package.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

character.only

a logical indicating whether package or help can be assumed to be char-
acter strings.

logical.return

logical. If it is TRUE, FALSE or TRUE is returned to indicate success.
warn.conflicts

logical. If TRUE, warnings are printed about conflicts from attaching
the new package, unless that package contains an object .conflicts.OK.

keep.source logical. If TRUE, functions “keep their source” including comments, see
argument keep.source to options.

verbose a logical. If TRUE, additional diagnostics are printed.

quietly a logical. If TRUE, no message confirming package loading is printed.

340 library

libname a character string giving the library directory where the package was
found.

pkgname a character string giving the name of the package.

libpath a character string giving the complete path to the package.

all.available logical; if TRUE return a character vector of all available packages in
lib.loc.

quiet logical. For .path.package, should this not give warnings or an error if
the package(s) are not loaded? For .find.package, should this not give
warnings or an error if the package(s) are not found?

new a character vector with the locations of R library trees.

Details

library(package) and require(package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and gives a warning
(rather than an error as library()) if the package does not exist. Both functions check and
update the list of currently loaded packages and do not reload code that is already loaded.

For large packages, setting keep.source = FALSE may save quite a bit of memory.

If library is called with no package or help argument, it lists all available packages in the
libraries specified by lib.loc, and returns the corresponding information in an object of
class "libraryIQR". The structure of this class may change in future versions. In earlier
versions of R, only the names of all available packages were returned; use .packages(all
= TRUE) for obtaining these.

library(help = somename) computes basic information about the package somename, and
returns this in an object of class "packageInfo". The structure of this class may change
in future versions.

.First.lib is called when a package is loaded by library. It is called with two arguments,
the name of the library directory where the package was found (i.e., the corresponding
element of lib.loc), and the name of the package (in that order). It is a good place to
put calls to library.dynam which are needed when loading a package into this function
(don’t call library.dynam directly, as this will not work if the package is not installed in a
“standard” location). .First.lib is invoked after the search path interrogated by search()
has been updated, so as.environment(match("package:name"), search()) will return
the environment in which the package is stored. If calling .First.lib gives an error the
loading of the package is abandoned, and the package will be unavailable. Similarly, if the
option ".First.lib" has a list element with the package’s name, this element is called in
the same manner as .First.lib when the package is loaded. This mechanism allows the
user to set package “load hooks” in addition to startup code as provided by the package
maintainers.

.Last.lib is called when a package is detached. Beware that it might be called if

.First.lib has failed, so it should be written defensively. (It is called within try, so
errors will not stop the package being detached.)

.packages() returns the “base names” of the currently attached packages invisibly whereas

.packages(all.available = TRUE) gives (visibly) all packages available in the library
location path lib.loc.

.path.package returns the paths from which the named packages were loaded, or if none
were named, for all currently loaded packages. Unless quiet = TRUE it will warn if some
of the packages named are not loaded, and given an error if none are. This function is not
meant to be called by users, and its interface might change in future versions.

library 341

.find.package returns the paths to the locations where the given packages can be found.
If lib.loc is NULL, then then attached packages are searched before the libraries. If a
package is found more than once, the first match is used. Unless quiet = TRUE a warning
will be given about the named packages which are not found, and an error if none are. If
verbose is true, warnings about packages found more than once are given. This function
is not meant to be called by users, and its interface might change in future versions.

.Autoloaded contains the “base names” of the packages for which autoloading has been
promised.

.Library is a character string giving the location of the default library, the ‘library’ subdi-
rectory of R_HOME. .libPaths is used for getting or setting the library trees that R knows
about (and hence uses when looking for packages). If called with argument new, the library
search path is set to unique(new, .Library) and this is returned. If given no argument,
a character vector with the currently known library trees is returned. The library search
path is initialized at startup from the environment variable R_LIBS (which should be a
colon-separated list of directories at which R library trees are rooted) by calling .libPaths
with the directories specified in R_LIBS.

Value

library returns the list of loaded (or available) packages (or TRUE if logical.return is
TRUE). require returns a logical indicating whether the required package is available.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a Built: field. Packages installed prior to 1.2.0 (released
in December 2000) will need to be re-installed.

Under Unix-alikes, the code checks that the package was installed under a similar operating
system as given by .Platform$canonical.name.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

See Also

attach, detach, search, objects, autoload, library.dynam, data, install.packages,
INSTALL, REMOVE.

Examples

(.packages()) # maybe just "base"

.packages(all = TRUE) # return all available as character vector

library() # list all available packages

library(lib = .Library) # list all packages in the default library

library(help = eda) # documentation on package ‘eda’

library(eda) # load package ‘eda’

require(eda) # the same

(.packages()) # "eda", too

detach("package:eda")

if the package name is in a character vector, use

pkg <- "eda"

library(pkg, character.only = TRUE)

342 library.dynam

detach(pos = match(paste("package", pkg, sep=":"), search()))

.path.package()

.Autoloaded # maybe "ctest"

.libPaths() # all library trees R knows about

require(nonexistent) # FALSE

Suppose a package needs to call a shared library named ‘fooEXT’,

where ‘EXT’ is the system-specific extension. Then you should use

.First.lib <- function(lib, pkg) {

library.dynam("foo", pkg, lib)

}

library.dynam Loading Shared Libraries

Description

Load the specified file of compiled code if it has not been loaded already.

Usage

library.dynam(chname, package = .packages(), lib.loc = NULL,
verbose = getOption("verbose"), file.ext, ...)

.dynLibs(new)

Arguments

chname a character string naming a shared library to load.

package a character vector with the names of packages to search through.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

verbose a logical value indicating whether an announcement is printed on the
console before loading the shared library. The default value is taken from
the verbose entry in the system options.

file.ext the extension to append to the file name to specify the library to be
loaded. This defaults to the appropriate value for the operating system.

... additional arguments needed by some libraries that are passed to the call
to dyn.load to control how the library is loaded.

new a character vector of packages which have loaded shared libraries.

Details

This is designed to be used inside a package rather than at the command line, and should
really only be used inside .First.lib(). The system-specific extension for shared libraries
(e.g., ‘.so’ or ‘.sl’ on Unix systems) should not be added.

.dynLibs is used for getting or setting the packages that have loaded shared libraries (using
library.dynam). Versions of R prior to 1.6.0 used an internal global variable .Dyn.libs
for storing this information: this variable is now defunct.

LifeCycleSavings 343

Value

library.dynam returns a character vector with the names of packages which have used it in
the current R session to load shared libraries. This vector is returned as invisible, unless
the chname argument is missing.

See Also

.First.lib, library, dyn.load, .packages, .libPaths

SHLIB for how to create suitable shared libraries.

Examples

library.dynam()# which packages have been ‘‘dynamically loaded’’

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2,
June 1991. A copy of this license is in ‘$R HOME/COPYING’.

A small number of files (the API header files and import library) are distributed under
the LESSER GNU GENERAL PUBLIC LICENSE version 2.1. A copy of this license is in
‘$R HOME/COPYING.LIB’.

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Usage

data(LifeCycleSavings)

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

344 lines

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings
ratio (aggregate personal saving divided by disposable income) is explained by per-capita
disposable income, the percentage rate of change in per-capita disposable income, and
two demographic variables: the percentage of population less than 15 years old and the
percentage of the population over 75 years old. The data are averaged over the decade
1960–1970 to remove the business cycle or other short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the
data from Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., E. Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York:
Wiley.

Examples

data(LifeCycleSavings)

pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")

fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

summary(fm1)

lines Add Connected Line Segments to a Plot

Description

A generic function taking coordinates given in various ways and joining the corresponding
points with line segments.

Usage

lines(x, ...)
lines.default(x, y=NULL, type="l", col=par("col"), lty=par("lty"), ...)

Arguments

x, y coordinate vectors of points to join.

type character indicating the type of plotting; actually any of the types as in
plot.

col color to use.

lty line type to use.

... Further graphical parameters (see par) may also be supplied as argu-
ments, particularly, line type, lty and line width, lwd.

LINK 345

Details

The coordinates can be passed to lines in a plotting structure (a list with x and y compo-
nents), a time series, etc. See xy.coords.

The coordinates can contain NA values. If a point contains NA it either its x or y value, it is
omitted from the plot, and lines are not drawn to or from such points. Thus missing values
can be used to achieve breaks in lines.

See Also

points, plot, and the underlying “primitive” plot.xy.

par for how to specify colors.

Examples

data(cars)

draw a smooth line through a scatter plot

plot(cars, main="Stopping Distance versus Speed")

lines(lowess(cars))

LINK Create Executable Programs

Description

Front-end for creating executable programs.

Usage

R CMD LINK [options] linkcmd

Arguments

linkcmd a list of commands to link together suitable object files (include library
objects) to create the executable program.

options further options to control the linking, or for obtaining information about
usage and version.

Details

The linker front-end is useful in particular when linking against the R shared library, in
which case linkcmd must contain -lR but need not specify its library path.

Currently only works if the C compiler is used for linking, and no C++ code is used.

Use R CMD LINK --help for more usage information.

346 list

list Lists – Generic and Dotted Pairs

Description

Functions to construct, coerce and check for all kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
as.list.default(x, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

Arguments

... objects.

x object to be coerced or tested.

Details

Most lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in
LISP) are still available.

The arguments to list or pairlist are of the form value or tag=value. The functions
return a list composed of its arguments with each value either tagged or untagged, depending
on how the argument was specified.

alist is like list, except in the handling of tagged arguments with no value. These are
handled as if they described function arguments with no default (cf. formals), whereas
list simply ignores them.

as.list attempts to coerce its argument to list type. For functions, this returns the
concatenation of the list of formals arguments and the function body. For expressions, the
list of constituent calls is returned.

is.list returns TRUE iff its argument is a list or a pairlist of length> 0, whereas
is.pairlist only returns TRUE in the latter case.

An empty pairlist, pairlist() is the same as NULL. This is different from list().

See Also

vector(., mode="list"), c, for concatenation; formals.

list.files 347

Examples

data(cars)

create a plotting structure

pts <- list(x=cars[,1], y=cars[,2])

plot(pts)

Argument lists

f <- function()x

Note the specification of a "..." argument:

formals(f) <- al <- alist(x=, y=2, ...=)

f

str(al)

str(pl <- as.pairlist(ps.options()))

These are all TRUE:

is.list(pl) && is.pairlist(pl)

!is.null(list())

is.null(pairlist())

!is.list(NULL)

is.pairlist(pairlist())

is.null(as.pairlist(list()))

is.null(as.pairlist(NULL))

list.files List the Files in a Directory/Folder

Description

This function produces a list containing the names of files in the named directory. dir is
an alias.

Usage

list.files(path = ".", pattern=NULL, all.files=FALSE, full.names=FALSE)
dir(path = ".", pattern=NULL, all.files=FALSE, full.names=FALSE)

Arguments

path a character vector of full path names.
pattern an optional regular expression. Only file names which match the regular

expression will be returned.
all.files a logical value. If FALSE, only the names of visible files are returned. If

TRUE, all file names will be returned.
full.names a logical value. If TRUE, the directory path is prepended to the file names.

If FALSE, only the file names are returned.

Value

A character vector containing the names of the files in the specified directories, or "" if there
were no files. If a path does not exist or is not a directory or is unreadable it is skipped,
with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE.

348 lm

Note

File naming conventions are very platform dependent.

Author(s)

Ross Ihaka

See Also

file.info, file.access and files for many more file handling functions.

Examples

list.files(R.home())

Only files starting with a-l or r (*including* uppercase):

dir("../..", pattern = "^[a-lr]",full.names=TRUE)

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis
of variance and analysis of covariance (although aov may provide a more convenient interface
for these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset = NULL, ...)

Arguments

formula a symbolic description of the model to be fit. The details of model speci-
fication are given below.

data an optional data frame containing the variables in the model. By de-
fault the variables are taken from environment(formula), typically the
environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights weights (that is, minimizing
sum(w*e^2)); otherwise ordinary least squares is used.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

method the method to be used; for fitting, currently only method="qr" is sup-
ported; method="model.frame" returns the model frame (the same as
with model = TRUE, see below).

lm 349

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are re-
turned.

singular.ok logical, defaulting to TRUE. FALSE is not yet implemented.
contrasts an optional list. See the contrasts.arg of model.matrix.default.
offset this can be used to specify an a priori known component to be included

in the linear predictor during fitting. An offset term can be included in
the formula instead or as well, and if both are specified their sum is used.

... additional arguments to be passed to the low level regression fitting func-
tions (see below).

Details

Models for lm are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which
specifies a linear predictor for response. A terms specification of the form first + second
indicates all the terms in first together with all the terms in second with duplicates
removed. A specification of the form first:second indicates the set of terms obtained by
taking the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second.

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computa-
tions. For programming only, you may consider doing likewise.

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects,
fitted.values and residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients
residuals the residuals, that is response minus fitted values.
fitted.values the fitted mean values.
rank the numeric rank of the fitted linear model.
weights (only for weighted fits) the specified weights.
df.residual the residual degrees of freedom.
call the matched call.
terms the terms object used.
contrasts (only where relevant) the contrasts used.
xlevels (only where relevant) a record of the levels of the factors used in fitting.
y if requested, the response used.
x if requested, the model matrix used.
model if requested (the default), the model frame used.

In addition, non-null fits will have components assign, effects and (unless not requested)
qr relating to the linear fit, for use by extractor functions such as summary and effects.

350 lm.fit

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas
those specified by an offset term in the formula will be.

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different interface.

The generic functions coefficients, effects, residuals, fitted.values.

predict.lm (via predict) for prediction, including confidence and prediction intervals.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression
fitting.

Examples

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

anova(lm.D9 <- lm(weight ~ group))

summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept

summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(lm.D9, las = 1) # Residuals, Fitted, ...

par(opar)

model frame :

stopifnot(identical(lm(weight ~ group, method = "model.frame"),

model.frame(lm.D9)))

lm.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called by lm used to fit linear models. These should
usually not be used directly unless by experienced users.

Usage

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7, ...)
lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7, ...)
lm.fit.null (x, y, method = "qr", tol = 1e-7, ...)
lm.wfit.null(x, y, w, method = "qr", tol = 1e-7, ...)

lm.fit 351

Arguments

x design matrix of dimension n * p.

y vector of observations of length n.

w vector of weights (length n) to be used in the fitting process for the wfit
functions. Weighted least squares is used with weights w, i.e., sum(w *
e^2) is minimized.

offset numeric of length n). This can be used to specify an a priori known
component to be included in the linear predictor during fitting.

method currently, only method="qr" is supported.

tol tolerance for the qr decomposition. Default is 1e-7.

... currently disregarded.

Details

The functions lm.{w}fit.null are called by lm.fit or lm.wfit respectively, when x has
zero columns.

Value

a list with components

coefficients p vector

residuals n vector

fitted.values n vector

effects n vector;

weights n vector — only for the *wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr the QR decomposition, see qr.

See Also

lm which you should use for linear least squares regression, unless you know better.

Examples

set.seed(129)

n <- 7 ; p <- 2

X <- matrix(rnorm(n * p), n,p) # no intercept!

y <- rnorm(n)

w <- rnorm(n)^2

str(lmw <- lm.wfit(x=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))

str(lm0 <- lm.fit.null (x=X, y=y))

str(lmw0 <- lm.wfit.null(x=X, y=y,w=w))

352 lm.influence

lm.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of
diagnostics for checking the quality of regression fits.

Usage

lm.influence(lm.obj)

Arguments

lm.obj an object as returned by lm.

Details

The influence.measures() and other functions listed in See Also provide a more user
oriented way of computing a variety of regression diagnostics.

Value

A list containing the following components:

hat a vector containing the diagonal of the “hat” matrix.

coefficients the change in the estimated coefficients which results when the i-th case
is dropped from the regression is contained in the i-th row of this matrix.

sigma a vector whose i-th element contains the estimate of the residual standard
deviation obtained when the i-th case is dropped from the regression.

Note

The coefficients returned by the R version of lm.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return
the changes in the coefficients. This is more directly useful in many diagnostic measures.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

if a model has been fitted with na.action=na.exclude (see na.exclude), cases excluded
in the fit are considered here.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

summary.lm for summary and related methods;
influence.measures,
hat for the hat matrix diagonals,
dfbetas, dffits, covratio, cooks.distance, lm.

lm.summaries 353

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),

corr = TRUE)

str(lmI <- lm.influence(lm.SR))

For more ‘user level’ examples, use example(influence.measures)

lm.summaries Accessing Linear Model Fits

Description

All these functions are methods for class "lm" objects.

Usage

coefficients(object, ...) ; \method

Arguments

object, x an object of class lm, usually, a result of a call to lm.

... further arguments passed to or from other methods.

Details

The generic accessor functions coefficients, effects, fitted.values and residuals
can be used to extract various useful features of the value returned by lm.

See Also

The model fitting function lm, anova.lm.

coefficients, deviance, df.residual, effects, fitted.values, glm for generalized
linear models, lm.influence for regression diagnostics, weighted.residuals, residuals,
residuals.glm, summary.lm.

Examples

##-- Continuing the lm(.) example:

coef(lm.D90)# the bare coefficients

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]

plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe’s

abline(h=0, lty=2, col = ’gray’)

qqnorm(residuals(lm.D90))

354 lm.summary

lm.summary Summarizing Linear Model Fits

Description

summary method for class "lm".

Usage

summary(object, correlation = FALSE, ...)

print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor = p > 4,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "lm", usually, a result of a call to lm.

x an object of class "summary.lm", usually, a result of a call to summary.lm.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is
returned and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum
rather than as numbers.

signif.stars logical. If TRUE, “significance stars” are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives “significance stars” if signif.stars is TRUE.

Value

The function summary.lm computes and returns a list of summary statistics of the fitted
linear model given in object, using the components (list elements) "call" and "terms"
from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of
the weights specified in the call to lm.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard
error, t-statistic and corresponding (two-sided) p-value.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p

∑
i

R2
i ,

where Ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (p, n− p, p∗).

load 355

fstatistic (for models including non-intercept terms) a 3-vector with the value of
the F-statistic with its numerator and denominator degrees of freedom.

r.squared R2, the “fraction of variance explained by the model”,

R2 = 1−
∑

iR
2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.

adj.r.squared the above R2 statistic “adjusted”, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified.

See Also

The model fitting function lm, summary.

Examples

##-- Continuing the lm(.) example:

coef(lm.D90)# the bare coefficients

sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept

sld90

coef(sld90)# much more

load Reload Saved Datasets

Description

Reload the datasets written to a file with the function save.

Usage

load(file, envir = parent.frame())

Arguments

file a connection or a character string giving the name of the file to load.

envir the environment where the data should be loaded.

See Also

save.

356 localeconv

Examples

save all data

save(list = ls(), file= "all.Rdata")

restore the saved values to the current environment

load("all.Rdata")

restore the saved values to the workspace

load("all.Rdata", .GlobalEnv)

localeconv Find Details of the Numerical Representations in the Current
Locale

Description

Get details of the numerical representations in the current locale.

Usage

Sys.localeconv()

Value

A character vector with 18 named components. See your ISO C documentation for details
of the meaning.
It is possible to compile R without support for locales, in which case the value will be NULL.

See Also

locales for ways to set locales: by default R uses the C clocal for "LC_NUMERIC" and
"LC_MONETARY".

Examples

Sys.localeconv()

The results in the default C locale are

decimal_point thousands_sep grouping int_curr_symbol

"." "" "" ""

currency_symbol mon_decimal_point mon_thousands_sep mon_grouping

"" "" "" ""

positive_sign negative_sign int_frac_digits frac_digits

"" "" "127" "127"

p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space

"127" "127" "127" "127"

p_sign_posn n_sign_posn

"127" "127"

Now try your default locale (which might be "C").

old <- Sys.getlocale()

Sys.setlocale(locale = "")

Sys.localeconv()

Sys.setlocale(locale = old)

read.table("foo", dec=Sys.localeconv()["decimal_point"])

locales 357

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

Arguments

category character string. Must be one of "LC_ALL", "LC_COLLATE", "LC_CTYPE",
"LC_MONETARY", "LC_NUMERIC" or "LC_TIME".

locale character string. A valid locale name on the system in use. Normally ""
(the default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects
of the locale of R are set to "C" (which is the default for the C language and reflects North-
American usage). R does set "LC_CTYPE" and "LC_COLLATE", which allow the use of a
different character set (typically ISO Latin 1) and alphabetic comparisons in that character
set (including the use of sort) and "LC_TIME" may affect the behaviour of as.POSIXlt
and strptime and functions which use them (but not date).

R can be built with no support for locales, but it is normally available on Unix and is
available on Windows.

Some systems will have other locale categories, but the six described here are those specified
by POSIX.

Value

A character string of length one describing the locale in use (after setting for
Sys.setlocale), or an empty character string if the locale is invalid (with a warning)
or NULL if locale information is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single
locale or a set of locales separated by "/" (Solaris) or ";" (Windows). For portability,
it is best to query categories individually. It is guaranteed that the result of foo <-
Sys.getlocale() can used in Sys.setlocale("LC_ALL", locale = foo) on the same
machine.

Warning

Setting "LC_NUMERIC" can produce output that R cannot then read by scan or read.table
with their default arguments, which are not locale-specific.

See Also

strptime for uses of category = "LC_TIME". localeconv for details of numerical repre-
sentations.

358 locator

Examples

Sys.getlocale()

Sys.getlocale("LC_TIME")

Sys.setlocale("LC_TIME", "de") # Solaris: details are OS-dependent

Sys.setlocale("LC_TIME", "German") # Windows

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n", ...)

Arguments

n the maximum number of points to locate.

type One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l"
or "o" they are joined by lines.

... additional graphics parameters used if type != "n" for plotting the lo-
cations.

Details

Unless the process is terminated prematurely by the user (see below) at most n positions
are determined.

The identification process can be terminated by pressing any mouse button other than the
first.

The current graphics parameters apply just as if plot.default has been called with the
same value of type. The plotting of the points and lines is subject to clipping, but locations
outside the current clipping rectangle will be returned.

If the window is resized or hidden and then exposed before the input process has terminated,
any lines or points drawn by locator will disappear. These will reappear once the input
process has terminated and the window is resized or hidden and exposed again. This is
because the points and lines drawn by locator are not recorded in the device’s display list
until the input process has terminated.

Value

A list containing x and y components which are the coordinates of the identified points.

See Also

identify

log 359

log Logarithms and Exponentials

Description

log computes natural logarithms, log10 computes common (i.e., base 10) logarithms, and
log2 computes binary (i.e., base 2) logarithms. The general form logb(x, base) computes
logarithms with base base (log10 and log2 are only special cases).

log1p(x) computes log(1+x) accurately also for |x| � 1 (and less accurately when x ≈ −1).

exp computes the exponential function.

expm1(x) computes exp(x)− 1 accurately also for |x| � 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)
exp(x)
expm1(x)
log1p(x)

Arguments

x a numeric or complex vector.

base positive number. The base with respect to which logarithms are com-
puted. Defaults to e=exp(1).

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf
(when available).

Note

log and logb are the same thing in R, but logb is preferred if base is specified, for S-PLUS
compatibility.

See Also

Trig, sqrt, Arithmetic.

Examples

log(exp(3))

all.equal(log(1:10), log(1:10, exp(1)))

log10(30) == log(30, 10)

log10(1e7)# = 7

log2(2^pi) == 2^log2(pi)

Mod(pi - log(exp(pi*1i)) / 1i) < .Machine$double.eps

Mod(1+exp(pi*1i)) < .Machine$double.eps

360 Logic

x <- 10^-(1+2*1:9)

cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Logic Logical Operators

Description

These operators act on logical vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

Arguments

x, y logical vectors

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form
evaluates left to right examining only the first element of each vector. Evaluation proceeds
only until the result is determined. The longer form is appropriate for programming control-
flow and typically preferred in if clauses.

xor indicates elementwise exclusive OR.

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if
the outcome is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE
evaluates to FALSE. See the examples below.

See Also

TRUE or logical.

Syntax for operator precedence.

Examples

y <- 1 + (x <- rpois(50, lambda=1.5) / 4 - 1)

x[(x > 0) & (x < 1)] # all x values between 0 and 1

if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :

x <- c(NA, FALSE, TRUE)

names(x) <- as.character(x)

outer(x, x, "&")## AND table

outer(x, x, "|")## OR table

logical 361

logical Logical Vectors

Description

Create or test for objects of type "logical", and the basic logical “constants”.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

TRUE and FALSE are part of the R language, where T and F are global variables set to these.
All four are logical(1) vectors.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal
to FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this uses
the levels (labels) and not the codes.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic
distribution with parameters location and scale.

362 Logistic

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

location, scale

location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The Logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1
σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile
function, and rlogis generates random deviates.

Examples

eps <- 100 * .Machine$double.eps

x <- c(0:4, rlogis(100))

all.equal(plogis(x), 1 / (1 + exp(-x)), tol = eps)

all.equal(plogis(x, lower=FALSE), exp(-x)/ (1 + exp(-x)), tol = eps)

all.equal(plogis(x, lower=FALSE, log=TRUE), -log(1 + exp(x)), tol = eps)

all.equal(dlogis(x), exp(x) * (1 + exp(x))^-2, tol = eps)

var(rlogis(4000, 0, s = 5))# approximately (+/- 3)

pi^2/3 * 5^2

logLik 363

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of
objects. Classes which already have methods for this function include: lm, nls in package
nls, and gls, lme and others in package nlme.

Usage

logLik(object, ...)

as.data.frame(x, row.names = NULL, optional = FALSE)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.

x an object of class logLik.
row.names, optional

arguments to the as.data.frame method; see its documentation.

Value

Returns an object, say r, of class logLik which is a number with attributes, attr(r, "df")
(degrees of freedom) giving the number of parameters in the model. There’s a simple print
method for logLik objects.

The details depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

logLik.lm, logLik.nls, logLik.gls, logLik.lme, etc.

Examples

see the method function documentation

x <- 1:5

lmx <- lm(x ~ 1)

logLik(lmx) # using print.logLik() method

str(logLik(lmx))

364 logLik.glm

logLik.glm Extract Log-Likelihood from an glm Object

Description

Returns the log-likelihood value of the generalized linear model represented by object
evaluated at the estimated coefficients.

Usage

logLik(object, ...)

Arguments

object an object inheriting from class "glm".

... further arguments to be passed to or from methods.

Details

As a family does not have to specify how to calculate the log-likelihood, this is based on
the family’s function to compute the AIC. For gaussian, Gamma and inverse.gaussian
families it assumed that the dispersion of the GLM is estimated and has been included in
the AIC, and for all other families it is assumed that the dispersion is known.

Not that this procedure is not completely accurate for the gamma and inverse gaussian
families, as the estimate of dispersion used is not the MLE.

Value

the log-likelihood of the linear model represented by object evaluated at the estimated
coefficients.

See Also

glm, logLik.lm

Examples

##-- Continuing the glm(.) example:

Eq <- function(x,y) all.equal(x,y, tol = 1e-12)

stopifnot(Eq(AIC(anorex.1), anorex.1$aic),

Eq(AIC(g1), g1$aic),

Eq(AIC(g2), g2$aic))

next was wrong in 1.4.1

x <- 1:10

lmx <- logLik(lm(x ~ 1)); glmx <- logLik(glm(x ~ 1))

stopifnot(all.equal(as.vector(lmx), as.vector(glmx)),

all.equal(attr(lmx, ’df’), attr(glmx, ’df’)))

logLik.lm 365

logLik.lm Extract Log-Likelihood from an lm Object

Description

If REML=FALSE, returns the log-likelihood value of the linear model represented by object
evaluated at the estimated coefficients; else, the restricted log-likelihood evaluated at the
estimated coefficients is returned.

Usage

logLik(object, REML = FALSE, ...)

Arguments

object an object inheriting from class "lm".
REML an optional logical value. If TRUE the restricted log-likelihood is returned,

else, if FALSE, the log-likelihood is returned. Defaults to FALSE.
... further arguments to be passed to or from methods.

Value

an object of class logLik, the (restricted) log-likelihood of the linear model represented by
object evaluated at the estimated coefficients. Note that error variance σ2 is estimated in
lm() and hence counted as well.

Author(s)

Jose Pinheiro and Douglas Bates

References

Harville, D.A. (1974). Bayesian Inference for Variance Components Using Only Error Con-
trasts. Biometrika, 61, 383–385.

See Also

lm

Examples

data(attitude)

(fm1 <- lm(rating ~ ., data = attitude))

logLik(fm1)

logLik(fm1, REML = TRUE)

Nnlme <- is.na(match("package:nlme", search()))

if(require(nlme)) {

data(Orthodont)

fm1 <- lm(distance ~ Sex * age, Orthodont)

print(logLik(fm1))

print(logLik(fm1, REML = TRUE))

if(Nnlme) detach("package:nlme")

}

366 loglin

loglin Fitting Log-Linear Models

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative
Proportional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

Arguments

table a contingency table to be fit, typically the output from table.

margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in term of these marginal
totals which give the “maximal” factor subsets contained in the model.
For example, in a three-factor model, list(c(1, 2), c(1, 3)) specifies
a model which contains parameters for the grand mean, each factor, and
the 1-2 and 1-3 interactions, respectively (but no 2-3 or 1-2-3 interaction),
i.e., a model where factors 2 and 3 are independent conditional on factor
1 (sometimes represented as ‘[12][13]’).
The names of factors (i.e., names(dimnames(table))) may be used rather
than numeric indices.

start a starting estimate for the fitted table. This optional argument is impor-
tant for incomplete tables with structural zeros in table which should
be preserved in the fit. In this case, the corresponding entries in start
should be zero and the others can be taken as one.

fit a logical indicating whether the fitted values should be returned.

eps maximum deviation allowed between observed and fitted margins.

iter maximum number of iterations.

param a logical indicating whether the parameter values should be returned.

print a logical. If TRUE, the number of iterations and the final deviation are
printed.

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for
fitting the model. At most iter iterations are performed, convergence is taken to occur
when the maximum deviation between observed and fitted margins is less than eps. All
internal computations are done in double precision; there is no limit on the number of
factors (the dimension of the table) in the model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson
test statistics have an asymptotic chi-squared distribution with df degrees of freedom.

Package ‘MASS’ contains loglm, a front-end to loglin which allows the log-linear model to
be specified and fitted in a formula-based manner similar to that of other fitting functions
such as lm or glm.

Lognormal 367

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for
structural zeros.

margin list of the margins that were fit. Basically the same as the input margin,
but with numbers replaced by names where possible.

fit An array like table containing the fitted values. Only returned if fit is
TRUE.

param A list containing the estimated parameters of the model. The “standard”
constraints of zero marginal sums (e.g., zero row and column sums for a
two factor parameter) are employed. Only returned if param is TRUE.

Author(s)

Kurt Hornik

References

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied
Statistics, 21, 218–225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table

Examples

data(HairEyeColor)

Model of joint independence of sex from hair and eye color.

fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))

fm

1 - pchisq(fmlrt, fmdf)

Model with no three-factor interactions fits well.

Lognormal The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal
distribution whose logarithm has mean equal to meanlog and standard deviation equal to
sdlog.

368 Lognormal

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

meanlog, sdlog

mean and standard deviation of the distribution on the log scale with
default values of 0 and 1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

where µ and σ are the mean and standard deviation of the logarithm. The mean is E(X) =
exp(µ + 1/2σ2), and the variance V ar(X) = exp(2µ + σ2)(exp(σ2) − 1) and hence the
coefficient of variation is

√
exp(σ2)− 1 which is approximately σ when that is small (e.g.

σ < 1/2).

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile
function, and rlnorm generates random deviates.

Note

The cumulative hazard H(t) = − log(1− F (t)) is -plnorm(t, r, lower = FALSE, log =
TRUE).

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

x <- rlnorm(1000) # not yet always :

all(abs(x - qlnorm(plnorm(x))) < 1e4 * .Machine$double.eps * x)

longley 369

longley Longley’s Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear
regression.

Usage

data(longley)

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.

Population: ‘noninstitutionalized’ population ≥ 14 years of age.

Year: the year (time).

Employed: number of people employed.

The regression lm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the
user. Journal of the American Statistical Association, 62, 819–841.

Examples

give the data set in the form it is used in S-PLUS:

data(longley)

longley.x <- data.matrix(longley[, 1:6])

longley.y <- longley[, "Employed"]

pairs(longley, main = "longley data")

summary(fm1 <- lm(Employed ~ ., data = longley))

opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))

plot(fm1)

par(opar)

370 lowess

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower
or upper triangle.

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag, matrix.

Examples

m2 <- ma <- matrix(1:20, 4, 5)

m2[lower.tri(m2)] <- NA

m2

stopifnot(lower.tri(ma) == !upper.tri(ma, diag=TRUE))

lowess Scatter Plot Smoothing

Description

This function performs the computations for the LOWESS smoother (see the reference
below). lowess returns a list containing components x and y which give the coordinates of
the smooth. The smooth should be added to a plot of the original points with the function
lines.

Usage

lowess(x, y, f=2/3, iter=3, delta=.01*diff(range(x)))

ls 371

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alterna-
tively a single plotting structure can be specified.

f the smoother span. This gives the proportion of points in the plot which
influence the smooth at each value. Larger values give more smoothness.

iter the number of robustifying iterations which should be performed. Using
smaller values of iter will make lowess run faster.

delta values of x which lie within delta of each other replaced by a single value
in the output from lowess.

References

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J.
Amer. Statist. Assoc. 74, 829–836.

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally
weighted regression. The American Statistician, 35, 54.

See Also

loess (in package modreg), a newer formula based version of lowess (with different de-
faults!).

Examples

data(cars)

plot(cars, main = "lowess(cars)")

lines(lowess(cars), col = 2)

lines(lowess(cars, f=.2), col = 3)

legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls List Objects

Description

ls and objects return a vector of character strings giving the names of the objects in the
specified environment. When invoked with no argument at the top level prompt, ls shows
what data sets and functions a user has defined. When invoked with no argument inside a
function, ls returns the names of the functions local variables. This is useful in conjunction
with browser.

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)

objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

372 ls.diag

Arguments

name which environment to use in listing the available objects. Defaults to the
current environment. Although called name for back compatibility, in fact
this argument can specify the environment in any form; see the details
section.

pos An alternative argument to name for specifying the environment as a po-
sition in the search list. Mostly there for back compatibility.

envir an alternative argument to name for specifying the environment evaluation
environment. Mostly there for back compatibility.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names
which begin with a “.” are omitted.

pattern an optional regular expression, see grep. Only names matching pattern
are returned.

Details

The name argument can specify the environment from which object names are taken in one
of several forms: as an integer (the position in the search list); as the character string name
of an element in the search list; or as an explicit environment (including using sys.frame
to access the currently active function calls). By default, the environment of the call to ls
or objects is used. The pos and envir arguments are an alternative way to specify an
environment, but are primarily there for back compatibility.

See Also

apropos (or find) for finding objects in the whole search path; grep for more details on
“regular expressions”; class, methods, etc. for object-oriented programming.

Examples

.Ob <- 1

ls(pat="O")

ls(pat="O", all = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined

myfunc <- function() {ls()}

myfunc()

define a local variable inside myfunc

myfunc <- function() {y <- 1; ls()}

myfunc() # shows "y"

ls.diag Compute Diagnostics for ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients.

ls.diag 373

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result of lsfit()

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of σ.

hat diagonal entries hii of the hat matrix H

std.res standardized residuals

stud.res studentized residuals

cooks Cook’s distances

dfits DFITS statistics

correlation correlation matrix

std.err standard errors of the regression coefficients

cov.scaled Scaled covariance matrix of the coefficients

cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

See Also

hat for the hat matrix diagonals, ls.print, lm.influence, summary.lm, anova.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)

dlsD9 <- ls.diag(lsD9)

str(dlsD9, give.attr=FALSE)

abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p

plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))

abline(h = 0, lty = 2, col = "lightgray")

374 lsfit

ls.print Print ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression
coefficients and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result of lsfit()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually, you’d rather use summary(lm(...)) and anova(lm(...)) for obtaining similar
output.

See Also

ls.diag, lsfit, also for examples; lm, lm.influence which usually are preferable.

lsfit Find the Least Squares Fit

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt=NULL, intercept=TRUE, tolerance=1e-07, yname=NULL)

mad 375

Arguments

x a matrix whose rows correspond to cases and whose columns correspond
to variables.

y the responses, possibly matrix valued if you want to fit multiple left hand
sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname an unused parameter for compatibility.

Details

If weights are specified then a weighted least squares is performed with the weight given to
the j th case specified by the j th entry in wt.

If any observation has a missing value in any field, that observation is removed before the
analysis is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for
multiple left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (stated below).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

See Also

lm which usually is preferable; ls.print, ls.diag.

Examples

##-- Using the same data as the lm(.) example:

lsD9 <- lsfit(x = codes(gl(2,10)), y = weight)

ls.print(lsD9)

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations
from the median, and (by default) adjust by a factor for asymptotically normal consistency.

376 mahalanobis

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defauls to the median.

constant scale factor.

na.rm if TRUE then NA values are stripped from x before computation takes place.

low if TRUE, compute the“lo-median”, i.e., for even sample size, do not average
the two middle values, but take the smaller one.

high if TRUE, compute the “hi-median”, i.e. take the larger of the two middle
values for even sample size.

Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default
value of center being median(x), and cMedian being the usual, the“low”or“high”median,
see the arguments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1(3
4) = 1/qnorm(3/4)) ensures con-

sistency, i.e.,
E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this
is not done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

Examples

mad(c(1:9))

print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE

x <- c(1,2,3, 5,7,8)

sort(abs(x - median(x)))

c(mad(x, co=1), mad(x, co=1, lo = TRUE), mad(x, co=1, hi = TRUE))

mahalanobis Mahalanobis Distance

Description

Returns the Mahalanobis distance of all rows in x and the vector µ =center with respect
to Σ =cov. This is (for vector x) defined as

D2 = (x− µ)′Σ−1(x− µ)

make.link 377

Usage

mahalanobis(x, center, cov, inverted=FALSE, tol.inv = 1e-7)

Arguments

x vector or matrix of data with, say, p columns.

center mean vector of the distribution or second data vector of length p.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance
matrix.

tol.inv tolerance to be used for computing the inverse (if inverted is false), see
solve.

Author(s)

Friedrich Leisch

See Also

cov, var

Examples

ma <- cbind(1:6, 1:3)

(S <- var(ma))

mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)

stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

##- Here, D^2 = usual Euclidean distances

Sx <- cov(x)

D2 <- mahalanobis(x, rowMeans(x), Sx)

plot(density(D2, bw=.5), main="Mahalanobis distances, n=100, p=3"); rug(D2)

qqplot(qchisq(ppoints(100), df=3), D2,

main = expression("Q-Q plot of Mahalanobis" * ~D^2 *

" vs. quantiles of" * ~ chi[3]^2))

abline(0, 1, col = ’gray’)

make.link Create a Link for GLM families

Description

This function is used with the family functions in glm(). Given a link, it returns a link
function, an inverse link function, the derivative dµ/dη and a function for domain checking.

Usage

make.link(link)

378 make.names

Arguments

link character or numeric; one of "logit", "probit", "cloglog",
"identity", "log", "sqrt", "1/mu^2", "inverse", or number, say λ
resulting in power link = µλ.

Value

A list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) dµ/dη

valideta function(eta){ TRUE if all of eta is in the domain of linkinv }.

See Also

glm, family.

Examples

str(make.link("logit"))

l2 <- make.link(2)

l2$linkfun(0:3)# 0 1 4 9

l2$mu.eta(eta= 1:2)#= 1/(2*sqrt(eta))

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make.names(names, unique = FALSE)

Arguments

names character (vector) to be coerced to syntactically valid names.

unique logical; if TRUE, the resulting elements are unique. This may be desired
for, e.g., column names.

Details

A syntactically valid name consists of letters, numbers, and the dot character and starts
with a letter or the dot.

All invalid characters are translated to ".". A missing value is translated to "NA".

If unique = TRUE a sequence number is appended to each duplicate (after coercion).

make.socket 379

Value

A character vector of same length as names with each changed to a syntactically valid name.

See Also

names, character, data.frame.

Examples

make.names(c("a and b", "a_and_b"), unique=TRUE)#-> "a.and.b" "a.and.b1"

all(make.names(letters) == letters)# TRUE

data(state)

state.name[make.names(state.name) != state.name]# those 10 with a space

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host.
With server = TRUE listens on the specified port for a connection and then returns a
server socket. It is a good idea to use on.exit to ensure that a socket is closed, as you only
get 64 of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class "socket".

socket socket number. This is for internal use

port port number of the connection

host name of remote computer

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I
suspect not.

380 make.tables

Author(s)

Thomas Lumley

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins
and Robbins ”Practical UNIX Programming”

See Also

close.socket, read.socket

Examples

daytime <- function(host = "localhost"){

a <- make.socket(host, 13)

on.exit(close.socket(a))

read.socket(a)

}

Offical time (UTC) from US Naval Observatory

daytime("tick.usno.navy.mil")

make.tables Create model.tables

Description

These are support functions for (the methods of) model.tables and probably not much of
use otherwise.

Usage

make.tables.aovproj (proj.cols, mf.cols, prjs, mf,
fun = "mean", prt = FALSE, ...)

make.tables.aovprojlist(proj.cols, strata.cols, model.cols, projections,
model, eff, fun = "mean", prt = FALSE, ...)

See Also

model.tables

makepredictcall 381

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from
models with terms like poly or ns.

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

Details

This is a generic function with methods for poly, bs and ns: the default method handles
scale. If model.frame.default encounters such a term when creating a model frame, it
modifies the predvars attribute of the terms supplied to replace the term with one that
will work for predicting new data. For example makepredictcall.ns adds arguments for
the knots and intercept.

To make use of this, have your model-fitting function return the terms attribute of the
model frame, or copy the predvars attribute of the terms attribute of the model frame to
your terms object.

To extend this, make sure the term creates variables with a class, and write a suitable
method for that class.

Value

A replacement for call for the predvars attribute of the terms.

See Also

model.frame, poly, scale, bs, ns, cars

Examples

using poly: this did not work in R < 1.5.0

data(women)

fm <- lm(weight ~ poly(height, 2), data = women)

plot(women, xlab = "Height (in)", ylab = "Weight (lb)")

ht <- seq(57, 73, len = 200)

lines(ht, predict(fm, data.frame(height=ht)))

see also example(cars)

see bs and ns for spline examples.

382 manova

manova Multivariate Analysis of Variance

Description

A class of multivariate analysis of variance.

Usage

manova(...)

Arguments

... Arguments to be passed to aov.

Details

Class "manova" differs from class "aov" in selecting a different summary method. Function
manova calls aov and then add class "manova" to the result object for each stratum.

Value

See aov and the comments in Details here.

Note

manova does not support multistratum analysis of variance, so the formula should not
include an Error term.

Author(s)

B.D. Ripley

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Ox-
ford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated
Measures. Chapman and Hall.

See Also

aov, summary.manova, the latter containing examples.

margin.table 383

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really just apply(x, margin, sum) packaged up for newbies, except that if margin
has length zero you get sum(x).

Value

The relevant marginal table. The class of x is copied to the output table, except in the
summation case.

Author(s)

Peter Dalgaard

Examples

m<-matrix(1:4,2)

margin.table(m,1)

margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of
length nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

384 match

Examples

mat.or.vec(3, 1)

mat.or.vec(3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector
indicating if there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA, incomparables = FALSE)
x %in% table

Arguments

x the values to be matched.
table the values to be matched against.
nomatch the value to be returned in the case when no match is found. Note that

it is coerced to integer.
incomparables a vector of values that cannot be matched. Any value in x matching a

value in this vector is assigned the nomatch value. Currently, FALSE is
the only possible value, meaning that all values can be matched.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors are converted to character vectors, and then x and table are coerced to a common
type (the later of the two types in R’s ordering, logical < integer < numeric < complex <
character) before matching.

Value

In both cases, a vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x.

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching.

is.element for an S-compatible equivalent of %in%.

match.arg 385

Examples

The intersection of two sets :

intersect <- function(x, y) y[match(x, y, nomatch = 0)]

intersect(1:10,7:20)

1:10 %in% c(1,3,5,9)

sstr <- c("c","ab","B","bba","c","@","bla","a","Ba","%")

sstr[sstr %in% c(letters,LETTERS)]

"%w/o%" <- function(x,y) x[!x %in% y] #-- x without y

(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices.

Usage

match.arg(arg, choices)

Arguments

arg a character string

choices a character vector of candidate values

Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called.

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the unique partial match if there is one; otherwise, an error
is signalled.

See Also

pmatch, match.fun, match.call.

Examples

Extends the example for ‘switch’

center <- function(x, type = c("mean", "median", "trimmed")) {

type <- match.arg(type)

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

386 match.call

x <- rcauchy(10)

center(x, "t") # Works

center(x, "med") # Works

center(x, "m") # Error

match.call Argument Matching

Description

match.call returns a call in which all of the arguments are specified by their names. The
most common use is to get the call of the current function, with all arguments named.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called.

call an unevaluated call to the function specified by definition, as generated
by call.

expand.dots logical. Should arguments matching ... in the call be included or left as
a ... argument?

Value

An object of class call.

See Also

call, pmatch, match.arg, match.fun.

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))

-> get(x = "abc", pos = 3, inherits = FALSE)

fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())

}

fun(4 * atan(1), u = pi)

match.fun 387

match.fun Function Verification for “Function Variables”

Description

When called inside functions that take a function as argument, extract the desired function
object while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function.

descend logical; control whether to search past non-function objects.

Details

match.fun is not intended to be used at the top level since it will perform matching in the
parent of the caller.

If FUN is a function, it is returned. If it is a symbol or a character vector of length one,
it will be looked up using get in the environment of the parent of the caller. If it is of
any other mode, it is attempted first to get the argument to the caller as a symbol (using
substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is now used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything.
It may go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a
character object with the same name of a system function, it will be used.

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

388 matmult

Examples

Same as get("*"):

match.fun("*")

Overwrite outer with a vector

outer <- 1:5

match.fun(outer, descend = FALSE) #-> Error: not a function

match.fun(outer) # finds it anyway

is.function(match.fun("outer")) # as well

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be
coerced to a either a row or column matrix to make the two arguments conformable. If
both are vectors it will return the inner product.

Usage

a %*% b

Value

The matrix product. Use drop to get rid of dimensions which have only one level.

See Also

matrix, Arithmetic, diag.

Examples

x <- 1:4

(z <- x %*% x) # scalar ("inner") product (1 x 1 matrix)

drop(z) # as scalar

y <- diag(x)

z <- matrix(1:12, ncol = 3, nrow = 4)

y %*% z

y %*% x

x %*% z

matplot 389

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6,
cex = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)
matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL, col = 1:6, ...)

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match.
If one of them are missing, the other is taken as y and an x vector of 1:n
is used. Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicat-
ing the type of plot for each column of y, see plot for all possible types.
The first character of type defines the first plot, the second character the
second, etc. Characters in type are cycled through; e.g., "pl" alternately
plots points and lines.

lty,lwd vector of line types and widths. The first element is for the first column,
the second element for the second column, etc., even if lines are not plotted
for all columns. Line types will be used cyclically until all plots are drawn.

pch character string or vector of 1-characters or integers for plotting charac-
ters, see points. The first character is the plotting-character for the first
plot, the second for the second, etc. The default is the digits (1 through
9, 0) then the letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically.

xlab, ylab titles for x and y axes, as in plot.

xlim, ylim ranges of x and y axes, as in plot.

... Graphical parameters (see par) and any further arguments of plot, typi-
cally plot.default, may also be supplied as arguments to this function.
Hence, the high-level graphics control arguments described under par and
the arguments to title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x
against the second column of y, etc. If one matrix has fewer columns, plotting will cycle

390 matplot

back through the columns again. (In particular, either x or y may be a vector, against
which all columns of the other argument will be plotted.)

The first element of col, cex, lty, lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing
the line style, you should probably specify lty=1 when using plotting symbols.

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

See Also

plot, points, lines, matrix, par.

Examples

matplot((-4:5)^2, main = "Quadratic") # almost identical to plot(*)

sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))

matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))

x <- 0:50/50

matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),

ylim = c(-2,2), type = "plobcsSh",

main= "matplot(,type = \"plobcsSh\")")

pch & type = vector of 1-chars :

matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),

pch = letters[1:4], type = c("b","p","o"))

data(iris) # is data.frame with ‘Species’ factor

table(iris$Species)

iS <- iris$Species == "setosa"

iV <- iris$Species == "versicolor"

op <- par(bg = "bisque")

matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")

matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))

matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))

legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),

pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]

nam.spec <- as.character(iris[1+50*0:2, "Species"])

iris.S <- array(NA, dim = c(50,4,3), dimnames = list(NULL, nam.var, nam.spec))

for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",

col = rainbow(3, start = .8, end = .1),

sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],

sep = "=", collapse= ", "),

main = "Fisher’s Iris Data")

matrix 391

matrix Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
as.matrix(x)
is.matrix(x)

Arguments

data an optional data vector.

nrow the desired number of rows

ncol the desired number of columns

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise
the matrix is filled by rows.

dimnames A dimnames attribute for the matrix: a list of length 2.

x an R object.

Details

If either of nrow or ncol is not given, an attempt is made to infer it from the length of
data and the other parameter.

is.matrix returns TRUE if x is a matrix (i.e., it is not a data.frame and has a dim attribute
of length 2) and FALSE otherwise.

as.matrix is a generic function. The method for data frames will convert any non-numeric
column into a character vector using format and so return a character matrix.

See Also

data.matrix, which attempts to convert to a numeric matrix.

Examples

is.matrix(as.matrix(1:10))

data(warpbreaks)

!is.matrix(warpbreaks)# data.frame, NOT matrix!

str(warpbreaks)

str(as.matrix(warpbreaks))#using as.matrix.data.frame(.) method

392 max.col

max.col Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m)

Arguments

m numerical matrix

Details

Ties are broken at random. The determination of “tie” assumes that the entries are proba-
bilities.

Value

index of a maximal value for each row, an integer vector of length nrow(m).

Author(s)

W. N. Venables and B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. New
York: Springer (3nd ed).

See Also

which.max for vectors.

Examples

data(swiss)

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"

swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

mean 393

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)
mean.default(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric data frames, nu-
meric vectors and dates. A complex vector is allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x
before the mean is computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

... further arguments passed to or from other methods.

Value

For a data frame, a named vector with the appropriate method being applied column by
column.

If trim is zero (the default), the arithmetic mean of the values in x is computed.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim
observations deleted from each end before the mean is computed.

See Also

weighted.mean, mean.POSIXct

Examples

x <- c(0:10, 50)

xm <- mean(x)

c(xm, mean(x, trim = 0.10))

all.equal(mean(x, trim = 0.5), median(x))

data(USArrests)

mean(USArrests, trim = 0.2)

394 Memory

median Median Value

Description

Compute the sample median of the vector of values given as its argument.

Usage

median(x, na.rm=FALSE)

Arguments

x a numeric vector containing the values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the
computation proceeds.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]

median(c(1:3,100,1000))# = 3 [odd, robust]

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available for R.

Usage

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu

mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize Heap memory in bytes.

nl, nu, nsize Number of cons cells.

Memory 395

Details

R has a variable-sized workspace (from version 1.2.0). There is now much less need to set
memory options than previously, and most users will never need to set these. They are
provided both as a way to control the overall memory usage (which can also be done by
operating-system facilities such as limit on Unix), and since setting larger values of the
minima will make R slightly more efficient on large tasks.

To understand the options, one needs to know that R maintains separate areas for fixed
and variable sized objects. The first of these is allocated as an array of “cons cells” (Lisp
programmers will know what they are, others may think of them as the building blocks of
the language itself, parse trees, etc.), and the second are thrown on a “heap” of “Vcells” of
8 bytes each. Effectively, the input v is rounded up to the nearest multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The --*-nsize options can be used to specify the number of cons cells and the --*-vsize
options specify the size of the vector heap in bytes. Both options must be integers or
integers followed by G, M, K, or k meaning Giga (230 = 1073741824) Mega (220 = 1048576),
(computer) Kilo (210 = 1024), or regular kilo (1000).

The --min-* options set the minimal sizes for the number of cons cells and for the vector
heap. These values are also the initial values, but thereafter R will grow or shrink the
areas depending on usage, but never exceeding the limits set by the --max-* options nor
decreasing below the initial values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no
maxima (other than machine resources). The maxima can be changed during an R session
by calling mem.limits. (If this is called with the default values, it reports the current
settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers
and megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE),
automatic garbage collection always prints memory use statistics. Maxima will never be
reduced below the current values for triggering garbage collection, and attempts to do so
will be silently ignored.

When using read.table, the memory requirements are in fact higher than anticipated,
because the file is first read in as one long string which is then split again. Use scan if
possible in case you run out of memory when reading in a large table.

Value

(mem.limits) an integer vector giving the current settings of the maxima, possibly NA.

Note

For backwards compatibility, options --nsize and --vsize are equivalent to --min-nsize
and --min-vsize.

See Also

gc for information on the garbage collector, memory.profile for profiling the usage of cons
cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to

100Mb and 1M cells

396 menu

Unix

R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

Details

The current types and their uses are listed in the include file ‘Rinternals.h’. There will be
blanks in the list corresponding to types that are no longer in use (types 11 and 12 at the
time of writing). Also FUNSXP is not included.

Value

A vector of counts, named by the types.

See Also

gc for the overall usage of cons cells.

Examples

memory.profile()

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To
exit without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = "")

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used. Currently
unused.

title a character string to be used as the title of the menu

merge 397

Value

The number corresponding to the selected item, or 0 if no choice was made.

Examples

switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database
“join” operations.

Usage

merge(x, y, by, by.x, by.y, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"))

Arguments

x, y data frames, or objects to be coerced to one
by, by.x, by.y

specifications of the common columns. See Details.
all logical; all=L is shorthand for all.x=L and all.y=L.
all.x logical; if TRUE, then extra rows will be added to the output, one for each

row in x that has no matching row in y. These rows will have NAs in those
columns that are usually filled with values from y. The default is FALSE,
so that only rows with data from both x and y are included in the output.

all.y logical; analogous to all.x above.
sort logical. Should the results be sorted on the by columns?
suffixes character(2) specifying the suffixes to be used for making non-by names()

unique.

Details

By default the data frames are merged on the columns with names they both have, but
separate specifications of the columns can be given by by.x and by.y. Columns can be
specified by name, number or by a logical vector: the name "row.names" or the number
0 specifies the row names. The rows in the two data frames that match on the specified
columns are extracted, and joined together. If there is more than one match, all possible
matches contribute one row each.
If the by.* vector are of length 0, the result, r, is the “Cartesian product” of x and y, i.e.,
dim(r) = c(nrow(x)*nrow, ncol(x) + ncol(y)).
If all.x is true, all the non matching cases of x are appended to the result as well, with
NA filled in the corresponding columns of y; analogously for all.y.
If the remaining columns in the data frames have any common names, these have suffixes
(".x" and ".y" by default) appended to make the names of the result unique.

398 Methods

Value

A data frame. The rows are by default lexicographically sorted on the common columns,
but are otherwise in the order in which they occurred in y. The columns are the common
columns followed by the remaining columns in x and then those in y. If the matching
involved row names, an extra column Row.names is added at the left, and in all cases the
result has no special row names.

See Also

data.frame, by, cbind

Examples

authors <- data.frame(

surname = c("Tukey", "Venables", "Tierney", "Ripley", "McNeil"),

nationality = c("US", "Australia", "US", "UK", "Australia"),

deceased = c("yes", rep("no", 4)))

books <- data.frame(

name = c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core"),

title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",

"LISP-STAT",

"Spatial Statistics", "Stochastic Simulation",

"Interactive Data Analysis",

"An Introduction to R"),

other.author = c(NA, "Ripley", NA, NA, NA, NA,

"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))

(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))

stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(m1[, -1], m2[, -1][names(m1)[-1]]),

dim(merge(m1, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :

merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)

Methods Internal and Group Methods and Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for. Group methods
in particular are available for the "Math", "Ops", and "Summary" group.

Usage

Math.data.frame(x, ...)
Math.factor(x, ...)

Methods 399

Ops.data.frame(e1, e2 = NULL)
Ops.factor(e1, e2)
Ops.ordered(e1, e2)

Summary.data.frame(x, ...)
Summary.factor(x, ...)

.Method

.Generic

.Group

.Class

Arguments

x, e1, e2 objects.

... further arguments passed to methods.

Group Dispatching

There are three groups for which methods can be written, namely the "Math", "Ops" and
"Summary" groups.

A function f belonging to one of these groups must be .Internal or .Primitive and will
automatically be using <grp>.<class> (ob) when f(<ob>) is called, f belongs to group
<grp> and <ob> is of class <class>.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, gammaCody,
digamma, trigamma, tetragamma, pentagamma

• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"
• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

400 methods

Simple Dispatching

The following builtin functions are generic as well, i.e., you can write methods for them:

[, [[

dimnames<-, dimnames, dim<-, dim

c, unlist, as.vector, is.na, is.nan

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole.

See Also

methods for methods of non-Internal generic functions.

Examples

methods("Math")

methods("Ops")

methods("Summary")

d.fr <- data.frame(x=1:9, y=rnorm(9))

data.class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods Class Methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented
style of programming. Method despatch takes place based on the class of the first argu-
ment to the generic function or on the object supplied as an argument to UseMethod or
NextMethod.

Usage

UseMethod(generic, object)
NextMethod(generic = NULL, object = NULL, ...)
methods(generic.function, class)

Arguments

generic a character string naming a function.

object an object whose class will determine the method to be dispatched. De-
faults to the first argument of the enclosing function.

... further arguments to be passed to the method.
generic.function

a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if
generic.function is not supplied.

methods 401

Details

An R “object” is a data object which has a class attribute. A class attribute is a character
vector giving the names of the classes which the object “inherits” from. When a generic
function fun is applied to an object with class attribute c("first", "second"), the system
searches for a function called fun.first and, if it finds it, applied it to the object. If no
such function is found a function called fun.second is tried. If no class name produces a
suitable function, the function fun.default is used.

methods can be used to find out about the methods for a particular generic function or
class. See the examples below for details.

Now for some obscure details that need to appear somewhere. These comments will be
slightly different than those in Appendix A of the White S Book. UseMethod creates a
“new” function call with arguments matched as they came in to the generic. Any local
variables defined before the call to UseMethod are retained (!?). Any statements after the
call to UseMethod will not be evaluated as UseMethod does not return.

NextMethod invokes the next method (determined by the class). It does this by creating
a special call frame for that method. The arguments will be the same in number, order
and name as those to the current method but their values will be promises to evaluate
their name in the current method and environment. Any arguments matched to ... are
handled specially. They are passed on as the promise that was supplied as an argument
to the current environment. (S does this differently!) If they have been evaluated in the
current (or a previous environment) they remain evaluated.

NextMethod should not be called except in methods called by UseMethod. In particular it
will not work inside anonymous calling functions (eg get("print.ts")(AirPassengers)).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the ‘methods’ package after library(methods).
The function .isMethodsDispatchOn() returns TRUE if the new S4 methods are available
but is meant for R internal use only.

The methods function was written by Martin Maechler.

See Also

class

Examples

methods(summary)

methods(print)

methods(class = data.frame)

methods("[") ##- does not list the C-internal ones...

402 mode

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

x a formal argument.

Details

missing(x) is only reliable if x has not been altered since entering the function: in partic-
ular it will always be false after x <- match.arg(x).

The example shows how a plotting function can be written to work with either a pair of
vectors giving x and y coordinates of points to be plotted or a single vector giving y values
to be plotted against their indexes.

Currently missing can only be used in the immediate body of the function that defines the
argument, not in the body of a nested function or a local call. This may change in the
future.

See Also

substitute for argument expression; NA for “missing values” in data.

Examples

myplot <- function(x,y) {

if(missing(y)) {

y <- x

x <- 1:length(y)

}

plot(x,y)

}

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

model.extract 403

Usage

mode(x)
mode(x) <- "<mode>"
storage.mode(x)
storage.mode(x) <- "<mode>"

Arguments

x any R object.

Details

Both mode and storage.mode return a character string giving the (storage) mode of the
object — often the same — both relying on the output of typeof(x), see the example
below.

The two assignment versions are currently identical. Both mode(x) <- newmode and
storage.mode(x) <- newmode change the mode or storage.mode of object x to newmode.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, the assignment
versions can be used to set the mode to "single", which sets the real mode to "double"
and the "Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode "(" which is S compatible.

See Also

typeof for the R-internal “mode”, attributes.

Examples

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)", "pairlist(pi)",

"c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",

"y~x","expression((1))[[1]]", "(y~x)[[1]]", "expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))

mex3 <- t(sapply(lex3, function(x) c(typeof(x), storage.mode(x), mode(x))))

dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))

mex3

This also makes a local copy of ‘pi’:

storage.mode(pi) <- "complex"

storage.mode(pi)

rm(pi)

model.extract Extract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame
passed as optional arguments to model.frame.

404 model.extract

Usage

model.extract(frame, component)
model.offset(x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data

A model frame.

component The name of a components to extract, such as "weights", "subset".

type One of "any", "numeric", "double". Using the either of latter two co-
erces the result to have storage mode "double".

Details

model.offset and model.response are equivalent to model.frame(, "offset") and
model.frame(, "response") respectively.

model.weights is slightly different from model.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.

See Also

model.frame, offset

Examples

data(esoph)

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)

model.extract(a, "response")

stopifnot(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,

data = esoph, weights = ncases+ncontrols)

model.response(a)

model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,

something = tobgp, data = esoph)

names(a)

stopifnot(model.extract(a, "something") == esoph$tobgp)

model.frame 405

model.frame Extracting the “Environment” of a Model Formula

Description

model.frame (a generic function) and its methods return a data.frame with the variables
needed to use formula and any ... arguments.

Usage

model.frame(formula, ...)
model.frame.default(formula, data = NULL,

subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

Methods for
lm glm aovlist

Arguments

formula a model formula
data data.frame, list, environment or object coercible to data.frame con-

taining the variables in formula.
subset a specification of the rows to be used. Defaults to all rows.
na.action how NAs are treated. The default is first, any na.action attribute of

data, second a na.action setting of options, and third na.fail if that
is unset. The “factory-fresh” default is na.omit.

drop.unused.levels

should factors have unused levels dropped? Defaults to FALSE.
xlev a named list of character vectors giving the full set of levels to be assumed

for each factor.
... further arguments such as subset, offset and weights. NULL arguments

are treated as missing.

Details

Variables in the formula, subset and in ... are looked for first in data and then in the
environment of formula: see the help for formula() for further details.

First all the variables needed are collected into a data frame. Then subset expression is
evaluated, and it is is used as a row index to the data frame. Then the na.action function
is applied to the data frame (and may well add attributes). The levels of any factors in the
data frame are adjusted according to the drop.unused.levels and xlev arguments.

Value

A data.frame containing the variables used in formula plus those specified

See Also

model.matrix for the “design matrix”, formula for formulas and expand.model.frame for
model.frame manipulation.

406 model.matrix

Examples

data(cars)

data.class(model.frame(dist ~ speed, data = cars))

model.matrix Construct Design Matrices

Description

model.matrix creates a design matrix.

Usage

model.matrix (object, ...)
model.matrix(object, data = environment(object),

contrasts.arg = NULL, xlev = NULL, ...)

Arguments

object an object of an appropriate class. For the default method, a model formula
or terms object.

data a data frame created with model.frame.

contrasts.arg A list, whose entries are contrasts suitable for input to the contrasts
function and whose names are the names of columns of data containing
factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given in terms(formula), using
the data in data which must contain columns with the same names as would be created by
a call to model.frame(formula) or, more precisely, by evaluating attr(terms(formula),
"variables"). There may be other columns and the order is not important. If contrasts
is specified it overrides the default factor coding for that variable.

Value

The design matrix for a regression model with the specified formula and data.

References

Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Chapman & Hall,
London.

See Also

model.frame, model.extract, terms

model.tables 407

Examples

data(trees)

ff <- log(Volume) ~ log(Height) + log(Girth)

str(m <- model.frame(ff, trees))

mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way

options("contrasts")

model.matrix(~ a + b, dd)

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))

model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))

m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))

crossprod(m.orth)# m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit.

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)
model.tables.aov(x, type = "effects", se = FALSE, cterms, ...)
model.tables.aovlist(x, type = "effects", se = FALSE, ...)

Arguments

x a model object, usually produced by aov

type type of table: currently only "effects" and "means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should
be computed. The default is all tables.

... further arguments passed to or from other methods.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard
errors.

For type = "means" give tables of the mean response for each combinations of levels of the
factors in a term.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

408 morley

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weighted aov fits are not supported.

Author(s)

B.D. Ripley

See Also

aov, proj, replications, TukeyHSD, se.contrast

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

model.tables(npk.aov, "means", se=TRUE)

as a test, not particularly sensible statistically

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

model.tables(npk.aovE, se=TRUE)

model.tables(npk.aovE, "means")

morley Michaelson-Morley Speed of Light Data

Description

The classical data of Michaelson and Morley on the speed of light. The data consists of five
experiments, each consisting of 20 consecutive ‘runs’. The response is the speed of light
measurement, suitably coded.

Usage

data(morley)

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.

Run The run number within each experiment.

Speed Speed-of-light measurement.

mosaicplot 409

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as
the factors. ‘run’ may also be considered a quantitative variate to account for linear (or
polynomial) changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986) A Genstat Primer. London: Edward Arnold.

Examples

data(morley)

morley$Expt <- factor(morley$Expt)

morley$Run <- factor(morley$Run)

attach(morley)

plot(Expt, Speed, main = "Speed of Light Data", xlab = "Experiment No.")

fm <- aov(Speed ~ Run + Expt, data = morley)

summary(fm)

fm0 <- update(fm, . ~ . - Run)

anova(fm0, fm)

detach(morley)

mosaicplot Mosaic Plots

Description

Plots a mosaic on the current graphics device.

Usage

mosaicplot(x, main = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = FALSE, shade = FALSE, margin = NULL,
type = c("pearson", "deviance", "FT"), ...)

mosaicplot(formula, data = NULL, ..., subset)

Arguments

x a contingency table in array form, with optional category labels specified
in the dimnames(x) attribute. The table is best created by the table()
command.

main character string for the mosaic title.

xlab,ylab x- and y-axis labels used for the plot; by default, the first and second
element of names(dimnames(X)) (i.e., the name of the first and second
variable in X).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mo-
saic (appropriate values are between 0 and 20, and the default is 10 at each
level). There should be one offset for each dimension of the contingency
table.

410 mosaicplot

dir vector of split directions ("v" for vertical and "h" for horizontal) for each
level of the mosaic, one direction for each dimension of the contingency
table. The default consists of alternating directions, beginning with a
vertical split.

color logical or (recycling) vector of colors for color shading, used only when
shade is FALSE. The default color=FALSE gives empty boxes with no
shading.

shade a logical indicating whether to produce extended mosaic plots, or a nu-
meric vector of at most 5 distinct positive numbers giving the absolute
values of the cut points for the residuals. By default, shade is FALSE, and
simple mosaics are created. Using shade = TRUE cuts absolute values at
2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model.
By default, an independence model is fitted. See loglin for further in-
formation.

type a character string indicating the type of residual to be represented. Must
be one of "pearson" (giving components of Pearson’s χ2), "deviance"
(giving components of the likelihood ratio χ2), or "FT" for the Freeman-
Tukey residuals. The value of this argument can be abbreviated.

formula a formula, such as y ~ x.
data a data.frame (or list), or a contingency table from which the variables in

formula should be taken.
... further arguments to be passed to or from methods.
subset an optional vector specifying a subset of observations to be used for plot-

ting.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).
Extended mosaic displays show the standardized residuals of a loglinear model of the counts
from by the color and outline of the mosaic’s tiles. (Standardized residuals are often referred
to a standard normal distribution.) Negative residuals are drawn in shaded of red and with
broken outlines; positive ones are drawn in blue with solid outlines.
For the formula method, if data is an object inheriting from classes "table" or "ftable",
or an array with more than 2 dimensions, it is taken as a contingency table, and hence all
entries should be nonnegative. In this case, the left-hand side of formula should be empty,
and the variables on the right-hand side should be taken from the names of the dimnames
attribute of the contingency table. A marginal table of these variables is computed, and a
mosaic of this table is produced.
Otherwise, data should be a data frame or matrix, list or environment containing the
variables to be cross-tabulated. In this case, after possibly selecting a subset of the data
as specified by the subset argument, a contingency table is computed from the variables
given in formula, and a mosaic is produced from this.
See Emerson (1998) for more information and a case study with television viewer data from
Nielsen Media Research.

Author(s)

S-PLUS original by John Emerson 〈emerson@stat.yale.edu〉. Modified and enhanced for R
by KH.

mtcars 411

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Statis-
tician, 38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: a general implementation and a case
study. Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the Amer-
ican Statistical Association, 89, 190–200.

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html)
provides information on various aspects of graphical methods for analyzing categorical data,
including mosaic plots.

See Also

assocplot, loglin.

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)

Formula interface for tabulated data:

mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

data(HairEyeColor)

mosaicplot(HairEyeColor, shade = TRUE)

Independence model of hair and eye color and sex. Indicates that

there are significantly more blue eyed blond females than expected

in the case of independence (and too few brown eyed blond females).

mosaicplot(HairEyeColor, shade = TRUE, margin = list(c(1,2), 3))

Model of joint independence of sex from hair and eye color. Males

are underrepresented among people with brown hair and eyes, and are

overrepresented among people with brown hair and blue eyes, but not

‘‘significantly’’.

Formula interface for raw data: visualize crosstabulation of numbers

of gears and carburettors in Motor Trend car data.

data(mtcars)

mosaicplot(~ gear + carb, data = mtcars, color = TRUE)

mosaicplot(~ gear + carb, data = mtcars, color = 2:3)# color recycling

mtcars Motor Trend Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel
consumption and 10 aspects of automobile design and performance for 32 automobiles
(1973–74 models).

Usage

data(mtcars)

http://www.math.yorku.ca/SCS/friendly.html

412 mtext

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburettors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biomet-
rics, 37, 391–411.

Examples

data(mtcars)

pairs(mtcars, main = "mtcars data")

coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer
margins of the device region.

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, cex = NA, col = NA, font = NA, vfont = NULL, ...)

Arguments

text one or more character strings or expressions.

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

at give location in user-coordinates. If length(at)==0 (the default), the
location will be determined by adj.

mtext 413

adj adjustment for each string. For strings parallel to the axes, adj=0 means
left or bottom alignment, and adj=1 means right or top aligment. If adj
is not a finite value (the default), the value par("las") determines the
adjustment. For strings plotted parallel to the axis the default is to centre
the string.

... Further graphical parameters (see text and par) ; currently supported
are:

cex character expansion factor (default = 1).

col color to use.

font font for text.

vfont vector font for text.

Details

The “user coordinates” in the outer margins always range from zero to one, and are not
affected by the user coordinates in the figure region(s) — R is differing here from other
implementations of S.

The arguments side, line, at, at, adj, the further graphical parameters and even outer
can be vectors, and recycling will take place to plot as many strings as the longest of the
vector arguments. Note that a vector adj has a different meaning from text.

adj = 0.5 will centre the string, but for outer=TRUE on the device region rather than the
plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpen-
dicular to the axis the default justifcation is to place the end of the string nearest the axis
on the specified line.

Note that if the text is to be plotted perpendicular to the axis, adj determines the justifi-
cation of the string and the position along the axis unless at is specified.

Side Effects

The given text is written onto the current plot.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")

mtext("10 of them")

for(s in 1:4)

mtext(paste("mtext(..., line= -1, {side, col, font} = ",s,

", cex = ", (1+s)/2, ")"), line = -1,

side=s, col=s, font=s, cex= (1+s)/2)

mtext("mtext(..., line= -2)", line = -2)

mtext("mtext(..., line= -2, adj = 0)", line = -2, adj =0)

##--- log axis :

plot(1:10, exp(1:10), log=’y’, main="log=’y’", xlab="xlab")

for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

414 NA

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy Setup for plotting multiple figures (in a rectangular layout) on one page. It allows to
specify a main title and uses smart defaults for several par calls.

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vector nr, nc giving the number of rows and columns, fulfilling nr
>= nc >= 1 and nr * nc >= nr.plots.

Author(s)

Martin Maechler

See Also

par, layout.

Examples

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)

suppose now that ‘n’ is not known {inside function}

op <- par(mfrow = n2mfrow(n))

for (j in 1:n)

plot(x, x^j, main = substitute(x^ exp, list(exp = j)), type=’l’, col="blue")

sapply(1:10, n2mfrow)

NA Not Available / “Missing” Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be
freely coerced to any other vector type.

The generic function is.na returns a logical vector of the same “form” as its argument
x, containing TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim,
dimnames and names attributes are preserved.

The generic function is.na<- sets elements to NA.

na.action 415

Usage

NA
is.na(x)
is.na.data.frame(x)

is.na(x) <- value

Arguments

x an R object to be tested.

value a suitable index vector for use with x.

Details

For character vectors the value "NA" represents missingness.

is.na(x) works elementwise when x is a list. The method dispatching is C-internal,
rather than via UseMethod.

Function is.na<- may provide a safer way to set missingness. It behaves differently for
factors, for example.

See Also

NaN, is.nan, etc. and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1,NA)) #> F TRUE

is.na(paste(c(1,NA)))#> F FALSE

na.action NA Action

Description

na.action is a generic function, and na.action.default its default method.

Usage

na.action(object, ...)
na.action.default(object, ...)

Arguments

object any object whose NA action is given.

... further arguments special methods could require.

Value

The “NA action” which should be applied to object whenever NAs are not desired.

416 na.fail

See Also

options("na.action"), na.omit, na.fail

Examples

na.action(c(1, NA))

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns
the object if it does not contain any missing values, and signals an error otherwise. na.omit
returns the object with incomplete cases removed. na.pass returns the object unchanged.

Usage

na.fail(object, ...)
na.omit(object, ...)
na.exclude(object, ...)
na.pass(object, ...)

Arguments

object an R object, typically a data frame

... further arguments special methods could require.

Details

At present these will handle vectors, matrices and data frames comprising vectors and
matrices (only).

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of
the result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the
result, which is "exclude". This gives different behaviour in functions making use of
naresid and napredict: when na.exclude is used the residuals and predictions are padded
to the correct length by inserting NAs for cases omitted by na.exclude.

See Also

na.action; options with argument na.action for setting “NA actions”; and lm and glm
for functions using these.

name 417

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))

na.omit(DF)

m <- as.matrix(DF)

na.omit(m)

stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA’s

try(na.fail(DF))#> Error: missing values in ...

options("na.action")

name Variable Names or Symbols, respectively

Description

as.symbol coerces its argument to be a symbol, or equivalently, a name. The argument
must be of mode "character". as.name is an alias for as.symbol.

is.symbol (and is.name equivalently) returns TRUE or FALSE depending on whether its
argument is a symbol (i.e. name) or not.

Usage

as.symbol(x)
is.symbol(y)

as.name(x)
is.name(y)

Arguments

x, y objects to be coerced or tested.

Note

The term“symbol” is from the lisp background of R, whereas “name”has been the standard
S term for this.

See Also

call, is.language. For the internal object mode, typeof.

Examples

an <- as.name("arrg")

is.name(an) # TRUE

str(an)# symbol

418 names

names The Names Attribute of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

x an R object.

value a character vector of the same length as x, or NULL.

Details

names is a generic accessor function, and names<- is a generic replacement function. The
default methods get and set the "names" attribute of a vector or list.

It is possible to update just part of the names attribute via the general rules: see the
examples. This works because the expression there is evaluated as z <- "names<-"(z,
"[<-"(names(z), 3, "c2")).

Value

For names, NULL or a character vector of the same length as x.

For names<-, the updated object. (Note that the value of names(x) <- value is that of
the assignment, value, not the return value from the left-hand side.)

Examples

print the names attribute of the islands data set

names(islands)

remove the names attribute

names(islands) <- NULL

z <- list(a=1, b="c", c=1:3)

names(z)

change just the name of the third element.

names(z)[3] <- "c2"

z

namespace 419

namespace Name Spaces

Description

Name Space Support Functions.

Usage

pkg::name

Arguments

pgk package name symbol or string literal.
name variable name symbol or string literal.

Details

The expression pkg::name returns the value of the exported variable name in package pkg.

Currently only the base name space is supported.

Assignment into name spaces is not supported.

Examples

base::log

base::"+"

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of an na.action.

Usage

naprint(x, ...)

Arguments

x An object produced by an na.action function.
... further arguments passed to or from other methods.

Details

This is a generic function, and the exact information differs by method. naprint.omit
reports the number of rows omitted: naprint.default reports an empty string.

Value

A character string providing information on missing values, for example the number.

420 nargs

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage

naresid(omit, x, ...)
napredict(omit, x, ...)

Arguments

omit An object produced by an na.action function.

x A vector, data frame, or matrix to be adjusted based upon the missing
value information.

... further arguments passed to or from other methods.

Details

These are utility functions used to allow predict and resid methods for modelling functions
to compensate for the removal of NAs in the fitting process. There are used by the default,
"lm" and "glm" methods, and by further methods in packages MASS, rpart and survival.

The default methods do nothing. The method for the na.exclude action to pad the object
with NAs in the correct positions to have the same number of rows as the original data
frame.

Currently naresid and napredict are identical, but future methods need not be. naresid
is used for residuals, and napredict for fitted values and predictions.

Value

These return a similar object to x.

Note

Packages rpart and survival5 used to contain versions of these functions that had an
na.omit action equivalent to that now used for na.exclude.

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that
function, including positional arguments left blank.

Usage

nargs()

nchar 421

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs()}

tst() # 0

tst(clicketyclack) # 1 (even non-existing)

tst(c1, a2, rr3) # 3

foo <- function(x, y, z, w) {

cat("call was", deparse(match.call()), "\n")

nargs()

}

foo() # 0

foo(,,3) # 3

foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar Count the Number of Characters

Description

nchar takes a character vector as an argument and returns a vector whose elements contain
the number of characters in the corresponding element of x.

Usage

nchar(x)

Arguments

x character vector, or a vector to be coerced to a character vector.

Details

The internal equivalent of as.character is performed on x. If you want to operate on
non-vector objects passing them through deparse first will be required.

Value

The number of characters as the string will be printed (integer 2 for a missing string).

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

422 nclass

Examples

x <- c("asfef","qwerty","yuiop[","b","stuff.blah.yech")

nchar(x)

5 6 6 1 15

nchar(deparse(mean))

23 1 16 45 11 64 2 17 50 43 2 17 1

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram, for use internally in hist.

Usage

nclass.Sturges(x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the
standard error.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range.

Value

The suggested number of classes.

Note

For consistency with earlier versions of R, nclass.Sturges rounds down. This is incompat-
ible with S-PLUS, and probably wrong: however the other algorithms are to be preferred.

References

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Springer,
pages 118–9.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator: L2 theory.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476.

Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66, 605–610.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice, and Visualization.
Wiley.

NegBinomial 423

See Also

hist

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative
binomial distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, mu, log = FALSE)
pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

size target for number of successful trials, or dispersion parameter (the shape
parameter of the gamma mixing distribution).

prob probability of success in each trial.

mu alternative parametrization via mean: see Details

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The negative binomial distribution with size = n and prob = p has density

p(x) =
Γ(x+ n)
Γ(n)x!

pn(1− p)x

for x = 0, 1, 2, . . .

This represents the number of failures which occur in a sequence of Bernoulli trials before
a target number of successes is reached.

A negative binomial distribution can arise as a mixture of Poisson distributions with mean
distributed as a gamma (pgamma) distribution with scale parameter (1 - prob)/prob and
shape parameter size. (This definition allows non-integer values of size.) In this model
prob = scale/(1+scale), and the mean is size * (1 - prob)/prob)

424 nextn

The alternative parametrization (often used in ecology) is by the mean mu, and size, the
dispersion parameter, where prob = size/(size+mu). In this parametrization the variance
is mu + mu^2/size.

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distri-
bution function.

Value

dnbinom gives the density, pnbinom gives the distribution function, qnbinom gives the quan-
tile function, and rnbinom generates random deviates.

See Also

dbinom for the binomial, dpois for the Poisson and dgeom for the geometric distribution,
which is a special case of the negative binomial.

Examples

x <- 0:11

dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1

126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

Cumulative (’p’) = Sum of discrete prob.s (’d’); Relative error :

summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15

size <- (1:20)/4

persp(x,size, dnb <- outer(x,size,function(x,s)dnbinom(x,s, pr= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)

title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))

contour(x,size, log10(dnb),add=TRUE)

Alternative parametrization

x1 <- rnbinom(500, mu = 4, size = 1)

x2 <- rnbinom(500, mu = 4, size = 10)

x3 <- rnbinom(500, mu = 4, size = 100)

h1 <- hist(x1, breaks = 20, plot = FALSE)

h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)

h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)

barplot(rbind(h1$counts, h2$counts, h3$counts),

beside = TRUE, col = c("red","blue","cyan"),

names.arg = round(h1$breaks[-length(h1$breaks)]))

nextn Highly Composite Numbers

nhtemp 425

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a
product of powers of the values contained in factors. nextn is intended to be used to find
a suitable length to zero-pad the argument of fft to so that the transform is computed
quickly. The default value for factors ensures this.

Usage

nextn(n, factors=c(2,3,5))

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve, fft.

Examples

nextn(1001) # 1024

table(sapply(599:630, nextn))

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912
to 1971.

Usage

data(nhtemp)

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(nhtemp)

plot(nhtemp, main = "nhtemp data",

ylab = "Mean annual temperature in New Haven, CT (deg. F)")

426 nlm

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

x an object, usually a factor.

Details

If the argument is not a factor, NA is returned.

The actual factor levels (if they exist) can be obtained with the levels function.

Examples

nlevels(gl(3,7)) # = 3

nlm Non-Linear Minimization

Description

This function carries out a minimization of the function f using a Newton-type algorithm.
See the references for details.

Usage

nlm(f, p, hessian = FALSE, typsize=rep(1, length(p)), fscale=1,
print.level = 0, ndigit=12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE, ...)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical
derivatives are used. deriv returns a function with suitable gradient
attribute. This should be a function a vector of the length of p followed
by any other arguments specified in dots.

p starting parameter values for the minimization.

hessian if TRUE, the hessian of f at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.

nlm 427

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the
minimization process. The default value of 0 means that no printing
occurs, a value of 1 means that initial and final details are printed and a
value of 2 means that full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is consid-
ered close enough to zero to terminate the algorithm. The scaled gradient
is a measure of the relative change in f in each direction p[i] divided by
the relative change in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization
function to overflow, to prevent the algorithm from leaving the area of
interest in parameter space, or to detect divergence in the algorithm.
stepmax would be chosen small enough to prevent the first two of these
occurrences, but should be larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim a positive integer specifying the maximum number of iterations to be
performed before the program is terminated.

check.analyticals

a logical scalar specifying whether the analytic gradients and Hessians,
if they are supplied, should be checked against numerical derivatives at
the initial parameter values. This can help detect incorrectly formulated
gradients or Hessians.

... additional arguments to f.

Details

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be
ignored if check.analyticals = TRUE (the default) with a warning. The hessian is not
even checked unless the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which
is line search.

Value

A list containing the following components:

minimum the value of the estimated minimum of f.

estimate the point at which the mininum value of f is obtained.

gradient the gradient at the estimated minimum of f.

hessian the hessian at the estimated minimum of f (if requested).

code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solu-

tion.
3: last global step failed to locate a point lower than estimate. Ei-

ther estimate is an approximate local minimum of the function or
steptol is too small.

428 noquote

4: iteration limit exceeded.
5: maximum step size stepmax exceeded five consecutive times. Either

the function is unbounded below, becomes asymptotic to a finite value
from above in some direction or stepmax is too small.

iterations the number of iterations performed.

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Software, 11, 419–440.

See Also

optim. optimize for one-dimensional minimization and uniroot for root finding. deriv
to calculate analytical derivatives.

For nonlinear regression, nls (in package nls), may be of better use.

Examples

f <- function(x) sum((x-1:length(x))^2)

nlm(f, c(10,10))

nlm(f, c(10,10), print.level = 2)

str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)^2)

nlm(f, c(10,10), a=c(3,5))

f <- function(x, a)

{

res <- sum((x-a)^2)

attr(res, "gradient") <- 2*(x-a)

res

}

nlm(f, c(10,10), a=c(3,5))

more examples, including the use of derivatives.

demo(nlm)

noquote Class for “no quote” Printing of Strings

Description

These functions exist both as utilities and as an example of using class and object orien-
tation.

Usage

noquote(obj)
print.noquote(x, ...)
obj[j]

Normal 429

Arguments

obj, x any R object; typically a vector of character strings.

... further options for print.

Value

noquote returns its argument as an object of class "noquote". The function "[.noquote"
ensures that the class is not lost by subsetting.

For (default) printing, print.noquote will be used which prints characters without quotes
("...").

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

methods, class, print.

Examples

letters

nql <- noquote(letters)

nql

nql[1:4] <- "oh"

nql[1:12]

cmp.logical <- function(log.v)

{

Purpose: compact printing of logicals

log.v <- as.logical(log.v)

noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])

}

cmp.logical(runif(20) > 0.8)

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal
distribution with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean=0, sd=1, log = FALSE)
pnorm(q, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean=0, sd=1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean=0, sd=1)

430 Normal

Arguments

x,q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
mean vector of means.
sd vector of standard deviations.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation.

qnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about
16 digits.

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile
function, and rnorm generates random deviates.

References

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribu-
tion. Applied Statistics, 37, 477–484.

See Also

runif and .Random.seed about random number generation, and dlnorm for the Lognormal
distribution.

Examples

dnorm(0) == 1/ sqrt(2*pi)

dnorm(1) == exp(-1/2)/ sqrt(2*pi)

dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :

par(mfrow=c(2,1))

plot(function(x)dnorm(x, log=TRUE), -60, 50, main = "log { Normal density }")

curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)

mtext("dnorm(x, log=TRUE)", adj=0); mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x)pnorm(x, log=TRUE), -50, 10, main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)

mtext("pnorm(x, log=TRUE)", adj=0); mtext("log(pnorm(x))", col="red", adj=1)

NotYet 431

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing
R functions and not yet used arguments of existing R functions (which are typically there
for compatibility purposes).

You are very welcome to contribute your code . . .

Usage

.NotYetImplemented()

.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.

error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

plot.mlm # to see how the ‘‘NotYetImplemented’’

reference is made automagically

try(plot.mlm())

barplot(1:5, inside = TRUE) # ‘inside’ is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the
same treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

Arguments

x a vector, array or data frame

432 nsl

Value

an integer of length 1 or NULL.

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)

nrow(ma) # 3

ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension

NCOL(1:12) # 1

NROW(1:12) # 12

nsl Look up the IP Address by Hostname

Description

Interface to gethostbyname.

Usage

nsl(hostname)

Arguments

hostname the name of the host.

Value

The IP address, as a character string, or NULL if the call fails.

Note

This was included as a test of internet connectivity, to fail if the node running R is not
connected. It will also return NULL if BSD networking is not supported, including the header
file ‘arpa/inet.h’.

Examples

nsl("www.r-project.org")

NULL 433

NULL The Null Object

Description

NULL represents the null object in R. NULL is used mainly to represent the lists with zero
length, and is often returned by expressions and functions whose value is undefined.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments

x an object to be tested or coerced.

... ignored.

Examples

is.null(list()) # FALSE (on purpose!)

is.null(integer(0))# F

is.null(logical(0))# F

as.null(list(a=1,b=’c’))

numeric Numeric Vectors

Description

numeric creates a real vector of the specified length. The elements of the vector are all
equal to 0.

as.numeric attempts to coerce its argument to numeric type (either integer or real).

is.numeric returns TRUE if its argument is of type real or type integer and FALSE otherwise.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

434 object.size

Note

R has no single precision data type. All real numbers are stored in double precision format.
While as.numeric is a generic function, user methods must be written for as.double,
which it calls

as.numeric for factors yields the codes underlying the factor levels, not the numeric rep-
resentation of the labels.

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning

as.numeric(factor(5:10))

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store an R object.

Usage

object.size(x)

Arguments

x An R object.

Details

Exactly which parts of the memory allocation should be attributed to which object is not
clear-cut. This function merely provides a rough indication. For example, it will not detect
if character storage for character strings are shared between identical elements (which it
will be if rep was used, for example).

The calculation is of the size of the object, and excludes the space needed to store its name
in the symbol table.

Value

An estimate of the memory allocation attributable to the object, in bytes.

Examples

object.size(letters)

object.size(ls)

find the 10 largest objects in base

z <- sapply(ls("package:base"), function(x) object.size(get(x)))

as.matrix(rev(sort(z))[1:10])

octmode 435

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as.character(x, ...)
format(x, ...)
print(x, ...)

Arguments

x An object inheriting from class "octmode".
... further arguments passed to or from other methods.

Details

Class "octmode" consists of integer vectors with that class atttribute, used merely to ensure
that they are printed in octal notation, specifically for Unix-like file permissions such as
755.

See Also

These are auxiliary functions for file.info

offset Include an Offset in a Model Formula

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model,
with known coefficient 1 rather than an estimated coefficient.

Usage

offset(object)

Arguments

object An offset to be included in a model frame

Value

The input value.

See Also

model.offset, model.frame, glm

436 optim

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the
current function exits (either naturally or as the result of an error). This is useful for
resetting graphical parameters or performing other cleanup actions.

If no expression is provided, i.e. the call is on.exit() then the current on.exit code is
removed.

Usage

on.exit(expr, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions.

See Also

sys.on.exit to see the current expression.

Examples

opar <- par(mai = c(1,1,1,1))

on.exit(par(opar))

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient
algorithms. It includes an option for box-constrained optimization.

Usage

optim(par, fn, gr = NULL,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE, ...)

optim 437

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector
of parameters over which minimization is to take place. It should return
a scalar result.

gr A function to return the gradient. Not needed for the "Nelder-Mead"
and "SANN" method. If it is NULL and it is needed, a finite-difference
approximation will be used.

method The method to be used. See Details.

lower, upper Bounds on the variables for the "L-BFGS-B" method.

control A list of control parameters. See Details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

... Further arguments to be passed to fn and gr.

Details

By default this function performs minimization, but it will maximize if control$fnscale
is negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses
only function values and is robust but relatively slow. It will work reasonably well for
non-differentiable functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm),
specifically that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and
Shanno. This uses function values and gradients to build up a picture of the surface to
be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964)
(but with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient
methods will generally be more fragile that the BFGS method, but as they do not store a
matrix they may be successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1994) which allows box constraints, that is
each variable can be given a lower and/or upper bound. The initial value must satisfy the
constraints. This uses a limited-memory modification of the BFGS quasi-Newton method.
If non-trivial bounds are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method "SANN" is a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods. It uses only
function values but is relatively slow. It will also work for non-differentiable functions.
This implementation uses the Metropolis function for the acceptance probability. The next
candidate point is generated from a Gaussian Markov kernel with scale proportional to
the actual temperature. Temperatures are decreased according to the logarithmic cooling
schedule as given in Belisle (1992, p. 890). Note that the "SANN" method depends critically
on the settings of the control parameters. It is not a general-purpose method but can be
very useful in getting to a good value on a very rough surface.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value,
but the initial value must have a computable finite value of fn. (Except for method "L-
BFGS-B" where the values should always be finite.)

optim can be used recursively, and for a single parameter as well as many.

The control argument is a list that can supply any of the following components:

438 optim

trace Integer. If positive, tracing information on the progress of the optimization is pro-
duced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the source
code: higher levels give more detail.)

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed
on fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any
element produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based meth-
ods, and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criterion. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a
tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce
the value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the re-
flection factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion
factor (2.0).

REPORT The frequency of reports for the "BFGS" and "L-BFGS-B" methods if
control$trace is positive. Defaults to every 10 iterations.

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2
for Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method,
It defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is
1e7, that is a tolerance of about 1e-8.

pgtol helps controls the convergence of the "L-BFGS-B" method. It is a tolerance on the
projected gradient in the current search direction. This defaults to zero, when the
check is suppressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule.
Defaults to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method.
Defaults to 10.

Value

A list with components:

par The best set of parameters found.
value The value of fn corresponding to par.
counts A two-element integer vector giving the number of calls to fn and gr

respectively. This excludes those calls needed to compute the Hessian, if
requested, and any calls to fn to compute a finite-difference approximation
to the gradient.

optim 439

convergence An integer code. 0 indicates successful convergence. Error codes are

1 indicates that the iteration limit maxit had been reached.
10 indicates degeneracy of the Nelder–Mead simplex.
51 indicates a warning from the "L-BFGS-B" method; see component

message for further details.
52 indicates an error from the "L-BFGS-B" method; see component

message for further details.

message A character string giving any additional information returned by the op-
timizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate
of the Hessian at the solution found. Note that this is the Hessian of the
unconstrained problem even if the box constraints are active.

Note

optim will work with one-dimensional pars, but the default method does not work well
(and will warn). Use optimize instead.

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal
code in Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has
agreed that the code can be made freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and
Nocedal obtained from Netlib (file opt/lbfgs_bcm.shar: another version is in toms/778).

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms
on Rd. J Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound
constrained optimization. SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Com-
puter Journal 7, 148–154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Func-
tion Minimisation. Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308–313.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer.

See Also

nlm, optimize

Examples

fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]

x2 <- x[2]

100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}

grr <- function(x) { ## Gradient of ‘fr’

440 optimize

x1 <- x[1]

x2 <- x[2]

c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))

}

optim(c(-1.2,1), fr)

optim(c(-1.2,1), fr, grr, method = "BFGS")

optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)

optim(c(-1.2,1), fr, grr, method = "CG")

optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))

optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)

{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained

optim(rep(3, 25), flb, NULL, "L-BFGS-B",

lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary

"wild" function , global minimum at about -15.81515

fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80

plot(fw, -50, 50, n=1000, main = "optim() minimising ‘wild function’")

res <- optim(50, fw, method="SANN",

control=list(maxit=20000, temp=20, parscale=20))

res

Now improve locally

(r2 <- optim(res$par, fw, method="BFGS"))

points(r2$par, r2$val, pch = 8, col = "red", cex = 2)

optimize One Dimensional Optimization

Description

The function optimize searches the interval from lower to upper for a minimum or maxi-
mum of the function f with respect to its first argument.

It uses Fortran code (from Netlib) based on algorithms given in the reference.

optimise is an alias for optimize.

Usage

optimize(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

optimise(f = , interval = , lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25, ...)

Arguments

f the function to be optimized. The function is either minimized or maxi-
mized over its first argument depending on the value of maximum.

options 441

interval a vector containing the end-points of the interval to be searched for the
minimum.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

maximum logical. Should we maximize or minimize (the default)?

tol the desired accuracy.

... additional arguments to f.

Value

A list with components minimum (or maximum) and objective which give the location of
the minimum (or maximum) and the value of the function at that point.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.:
Prentice-Hall.

See Also

nlm, uniroot.

Examples

f <- function (x,a) (x-a)^2

xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)

xmin

options Options Settings

Description

options allows the user to set and examine a variety of global “options” which affect the
way in which R computes and displays its results.

Usage

options(...)
getOption(x)
.Options

Arguments

... any options can be defined, using name = value.
However, only the ones below are used in “base R”.
Further, options(’name’) == options()[’name’], see the example.

prompt a string, used for R’s prompt; should usually end in a blank (" ").

continue a string setting the prompt used for lines which continue over one line.

442 options

width controls the number of characters on a line. You may want to change this
if you re-size the window that R is running in. Valid values are 10. . . 10000
with default normally 80. (The valid values are in file ‘Print.h’ and can
be changed by re-compiling R.)

digits controls the number of digits to print when printing numeric values.
It is a suggestion only. Valid values are 1. . . 22 with default 7. See
print.default.

editor sets the default text editor, e.g., for edit. Set from the environment
variable VISUAL on UNIX.

pager the (stand-alone) program used for displaying ASCII files on R’s console.
Defaults to ‘$R HOME/bin/pager’.

browser default HTML browser used by help.start() on UNIX, or a non-default
browser on Windows.

mailer default mailer used by bug.report(). can be "none".

contrasts the default contrasts used in model fitting such as with aov or lm. A
character vector of length two, the first giving the function to be used with
unordered factors and the second the function to be used with ordered
factors.

expressions sets a limit on the number of nested expressions that will be evaluated.
This is especially important on the Macintosh since stack overflow is likely
if this is set too high. Valid values are 25. . . 100000 with default 500.

keep.source When TRUE, the source code for functions (newly defined or loaded) is
stored in their "source" attribute (see attr) allowing comments to be
kept in the right places.
The default is interactive(), i.e., TRUE for interactive use.

keep.source.pkgs

As for keep.source, for functions in packages loaded by library
or require. Defaults to FALSE unless the environment variable
R_KEEP_PKG_SOURCE is set to yes.

na.action the name of a function for treating missing values (NA’s) for certain situ-
ations.

papersize the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started and defaulting to "a4" if that is unset or
invalid.

printcmd the command used by postscript for printing; set by environment vari-
able R_PRINTCMD when R is started. This should be a command that
expects either input to be piped to ‘stdin’ or to be given a single filename
argument.

latexcmd, dvipscmd

character strings giving commands to be used in off-line printing of help
pages.

show.signif.stars, show.coef.Pvalues

logical, affecting P value printing, see print.coefmat.

ts.eps the relative tolerance for certain time series (ts) computations.

error either a function or an expression governing the handling of non-
catastrophic errors such as those generated by stop as well as by signals
and internally detected errors. If the option is a function, a call to that

options 443

function, with no arguments, is generated as the expression. The de-
fault value is NULL: see stop for the behaviour in that case. The function
dump.frames provides one alternative that allows post-mortem debug-
ging.

show.error.messages

a logical. Should error messages be printed? Intended for use with try
or a user-installed error handler.

warn sets the handling of warning messages. If warn is negative all warnings are
ignored. If warn is zero (the default) warnings are stored until the top–
level function returns. If fewer than 10 warnings were signalled they will
be printed otherwise a message saying how many (max 50) were signalled.
A top–level variable called last.warning is created and can be viewed
through the function warnings. If warn is one, warnings are printed as
they occur. If warn is two or larger all warnings are turned into errors.

warning.length

sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100–8192, default 1000.

warning.expression

an R code expression to be called if a warning is generated, replacing the
standard message. If non-null is called irrespective of the value of option
warn.

check.bounds logical, defaulting to FALSE. If true, a warning is produced whenever a
“generalized vector” (atomic or list) is extended, by something like x <-
1:3; x[5] <- 6.

echo logical. Only used in non-interactive mode, when it controls whether input
is echoed. Command-line option --slave sets this initially to FALSE.

verbose logical. Should R report extra information on progress? Set to TRUE by
the command-line option --verbose.

device a character string giving the default device for that session. This defaults
to the normal screen device (e.g. x11, windows or gtk) for an interactive
session, and postscript in batch use or if a screen is not available.

X11colortype The default colour type for X11 devices.

CRAN The URL of the preferred CRAN node for use by update.packages. De-
faults to http://cran.r-project.org.

download.file.method

Method to be used for download.file. Currently download methods
"internal", "wget" and "lynx" are available. There is no default for
this option, when method = "auto" is chosen: see download.file.

unzip the command used for unzipping help files. Defaults to the value of
R_UNZIPCMD, which is set in ‘etc/Renviron’ if an unzip command was found
during configuration.

de.cellwidth integer: the cell widths (number of characters) to be used in the data
editor dataentry. If this is unset, 0, negative or NA, variable cell widths
are used.

encoding An integer vector of length 256 holding an input encoding. Defaults to
native.enc (= 0:255). See connections.

timeout integer. The timeout for Internet operations, in seconds. Default 60
seconds.

http://cran.r-project.org

444 options

internet.info The minimum level of information to be printed on url downloads etc.
Default is 2, for failure causes. Set to 1 or 0 to get more information.

x a character string holding one of the above option names.

Details

Invoking options() with no arguments returns a list with the current values of the options.
Note that not all options listed above are set initially. To access the value of a single option,
one should use getOption("width"), e.g., rather than options("width") which is a list
of length one.

.Options also always contains the options() list, for S compatibility. You must use it
“read only” however.

The default settings of some of these options are

prompt "> " continue "+ "
width 80 digits 7
expressions 500 keep.source TRUE
show.signif.stars TRUE show.coef.Pvalues TRUE
na.action na.omit ts.eps 1e-5
error NULL show.error.messags TRUE
warn 0 warning.length 1000
echo TRUE verbose FALSE

Others are set from environment variables or are platform-dependent.

Value

A list (in any case) with the previous values of the options changed, or all options when no
arguments were given.

Examples

options() # printing all current options

op <- options(); str(op) # nicer printing

.Options is the same:

all(sapply(1:length(op), function(i) all(.Options[[i]] == op[[i]])))

options(’width’)[[1]] == options()$width # the latter needs more memory

options(digits=20)

pi

set the editor, and save previous value

old.o <- options(editor="nedit")

old.o

options(check.bounds = TRUE)

x <- NULL; x[4] <- "yes" # gives a warning

options(op) # reset (all) initial options

options(’digits’)

set contrast handling to be like S

options(contrasts=c("contr.helmert", "contr.poly"))

OrchardSprays 445

on error, terminate the R session with error status 66

options(error=quote(q("no", status=66, runLast=FALSE)))

stop("test it")

set an error action for debugging: see ?debugger.

options(error=dump.frames)

A possible setting for non-interactive sessions

options(error=quote({dump.frames(to.file=TRUE); q()}))

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays
in repelling honeybees, using a Latin square design.

Usage

data(OrchardSprays)

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in
sucrose solution. Seven different concentrations of lime sulphur ranging from a concentration
of 1/100 to 1/1,562,500 in successive factors of 1/5 were used as well as a solution containing
no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the cham-
ber for two hours, and then measuring the decrease in volume of the solutions in the various
cells.

An ∗ × 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

446 order

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(OrchardSprays)

pairs(OrchardSprays, main = "OrchardSprays data")

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descend-
ing order, breaking ties by further arguments. sort.list is the same, using only one
argument.

Usage

order(..., na.last = TRUE, decreasing = FALSE)
sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE)

Arguments

... a sequence of vectors, all of the same length.

x a vector.

partial vector of indices for partial sorting.

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the
values are still tied, values in the later arguments are used to break the tie (see the first
example).

partial is supplied for compatibility with other implementations of S, but no other values
are accepted and ordering is always complete.

See Also

sort and rank.

outer 447

Examples

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))

6 5 2 1 7 4 10 8 3 9

rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y. A simple solution is

rbind(x,y,z)[, order(x, -y, z)]

For character vectors we can make use of rank:

cy <- as.character(y)

rbind(x,y,z)[, order(x, -rank(y), z)]

rearrange matched vectors so that the first is in ascending order

x <- c(5:1, 6:8, 12:9)

y <- (x - 5)^2

o <- order(x)

rbind(x[o], y[o])

tests of na.last

a <- c(4, 3, 2, NA, 1)

b <- c(4, NA, 2, 7, 1)

z <- cbind(a, b)

(o <- order(a, b)); z[o,]

(o <- order(a, b, na.last = FALSE)); z[o,]

(o <- order(a, b, na.last = NA)); z[o,]

outer Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimension c(dim(X),
dim(Y)) where element A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...).

Usage

outer(X, Y, FUN="*", ...)
x %o% y

Arguments

X A vector or array.

Y A vector or array.

FUN a function to use on the outer products, it may be a quoted string.

... optional arguments to be passed to FUN.

Details

FUN must be a function (or the name of it) which expects at least two arguments and which
operates elementwise on arrays.

Where they exist, the [dim]names of X and Y will be preserved.

%o% is an alias for outer (where FUN cannot be changed from "*").

448 p.adjust

Author(s)

Jonathan Rougier

See Also

%*% for usual (inner) matrix vector multiplication; kronecker which is based on outer.

Examples

x <- 1:9; names(x) <- x

Multiplication & Power Tables

x %o% x

y <- 2:8; names(y) <- paste(y,":",sep="")

outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:

x %o% x %o% y[1:3]

p.adjust Adjust p-values for multiple comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method=p.adjust.methods, n=length(p))
p.adjust.methods

Arguments

p vector of p-values

method correction method

n number of comparisons

Details

The adjustment methods include the Bonferroni correction ("bonferroni") in which the
p-values are multiplied by the number of comparisons. Four less conservative corrections
are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988)
("hommel") and Benjamini & Hochberg (1995) ("fdr"), respectively. A pass-through option
("none") is also included. The set of methods are contained in the p.adjust.methods vector
for the benefit of methods that need to have the method as an option and pass it on to
p.adjust.

The first four methods are designed to give strong control of the family wise error rate.
There seems no reason to use the unmodified Bonferroni correction because it is dominated
by Holm’s method, which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or
when they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s

p.adjust 449

method is more powerful than Hochberg’s, but the difference is usually small and the
Hochberg p-values are faster to compute.

The "fdr" method of Benjamini and Hochberg (1995) controls the false discovery rate,
the expected proportion of false discoveries amongst the rejected hypotheses. The false
discovery rate is a less stringent condition than the family wise error rate, so Benjamini
and Hochberg’s method is more powerful than the other methods.

Value

A vector of corrected p-values.

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society Series
B, 57, 289–300.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika, 75, 383–386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75, 800–803.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–
576. (An excellent review of the area.)

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a
proof of Simes conjecture. Annals of Statistics, 26, 494–504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with
positively dependent test statistics. Journal of the American Statistical Association, 92,
1601–1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference. Biometrics, 48, 1005–
1013. (Explains the adjusted P-value approach.)

See Also

pairwise.* functions in the ctest package, such as pairwise.t.test.

Examples

x <- rnorm(50, m=c(rep(0,25),rep(3,25)))

p <- 2*pnorm(-abs(x))

round(p, 3)

round(p.adjust(p), 3)

round(p.adjust(p,"bonferroni"), 3)

round(p.adjust(p,"fdr"), 3)

450 package.contents

package.contents Package Contents and Description

Description

Parses and returns the ‘CONTENTS’ and ‘DESCRIPTION’ file of a package.

Usage

package.contents(pkg, lib.loc = NULL)
package.description(pkg, lib.loc = NULL, fields = NULL)

Arguments

pkg a character string with the package name.

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

fields a character vector giving the tags of fields to return (if other fields occur
in the file they are ignored).

Value

package.contents returns NA if there is no ‘CONTENTS’ file for the given package; other-
wise, a character matrix with column names c("Entry", "Keywords", "Description")
and rows giving the corresponding entries in the CONTENTS data base for each Rd file in
the package.

If a ‘DESCRIPTION’ for the given package is found and can successfully be read,
package.description returns a named character vector with the values of the (given)
fields as elements and the tags as names. If not, it returns a named vector of NAs with the
field tags as names if fields is not null, and NA otherwise.

See Also

read.dcf

Examples

package.contents("mva")

package.contents("mva")[, c("Entry", "Description")]

package.description("ts")

package.description("ts")[c("Package", "Version")]

NOTE: No subscripting using ‘$’ or abbreviated field tags!

package.dependencies 451

package.dependencies Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of
R [and other packages].

Usage

package.dependencies(x, check=FALSE)

Arguments

x A matrix of package descriptions as returned by CRAN.packages.

check If TRUE, return logical vector of check results. If FALSE, return parsed list
of dependencies.

Details

Currently we only check if the package conforms with the currently running version of R.
IN the future we might add checks for inter-package dependencies.

See Also

update.packages

package.skeleton Create a skeleton for a new package

Description

package.skeleton automates some of the setup for a new package. It creates directories,
saves functions and data to appropriate places, and creates skeleton help files and README
files describing further steps in packaging.

Usage

package.skeleton(name="anRpackage", list, environment=.GlobalEnv,
path=".", force=FALSE)

Arguments

name directory name for your package

list vector of names of R objects to put in the package

environment if list is omitted, the contents of this environment are packaged

path path to put the package directories in

force If FALSE will not overwrite an existing directory

452 packageStatus

Value

used for its side-effects.

References

Read the ”Writing R Extensions” manual for more details

See Also

install.packages

Examples

f<-function(x,y) x+y

g<-function(x,y) x-y

d<-data.frame(a=1,b=2)

e<-rnorm(1000)

package.skeleton(list=c("f","g","d","e"),name="AnExample")

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various
repositories, and automatically upgrade outdated packages. These tools will replace
update.packages and friends in the future and are currently work in progress.

Usage

packageStatus(lib.loc = NULL, repositories = getOption("repositories"))
summary(object, ...)
update(object, lib.loc=levels(object$inst$LibPath),

repositories=levels(object$avail$Repository), ...)
upgrade(object, ask=TRUE, ...)

Arguments

lib.loc a character vector describing the location of R library trees to search
through, or NULL. The default value of NULL corresponds to all libraries
currently known.

repositories a character vector of URLs describing the location of R package reposito-
ries on the Internet or on the local machine.

object return value of packageStatus.

ask if TRUE, the user is prompted which packages should be upgraded and
which not.

... currently not used.

page 453

Examples

x <- packageStatus()

print(x)

summary(x)

upgrade(x)

x <- update(x)

print(x)

page Invoke a Pager on an R Object

Description

Displays a representation of the object named by x in a pager.

Usage

page(x, method = c("dput", "print"), ...)

Arguments

x the name of an R object.
method The default method is to dump the object via dput. An alternative is to

print to a file.
... additional arguments for file.show. Intended for setting pager as title

and delete.file are already used.

Author(s)

B. D. Ripley

See Also

file.show, edit, fix.

pairs Scatterplot Matrices

Description

A matrix of scatterplots is produced.

Usage

pairs(x, ...)
pairs.default(x, labels = colnames(x), panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap=1)

454 pairs

Arguments

x the coordinates of points given as columns of a matrix.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of
the display.

... graphical parameters can be given as arguments to plot.
lower.panel, upper.panel

separate panel functions to be used below and above the diagonal respec-
tively.

diag.panel optional function(x, ...) to be applied on the diagonals.

text.panel optional function(x, y, labels, cex, font, ...) to be applied on
the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graph-
like with row 1 at the bottom?

gap Distance between subplots, in margin lines.

Details

The ijth scatterplot contains x[,i] plotted against x[,j]. The “scatterplot’ can be cus-
tomised by setting panel functions to appear as something completely different. The off-
diagonal panel functions are passed the appropriate columns of x as x and y: the diagonal
panel function (if any) is passed a single column, and the text.panel function is passed a
single (x, y) location and the column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols
and colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core mem-
bers.

Examples

data(iris)

pairs(iris[1:4], main = "Anderson’s Iris Data -- 3 species",

pch = 21, bg = c("red", "green3", "blue")[codes(iris$Species)])

data(USJudgeRatings)

pairs(USJudgeRatings)

put histograms on the diagonal

panel.hist <- function(x, ...)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5))

h <- hist(x, plot = FALSE)

pairs.formula 455

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}

pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",

diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,

with size proportional to the correlations.

panel.cor <- function(x, y, digits=2, prefix="", cex.cor)

{

usr <- par("usr"); on.exit(par(usr))

par(usr = c(0, 1, 0, 1))

r <- abs(cor(x, y))

txt <- format(c(r, 0.123456789), digits=digits)[1]

txt <- paste(prefix, txt, sep="")

if(missing(cex.cor)) cex <- 0.8/strwidth(txt)

text(0.5, 0.5, txt, cex = cex * r)

}

pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

pairs.formula Formula Notation for Scatterplot Matrices

Description

Produce a matrix of scatterplots using formula notation.

Usage

pairs(formula, data = NULL, ..., subset)

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

... arguments to the default pairs method and graphical parameters may also
be passed as arguments, see par.

subset an optional vector specifying a subset of observations to be used for plot-
ting.

Details

This is a method of the generic function pairs. It operates by setting up the data from the
formula specification, and then calling pairs.default.

See Also

pairs.default

456 palette

Examples

data(swiss)

pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. If value has
length greater than 1 it is assumed to contain a description of the colors which are to make
up the new palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

See Also

colors for the vector of built-in“named”colors; hsv, gray, rainbow, terrain.colors,. . . to
construct colors;

col2rgb for translating colors to RGB 3-vectors.

Examples

palette() # obtain the current palette

palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette

matplot(outer(1:100,1:30), type=’l’, lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",

sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default

Palettes 457

Palettes Color Palettes

Description

Create a vector of n “contiguous” colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n, gamma = 1)
heat.colors(n)
terrain.colors(n)
topo.colors(n)
cm.colors(n)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the “saturation” and “value” to be used to complete the HSV color de-
scriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

gamma the gamma correction, see argument gamma in hsv.

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional
color space, parametrized by hsv(h,s,v, gamma), where gamma= 1 for the foo.colors
function, and hence, equispaced hues in RGB space tend to cluster at the red, green and
blue primaries.

Some applications such as contouring require a palette of colors which do not“wrap around”
to give a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellow=1

6 ,
green=2

6 , cyan=3
6 , blue=4

6 and magenta=5
6 .

Value

A character vector, cv, of color names. This can be used either to create a user–defined color
palette for subsequent graphics by palette(cv), a col= specification in graphics functions
or in par.

See Also

colors, palette, hsv, rgb, gray and col2rgb for translating to RGB numbers.

458 panel.smooth

Examples

A Color Wheel

pie(rep(1,12), col=rainbow(12))

##------ Some palettes ------------

ch.col <- c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)", "cm.colors(n)")

n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem

nt <- length(ch.col)

i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d

plot(i,i+d, type="n", yaxt="n", ylab="", main=paste("color palettes; n=",n))

for (k in 1:nt) {

rect(i-.5,(k-1)*j+ dy, i+.4, k*j, col=eval(parse(text=ch.col[k])))

text(2*j, k * j +dy/4, ch.col[k])

}

panel.smooth Simple Panel Plot

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or
pairs.

Usage

panel.smooth(x, y, col, bg=NA, pch, cex = 1, col.smooth = "red",
span = 2/3, iter=3, ...)

Arguments

x,y numeric vectors of the same length
col,bg,pch,cex

numeric or character codes for the color(s), point type and size of points;
see also par.

col.smooth color to be used by lines for drawing the smooths.

span smoothing parameter f for lowess, see there.

iter number of robustness iterations for lowess.

... further arguments to lines.

See Also

coplot and pairs where panel.smooth is typically used; lowess.

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths

pairs(swiss, panel = panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par 459

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying
them as arguments to par in tag = value form, or by passing them as a list of tagged
values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

... arguments in tag = value form, or a list of tagged values. The tags must
come from the graphical parameters described below.

no.readonly logical; if TRUE and there are no other arguments, only parameters are
returned which can be set by a subsequent par() call.

Details

Parameters are queried by giving one or more character vectors to par.

par() (no arguments) or par(no.readonly=TRUE) is used to get all the graphical pa-
rameters (as a named list). Their names are currently taken from the variable .Pars.
.Pars.readonly contains the names of the par arguments which are readonly.

R.O. indicates read-only arguments: These may only be used in queries, i.e., they do
not set anything.

All but these R.O. and the following low-level arguments can be set as well in high-level
and mid-level plot functions, such as plot, points, lines, axis, title, text, mtext:

• "ask"

• "fig", "fin"

• "mai", "mar", "mex"

• "mfrow", "mfcol", "mfg"

• "new"

• "oma", "omd", "omi"

• "pin", "plt", "ps", "pty"

• "usr"

• "xlog", "ylog"

460 par

Value

When parameters are set, their former values are returned in an invisible named list.
Such a list can be passed as an argument to par to restore the parameter values. Use
par(no.readonly = TRUE) for the full list of parameters that can be restored.

When just one parameter is queried, the value is a character string. When two or more
parameters are queried, the result is a list of character strings, with the list names giving
the parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter
returns a vector.

Graphical Parameters

adj The value of adj determines the way in which text strings are justified. A value of 0
produces left-justified text, 0.5 centered text and 1 right-justified text. (Any value in
[0, 1] is allowed, and on most devices values outside that interval will also work.) Note
that the adj argument of text also allows adj = c(x, y) for different adjustment in
x- and y- direction.

ann If set to FALSE, high-level plotting functions do not annotate the plots they produce
with axis and overall titles. The default is to do annotation.

ask logical. If TRUE, the user is asked for input, before a new figure is drawn.

bg The color to be used for the background of plots. A description of how colors are
specified is given below.

bty A character string which determined the type of box which is drawn about plots. If bty
is one of "o", "l", "7", "c", "u", or "]" the resulting box resembles the corresponding
upper case letter. A value of "n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be
scaled relative to the default.

cex.axis The magnification to be used for axis annotation relative to the current.

cex.lab The magnification to be used for x and y labels relative to the current.

cex.main The magnification to be used for main titles relative to the current.

cex.sub The magnification to be used for sub-titles relative to the current.

cin R.O.; character size (width,height) in inches.

col A specification for the default plotting color. A description of how colors are specified
is given below.

col.axis The color to be used for axis annotation.

col.lab The color to be used for x and y labels.

col.main The color to be used for plot main titles.

col.sub The color to be used for plot sub-titles.

cra R.O.; size of default character (width,height) in “rasters” (pixels).

crt A numerical value specifying (in degrees) how single characters should be rotated. It is
unwise to expect values other than multiples of 90 to work. Compare with srt which
does string rotation.

csi R.O.; height of (default sized) characters in inches.

cxy R.O.; size of default character (width,height) in user coordinate units. par("cxy")
is par("cin")/par("pin") scaled to user coordinates. Note that c(strwidth(ch),
strwidth(ch)) for a given string ch is usually much more precise.

par 461

din R.O.; the device dimensions in inches.

err (Unimplemented ; R is silent when points outside the plot region are not plotted.) The
degree of error reporting desired.

fg The color to be used for the foreground of plots. This is the default color is used for
things like axes and boxes around plots. A description of how colors are specified is
given below.

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the (NDC) coordinates
of the figure region in the display region of the device.

fin A numerical vector of the form c(x, y) which gives the size of the figure region in
inches.

font An integer which specifies which font to use for text. If possible, device drivers arrange
so that 1 corresponds to plain text, 2 to bold face, 3 to italic and 4 to bold italic.

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

gamma the gamma correction, see argument gamma to hsv.

lab A numerical vector of the form c(x, y, len) which modifies the way that axes are
annotated. The values of x and y give the (approximate) number of tickmarks on the
x and y axes and len specifies the label size. The default is c(5, 5, 7). Currently,
len is unimplemented.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Note that other string/character rotation (via argument srt to par) does not affect
the axis labels.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid,
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the char-
acter strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash", where "blank" uses ‘invisible lines’ (i.e., doesn’t draw them).
Alternatively, a string of up to 8 characters (from c(0:9, "A":"F")) may be given,
giving the length of line segments which are alternatively drawn and skipped. See
section ‘Line Type Specification’ below.

lwd The line width, a positive number, defaulting to 1.

mai A numerical vector of the form c(bottom, left, top, right) which gives the margin
size specified in inches.

mar A numerical vector of the form c(bottom, left, top, right) which gives the lines
of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2)
+ 0.1.

mex mex is a character size expansion factor which is used to describe coordinates in the
margins of plots.

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an
nr-by-nc array on the device by columns (mfcol), or rows (mfrow), respectively.
Consider the alternatives, layout and split.screen.

462 par

mfg A numerical vector of the form c(i, j) where i and j indicate which figure in an
array of figures is to be drawn next (if setting) or is being drawn (if enquiring). The
array must already have been set by mfcol or mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted, when nr and
nc should be the current number of rows and number of columns. Mismatches will be
ignored, with a warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. The default
is c(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an integer.
Completely ignored currently.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting command
(actually plot.new) should not clean the frame before drawing “as if it was on a new
device”.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in lines of text.

omd A vector of the form c(x1, x2, y1, y2) giving the outer margin region in NDC (=
normalized device coordinates), i.e., as fraction (in [0, 1]) of the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer mar-
gins in inches.

pch Either an integer specifying a symbol or a single character to be used as the default in
plotting points.

pin The width and height of the current plot in inches.
plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as

fractions of the current figure region.
ps integer; the pointsize of text and symbols.
pty A character specifying the type of plot region to be used; "s" generates a square

plotting region and "m" generates the maximal plotting region.
smo (Unimplemented) a value which indicates how smooth circles and circular arcs should

be.
srt The string rotation in degrees.
tck The length of tick marks as a fraction of the smaller of the width or height of the

plotting region. If tck=1, grid lines are drawn. The default setting (tck = NA) is to
use tcl = -0.5 (see below).

tcl The length of tick marks as a fraction of the height of a line of text. The default value
is -0.5; setting tcl = NA sets tck = -0.01 which is S’ default.

tmag A number specifying the enlargement of text of the main title relative to the other
annotating text of the plot.

type character; the default plot type desired, see plot.default(type=...), defaulting to
"p".

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user coordinates
of the plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true,
see below), then the x-limits will be 10 ^ par("usr")[1:2]. Similarly for the y-axis.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks when par("xlog") is false. Otherwise,
when log coordinates are active, the three values have a different meaning: For a small
range, n is negative, and the ticks are as in the linear case, otherwise, n is in 1:3,
specifying a case number, and x1 and x2 are the lowest and highest power of 10 inside
the user coordinates, par("usr")[1:2]. See axTicks() for more details.

par 463

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are
"r", "i", "e", "s", "d". The styles are generally controlled by the range of data
or xlim, if given. Style "r" (regular) first extends the data range by 4 percent and
then finds an axis with pretty labels that fits within the range. Style "i" (internal)
just finds an axis with pretty labels that fits within the original data range. Style
"s" (standard) finds an axis with pretty labels within which the original data range
fits. Style "e" (extended) is like style "s", except that it is also ensured that there is
room for plotting symbols within the bounding box. Style "d" (direct) specifies that
the current axis should be used on subsequent plots. (Only "r" and "i" styles are
currently implemented)

xaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted. The standard value is "s": for compatibility with S values "l" and
"e" are accepted but are equivalent to "s".

xlog R.O.; logical value (see log in plot.default). If TRUE, a logarithmic scale is in use
(e.g., after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear
scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all
plotting is clipped to the figure region, and if NA, all plotting is clipped to the device
region.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks
and the number of intervals between tick-marks unless for log coordinates, see xaxp
above.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs above.

yaxt A character which specifies the axis type. Specifying "n" causes an axis to be set up,
but not plotted.

ylog R.O.; a logical value; see xlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character
string giving the color name (e.g., "red"). A list of the possible colors can be obtained with
the function colors. Alternatively, colors can be specified directly in terms of there RGB
components with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist
of two hexadecimal digits giving a value in the range 00 to FF. Colors can also be specified
by giving an index into a small table of colors, the palette. This provides compatibility
with S. Index 0 corresponds to the background color.

Additionally, "transparent" or (integer) NA is transparent, useful for filled areas (such as
the background!), and just invisible for things like lines or text.

The functions rgb, hsv, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built in table of line types
(1 = solid, 2 = dashed, etc, see lty above) or directly as the lengths of on/off stretches
of line. This is done with a string of up to eight characters, namely (hexadesimal) digits
which give the lengths in consecutive positions in the string. For example, the string "33"
specifies three units on followed by three off and "3313" specifies three units on followed
by three off followed by one on and finally three off. The ‘units’ here are (on most devices)
proportional to lwd, and with lwd = 1 are in pixels or points.

464 par

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard
to predict if the device has been resized. Several of them are attempting to set the same
things in different ways, and those last in the alphabet will win. In particular, the settings
of mai, mar, pin, plt and pty interact, as do the outer margin settings, the figure layout
and figure region size.

See Also

plot.default for some high-level plotting parameters; colors, gray, rainbow, rgb;
options for other setup parameters; graphic devices x11, postscript and setting up device
regions by layout and split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot

pty = "s") # square plotting region,

independent of device size

At end of plotting, reset to previous settings:

par(op)

Alternatively,

op <- par(no.readonly = TRUE) # the whole list of settable par’s.

do lots of plotting and par(.) calls, then reset:

par(op)

par("ylog") # FALSE

plot(1 : 12, log = "y")

par("ylog") # TRUE

plot(1:2, xaxs = "i") # ‘inner axis’ w/o extra space

stopifnot(par("xaxp")[1:2] == 1:2 &&

par("usr") [1:2] == 1:2)

(nr.prof <-

c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,

mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,

housewives=3,students=3,armed.forces=1))

par(las = 3)

barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem

par(las = 0)# reset to default

ex <- function() {

old.par <- par(no.readonly = TRUE) # all par settings which

could be changed.

on.exit(par(old.par))

...

... do lots of par() settings and plots

...

invisible() #-- now, par(old.par) will be executed

}

ex()

Paren 465

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function(x) x, whereas { is slightly
more interesting, see examples.

Usage

(...)

{ ... }

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <- get("(")

e <- expression(3 + 2 * 4)

f(e) == e # TRUE

do <- get("{")

do(x <- 3, y <- 2*x-3, 6-x-y); x; y

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list. Each element of the list is
of mode expression.

Usage

parse(file = "", n = NULL, text = NULL, prompt = "?", white = FALSE)

Arguments

file a connection, or a character string giving the name of a file or a URL to
read the expressions from. If file is "" and text is missing or NULL then
input is taken from the console.

n the number of statements to parse. If n is negative the file is parsed in
its entirety.

text character vector. The text to parse. Elements are treated as if they were
lines of a file.

466 paste

prompt the prompt to print when parsing from the keyboard. NULL means to use
R’s prompt, options("prompt")[[1]].

white if TRUE then any white space separates expressions otherwise only newlines
or semicolons do.

Details

All versions of R accept input from a connection with end of line marked by LF (as used
on Unix), CRLF (as used on DOS/Windows) or CR (as used on Mac). The final line can
be incomplete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")

parse 3 statements from the file "xyz.Rdmped"

parse(file = "xyz.Rdmped", n = 3)

unlink("xyz.Rdmped")

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste(..., sep = " ", collapse = NULL)

Arguments

... one or more R objects, to be coerced to character vectors.

sep a character string to separate the terms.

collapse an optional character string to separate the results.

Details

paste converts its arguments to character strings, and concatenates them (separating them
by the string given by sep). If the arguments are vectors, they are concatenated term-by-
term to give a character vector result.

If a value is specified for collapse, the values in the result are then concatenated into a
single string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values.

pdf 467

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which
concatenates and writes to a file, and sprintf for C like string construction.

Examples

paste(1:12) # same as as.character(1:12)

paste("A", 1:6, sep = "")

paste("Today is", date())

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

Usage

pdf(file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width = 6, height = 6, onefile = TRUE, family = "Helvetica",
encoding, bg, fg, pointsize)

Arguments

file a character string giving the name of the file.
width, height the width and height of the graphics region in inches.
onefile logical: if true (the default) allow multiple figures in one file. If false,

generate a file name containing the page number.
family the font family to be used, one of "AvantGarde", "Bookman", "Courier",

"Helvetica", "Helvetica-Narrow", "NewCenturySchoolbook",
"Palatino" or "Times".

encoding the name of an encoding file. Defaults to "ISOLatin1.enc" in the
‘R HOME/afm’ directory, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

pointsize the default point size to be used.
bg the default background color to be used.
fg the default foreground color to be used.

Details

pdf() opens the file file and the PDF commands needed to plot any graphics requested
are sent to that file.

See postscript for details of encodings, as the internal code is shared between the drivers.
The native PDF encoding is given in file ‘PDFDoc.enc’.

pdf writes uncompressed PDF. It is primarily intended for producing PDF graphics for
inclusion in other documents, and PDF-includers such as pdftex are usually able to handle
compression.

At present the PDF is fairly simple, with each page being represented as a single stream. The
R graphics model does not distinguish graphics objects at the level of the driver interface.

468 persp

Note

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-
master fonts. This can be seen in imprecise centring of characters, for example the multiply
and divide signs in Helvetica.

See Also

Devices, postscript

Examples

Test function for encodings

TestChars <- function(encoding="ISOLatin1")

{

pdf(encoding=encoding)

par(pty="s")

plot(c(0,15), c(0,15), type="n", xlab="", ylab="")

title(paste("Centred chars in encoding", encoding))

grid(15, 15, lty=1)

for(i in c(32:255)) {

x <- i

y <- i

points(x, y, pch=i)

}

dev.off()

}

there will be many warnings.

TestChars("ISOLatin2")

doesn’t view properly in US-spec Acrobat 5.05, but gs7.04 works.

Lots of characters are not centred.

persp Perspective Plots

Description

This function draws perspective plots of surfaces over the x–y plane. persp is a generic
function.

Usage

persp(x, ...)
persp.default(x = seq(0, 1, len = nrow(z)), y = seq(0, 1, len = ncol(z)), z,

xlim = range(x), ylim = range(y), zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL, main = NULL, sub = NULL,
theta = 0, phi = 15, r = sqrt(3), d = 1, scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0, shade = NA,
box = TRUE, axes = TRUE, nticks = 5, ticktype = "simple",
...)

persp 469

Arguments

x, y locations of grid lines at which the values in z are measured. These must
be in ascending order. By default, equally spaced values from 0 to 1 are
used. If x is a list, its components x$x and x$y are used for x and y,
respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note that
x can be used instead of z for convenience.

xlim, ylim, zlim

x-, y- and z-limits. The plot is produced so that the rectangular volume
defined by these limits is visible.

xlab, ylab, zlab

titles for the axes. N.B. These must be character strings; expressions are
not accepted. Numbers will be coerced to character strings.

main, sub main and sub title, as for title.
theta, phi angles defining the viewing direction. theta gives the azimuthal direction

and phi the colatitude.
r the distance of the eyepoint from the centre of the plotting box.
d a value which can be used to vary the strength of the perspective trans-

formation. Values of d greater than 1 will lessen the perspective effect
and values less and 1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface
are transformed to the interval [0,1]. If scale is TRUE the x, y and z
coordinates are transformed separately. If scale is FALSE the coordinates
are scaled so that aspect ratios are retained. This is useful for rendering
things like DEM information.

expand a expansion factor applied to the z coordinates. Often used with 0 <
expand < 1 to shrink the plotting box in the z direction.

col the color(s) of the surface facets. Transparent colours are ignored. This
is recycled to the (nx− 1)(ny − 1) facets.

border the color of the line drawn around the surface facets. A value of NA will
disable the drawing of borders. This is sometimes useful when the surface
is shaded.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded as
though it was being illuminated from the direction specified by azimuth
ltheta and colatitude lphi.

shade the shade at a surface facet is computed as ((1+d)/2)^shade, where d is
the dot product of a unit vector normal to the facet and a unit vector in
the direction of a light source. Values of shade close to one yield shading
similar to a point light source model and values close to zero produce
no shading. Values in the range 0.5 to 0.75 provide an approximation to
daylight illumination.

box should the bounding box for the surface be displayed. The default is TRUE.
axes should ticks and labels be added to the box. The default is TRUE. If box

is FALSE then no ticks or labels are drawn.
ticktype character: ”simple” draws just an arrow parallel to the axis to indicate

direction of increase; ”detailed” draws normal ticks as per 2D plots.
nticks the (approximate) number of tick marks to draw on the axes. Has no

effect if ticktype is ”simple”.
... additional graphical parameters (see par).

470 persp

Details

The plots are produced by first transforming the coordinates to the interval [0,1]. The
surface is then viewed by looking at the origin from a direction defined by theta and phi.
If theta and phi are both zero the viewing direction is directly down the negative y axis.
Changing theta will vary the azimuth and changing phi the colatitude.

Value

The viewing transformation matrix, say VT, a 4× 4 matrix suitable for projecting 3D coor-
dinates (x, y, z) into the 2D plane using homogenous 4D coordinates (x, y, z, t). It can be
used to superimpose additional graphical elements on the 3D plot, by lines() or points(),
e.g. using the function trans3d given in the last examples section below.

See Also

contour and image.

Examples

More examples in demo(persp) !!

(1) The Obligatory Mathematical surface.

Rotated sinc function.

x <- seq(-10, 10, length= 30)

y <- x

f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }

z <- outer(x, y, f)

z[is.na(z)] <- 1

op <- par(bg = "white")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",

xlab = "X", ylab = "Y", zlab = "Sinc(r)"

) -> res

round(res, 3)

(2) Add to existing persp plot :

trans3d <- function(x,y,z, pmat) {

tr <- cbind(x,y,z,1) %*% pmat

list(x = tr[,1]/tr[,4], y= tr[,2]/tr[,4])

}

xE <- c(-10,10); xy <- expand.grid(xE, xE)

points(trans3d(xy[,1], xy[,2], 6, pm = res), col = 2, pch =16)

lines (trans3d(x, y=10, z= 6 + sin(x), pm = res), col = 3)

phi <- seq(0, 2*pi, len = 201)

r1 <- 7.725 # radius of 2nd maximum

xr <- r1 * cos(phi)

yr <- r1 * sin(phi)

lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", lwd=2)## (no hidden lines)

(3) Visualizing a simple DEM model

phones 471

data(volcano)

z <- 2 * volcano # Exaggerate the relief

x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)

y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)

Don’t draw the grid lines : border = NA

par(bg = "slategray")

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

par(op)

phones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

Usage

data(phones)

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given
region, and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central
America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(phones)

matplot(rownames(phones), phones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000’s)")

legend(1951.5, 80000, colnames(phones), col = 1:7, lty = 1:7, pch = rep(21, 7))

title(main = "phones data: log scale for response")

472 pictex

pictex A PicTeX Graphics Driver

Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot.

fg the foreground color for the plot.

Details

This driver does not have any font metric information, so the use of plotmath is not
supported.

Multiple plots will be placed as separate environments in the output file.

Author(s)

This driver was provided by Valerio Aimale 〈valerio@svpop.com.dist.unige.it〉 of the De-
partment of Internal Medicine, University of Genoa, Italy.

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-
Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading,
MA: Addison-Wesley.

See Also

postscript, Devices.

pie 473

Examples

pictex()

plot(1:11,(-5:5)^2, type=’b’, main="Simple Example Plot")

dev.off()

##--------------------

%% LaTeX Example

\documentclass{article}

\usepackage{pictex}

\begin{document}

%...

\begin{figure}[h]

\centerline{\input{Rplots.tex}}

\caption{}

\end{figure}

%...

\end{document}

%%-- TeX Example --

\input pictex

$$ \input Rplots.tex $$

##--------------------

unlink("Rplots.tex")

pie Pie Charts

Description

Draw a pie chart.

Usage

pie(x, labels = names(x), edges = 200, radius = 0.8,
density = NULL, angle = 45, col = NULL, border = NULL, lty = NULL,
main = NULL, ...)

Arguments

x a vector of positive quantities. The values in x are displayed as the areas
of pie slices.

labels a vector of character strings giving names for the slices. For empty or NA
labels, no pointing line is drawn either.

edges the circular outline of the pie is approximated by a polygon with this
many edges.

radius the pie is drawn centered in a square box whose sides range from −1 to
1. If the character strings labeling the slices are long it may be necessary
to use a smaller radius.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of ‘density’
also inhibit the drawing of shading lines.

474 pie

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set
of 6 pastel colours is used, unless density is specified when par("fg") is
used.

border, lty (possibly vectors) arguments passed to polygon which draws each slice.

main an overall title for the plot.

... graphical parameters can be given as arguments to pie.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear
measures and bad at judging relative areas. A bar chart or dot chart is a preferable way of
displaying this type of data.

Cleveland (1985), p. 264: ”Data that can be shown by pie charts always can be shown by
a dot chart. This means that judgements of position along a common scale can be made
instead of the less accurate angle judgements.” This statement is based on the empirical
investigations of Cleveland and McGill as well as investigations by perceptual psychologists.

Prior to R 1.5.0 this was known as piechart, which is the name of a Trellis function, so
the name was changed to be compatible with S.

References

Cleveland, W. S. (1985) The elements of graphing data. Wadsworth: Monterey, CA, USA.

See Also

dotchart.

Examples

pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)

names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")

pie(pie.sales) # default colours

pie(pie.sales,

col = c("purple", "violetred1", "green3", "cornsilk", "cyan", "white"))

pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))

pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)

n <- 200

pie(rep(1,n), labels="", col=rainbow(n), border=NA,

main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

PlantGrowth 475

PkgUtils Utilities for Building and Checking Add-on Packages

Description

Utilities for checking whether the sources of an R add-on package work correctly, and for
building a source or binary package from them.

Usage

R CMD build [options] pkgdirs
R CMD check [options] pkgdirs

Arguments

pkgdirs a list of names of directories with sources of R add-on packages.

options further options to control the processing, or for obtaining information
about usage and version of the utility.

Details

R CMD check checks R add-on packages from their sources, performing a wide variety of
diagnostic checks.

R CMD build builds R source or binary packages from their sources.

Use R CMD foo --help to obtain usage information on utility foo.

See Also

The chapter “Processing Rd format” in “Writing R Extensions” (see the ‘doc/manual’ sub-
directory of the R source tree).

PlantGrowth Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants)
obtained under a control and two different treatment conditions.

Usage

data(PlantGrowth)

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

476 plot

The levels of group are ‘ctrl’, ‘trt1’, and ‘trt2’.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson’s book, cf. Table 7.4:

data(PlantGrowth)

boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",

notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter
arguments, see par.

Usage

plot(x, y, xlim=range(x), ylim=range(y), type="p",
main, xlab, ylab, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting
structure, function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate
structure.

xlim, ylim the ranges to be encompassed by the x and y axes.
type what type of plot should be drawn. Possible types are

• "p" for points,
• "l" for lines,
• "b" for both,
• "c" for the lines part alone of "b",
• "o" for both “overplotted”,
• "h" for “histogram” like (or “high-density”) vertical lines,
• "s" for stair steps,
• "S" for other steps, see Details below,
• "n" for no plotting.

All other types give a warning or an error; using, e.g., type = "punkte"
being equivalent to type = "p" for S compatibility.

main an overall title for the plot.
xlab a title for the x axis.
ylab a title for the y axis.
... graphical parameters can be given as arguments to plot.

plot.default 477

Details

For simple scatter plots, plot.default will be used. However, there are plot meth-
ods for many R objects, including functions, data.frames, density objects, etc. Use
methods(plot) and the documentation for these.

The two step types differ in their x-y preference: Going from (x1, y1) to (x2, y2) with
x1 < x2, type = "s" moves first horizontal, then vertical, whereas type = "S" moves the
other way around.

See Also

plot.default, plot.formula and other methods; points, lines, par.

Examples

data(cars)

plot(cars)

lines(lowess(cars))

plot(sin, -pi, 2*pi)

Discrete Distribution Plot:

plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

Simple quantiles/ECDF, see ecdf() {library(stepfun)} for a better one:

plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")

points(x, cex = .5, col = "dark red")

plot.default The Default Scatterplot Function

Description

Draw a scatter plot with“decorations” such as axes and titles in the active graphics window.

Usage

plot.default(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL,
col = par("fg"), bg = NA, pch = par("pch"),
cex = par("cex"), lty = par("lty"), lab = par("lab"),
lwd = par("lwd"), asp = NA, ...)

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

478 plot.default

type 1-character string giving the type of plot desired. The following values
are possible, for details, see plot: "p" for points, "l" for lines, "o" for
overplotted points and lines, "b", "c") for (empty if "c") points joined
by lines, "s" and "S" for stair steps and "h" for histogram-like vertical
lines. Finally, "n" does not produce any points or lines.

xlim the x limits (min,max) of the plot.

ylim the y limits of the plot.

log a character string which contains "x" if the x axis is to be logarithmic,
"y" if the y axis is to be logarithmic and "xy" or "yx" if both axes are to
be logarithmic.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

ann a logical value indicating whether the default annotation (title and x and
y axis labels) should appear on the plot.

axes a logical value indicating whether axes should be drawn on the plot.

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an expression to be evaluated after the plot axes are set up but before any
plotting takes place. This can be useful for drawing background grids or
scatterplot smooths.

panel.last an expression to be evaluated after plotting has taken place.

col The colors for lines and points. Multiple colors can be specified so that
each point can be given its own color. If there are fewer colors than points
they are recycled in the standard fashion.

bg background color for open plot symbols, see points.

pch a vector of plotting characters or symbols.

cex a numerical value giving the amount by which plotting text and symbols
should be scaled relative to the default

lty the line type, see par.

lab the specification for the (approximate) numbers of tick marks on the x
and y axes.

lwd the line width not yet supported for postscript.

asp the y/x aspect ratio, see plot.window.

... graphical parameters as in par may also be passed as arguments.

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

See Also

plot, plot.window, xy.coords.

plot.density 479

Examples

data(cars)

Speed <- cars$speed

Distance <- cars$dist

plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")

plot(Speed, Distance,

panel.first = lines(lowess(Speed, Distance), lty = "dashed"),

pch = 0, cex = 1.2, col = "blue")

Show the different plot types

x <- 0:12

y <- sin(pi/5 * x)

op <- par(mfrow = c(3,3), mar = .1+ c(2,2,3,1))

for (tp in c("p","l","b", "c","o","h", "s","S","n")) {

plot(y ~ x, type = tp,

main = paste("plot(*, type = \"",tp,"\")",sep=""))

if(tp == "S") {

lines(x,y, type = "s", col = "red", lty = 2)

mtext("lines(*, type = \"s\", ...)", col = "red", cex=.8)

}

}

par(op)

##--- Log-Log Plot with custom axes

lx <- seq(1,5, length=41)

yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})

y <- exp(-.5*lx^2)

op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))

plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")

plot(10^lx, y, log="xy", type="o", pch=’.’, col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",

axes = FALSE, frame.plot = TRUE)

axis(1, at = my.at <- 10^(1:5), labels = formatC(my.at, format="fg"))

at.y <- 10^(-5:-1)

axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")

par(op)

plot.density Plot Method for Kernel Density Estimation

Description

The plot method for density objects.

Usage

plot(x, main = NULL, xlab = NULL, ylab = "Density", type = "l",
zero.line = TRUE, ...)

480 plot.factor

Arguments

x a “density” object.
main, xlab, ylab, type

plotting parameters with useful defaults.
... further plotting parameters.
zero.line logical; if TRUE, add a base line at y = 0

Value

None.

References

See Also

density.

plot.factor Plotting Factor Variables

Description

This functions implements a“scatterplot”method for factor arguments of the generic plot
function. Actually, boxplot or barplot are used when appropriate.

Usage

plot.factor(x, y, legend.text = levels(y), ...)

Arguments

x,y numeric or factor. y may be missing.
legend.text a vector of text used to construct a legend for the plot. Only used if y is

present and a factor.
... Further arguments to plot, see also par.

See Also

plot.default, plot.formula, barplot, boxplot.

Examples

data(PlantGrowth)

plot(PlantGrowth) # -> plot.data.frame

plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor

plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor

passing "..." to barplot() eventually:

plot(cut(weight, 3) ~ group, data = PlantGrowth, density = 16*(1:3),col=NULL)

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremly silly

plot.formula 481

plot.formula Formula Notation for Scatterplots

Description

Specify a scatterplot or add points or lines via a formula.

Usage

plot(formula, data = parent.frame(), ..., subset,
ylab = varnames[response], ask = TRUE)

points(formula, data = parent.frame(), ..., subset)
lines(formula, data = parent.frame(), ..., subset)

Arguments

formula a formula, such as y ~ x.
data a data.frame (or list) from which the variables in formula should be taken.
... Further graphical parameters may also be passed as arguments, see par.
subset an optional vector specifying a subset of observations to be used in the

fitting process.
ylab the y label of the plot(s).
ask logical, see par.

Details

Both the terms in the formula and the ... arguments are evaluated in data enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those
arguments in ... that are of the same length as data are subjected to the subsetting
specified in subset. If the formula in plot.formula contains more than one non-response
term, a series of plots of y against each term is given. A plot against the running index can
be specified as plot(y~1).

If y is an object (ie. has a class attribute) then plot.formula looks for a plot method for
that class first.

Value

These functions are invoked for their side effect of drawing in the active graphics device.

See Also

plot.default, plot.factor.

Examples

data(airquality)

op <- par(mfrow=c(2,1))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month))

plot(Ozone ~ Wind, data = airquality, pch=as.character(Month),

subset = Month != 7)

par(op)

482 plot.histogram

plot.histogram Plot Histograms

Description

These are methods for objects of class "histogram", typically produced by hist.

Usage

plot(x, freq = equidist, density = NULL, angle = 45,
col = NULL, border = par("fg"),
lty = NULL, main = paste("Histogram of", x$xname),
xlim = range(x$breaks), ylim = range(y, 0),
xlab = x$xname, ylab, axes = TRUE, labels = FALSE,
add = FALSE, ...)

lines(x, ...)

Arguments

x a histogram object, or a list with components intensities, mid, etc, see
hist for information about the components of x.

freq logical; if TRUE, the histogram graphic is to present a representation of
frequencies, i.e, x$counts; if FALSE, relative frequencies (“probabilities”),
i.e., x$intensities, are plotted. The default is true for equidistant
breaks and false otherwise.

col a colour to be used to fill the bars. The default of NULL yields unfilled
bars.

border the color of the border around the bars.
angle, density

select shading of bars by lines: see rect.

lty the line type used for the bars, see also lines.

xlim, ylim the range of x and y values with sensible defaults.
main, xlab, ylab

these arguments to title have useful defaults here.

axes logical, indicating if axes should be drawn.

labels logical or character. Additionally draw labels on top of bars, if not FALSE;
if TRUE, draw the counts or rounded intensities; if labels is a character,
draw itself.

add logical. If TRUE, only the bars are added to the current plot. This is what
lines.histogram(*) does.

... further graphical parameters to title and axis.

Details

lines.histogram(*) is the same as plot.histogram(*, add = TRUE).

plot.lm 483

See Also

hist, stem, density.

Examples

data(women)

str(wwt <- hist(women$weight, nc= 7, plot = FALSE))

plot(wwt, labels = TRUE) # default main & xlab using wwt$xname

plot(wwt, border = "dark blue", col = "light blue",

main = "Histogram of 15 women’s weights", xlab = "weight [pounds]")

Fake "lines" example, using non-default labels:

w2 <- wwt; w2$counts <- w2$counts - 1

lines(w2, col = "Midnight Blue", labels = ifelse(w2$counts, "> 1", "1"))

plot.lm Plot Diagnostics for an lm Object

Description

Four plots (selectable by which) are currently provided: a plot of residuals against fitted
values, a Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, and

a plot of Cook’s distances versus row labels.

Usage

plot(x, which = 1:4,
caption = c("Residuals vs Fitted", "Normal Q-Q plot",

"Scale-Location plot", "Cook’s distance plot"),
panel = points,
sub.caption = deparse(x$call), main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.25)

Arguments

x lm object, typically result of lm or glm.
which If a subset of the plots is required, specify a subset of the numbers 1:4.
caption Captions to appear above the plots
panel Panel function. A useful alternative to points is panel.smooth.
sub.caption common title—above figures if there are multiple; used as sub (s.title)

otherwise.
main title to each plot—in addition to the above caption.
ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
... other parameters to be passed through to plotting functions.
id.n number of points to be labelled in each plot, starting with the most ex-

treme.
labels.id vector of labels, from which the labels for extreme points will be chosen.

NULL uses observation numbers.
cex.id magnification of point labels.

484 plot.lm

Details

sub.caption—by default the function call—is shown as a subtitle (under the x-axis title)
on each plot when plots are on separate pages, or as a subtitle in the outer margin (if any)
when there are multiple plots per page.

The“Scale-Location”plot, also called“Spread-Location”or“S-L”plot, takes the square root
of the absolute residuals in order to diminish skewness (

√
|E| is much less skewed than |E|

for Gaussian zero-mean E).

This ‘S-L’ and the Q-Q plot use standardized residuals which have identical variance (under
the hypothesis). They are given as Ri/(s×

√
1− hii) where hii are the diagonal entries of

the hat matrix, lm.influence()$hat, see also hat.

Author(s)

John Maindonald and Martin Maechler.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London:
Chapman and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry. Biometrika 62, 101–111.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and
Hall.

See Also

termplot, lm.influence, cooks.distance.

Examples

Analysis of the life-cycle savings data

given in Belsley, Kuh and Welsch.

data(LifeCycleSavings)

plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))

4 plots on 1 page; allow room for printing model formula in outer margin:

par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))

plot(lm.SR)

plot(lm.SR, id.n = NULL) # no id’s

plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

Fit a smmooth curve, where applicable:

plot(lm.SR, panel = panel.smooth)

Gives a smoother curve

plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

par(mfrow=c(2,1))# same oma as above

plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")

plot.table 485

plot.table Plot Methods for ‘table’ Objects

Description

This is a method of the generic plot function for (contingency) table objects. Whereas
for two- and more dimensional tables, a mosaicplot is drawn, one-dimensional ones are
plotted “bar like”.

Usage

plot.table(x, type = "h", ylim = c(0, max(x)), lwd = 2,
xlab = NULL, ylab = deparse(substitute(x)),
frame.plot = is.num, ...)

Arguments

x a table (like) object.

type plotting type.

ylim range of y-axis.

lwd line width for bars when type = "h" is used in the 1D case.

xlab, ylab x- and y-axis labels.

frame.plot logical indicating if a frame (box) should be drawn in the 1D case. De-
faults to true when x has dimnames coerceable to numbers.

... further graphical arguments, see plot.default.

Details

The current implementation (R 1.2) is somewhat experimental and will be improved and
extended.

See Also

plot.factor, the plot method for factors.

Examples

1-d tables

(Poiss.tab <- table(N = rpois(200, lam= 5)))

plot(Poiss.tab, main = "plot(table(rpois(200, lam=5)))")

data(state)

plot(table(state.division))

4-D :

data(Titanic)

plot(Titanic, main ="plot(Titanic, main= *)")

486 plot.ts

plot.ts Plotting Time-Series Objects

Description

Plotting methods for objects of class "ts" or "mts" (multivariate time-series).

Usage

plot(x, y = NULL, type = "l", frame.plot = axes,
plot.type = c("multiple", "single"),
xy.labels = n <= 150, xy.lines = do.lab, panel=lines, ...)

lines(x, ...)

Arguments

x,y time series objects, usually of class "ts".

type the type of plot, see plot. When y is present, the default will depend on
xy.labels, see below.

frame.plot a function to give the ‘frame’ for each panel.

plot.type for multivariate time series, should the series by plotted separately (with
a common time axis) or on a single plot?

xy.labels logical, indicating if text() labels should be used for an x-y plot.

xy.lines logical, indicating if lines should be drawn for an x-y plot. Default is
true, when labels are drawn as well.

panel a function(x, col, bg, pch, type, ...) which gives the action to
be carried out in each panel of the display for plot.type="multiple".
The default is lines.

... additional graphical arguments, see plot, plot.default and par.

Details

With one principal argument, these functions create time series plots, for multivariate series
of two kinds depending on plot.type,

If y is present, both x and y must be univariate, and a “scatter” plot y ~ x will be drawn,
enhanced by using text if xy.labels is TRUE or character, and lines if xy.lines is TRUE.

See Also

ts for basic time series construction and access functionality.

Examples

Multivariate

z <- ts(matrix(rt(300, df = 3), 100, 3), start=c(1961, 1), frequency=12)

plot(z) # multiple

plot(z, panel=points) # same with points instead of lines

plot(z, plot.type="single", lty=1:3)

plot.window 487

A phase plot:

data(nhtemp)

plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

a clearer way to do this would be

library(ts)

plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

library(ts)

data(sunspots)

xy.lines and xy.labels are FALSE for large series:

plot(lag(sunspots, 1), sunspots, pch = ".")

data(EuStockMarkets)

SMI <- EuStockMarkets[, "SMI"]

plot(lag(SMI, 1), SMI, pch = ".")

plot(lag(SMI, 20), SMI, pch = ".", log = "xy",

main = "4 weeks lagged SMI stocks -- log scale", xy.lines= TRUE)

detach("package:ts")

plot.window Set up World Coordinates for Graphics Window

Description

This function sets up the world coordinate system for a graphics window. It is called by
higher level functions such as plot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric of length 2, giving the x and y coordinates ranges.
log character; indicating which axes should be in log scale.
asp numeric, giving the aspect ratio y/x.
... further graphical parameters as in par.

Details

Note that if asp is a finite positive value then the window is set up so that one data unit
in the x direction is equal in length to asp × one data unit in the y direction.

The special case asp == 1 produces plots where distances between points are represented
accurately on screen. Values with asp > 1 can be used to produce more accurate maps
when using latitude and longitude.

Usually, one should rather use the higher level functions such as plot, hist, image, . . . ,
instead and refer to their help pages for explanation of the arguments.

488 plot.xy

See Also

xy.coords, plot.xy, plot.default.

Examples

##--- An example for the use of ‘asp’ :

library(mva)

data(eurodist)

loc <- cmdscale(eurodist)

rx <- range(x <- loc[,1])

ry <- range(y <- -loc[,2])

plot(x, y, type="n", asp=1, xlab="", ylab="")

abline(h=pretty(rx, 10),

v=pretty(ry, 10), col= "lightgray")

text(x, y, names(eurodist), cex=0.5)

plot.xy Basic Internal Plot Function

Description

This is the internal function that does the basic plotting of points and lines. Usually,
one should rather use the higher level functions instead and refer to their help pages for
explanation of the arguments.

Usage

plot.xy(xy, type, pch=1, lty="solid", col=par("fg"), bg=NA, cex=1, ...)

Arguments

xy A four-element list as results from xy.coords.

type 1 character code.

pch character or integer code for kind of points/lines, see points.default.

lty line type code, see lines.

col color code or name, see colors, palette.

bg background (“fill”) color for open plot symbols.

cex character expansion.

... further graphical parameters.

See Also

plot, plot.default, points, lines.

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y), ...)"

plotmath 489

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text, mtext, axis) in R is an
expression, the argument is interpreted as a mathematical expression and the output will
be formatted according to TeX-like rules. Expressions can also be used for titles, subtitles
and x- and y-axis labels (but not for axis labels on persp plots).

Details

A mathematical expression must obey the normal rules of syntax for any R expression, but
it is interpreted according to very different rules than for normal R expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts,
produce fractions, etc.

The output from example(plotmath) includes several tables which show the available fea-
tures. In these tables, the columns of grey text show sample R expressions, and the columns
of black text show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
list(x, y, z) comma-separated list
... ellipsis (height varies)

490 plotmath

cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex
tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
infinity infinity symbol
partialdiff partial differential symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for ”0”, but don’t draw it
x + over(1, phantom(0)) leave vertical gap for ”0” (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S

plotmath 491

x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters
group(lceil, x, rceil) special delimiters

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in
plots. Journal of Computational and Graphical Statistics, 9, 582–599.

See Also

axis, mtext, text, title

Examples

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

How to combine "math" and numeric variables :

plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")

tt <- 1.23 ; mtext(substitute(hat(theta) == that, list(that= tt)))

for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"),

list(x=i, y=i+1)))

plot(1:10, 1:10)

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .8)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)

text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),

cex= 1.2)

######

create tables of mathematical annotation functionality

######

make.table <- function(nr, nc) {

savepar <- par(mar=rep(0, 4), pty="s")

plot(c(0, nc*2 + 1), c(0, -(nr + 1)),

type="n", xlab="", ylab="", axes=FALSE)

savepar

}

492 plotmath

get.r <- function(i, nr) {

i %% nr + 1

}

get.c <- function(i, nr) {

i %/% nr + 1

}

draw.title.cell <- function(title, i, nr) {

r <- get.r(i, nr)

c <- get.c(i, nr)

text(2*c - .5, -r, title)

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5))

}

draw.plotmath.cell <- function(expr, i, nr, string = NULL) {

r <- get.r(i, nr)

c <- get.c(i, nr)

if (is.null(string)) {

string <- deparse(expr)

string <- substr(string, 12, nchar(string) - 1)

}

text((2*(c - 1) + 1), -r, string, col="grey")

text((2*c), -r, expr, adj=c(.5,.5))

rect((2*(c - 1) + .5), -(r - .5), (2*c + .5), -(r + .5), border="grey")

}

nr <- 20

nc <- 2

oldpar <- make.table(nr, nc)

i <- 0

draw.title.cell("Arithmetic Operators", i, nr); i <- i + 1

draw.plotmath.cell(expression(x + y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x - y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x / y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %+-% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %/% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %*% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(-x), i, nr); i <- i + 1

draw.plotmath.cell(expression(+x), i, nr); i <- i + 1

draw.title.cell("Sub/Superscripts", i, nr); i <- i + 1

draw.plotmath.cell(expression(x[i]), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^2), i, nr); i <- i + 1

draw.title.cell("Juxtaposition", i, nr); i <- i + 1

draw.plotmath.cell(expression(x * y), i, nr); i <- i + 1

draw.plotmath.cell(expression(paste(x, y, z)), i, nr); i <- i + 1

draw.title.cell("Lists", i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x, y, z)), i, nr); i <- i + 1

even columns up

i <- 20

draw.title.cell("Radicals", i, nr); i <- i + 1

draw.plotmath.cell(expression(sqrt(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(sqrt(x, y)), i, nr); i <- i + 1

draw.title.cell("Relations", i, nr); i <- i + 1

draw.plotmath.cell(expression(x == y), i, nr); i <- i + 1

plotmath 493

draw.plotmath.cell(expression(x != y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x < y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x <= y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x > y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x >= y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %~~% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %=~% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %==% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %prop% y), i, nr); i <- i + 1

draw.title.cell("Typeface", i, nr); i <- i + 1

draw.plotmath.cell(expression(plain(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(italic(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bold(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bolditalic(x)), i, nr); i <- i + 1

Need fewer, wider columns for ellipsis ...

nr <- 20

nc <- 2

make.table(nr, nc)

i <- 0

draw.title.cell("Ellipsis", i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x[1], ..., x[n])), i, nr); i <- i + 1

draw.plotmath.cell(expression(x[1] + ... + x[n]), i, nr); i <- i + 1

draw.plotmath.cell(expression(list(x[1], cdots, x[n])), i, nr); i <- i + 1

draw.plotmath.cell(expression(x[1] + ldots + x[n]), i, nr); i <- i + 1

draw.title.cell("Set Relations", i, nr); i <- i + 1

draw.plotmath.cell(expression(x %subset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %subseteq% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %supset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %supseteq% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %notsubset% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %in% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %notin% y), i, nr); i <- i + 1

draw.title.cell("Accents", i, nr); i <- i + 1

draw.plotmath.cell(expression(hat(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(tilde(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(ring(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(bar(xy)), i, nr); i <- i + 1

draw.plotmath.cell(expression(widehat(xy)), i, nr); i <- i + 1

draw.plotmath.cell(expression(widetilde(xy)), i, nr); i <- i + 1

draw.title.cell("Arrows", i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<->% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %->% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<-% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %up% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %down% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<=>% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %=>% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %<=% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %dblup% y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x %dbldown% y), i, nr); i <- i + 1

draw.title.cell("Symbolic Names", i, nr); i <- i + 1

draw.plotmath.cell(expression(Alpha - Omega), i, nr); i <- i + 1

draw.plotmath.cell(expression(alpha - omega), i, nr); i <- i + 1

draw.plotmath.cell(expression(infinity), i, nr); i <- i + 1

draw.plotmath.cell(expression(32 * degree), i, nr); i <- i + 1

draw.plotmath.cell(expression(60 * minute), i, nr); i <- i + 1

494 plotmath

draw.plotmath.cell(expression(30 * second), i, nr); i <- i + 1

Need even fewer, wider columns for typeface and style ...

nr <- 20

nc <- 1

make.table(nr, nc)

i <- 0

draw.title.cell("Style", i, nr); i <- i + 1

draw.plotmath.cell(expression(displaystyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(textstyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(scriptstyle(x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(scriptscriptstyle(x)), i, nr); i <- i + 1

draw.title.cell("Spacing", i, nr); i <- i + 1

draw.plotmath.cell(expression(x ~~ y), i, nr); i <- i + 1

Need fewer, taller rows for fractions ...

cheat a bit to save pages

par(new = TRUE)

nr <- 10

nc <- 1

make.table(nr, nc)

i <- 4

draw.plotmath.cell(expression(x + phantom(0) + y), i, nr); i <- i + 1

draw.plotmath.cell(expression(x + over(1, phantom(0))), i, nr); i <- i + 1

draw.title.cell("Fractions", i, nr); i <- i + 1

draw.plotmath.cell(expression(frac(x, y)), i, nr); i <- i + 1

draw.plotmath.cell(expression(over(x, y)), i, nr); i <- i + 1

draw.plotmath.cell(expression(atop(x, y)), i, nr); i <- i + 1

Need fewer, taller rows and fewer, wider columns for big operators ...

nr <- 10

nc <- 1

make.table(nr, nc)

i <- 0

draw.title.cell("Big Operators", i, nr); i <- i + 1

draw.plotmath.cell(expression(sum(x[i], i=1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(prod(plain(P)(X == x), x)), i, nr); i <- i + 1

draw.plotmath.cell(expression(integral(f(x) * dx, a, b)), i, nr); i <- i + 1

draw.plotmath.cell(expression(union(A[i], i==1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(intersect(A[i], i==1, n)), i, nr); i <- i + 1

draw.plotmath.cell(expression(lim(f(x), x %->% 0)), i, nr); i <- i + 1

draw.plotmath.cell(expression(min(g(x), x >= 0)), i, nr); i <- i + 1

draw.plotmath.cell(expression(inf(S)), i, nr); i <- i + 1

draw.plotmath.cell(expression(sup(S)), i, nr); i <- i + 1

make.table(nr, nc)

i <- 0

draw.title.cell("Grouping", i, nr); i <- i + 1

draw.plotmath.cell(expression((x + y)*z), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^y + z), i, nr); i <- i + 1

draw.plotmath.cell(expression(x^(y + z)), i, nr); i <- i + 1

have to do this one by hand

draw.plotmath.cell(expression(x^{y + z}), i, nr, string="x^{y + z}"); i <- i + 1

draw.plotmath.cell(expression(group("(", list(a, b), "]")), i, nr); i <- i + 1

draw.plotmath.cell(expression(bgroup("(", atop(x, y), ")")), i, nr); i <- i + 1

draw.plotmath.cell(expression(group(lceil, x, rceil)), i, nr); i <- i + 1

draw.plotmath.cell(expression(group(lfloor, x, rfloor)), i, nr); i <- i + 1

pmatch 495

draw.plotmath.cell(expression(group("|", x, "|")), i, nr); i <- i + 1

par(oldpar)

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA, duplicates.ok = FALSE)

Arguments

x the values to be matched.

table the values to be matched against.

nomatch the value returned at non-matching or multiply partially matching posi-
tions.

duplicates.ok should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates.ok. Consider first the case if this is
true. First exact matches are considered, and the positions of the first exact matches are
recorded. Then unique partial matches are considered, and if found recorded. (A partial
match occurs if the whole of the element of x matches the beginning of the element of
table.) Finally, all remaining elements of x are regarded as unmatched. In addition, an
empty string can match nothing, not even an exact match to an empty string. This is the
appropriate behaviour for partial matching of character indices, for example.

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument
matching, except for the consideration of empty strings (which in argument matching are
matched after exact and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates.ok true, the differences being that it
differentiates between no match and an ambiguous partial match, it does match empty
strings, and it does not allow multiple exact matches.

Value

A numeric vector of integers (including NA if nomatch = NA) of the same length as x, giving
the indices of the elements in table which matched, or nomatch.

Note

Versions of R prior to 1.0.0 had a different behaviour that was seriously incompatible with
S (and the current version) when duplicates.ok = TRUE.

496 png

Author(s)

Of this version, B. D. Ripley.

See Also

match, charmatch and match.arg, match.fun, match.call, for function argument match-
ing etc., grep etc for more general (regexp) matching of strings.

Examples

pmatch("", "") # returns NA

pmatch("m", c("mean", "median", "mode")) # returns NA

pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)

compare

charmatch(c("", "ab", "ab"), c("abc", "ab"))

png JPEG and PNG graphics devices

Description

A graphics device for JPEG or PNG format bitmap files.

Usage

jpeg(filename = "Rplot%03d.jpeg", width = 480, height = 480,
pointsize = 12, quality = 75, bg = "white", ...)

png(filename ="Rplot%03d.png", width = 480, height = 480,
pointsize = 12, bg = "white", ...)

Arguments

filename the name of the output file. The page number is substituted if an integer
format is included in the character string.

width the width of the device in pixels.

height the height of the device in pixels.

pointsize the default pointsize of plotted text.

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give
more compression but also more degradation of the image.

bg default background colour.

... additional arguments to the X11 device.

png 497

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats,
and both can be displayed in most modern web browsers. The PNG format is lossless and
is best for line diagrams and blocks of solid colour. The JPEG format is lossy, but may be
useful for image plots, for example.

png supports transparent backgrounds: use bg = "transparent". Not all PNG viewers
render files with transparency correctly. When transparency is in use a very light grey is
used as the background and so will appear as transparent if used in the plot. This allows
opaque white to be used, as on the example.

R can be compiled without support for either or both of these devices: this will be reported
if you attempt to use them on a system where they are not supported. They will not be
available if R has been started with --gui=none (and will give a different error message),
and they may not be usable unless the X11 display is available to the owner of the R process.

Value

A plot device is opened: nothing is returned to the R interpreter.

Warning

If you plot more than one page on one of these devices and do not include somthing like %d
for the sequence number in file, the file will contain the last page plotted.

Note

These are based on the X11 device, so the additional arguments to that device work, but
are rarely appropriate. The colour handling will be that of the X11 device in use.

Author(s)

Guido Masarotto and Brian Ripley

See Also

Devices, dev.print

capabilities to see if these devices are supported by this build of R.

bitmap provides an alternative way to generate PNG and JPEG plots that does not depend
on accessing the X11 display but does depend on having GhostScript installed.

Examples

these examples will work only if the devices are available

and the X11 display is available.

copy current plot to a PNG file

dev.print(png, file="myplot.png", width=480, height=480)

png(file="myplot.png", bg="transparent")

plot(1:10)

rect(1, 5, 3, 7, col="white")

dev.off()

jpeg(file="myplot.jpeg")

example(rect)

498 points

dev.off()

points Add Points to a Plot

Description

points is a generic function to draw a sequence of points at the specified coordinates. The
specified character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)
points.default(x, y=NULL, type="p", pch=par("pch"), col=par("col"),

bg=NA, cex=1, ...)

Arguments

x, y coordinate vectors of points to plot.

type character indicating the type of plotting; actually any of the types as in
plot.

pch plotting “character”, i.e. symbol to use. pch can either be a character
or an integer code for a set of graphics symbols. The full set of S symbols
is available with pch=0:18, see the last picture from example(points),
i.e., the examples below.
In addition, there is a special set of R plotting symbols which can be ob-
tained with pch=19:25 and 21:25 can be colored and filled with different
colors:

• pch=19: solid circle,
• pch=20: bullet (smaller circle),
• pch=21: circle,
• pch=22: square,
• pch=23: diamond,
• pch=24: triangle point-up,
• pch=25: triangle point down.

col color code or name, see par.

bg background (“fill”) color for open plot symbols

cex character expansion

... Further graphical parameters (see plot.xy and par) may also be supplied
as arguments.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a
two-column matrix, a time series, See xy.coords.

Graphical parameters are permitted as arguments to this function.

Poisson 499

See Also

plot, lines, and the underlying “primitive” plot.xy.

Examples

plot(-4:4, -4:4, type = "n")# setting up coord. system

points(rnorm(200), rnorm(200), col = "red")

points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

op <- par(bg = "light blue")

x <- seq(0,2*pi, len=51)

something ‘‘between type="b" and type="o" ’’ :

plot(x, sin(x), type="o", pch=21, bg=par("bg"), col = "blue", cex=.6,

main=’plot(..., type="o", pch=21, bg=par("bg"))’)

par(op)

##-------- Showing all the extra & some char graphics symbols ------------

Pex <- 3 ## good for both .Device=="postscript" and "x11"

ipch <- 1:(np <- 25+11); k <- floor(sqrt(np)); dd <- c(-1,1)/2

rx <- dd + range(ix <- (ipch-1) %/% k)

ry <- dd + range(iy <- 3 + (k-1)-(ipch-1) %% k)

pch <- as.list(ipch)

pch[25+ 1:11] <- as.list(c("*",".", "o","O","0","+","-",":","|","%","#"))

plot(rx, ry, type="n", axes = FALSE, xlab = "", ylab = "",

main = paste("plot symbols : points (... pch = *, cex =", Pex,")"))

abline(v = ix, h = iy, col = "lightgray", lty = "dotted")

for(i in 1:np) {

pc <- pch[[i]]

points(ix[i], iy[i], pch = pc, col = "red", bg = "yellow", cex = Pex)

red symbols with a yellow interior (where available)

text(ix[i] - .3, iy[i], pc, col = "brown", cex = 1.2)

}

Poisson The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson
distribution with parameter lambda.

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

500 Poisson

n number of random values to return.

lambda vector of positive means.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ.

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is
computed using Loader’s algorithm, see the reference in dbinom.

The quantile is left continuous: qgeom(q, prob) is the largest integer x such that P (X ≤
x) < q.

Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the
quantile function, and rpois generates random deviates.

See Also

dbinom for the binomial and dnbinom for the negative binomial distribution.

Examples

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1

Ni <- rpois(50, lam= 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)

ppois(10*(15:25), lambda=100, lower=FALSE) # no cancellation

par(mfrow = c(2, 1))

x <- seq(-0.01, 5, 0.01)

plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")

plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")

poly 501

poly Compute Orthogonal Polynomials

Description

Returns or evaluates orthogonal polynomials of degree 1 to degree over the specified set of
points x. These are all orthogonal to the constant polynomial of degree 0.

Usage

poly(x, ..., degree = 1, coefs = NULL)
polym(..., degree)
predict(object, newdata, ...)

Arguments

x, newdata a numeric vector at which to evaluate the polynomial. x can also be a
matrix.

degree the degree of the polynomial

coefs for prediction, coefficients from a previous fit.

object an object inheriting from class "poly", normally the result of a call to
poly with a single vector argument.

... poly, polym: further vectors.
predict.poly: arguments to be passed to or from other methods.

Details

Although formally degree should be named (as it follows ...), an unnamed second argu-
ment of length 1 will be interpreted as the degree.

The orthogonal polynomial is summarized by the coefficients, which can be used to evaluate
it via the three-term recursion given in Kennedy & Gentle (1980, pp. 343-4), and use in
the “predict” part of the code.

Value

For poly with a single vector argument:
A matrix with rows corresponding to points in x and columns corresponding to the degree,
with attributes "degree" specifying the degrees of the columns and "coefs" which contains
the centring and normalization constants used in constructing the orthogonal polynomials.
The matrix is given class c("poly", "matrix") as from R 1.5.0.

Other cases of poly and polym, and predict.poly: a matrix.

Note

This routine is intended for statistical purposes such as contr.poly: it does not attempt
to orthogonalize to machine accuracy.

Author(s)

B. D. Ripley

502 polygon

References

Kennedy, W. J. Jr and Gentle, J. E. (1980) Statistical Computing Marcel Dekker.

See Also

contr.poly

Examples

(z <- poly(1:10, 3))

predict(z, seq(2, 4, 0.5))

poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs"))

polym(1:4, c(1, 4:6), degree=3) # or just poly()

poly(cbind(1:4, c(1, 4:6)), degree=3)

polygon Polygon Drawing

Description

polygon draws the polygons whose vertices are given in x and y.

Usage

polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = NULL, xpd = NULL, ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density the density of shading lines, in lines per inch. The default value of NULL
means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col the color for filling the polygon. The default, NA, is to leave polygons
unfilled.

border the color to draw the border. The default, NULL, uses par("fg"). Use
border = NA to omit borders.
For compatibility with S, border can also be logical, it which case FALSE
is equivalent to NA (borders omitted) and TRUE is equivalent to NULL (use
the foreground colour),

lty the line type to be used, as in par.

xpd (where) should clipping take place? Defaults to par("xpd").

... graphical parameters can be given as arguments to polygon.

polygon 503

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a
two-column matrix, See xy.coords.

It is assumed that the polygon is closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that of lines,
except that instead of breaking a line into several lines, NA values break the polygon into
several complete polygons (including closing the last point to the first point). See the
examples below.

When multiple polygons are produced, the values of density, angle, col, border, and lty
are recycled in the usual manner.

Bugs

The present shading algorithm can produce incorrect results for self-intesecting polygons.

Author(s)

The code implementing polygon shading was donated by Kevin Buhr 〈buhr@stat.wisc.edu〉.

See Also

segments for even more flexibility, lines, rect, box, abline.

par for how to specify colors.

Examples

x <- c(1:9,8:1)

y <- c(1,2*(5:3),2,-1,17,9,8,2:9)

op <- par(mfcol=c(3,1))

for(xpd in c(FALSE,TRUE,NA)) {

plot(1:10, main=paste("xpd =", xpd)) ; box("figure", col = "pink", lwd=3)

polygon(x,y, xpd=xpd, col = "orange", lty=2, lwd=2, border = "red")

}

par(op)

n <- 100

xx <- c(0:n, n:0)

yy <- c(c(0,cumsum(rnorm(n))), rev(c(0,cumsum(rnorm(n)))))

plot (xx, yy, type="n", xlab="Time", ylab="Distance")

polygon(xx, yy, col="gray", border = "red")

title("Distance Between Brownian Motions")

Multiple polygons from NA values

and recycling of col, border, and lty

op <- par(mfrow=c(2,1))

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,1,2,1,2,1),

col=c("red", "blue"),

border=c("green", "yellow"),

lwd=3, lty=c("dashed", "solid"))

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

col=c("red", "blue"),

border=c("green", "yellow"),

504 polyroot

lwd=3, lty=c("dashed", "solid"))

par(op)

Line-shaded polygons

plot(c(1,9), 1:2, type="n")

polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

density=c(10, 20), angle=c(-45, 45))

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details

A polynomial of degree n− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vector z[1:n]. polyroot returns the n− 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.

If the coefficient vector z has zeroes for the highest powers, these are discarded.

Value

A complex vector of length n − 1, where n is the position of the largest non-zero element
of z.

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example
in the demos directory.

Examples

polyroot(c(1, 2, 1))

round(polyroot(choose(8, 0:8)), 11) # guess what!

for (n1 in 1:4) print(polyroot(1:n1), digits = 4)

polyroot(c(1, 2, 1, 0, 0)) # same as the first

pos.to.env 505

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 and length(search()), the length of the search
path.

Details

Several R functions for manipulating objects in environments (such as get and ls) allow
specifying environments via corresponding positions in the search path. pos.to.env is
a convenience function for programmers which converts these positions to corresponding
environments; users will typically have no need for it.

Examples

pos.to.env(1) # R_GlobalEnv

the next returns NULL, which is how package:base is represented.

pos.to.env(length(search()))

postscript PostScript Graphics

Description

postscript starts the graphics device driver for producing PostScript graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to postscript.

Usage

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile = TRUE,
paper, family, encoding, bg, fg,
width, height, horizontal, pointsize,
pagecentre, print.it, command)

ps.options(paper, horizontal, width, height, family, encoding,
pointsize, bg, fg,
onefile = TRUE, print.it = FALSE, append = FALSE,
reset = FALSE, override.check = FALSE)

.PostScript.Options

506 postscript

Arguments

file a character string giving the name of the file. If it is "", the output is
piped to the command given by the argument command. If it is "|cmd",
the output is piped to the command given by ‘cmd’.
For use with onefile=FALSE give a printf format such as
"Rplot%03d.ps" (the default in that case).

... further options for postscript().

paper the size of paper in the printer. The choices are "a4", "letter", "legal"
and "executive" (and these can be capitalized). Also, "special" can
be used, when the width and height specify the paper size. A further
choice is "default", which is the default. If this is selected, the papersize
is taken from the option "papersize" if that is set and to "a4" if it is
unset or empty.

horizontal the orientation of the printed image, a logical. Defaults to true, that is
landscape orientation.

width, height the width and height of the graphics region in inches. The default is to
use the entire page less a 0.25 inch border on each side.

family the font family to be used. EITHER a single character string OR a
character vector of length four or five. See the section ‘Families’.

encoding the name of an encoding file. Defaults to ”ISOLatin1.enc” in the
‘R HOME/afm’ directory, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

pointsize the default point size to be used.

bg the default background color to be used. If ”transparent”(or an equivalent
specification), no background is painted.

fg the default foreground color to be used.

onefile logical: if true (the default) allow multiple figures in one file. If false,
generate a file name containing the page number and use an EPSF header
and no DocumentMedia comment.

pagecentre logical: should the device region be centred on the page: defaults to true.

print.it logical: should the file be printed when the device is closed? (This only
applies if file is a real file name.)

command the command to be used for “printing”. Defaults to option "printcmd";
this can also be selected as "default".

append logical; currently disregarded; just there for compatibility reasons.
reset, override.check

logical arguments passed to check.options. See the Examples.

Details

postscript opens the file file and the PostScript commands needed to plot any graphics
requested are stored in that file. This file can then be printed on a suitable device to obtain
hard copy.

A postscript plot can be printed via postscript in two ways.

1. Setting print.it = TRUE causes the command given in argument command to be called
with argument "file" when the device is closed. Note that the plot file is not deleted
unless command arranges to delete it.

postscript 507

2. file="" or file="|cmd" can be used to print using a pipe on systems that support
‘popen’. Failure to open the command will probably be reported to the terminal but
not to ‘popen’, in which case close the device by dev.off immediately.

The postscript produced by R is EPS (Encapsulated PostScript) compatible, and can be
included into other documents, e.g., into LaTeX, using
includegraphics{<filename>}. For use in this way you will probably want to set
horizontal = FALSE, onefile = FALSE, paper = "special".

Most of the PostScript prologue used is taken from the R character vector .ps.prolog.
This is marked in the output, and can be changed by changing that vector. (This is only
advisable for PostScript experts.)

ps.options needs to be called before calling postscript, and the default values it sets can
be overridden by supplying arguments to postscript.

Families

The argument family specifies the font family to be used. In normal use it is
one of "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times", and refers to the standard Adobe
PostScript fonts of those names which are included (or cloned) in all common PostScript
devices.

Many PostScript emulators (including those based on ghostscript) use the URW equiv-
alents of these fonts, which are "URWGothic", "URWBookman", "NimbusMon", "NimbusSan",
"NimbusSanCond", "CenturySch", "URWPalladio" and "NimbusRom" respectively. If your
PostScript device is using URW fonts, you will obtain access to more characters and more ap-
proriate metrics by using these names. To make these easier to remember, "URWHelvetica"
== "NimbusSan" and "URWTimes" == "NimbusRom" are also supported.

It is also possible to specify family="ComputerModern". This is intended to use with the
Type 1 versions of the TeX CM fonts. It will normally be possible to include such output
in TeX or LaTeX provided it is processed with dvips -Ppfb -j0 or the equivalent on your
system. (-j0 turns off font subsetting.)

If the second form of argument "family" is used, it should be a character vector of four
or five paths to Adobe Font Metric files for the regular, bold, italic, bold italic and (op-
tionally) symbol fonts to be used. If these paths do not contain the file separator, they are
taken to refer to files in the R directory ‘R HOME/afm’. Thus the default Helvetica family
can be specified by family = c("hv______.afm", "hvb_____.afm", "hvo_____.afm",
"hvbo____.afm", "sy______.afm"). It is the user’s responsibility to check that suitable
fonts are made available, and that they contain the needed characters when re-encoded.
The fontnames used are taken from the FontName fields of the afm files. The software in-
cluding the PostScript plot file should either embed the font outlines (usually from .pfb or
.pfa files) or use DSC comments to instruct the print spooler to do so.

Encodings

Encodings describe which glyphs are used to display the character codes (in the range
0–255). By default R uses ISOLatin1 encoding, and the examples for text are in that
encoding. However, the encoding used on machines running R may well be different, and
by using the encoding argument the glyphs can be matched to encoding in use.

None of this will matter if only ASCII characters (codes 32–126) are used as all the encod-
ings agree over that range. Some encodings are supersets of ISOLatin1, too. However, if
accented and special characters do not come out as you expect, you may need to change the
encoding. Three other encodings are supplied with R: "WinAnsi.enc" and "MacRoman.enc"

508 postscript

correspond to the encodings normally used on Windows and MacOS (at least by Adobe),
and "PDFDoc.enc" is the first 256 characters of the Unicode encoding, the standard for
PDF.

If you change the encoding, it is your responsibility to ensure that the PostScript font
contains the glyphs used . One issue here is the Euro symbol which is in the WinAnsi
and MacRoman encodings but may well not be in the PostScript fonts. (It is in the URW
variants; it is not in the supplied Adobe Font Metric files.)

There is one exception. Character 45 ("-") is always set as minus (its value in Adobe
ISOLatin1) even though it is hyphen in the other encodings. Hyphen is available as character
173 (octal 0255) in ISOLatin1.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

See Also

Devices, check.options which is called from both ps.options and postscript.

Examples

open the file "foo.ps" for graphics output

postscript("foo.ps")

produce the desired graph(s)

dev.off() # turn off the postscript device

postscript("|lp -dlw")

produce the desired graph(s)

dev.off() # plot will appear on printer

for URW PostScript devices

postscript("foo.ps", family = "NimbusSan")

for inclusion in Computer Modern TeX documents, perhaps

postscript("cm_test.eps", width = 4.0, height = 3.0,

horizontal = FALSE, onefile = FALSE, paper = "special",

family = "ComputerModern")

The resultant postscript file can be used by dvips -Ppfb -j0.

To test out encodings, you can use

TestChars <- function(encoding="ISOLatin1", family="URWHelvetica")

{

postscript(encoding=encoding, family=family)

par(pty="s")

plot(c(0,15), c(0,15), type="n", xlab="", ylab="")

title(paste("Centred chars in encoding", encoding))

grid(15, 15, lty=1)

for(i in c(32:255)) {

x <- i

y <- i

points(x, y, pch=i)

}

dev.off()

}

there will be many warnings. We use URW to get a complete enough

power 509

set of font metrics.

TestChars()

TestChars("ISOLatin2")

TestChars("WinAnsi")

stopifnot(unlist(ps.options()) == unlist(.PostScript.Options))

ps.options(bg = "pink")

str(ps.options(reset = TRUE))

---- error checking of arguments: ----

ps.options(width=0:12, onefile=0, bg=pi)

override the check for ’onefile’, but not the others:

str(ps.options(width=0:12, onefile=1, bg=pi,

override.check = c(FALSE,TRUE,FALSE)))

power Create a Power Link Object

Description

Creates a link object based on the link function η = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.

Details

If lambda is non-negative, it is taken as zero, and the log link is obtained. The default
lambda = 1 gives the identity link.

Value

A list with components linkfun, linkinv, mu.eta, and valideta. See make.link for
information on their meaning.

See Also

make.link, family

Examples

power()

quasi(link=power(1/3))[c("linkfun", "linkinv")]

510 precip

ppoints Ordinates for Probability Plotting

Description

Generates the sequence of “probability”points (1:m - a)/(m + (1-a)-a) where m is either
n, if length(n)==1, or length(n).

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

Arguments

n either the number of points generate or a vector of observations.

a the offset fraction to be used; typically in (0, 1).

Details

If 0 < a < 1, the resulting values are within (0, 1) (excluding boundaries). In any case, the
resulting sequence is symmetric in [0, 1], i.e., p + rev(p) == 1.

ppoints() is used in qqplot and qqnorm to generate the set of probabilities at which to
evaluate the inverse distribution.

See Also

qqplot, qqnorm.

Examples

ppoints(4) # the same as ppoints(1:4)

ppoints(10)

ppoints(10, a=1/2)

precip Annual Precipitation in US Cities

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and
Puerto Rico) cities.

Usage

data(precip)

Format

A named vector of length 70.

predict 511

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(precip)

dotchart(precip[order(precip)], main = "precip data")

title(sub = "Average annual precipitation (in.)")

predict Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting func-
tions. The function invokes particular methods which depend on the class of the first
argument.

The function predict.lm makes predictions based on the results produced by lm.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Value

The form of the value returned by predict depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

See Also

predict.lm.

Examples

All the "predict" methods available in your current search() path:

for(fn in methods("predict"))

cat(fn,":\n\t",deparse(args(get(fn))),"\n")

512 predict.glm

predict.glm Predict Method for GLM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a
fitted generalized linear model object.

Usage

predict(object, newdata = NULL, type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL, ...)

Arguments

object a fitted object of class inheriting from "glm".

newdata optionally, a new data frame from which to make the predictions. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear
predictors; the alternative "response" is on the scale of the response
variable. Thus for a default binomial model the default predictions are of
log-odds (probabilities on logit scale) and type = "response" gives the
predicted probabilities. The "terms" option returns a matrix giving the
fitted values of each term in the model formula on the linear predictor
scale.
The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard
errors. If omitted, that returned by summary applied to the object is used.

terms with type="terms" by default all terms are returned. A character vector
specifies which terms are to be returned

... further arguments passed to or from other methods.

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors
residual.scale

A scalar giving the square root of the dispersion used in computing the
standard errors.

Author(s)

B.D. Ripley

See Also

glm, SafePrediction

predict.lm 513

Examples

example from Venables and Ripley (1997, pp. 231-3.)

ldose <- rep(0:5, 2)

numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)

sex <- factor(rep(c("M", "F"), c(6, 6)))

SF <- cbind(numdead, numalive=20-numdead)

budworm.lg <- glm(SF ~ sex*ldose, family=binomial)

summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",

ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))

ld <- seq(0, 5, 0.1)

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),

type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("F", length(ld)), levels=levels(sex))),

type = "response"))

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object

Usage

predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, ...)

Arguments

object Object of class inheriting from "lm"

newdata Data frame in which to predict

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation

level Tolerance/confidence level

type Type of prediction (response or model term)

terms If type="terms", which terms (default is all terms)

... further arguments passed to or from other methods.

514 predict.lm

Details

predict.lm produces predicted values, obtained by evaluating the regression function in
the frame newdata (which defaults to model.frame(object). If the logical se.fit is TRUE,
standard errors of the predictions are calculated. If the numeric argument scale is set
(with optional df), it is used as the residual standard deviation in the computation of the
standard errors, otherwise this is extracted from the model fit. Setting intervals specifies
computation of confidence or prediction (tolerance) intervals at the specified level.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped.
Prediction from such a fit only makes sense if newdata is contained in the same subspace
as the original data. That cannot be checked accurately, so a warning is issued.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the
following components is returned:

fit vector or matrix as above

se.fit standard error of predictions

residual.scale

residual standard deviations

df degrees of freedom for residual

Note

Offsets specified by offset in the fit by lm will not be included in predictions, whereas
those specified by an offset term in the formula will be.

See Also

The model fitting function lm, predict, SafePrediction

Examples

Predictions

x <- rnorm(15)

y <- x + rnorm(15)

predict(lm(y ~ x))

new <- data.frame(x = seq(-3, 3, 0.5))

predict(lm(y ~ x), new, se.fit = TRUE)

pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")

pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")

matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

preplot 515

preplot Pre-computations for a Plotting Objeect

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

Arguments

object a fitted model object.

... additional arguments for specific methods.

Details

Only the generic function is currently provided in base R, but some add-on packages have
methods. Principally here for S compatibility.

Value

An object set up to make a plot that describes object.

presidents Approval Rating of US Presidents

Description

The (approximately) quarterly approval rating for the President of the United states from
the first quarter of 1945 to the last quarter of 1974.

Usage

data(presidents)

Format

A time series of 120 values.

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for
details.

Source

The Gallup Organisation.

516 pretty

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(presidents)

plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

pressure Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury
in millimeters (of mercury).

Usage

data(pressure)

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Source

Weast, R. C., ed. (1973) Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(pressure)

plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",

ylab = "Pressure (mm of Hg)",

main = "pressure data: Vapor Pressure of Mercury")

pretty Pretty Breakpoints

pretty 517

Description

Compute a sequence of about n+1 equally spaced nice values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

Arguments

x numeric vector

n integer giving the desired number of intervals. Non-integer values are
rounded down.

min.n nonnegative integer giving the minimal number of intervals. If min.n ==
0, pretty(.) may return a single value.

shrink.sml positive numeric by a which a default scale is shrunk in the case when
range(x) is “very small” (usually 0).

high.u.bias non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and
“optimal”: u5.bias = .5 + 1.5*high.u.bias.

eps.correct integer code, one of {0,1,2}. If non-0, an “epsilon correction” is made at
the boundaries such that the result boundaries will be outside range(x);
in the small case, the correction is only done if eps.correct >=2.

Details

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we let c <- d/n, otherwise
more or less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b is
10blog10(c)c such that b ≤ c < 10b.

Now determine the basic unit u as one of {1, 2, 5, 10}b, depending on c/b ∈ [1, 10) and the
two “bias” coefficients, h =high.u.bias and f =u5.bias.

.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16

pretty(1:15, h=2)# 0 5 10 15

pretty(1:15, n=4)# 0 5 10 15

pretty(1:15 * 2) # 0 5 10 15 20 25 30

pretty(1:20) # 0 5 10 15 20

pretty(1:20, n=2) # 0 10 20

pretty(1:20, n=10)# 0 2 4 ... 20

for(k in 5:11) {

cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):

pretty(pi)

518 print

add.names <- function(v) { names(v) <- paste(v); v}

str(lapply(add.names(-10:20), pretty))

str(lapply(add.names(0:20), pretty, min = 0))

sapply(add.names(0:20), pretty, min = 4)

pretty(1.234e100)

pretty(1001.1001)

pretty(1001.1001, shrink = .2)

for(k in -7:3)

cat("shrink=",formatC(2^k,wid=9),":",

formatC(pretty(1001.1001, shrink = 2^k), wid=6),"\n")

Primitive Call a “Primitive” Internal Function

Description

.Primitive returns an entry point to a “primitive” (internally implemented) function.

The advantage of .Primitive over .Internal functions is the potential efficiency of argu-
ment passing.

Usage

.Primitive(name)

Arguments

name name of the R function.

See Also

.Internal.

Examples

mysqrt <- .Primitive("sqrt")

c

.Internal # this one *must* be primitive!

get("if") # just ‘if’ or ‘print(if)’ are not syntactically ok.

print Print Values

Description

print prints its argument and returns it invisibly (via invisible(x)). It is a generic
function which means that new printing methods can be easily added for new classes.

print.coefmat 519

Usage

print(x, ...)

print.factor(x, quote = FALSE, max.levels = NULL,
width = getOption("width"), ...)

Arguments

x an object used to select a method.

... further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surround-
ing quotes.

max.levels integer, indicating how many levels should be printed for a factor; if 0,
no extra ”Levels” line will be printed. The default, NULL, entails chosing
max.levels such that the levels print on one line of width width.

width only used when max.levels is NULL, see above.

Details

The default method, print.default has its own help page. Use methods("print") to get
all the methods for the print generic.

print.factor allows some customization and is used for printing ordered factors as well.

See noquote as an example of a class whose main purpose is a specific print method.

See Also

The default method print.default, and help for the methods above; further options,
noquote.

Examples

ts(1:20)#-- print is the ‘‘Default function’’ --> print.ts(.) is called

rr <- for(i in 1:3) print(1:i)

rr

Printing of factors illustrated for ex

print.coefmat Print Coefficient Matrices

Description

Utility function to be used in “higher level” print methods, such as print.summary.lm,
print.summary.glm and print.anova. The goal is to provide a flexible interface with
smart defaults such that often, only x needs to be specified.

520 print.coefmat

Usage

print.coefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 && substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "", ...)

Arguments

x a numeric matrix like object, to be printed.

digits minimum number of significant digits to be used for most numbers.

signif.stars logical; if TRUE, P-values are additionally encoded visually as “significance
stars” in order to help scanning of long coefficient tables. It defaults to
the show.signif.stars slot of options.

dig.tst minimum number of significant digits for the test statistics, see tst.ind.

cs.ind indices (integer) of column numbers which are (like) coefficients and
standard errors to be formatted together.

tst.ind indices (integer) of column numbers for test statistics.

zap.ind indices (integer) of column numbers which should be formatted by
zapsmall, i.e., by “zapping” values close to 0.

P.values logical or NULL; if TRUE, the last column of x is formatted by format.pval
as P values. If P.values = NULL, the default, it is set to TRUE only
if link{options}("show.coef.Pvalue") is TRUE and x has at least 4
columns and the last column name of x starts with "Pr(".

has.Pvalue logical; if TRUE, the last column of x contains P values; in that case, it is
printed iff P.values (above).

eps.Pvalue number,..

na.print a character string to code NA values in printed output.

... further arguments for print.

Details

Despite its name, this is not (yet) a method for the generic print function, because there
is no class "coefmat".

Value

Invisibly returns its argument, x.

Author(s)

Martin Maechler

See Also

print.summary.lm, format.pval, format.

print.data.frame 521

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))

cmat <- cbind(cmat, cmat[,1]/cmat[,2])

cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))

colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")

print.coefmat(cmat[,1:3])

print.coefmat(cmat)

options(show.coef.Pvalues = FALSE)

print.coefmat(cmat, digits=2)

print.coefmat(cmat, digits=2, P.values = TRUE)

options(show.coef.Pvalues = TRUE)# revert

print.data.frame Printing Data Frames

Description

These functions create or manipulate data frames, tightly coupled collections of variables
which share many of the properties of matrices and of lists, used as the fundamental data
structure by most of R’s modeling software.

Usage

print(x, ..., digits = NULL, quote = FALSE, right = TRUE)

Arguments

x object of class data.frame.

... optional arguments to print or plot methods.

digits the minimum number of significant digits to be used.

quote logical, indicating whether or not strings (characters) should be printed
with surrounding quotes.

right logical, indicating whether or not strings should be right-aligned. The
default is left-alignment.

Value

For the print method (print.data.frame), see print.matrix.

See Also

data.frame.

522 print.default

print.default Default Printing

Description

print.default is the default method of the generic print function which prints its argu-
ment.

print.atomic is almost the same and exists purely for compatibility reasons.

Usage

print.default(x, digits = NULL, quote = TRUE, na.print = NULL,
print.gap = NULL, right = FALSE, ...)

print.atomic(x, quote = TRUE, ...)

Arguments

x the object to be printed.

digits a non-null value for digits specifies the minimum number of significant
digits to be printed in values. If digits is NULL, the value of digits set
by options is used.

quote logical, indicating whether or not strings (characters) should be printed
with surrounding quotes.

na.print a character string which is used to indicate NA values in printed output,
or NULL (see Details)

print.gap an integer, giving the spacing between adjacent columns in printed ma-
trices and arrays, or NULL meaning 1.

right logical, indicating whether or not strings should be right-aligned. The
default is left-alignment.

... (further arguments, currently disregarded)

Details

The default for printing NAs is to print NA (without quotes) unless this is a character NA and
quote = FALSE, when <NA> is printed.

The same number of decimal places is used throughout a vector, This means that digits
specifies the minimum number of significant digits to be used, and that at least one entry
will be printed with that minimum number.

See Also

The generic print, options. The "noquote" class and print method.

Examples

pi

print(pi, digits = 16)

LETTERS[1:16]

print(LETTERS, quote = FALSE)

print.matrix 523

print.matrix Print Matrices

Description

Pseudo-method for the print generic. Especially useful with the right argument which
does not (yet) exist for print.default.

Usage

print.matrix(x, rowlab=character(0), collab=character(0),
quote=TRUE, right=FALSE, na.print = NULL,
print.gap = NULL, ...)

Arguments

x numeric or character matrix.

rowlab,collab (optional) character vectors giving row or column names respectively. By
default, these are taken from dimnames(x).

quote logical; if TRUE and x is of mode "character", quotes (") are used.

right if TRUE and x is of mode "character", the output columns are right-
justified.

na.print how NAs are printed. If this is non-null, its value is used to represent NA.

print.gap not yet used.

... arguments for other methods.

Details

print.matrix and print.default both print matrices, and each has at least an optional
argument that the other lacks. Also, both directly dispatch into .Internal code directly
instead of relying on each other. This mainly stems from historic compatibility and similar
reasons should be changed in the future.

prmatrix is currently just an alias for print.matrix.

Value

Invisibly returns its argument, x.

See Also

print.default, and other print methods.

Examples

print.matrix(m6 <- diag(6), row = rep("",6), coll=rep("",6))

chm <- matrix(scan(system.file("help", "AnIndex", package = "eda"),

what = ""), , 2, byrow = TRUE)

chm #-> print.default(.) = ‘same’ as print.matrix(chm)

print.matrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

524 proc.time

print.ts Printing Time-Series Objects

Description

Print method for time series objects.

Usage

print(x, calendar, ...)

Arguments

x a time series object.
calendar enable/disable the display of information about month names, quarter

names or year when printing. The default is TRUE for a frequency of 4 or
12, FALSE otherwise.

... additional arguments to print.

Details

This is the print methods for objects inheriting from class "ts".

See Also

print, ts.

Examples

print(ts(1:10, freq = 7, start = c(12, 2)), calendar = TRUE)

proc.time Running Time of R

Description

proc.time determines how much time (in seconds) the currently running R process already
consumed.

Usage

proc.time()

Value

A numeric vector of length 5, containing the user, system, and total elapsed times for the
currently running R process, and the cumulative sum of user and system times of any child
processes spawned by it.
The resolution of the times will be system-specific; it is common for them to be recorded
to of the order of 1/100 second, and elapsed time is rounded to the nearest 1/100.
It is most useful for“timing”the evaluation of R expressions, which can be done conveniently
with system.time.

prod 525

Note

It is possible to compile R without support for proc.time, when the function will not exist.

See Also

system.time for timing a valid R expression, gc.time for how much of the time was spent
in garbage collection.

Examples

ptm <- proc.time()

for (i in 1:50) mad(runif(500))

proc.time() - ptm

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

... numeric vectors.

na.rm logical. Should missing values be removed?

Details

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

See Also

sum, cumprod, cumsum.

Examples

print(prod(1:7)) == print(gamma(8))

526 proj

profile Generic Function for Profiling Models

Description

Investigates behavior of objective function near the solution represented by fitted.

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.

... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for
further details.

See Also

profile.nls in package nls, profile.glm in package MASS, . . .

proj Projections of Models

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms
of a linear model. It is most frequently used for aov models.

Usage

proj (object, ...)
proj.aov (object, onedf = FALSE, unweighted.scale = FALSE, ...)
proj.aovlist(object, onedf = FALSE, unweighted.scale = FALSE, ...)
proj.default(object, onedf = TRUE, ...)
proj.lm (object, onedf = FALSE, unweighted.scale = FALSE, ...)

proj 527

Arguments

object An object of class "lm" or a class inheriting from it, or an object with a
similar structure including in particular components qr and effects.

onedf A logical flag. If TRUE, a projection is returned for all the columns of the
model matrix. If FALSE, the single-column projections are collapsed by
terms of the model (as represented in the analysis of variance table).

unweighted.scale

If the fit producing object used weights, this determines if the projections
correspond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so for aov models with an Error term
the result is a list of projections.

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each
term (onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the
default method have orthogonal columns representing the projection of the response onto
the column space of the Q matrix from the QR decomposition. The fitted values are the
sum of the projections, and the sum of squares for each column is the reduction in sum of
squares from fitting that column (after those to the left of it).

The methods for lm and aov models add a column to the projection matrix giving the
residuals (the projection of the data onto the orthogonal complement of the model space).

Strictly, when onedf = FALSE the result is not a projection, but the columns represent
sums of projections onto the columns of the model matrix corresponding to that term. In
this case the matrix does not depend on the coding used.

Author(s)

B.D. Ripley

See Also

aov, lm, model.tables

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)

proj(npk.aov)

as a test, not particularly sensible

528 prompt

options(contrasts=c("contr.helmert", "contr.treatment"))

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)

proj(npk.aovE)

prompt Produce Prototype of an R Documentation File

Description

Facilitate the constructing of files documenting R functions.

Usage

prompt(object, ...)

prompt.default(object,
filename = paste(name, ".Rd", sep = ""),
name = NULL, force.function = FALSE, ...)

prompt.data.frame(object,
filename = paste(name, ".Rd", sep = ""), name = NULL, ...)

Arguments

object an R object, typically a function

name character string specifying the name of the object.

filename name of the output file
force.function

treat object as function in any case

... further arguments passed to or from other methods.

Details

An ASCII file filename is produced containing the proper function and argument names
of object. You have to edit it before adding the documentation to the source tree, i.e.,
(currently) to ‘$R HOME/src/library/base/man/’.

When prompt is used in for loops or scripts, the explicit name specification will be useful.

Note

The documentation file produced by prompt.data.frame does not have the same format
as many of the data frame documentation files in the base library. We are trying to settle
on a preferred format for the documentation.

Author(s)

Douglas Bates for prompt.data.frame

See Also

help and the chapter on “Writing R documentation” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

prop.table 529

Examples

prompt(plot.default)

prompt(interactive, force.function = TRUE)

unlink("plot.default.Rd")

unlink("interactive.Rd")

data(women) # data.frame

prompt(women)

unlink("women.Rd")

data(sunspots) # non-data.frame data

prompt(sunspots)

unlink("sunspots.Rd")

prop.table Express table entries as fraction of marginal table

Description

This is really sweep(x, margin, margin.table(x, margin), "/") for newbies, except
that if margin has length zero, then one gets x/sum(x).

Usage

prop.table(x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for

Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m<-matrix(1:4,2)

m

prop.table(m,1)

530 pushBack

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are
currently pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form
a stack, so the first line to be retrieved will be the first string from the last call to pushBack.
Lines which are pushed back are read prior to the normal input from the connection, by
the normal text-reading functions such as readLines and scan.

Pushback is only allowed for readable connections.

Not all uses of connections respect pushbacks, in particular the input connection is still
wired directly, so for example parsing commands from the console and scan("") ignore
pushbacks on stdin.

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

See Also

connections, readLines.

Examples

zz <- textConnection(LETTERS)

readLines(zz, 2)

pushBack(c("aa", "bb"), zz)

pushBackLength(zz)

readLines(zz, 1)

pushBackLength(zz)

readLines(zz, 1)

readLines(zz, 1)

close(zz)

qqnorm 531

qqnorm Quantile-Quantile Plots

Description

qqnorm is a generic functions the default method of which produces a normal QQ plot of
the values in y. qqline adds a line to a normal quantile-quantile plot which passes through
the first and third quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.

Usage

qqnorm(y, ...)
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles", plot.it = TRUE, ...)

qqline(y, ...)
qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),

ylab = deparse(substitute(y)), ...)

Arguments

x The first sample for qqplot.

y The second or only data sample.
xlab, ylab, main

plot labels.

plot.it logical. Should the result be plotted?

ylim, ... graphical parameters.

Value

For qqnorm and qqplot, a list with components

x The x coordinates of the points that were/would be plotted

y The corresponding y coordinates

See Also

ppoints.

Examples

y <- rt(200, df = 5)

qqnorm(y); qqline(y, col = 2)

qqplot(y, rt(300, df = 5))

data(precip)

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

532 qr

qr The QR Decomposition of a Matrix

Description

qr computes the QR decomposition of a matrix. It provides an interface to the techniques
used in the LINPACK routine DQRDC or (for complex matrices) the LAPACK routine
ZGEQP3.

Usage

qr(x, tol=1e-07)
qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns of x.

qr a QR decomposition of the type computed by qr.

y, b a vector or matrix of right-hand sides of equations.

a A matrix or QR decomposition.

k effective rank.

Details

The QR decomposition plays an important role in many statistical techniques. In particular
it can be used to solve the equation Ax = b for given matrix A, and vector b. It is useful
for computing regression coefficients and in applying the Newton-Raphson algorithm.

The functions qr.coef, qr.resid, and qr.fitted return the coefficients, residuals and
fitted values obtained when fitting y to the matrix with QR decomposition qr. qr.qy and
qr.qty return Q %*% y and t(Q) %*% y, where Q is the Q matrix.

All the above functions keep dimnames (and names) of x and y if there are.

qr.solve solves systems of equations via the QR decomposition.

is.qr returns TRUE if x is a list with components named qr, rank and qraux and FALSE
otherwise.

It is not possible to coerce objects to mode "qr". Objects either are QR decompositions or
they are not.

qr 533

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The compo-
nents in the returned value correspond directly to the values returned by DQRDC/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains the
R of the decomposition and the lower triangle contains information on
the Q of the decomposition (stored in compact form).

qraux a vector of length ncol(x) which contains additional information on Q.

rank the rank of x as computed by the decomposition: always full rank in the
complex case.

pivot information on the pivoting strategy used during the decomposition.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is
much more efficient than using Eigen values (eigen). See det.

The complex case uses column pivoting and does not attempt to detect rank-deficient
matrices.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

qr.Q, qr.R, qr.X for reconstruction of the matrices. solve.qr, lsfit, eigen, svd.

det (using qr) to compute the determinant of a matrix.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h9 <- hilbert(9); h9

qr(h9)$rank #--> only 7

qrh9 <- qr(h9, tol = 1e-10)

qrh9$rank #--> 9

##-- Solve linear equation system H %*% x = y :

y <- 1:9/10

x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :

x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y

h9 %*% x # = y

http://www.netlib.org/lapack/lug/lapack_lug.html

534 QR.Auxiliaries

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of
the decomposition.

Usage

qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec = 1)
qr.R(qr, complete = FALSE)

Arguments

qr object representing a QR decomposition. This will typically have come
from a previous call to qr or lsfit.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal
completion of the Q or X matrices is to be made, or whether the R
matrix is to be completed by binding zero-value rows beneath the square
upper triangle.

ncol integer in the range 1:nrow(qr$qr). The number of columns to be in
the reconstructed X. The default when complete is FALSE is the first
min(ncol(X), nrow(X)) columns of the original X from which the qr
object was constructed. The default when complete is TRUE is a square
matrix with the original X in the first ncol(X) columns and an arbitrary
orthogonal completion (unitary completion in the complex case) in the
remaining columns.

Dvec vector (not matrix) of diagonal values. Each column of the returned Q
will be multiplied by the corresponding diagonal value.

Value

qr.X returns X, the original matrix from which the qr object was constructed, provided
ncol(X) <= nrow(X). If complete is TRUE or the argument ncol is greater than ncol(X),
additional columns from an arbitrary orthogonal (unitary) completion of X are returned.

qr.Q returns Q, the order-nrow(X) orthogonal (unitary) transformation represented by
qr. If complete is TRUE, Q has nrow(X) columns. If complete is FALSE, Q has ncol(X)
columns. When Dvec is specified, each column of Q is multiplied by the corresponding
value in Dvec.

qr.R returns R, the upper triangular matrix such that X == Q %*% R. The number of rows
of R is nrow(X) or ncol(X), depending on whether complete is TRUE or FALSE.

See Also

qr, qr.qy.

quakes 535

Examples

data(LifeCycleSavings)

p <- ncol(x <- LifeCycleSavings[,-1]) # not the ‘sr’

qrstr <- qr(x) # dim(x) == c(n,p)

qrstr $ rank # = 4 = p

Q <- qr.Q(qrstr) # dim(Q) == dim(x)

R <- qr.R(qrstr) # dim(R) == ncol(x)

X <- qr.X(qrstr) # X == x

range(X - as.matrix(x))# ~ < 6e-12

X == Q %*% R :

all((1 - X /(Q %*% R))< 100*.Machine$double.eps)#TRUE

dim(Qc <- qr.Q(qrstr, complete=TRUE)) # Square: dim(Qc) == rep(nrow(x),2)

all((crossprod(Qc) - diag(nrow(x))) < 10*.Machine $double.eps)

QD <- qr.Q(qrstr, D=1:p) # QD == Q %*% diag(1:p)

all(QD - Q %*% diag(1:p) < 8* .Machine$double.eps)

dim(Rc <- qr.R(qrstr, complete=TRUE)) # == dim(x)

dim(Xc <- qr.X(qrstr, complete=TRUE)) # square: nrow(x) ^ 2

all(Xc[,1:p] == X)

quakes Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in
a cube near Fiji since 1964.

Usage

data(quakes)

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

Details

There are two clear planes of seismic activity. One is a major plate junction; the other
is a trench off New Zealand. These data constitute a subsample from a larger dataset of
containing 5000 observations.

536 quantile

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr.
John Woodhouse, Dept. of Geophysics, Harvard University.

Examples

data(quakes)

pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

quantile Sample Quantiles

Description

The generic function quantile produces sample quantiles corresponding to the given prob-
abilities. The smallest observation corresponds to a probability of 0 and the largest to a
probability of 1.

Usage

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,
names = TRUE, ...)

Arguments

x numeric vectors whose sample quantiles are wanted.

probs numeric vector with values in [0, 1].

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles
are computed.

names logical; if true, the result has a names attribute. Set to FALSE for speedup
with many probs.

... further arguments passed to or from other methods.

Details

A vector of length length(probs) is returned; if names = TRUE, it has a names attribute.

quantile(x,p) as a function of p linearly interpolates the points ((i-1)/(n-1), ox[i]), where
ox <- sort(x) and n <- length(x).

This gives quantile(x, p) == (1-f)*ox[i] + f*ox[i+1], where r <- 1 + (n-1)*p, i
<- floor(r), f <- r - i and ox[n+1] := ox[n].

NA and NaN values in probs are propagated to the result.

See Also

ecdf (in the stepfun package) for empirical distributions of which quantile is the ”inverse”.
boxplot.stats and fivenum for computing “versions” of quartiles, etc.

quartz 537

Examples

quantile(x <- rnorm(1001))# Extremes & Quartiles by default

quantile(x, probs=c(.1,.5,1,2,5,10,50, NA)/100)

n <- length(x) ## the following is exact, because 1/(1001-1) is exact:

stopifnot(sort(x) == quantile(x, probs = ((1:n)-1)/(n-1), names=FALSE))

n <- 777

ox <- sort(x <- round(rnorm(n),1))# round() produces ties

ox <- c(ox, ox[n]) #- such that ox[n+1] := ox[n]

p <- c(0,1,runif(100))

i <- floor(r <- 1 + (n-1)*p)

f <- r - i

all(abs(quantile(x,p) - ((1-f)*ox[i] + f*ox[i+1])) < 20*.Machine$double.eps)

quartz MacOS X Quartz device

Description

quartz starts a graphics device driver for the MacOS X System. This can only be done on
machines that run MacOS X.

Usage

quartz(display = "", width = 6, height = 6, pointsize = 12,
family = "Helvetica", antialias = TRUE, autorefresh = TRUE)

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

family this is the family name of the Postscript font that will be used by the
device.

antialias whether to use antialiasing. It is never the case to set it FALSE

autorefresh this sets realtime refreshing. If it is set to FALSE, then the System is
charged to refresh the context of the device window.

Details

Quartz is the graphic engine based on the PDF format. It is used by the graphic interface
of MacOS X to render high quality graphics. As PDF it is device independent and can be
rescaled without loss of definition.

See Also

Devices.

538 quit

quit Terminate an R Session

Description

The function quit or its alias q terminate the current R session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

.Last <- function(x) { }

Arguments

save a character string indicating whether the environment (workspace) should
be saved, one of "no", "yes", "ask" or "default".

status the (numerical) error status to be returned to the operating system, where
relevant. Conventionally 0 indicates successful completion.

runLast should .Last() be executed?

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide
not to quit. The default is to ask in interactive use but may be overridden by command-line
arguments (which must be supplied in non-interactive use).

Immediately before terminating, the function .Last() is executed if it exists and runLast
is true. If in interactive use there are errors in the .Last function, control will be returned
to the command prompt, so do test the function thoroughly.

Some error statuses are used by R itself. The default error handler for non-interactive
effectively calls q("no", 1, FALSE) and returns error code 1. Error status 2 is used for R
‘suicide’, that is a catastrophic failure, and other small numbers are used by specific ports
for initialization failures. It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid.

See Also

.First for setting things on startup.

Examples

Unix-flavour example

.Last <- function() {

cat("Now sending PostScript graphics to the printer:\n")

system("lpr Rplots.ps")

cat("bye bye...\n")

}

quit("yes")

R.home 539

R.home Return the R Home Directory

Description

Return the R home directory.

Usage

R.home()

Value

A character string giving the current home directory.

R.Version Version Information

Description

R.Version() provides detailed information about the version of R running.
R.version is a variable (a list) holding this information (and version is a copy of it
for S compatibility), whereas R.version.string is a simple character string, useful for
plotting, etc.

Usage

R.Version()
R.version
R.version.string

Value

R.Version returns a list with components

platform the platform for which R was built. Under Unix, a triplet of the form
CPU-VENDOR-OS, as determined by the configure script. E.g, "i586-
unknown-linux".

arch the architecture (CPU) R was built on/for.
os the underlying operating system
system CPU and OS.
status the status of the version (e.g., "Alpha")
status.rev the status revision level
major the major version number
minor the minor version number
year the year the version was released
month the month the version was released
day the day the version was released
language always "R".

540 Random

Note

Do not use R.version$os to test the platform the code is running on: use
.Platform$OS.type instead. Slightly different versions of the OS may report different
values of R.version$os, as may different versions of R.

See Also

.Platform.

Examples

R.version$os # to check how lucky you are ...

plot(0) # any plot

mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

Random Random Number Generation

Description

.Random.seed is an integer vector, containing the random number generator (RNG) state
for random number generation in R. It can be saved and restored, but should not be altered
by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

set.seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)
save.seed <- .Random.seed

RNGkind(kind = NULL, normal.kind = NULL)
set.seed(seed, kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind
desired. If it is NULL, return the currently used RNG. Use "default" to
return to the R default.

normal.kind character string or NULL. If it is a character string, set the method of
Normal generation. Use "default" to return to the R default.

seed a single value, interpreted as an integer.

rng.kind integer code in 0:k for the above kind.

n1, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Random 541

Details

The currently available RNG kinds are given below. kind is partially matched to this list.
The default is "Marsaglia-Multicarry".

"Wichmann-Hill" The seed, .Random.seed[-1] == r[1:3] is an integer vector of length
3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann–Hill generator has a cycle length of
6.9536 × 1012 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects
the original article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than
260 and has passed all tests (according to Marsaglia). The seed is two integers (all
values allowed).

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which does not pass the MTUPLE test of the Diehard battery. It has a period of
≈ 4.6× 1018 for most initial seeds. The seed is two integers (all values allowed for the
first seed: the second must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-
to-one mapping to S’s .Random.seed[1:12] is possible but we will not publish one,
not least as this generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with
period 219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole
period). The “seed” is a 624-dimensional set of 32-bit integers plus a current position
in that set.

"Knuth-TAOCP": From Knuth (1997). A GFSR using lagged Fibonacci sequences with
subtraction. That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the “seed” is the set of the 100 last numbers (actually recorded as 101 numbers,
the last being a cyclic shift of the buffer). The period is around 2129.

"Knuth-TAOCP-2002": The 2002 version which not backwards compatible with the earlier
version: the initialization of the GFSR from the seed was altered. R did not allow you
to choose consecutive seeds, the reported ‘weakness’, and already scrambled the seeds.

"user-supplied": Use a user-supplied generator. See Random.user for details.

normal.kind can be "Kinderman-Ramage" (the default), "Ahrens-Dieter", "Box-Muller",
"Inversion" or "user-supplied". (For inversion, see the reference in qnorm.)

set.seed uses its single integer argument to set as many seeds as are required. It is intended
as a simple way to get quite different seeds by specifying small integer arguments, and also
as a way to get valid seed sets for the more complicated methods (especially "Mersenne-
Twister" and "Knuth-TAOCP").

Value

.Random.seed is an integer vector whose first element codes the kind of RNG and normal
generator. The lowest two decimal digits are in in 0:(k-1) where k is the number of
available RNGs. The hundreds represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1]
can be negative.

542 Random

RNGkind returns a two-element character vector of the RNG and normal kinds in use before
the call, invisibly if either argument is not NULL.

set.seed returns NULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time when one is required.
Hence, different sessions will give different simulation results, by default.

.Random.seed saves the seed set for the uniform random-number generator, at least for
the system generators. It does not necessarily save the state of other generators, and in
particular does not save the state of the Box–Muller normal generator. If you want to
reproduce work later, call set.seed rather than set .Random.seed.

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable
Pseudo-random Number Generator, Applied Statistics, 31, 188–190; Remarks: 34, 198 and
35, 89.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-
Hill Random Number Generator, Statist. Comput., 3, 67–70.

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on
Usenet newsgroup sci.stat.math on September 29, 1997.

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, Uni-
versity of California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number gen-
erators. Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator, ACM Transactions on Modeling and
Computer Simulation, 8, 3–30.
Source code at http://www.math.keio.ac.jp/~matumoto/emt.html.

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

Knuth, D. E. (2002) The Art of Computer Programming. Volume 2, third edition, ninth
printing.
See http://Sunburn.Stanford.EDU/~knuth/news02.html.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random vari-
ables. Journal of the American Statistical Association 71, 893-896.

Ahrens, J.H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling
from the normal distribution. Mathematics of Computation 27, 927-937.

Box, G.E.P. and Muller, M.E. (1958) A note on the generation of normal random deviates.
Annals of Mathmatical Statistics 29, 610–611.

See Also

runif, rnorm,

http://www.math.keio.ac.jp/~matumoto/emt.html
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html

Random.user 543

Examples

runif(1); .Random.seed; runif(1); .Random.seed

If there is no seed, a ‘‘random’’ new one is created:

rm(.Random.seed); runif(1); .Random.seed

RNGkind("Wich")# (partial string matching on ’kind’)

This shows how ‘runif(.)’ works for Wichmann-Hill,

using only R functions:

p.WH <- c(30269, 30307, 30323)

a.WH <- c(171, 172, 170)

next.WHseed <- function(i.seed = .Random.seed[-1])

{ (a.WH * i.seed) %% p.WH }

my.runif1 <- function(i.seed = .Random.seed)

{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }

rs <- .Random.seed

(WHs <- next.WHseed(rs[-1]))

u <- runif(1)

stopifnot(

next.WHseed(rs[-1]) == .Random.seed[-1],

all.equal(u, my.runif1(rs))

)

.Random.seed

ok <- RNGkind()

RNGkind("Super")#matches "Super-Duper"

RNGkind()

.Random.seed # new, corresponding to Super-Duper

Reset:

RNGkind(ok[1])

Random.user User-supplied Random Number Generation

Description

Function RNGkind allows user-coded uniform and normal random number generators to be
supplied. The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled
code. The user must supply the entry point user_unif_rand, which takes no arguments
and returns a pointer to a double. The example below will show the general pattern.

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the “seeds”;
it is the seed argument to set.seed or an essentially random seed if RNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded
in .Random.seed. Optionally, functions user_unif_nseed and user_unif_seedloc can be

544 Random.user

supplied which are called with no arguments and should return pointers to the number of
“seeds” and to an integer array of “seeds”. Calls to GetRNGstate and PutRNGstate will then
copy this array to and from .Random.seed.

A user-specified normal RNG is specified by a single entry point user_norm_rand, which
takes no arguments and returns a pointer to a double.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R ext/Random.h’ header file for type checking.

Examples

Marsaglia’s conguential PRNG

#include <R_ext/Random.h>

static Int32 seed;

static double res;

static int nseed = 1;

double * user_unif_rand()

{

seed = 69069 * seed + 1;

res = seed * 2.32830643653869e-10;

return &res;

}

void user_unif_init(Int32 seed_in) { seed = seed_in; }

int * user_unif_nseed() { return &nseed; }

int * user_unif_seedloc() { return (int *) &seed; }

/* ratio-of-uniforms for normal */

#include <math.h>

static double x;

double * user_norm_rand()

{

double u, v, z;

do {

u = unif_rand();

v = 0.857764 * (2. * unif_rand() - 1);

x = v/u; z = 0.25 * x * x;

if (z < 1. - u) break;

if (z > 0.259/u + 0.35) continue;

} while (z > -log(u));

return &x;

}

Use under Unix:

R SHLIB urand.c

R

> dyn.load("urand.so")

> RNGkind("user")

> runif(10)

> .Random.seed

> RNGkind(, "user")

randu 545

> rnorm(10)

> RNGkind()

[1] "user-supplied" "user-supplied"

randu Random Numbers from Congruential Generator

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function
RANDU running under VMS 1.5.

Usage

data(randu)

Format

A data frame with 400 observations on 3 variables named x, y and z which give the first,
second and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space.
This can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

Source

David Donoho

Examples

We could re-generate the dataset by the following R code

seed <- as.double(1)

RANDU <- function() {

seed <<- ((2^16 + 3) * seed) %% (2^31)

seed/(2^31)

}

for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())

print(round(U[1:3], 6))

}

546 range

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)
range.default(..., na.rm = FALSE, finite = FALSE)

Arguments

... any numeric objects.

na.rm logical, indicating if NA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

Details

This is a generic function; currently, it has only a default method (range.default).

It is also a member of the Summary group of functions, see Methods.

If na.rm is FALSE, NA and NaN values in any of the arguments will cause NA values to be
returned, otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e.,
finite=TRUE includes na.rm=TRUE.

A special situation occurs when there is no (after omission of NAs) nonempty argument left,
see min.

See Also

min, max, Methods.

Examples

print(r.x <- range(rnorm(100)))

diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x

range(x)

range(x, na.rm = TRUE)

range(x, finite = TRUE)

rank 547

rank Sample Ranks

Description

Returns the sample ranks of the values in a numeric vector. Ties result in ranks being
averaged.

Usage

rank(x, na.last = TRUE)

Arguments

x a numeric vector.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed.

See Also

order and sort.

Examples

(r1 <- rank(x1 <- c(3,1,4,59,26)))

(r2 <- rank(x2 <- c(3,1,4,5,9,2,6,5,3,5))) # ties

rank() is "idempotent": rank(rank(x)) == rank(x) :

stopifnot(rank(r1) == r1, rank(r2) == r2)

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create
indices from them, and for converting documentation in other formats to Rd format.

Usage

R CMD Rdconv [options] file
R CMD Rdindex [options] files
R CMD Rd2dvi [options] files
R CMD Rd2txt [options] file
R CMD Sd2Rd [options] file

548 read.00Index

Arguments

file the path to a file to be processed.

files a list of file names specifying the R documentation sources to use, by
either giving the paths to the files, or the path to a directory with the
sources of a package.

options further options to control the processing, or for obtaining information
about usage and version of the utility.

Details

Rdconv converts Rd format to other formats. Currently, plain text, HTML, LaTeX, S
version 3 (Sd), and S version 4 (.sgml) formats are supported. It can also extract the
examples for run-time testing.

Rd2dvi and Rd2txt are user-level programs for producing DVI/PDF output or pretty text
output from Rd sources.

Rdindex creates an index table from Rd files.

Sd2Rd converts S (version 3 or 4) documentation formats to Rd format.

Use R CMD foo --help to obtain usage information on utility foo.

Note

Conversion to S version 3/4 formats is rough: there are some .Rd constructs for which there
is no natural analogue. They are intended as a starting point for hand-tuning.

See Also

The chapter “Processing Rd format” in “Writing R Extensions” (see the ‘doc/manual’ sub-
directory of the R source tree).

read.00Index Read 00Index-style Files

Description

Read item/description information from 00Index-style files. Such files are description lists
rendered in tabular form, and currently used for the object, data and demo indices and
‘TITLE’ files of add-on packages.

Usage

read.00Index(file)

Arguments

file the name of a file to read data values from. If the specified file is "", then
input is taken from the keyboard (in this case input can be terminated
by a blank line). Alternatively, file can be a connection, which will be
opened if necessary, and if so closed at the end of the function call.

read.ftable 549

Value

a character matrix with 2 columns named "Item" and "Description" which hold the items
and descriptions.

See Also

formatDL for the inverse operation of creating a 00Index-style file from items and their
descriptions.

read.ftable Manipulate Flat Contingency Tables

Description

Read, write and coerce “flat” contingency tables.

Usage

read.ftable(file, sep = "", quote = "\"",
row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, digits = getOption("digits"))
as.table(x, ...)

Arguments

file either a character string naming a file or a connection which the data are
to be read from or written to. "" indicates input from the console for
reading and output to the console for writing.

sep the field separator string. Values on each line of the file are separated by
this string.

quote a character string giving the set of quoting characters for read.ftable;
to disable quoting altogether, use quote="". For write.table, a logi-
cal indicating whether strings in the data will be surrounded by double
quotes.

row.var.names a character vector with the names of the row variables, in case these
cannot be determined automatically.

col.vars a list giving the names and levels of the column variables, in case these
cannot be determined automatically.

skip the number of lines of the data file to skip before beginning to read data.

x an object of class "ftable".

digits an integer giving the number of significant digits to use for (the cell entries
of) x.

... further arguments to be passed to or from methods.

550 read.ftable

Details

read.ftable reads in a flat-like contingency table from a file. If the file contains the written
representation of a flat table (more precisely, a header with all information on names and
levels of column variables, followed by a line with the names of the row variables), no
further arguments are needed. Similarly, flat tables with only one column variable the
name of which is the only entry in the first line are handled automatically. Other variants
can be dealt with by skipping all header information using skip, and providing the names
of the row variables and the names and levels of the column variable using row.var.names
and col.vars, respectively. See the examples below.

Note that flat tables are characterized by their “ragged” display of row (and maybe also
column) labels. If the full grid of levels of the row variables is given, one should instead use
read.table to read in the data, and create the contingency table from this using xtabs.

write.ftable writes a flat table to a file, which is useful for generating “pretty” ASCII
representations of contingency tables.

as.table.ftable converts a contingency table in flat matrix form to one in standard array
form. This is a method for the generic function as.table.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

ftable for more information on flat contingencty tables.

Examples

Agresti (1990), page 157, Table 5.8.

Not in ftable standard format, but o.k.

file <- tempfile()

cat(" Intercourse\n",

"Race Gender Yes No\n",

"White Male 43 134\n",

" Female 26 149\n",

"Black Male 29 23\n",

" Female 22 36\n",

file = file)

file.show(file)

ft <- read.ftable(file)

ft

unlink(file)

Agresti (1990), page 297, Table 8.16.

Almost o.k., but misses the name of the row variable.

file <- tempfile()

cat(" \"Tonsil Size\"\n",

" \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",

"Noncarriers 497 560 269\n",

"Carriers 19 29 24\n",

file = file)

file.show(file)

ft <- read.ftable(file, skip = 2,

row.var.names = "Status",

col.vars = list("Tonsil Size" =

read.fwf 551

c("Not Enl.", "Enl.", "Greatly Enl.")))

ft

unlink(file)

read.fwf Read Fixed Width Format Files

Description

Read a “table” of f ixed width formatted data into a data.frame.

Usage

read.fwf(file, widths, sep = "\t", as.is = FALSE,
skip = 0, row.names, col.names, n = -1, ...)

Arguments

file the name of the file which the data are to be read from.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call.

widths integer vector, giving the widths of the fixed-width fields (of one line).

sep character; the separator used internally; should be a character that does
not occur in the file.

as.is see read.table.

skip number of initial lines to skip; see read.table.

row.names see read.table.

col.names see read.table.

n the maximum number of records (lines) to be read, defaulting to no limit.

... further arguments to be passed to read.table.

Details

Fields that are of zero-width or are wholly beyond the end of the line in file are replaced
by NA.

Value

A data.frame as produced by read.table which is called internally.

Author(s)

Brian Ripley for R version: original Perl by Kurt Hornik.

See Also

scan and read.table.

552 read.socket

Examples

ff <- tempfile()

cat(file=ff, "123456", "987654", sep="\n")

read.fwf(ff, width=c(1,2,3)) #> 1 23 456 \ 9 87 654

unlink(ff)

cat(file=ff, "123", "987654", sep="\n")

read.fwf(ff, width=c(1,0, 2,3)) #> 1 NA 23 NA \ 9 NA 87 654

unlink(ff)

read.socket Read from or Write to a Socket

Description

read.socket reads a string from the specified socket, write.socket writes to the specified
socket. There is very little error checking done by either.

Usage

read.socket(socket, maxlen=256, loop=FALSE)
write.socket(socket, string)

Arguments

socket a socket object

maxlen maximum length of string to read

loop wait for ever if there is nothing to read?

string string to write to socket

Value

read.socket returns the string read.

Author(s)

Thomas Lumley

See Also

close.socket, make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)

{

if (!is.character(user))

stop("user name must be a string")

user <- paste(user,"\r\n")

socket <- make.socket(host, port)

on.exit(close.socket(socket))

write.socket(socket, user)

output <- character(0)

repeat{

read.table 553

ss <- read.socket(socket)

if (ss == "") break

output <- paste(output, ss)

}

close.socket(socket)

if (print) cat(output)

invisible(output)

}

finger("root") ## only works if your site provides a finger daemon

read.table Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to
lines and variables to fields in the file.

Usage

read.table(file, header = FALSE, sep = "", quote = "\"’", dec = ".",
row.names, col.names, as.is = FALSE, na.strings = "NA",
colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#")

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, ...)

Arguments

file the name of the file which the data are to be read from. Each row of the
table appears as one line of the file. If it does not contain an absolute
path, the file name is relative to the current working directory, getwd().
Tilde-expansion is performed where supported.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call. (If stdin() is used,
the prompts for lines may be somewhat confusing. Terminate input with
an EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows.)
file can also be a complete URL.

554 read.table

header a logical value indicating whether the file contains the names of the vari-
ables as its first line. If missing, the value is determined from the file
format: header is set to TRUE if and only if the first row contains one
fewer field than the number of columns.

sep the field separator character. Values on each line of the file are separated
by this character. If sep = "" (the default for read.table) the separator
is “white space”, that is one or more spaces, tabs or newlines.

quote the set of quoting characters. To disable quoting altogether, use
quote="". See scan for the behaviour on quotes embedded in quotes.

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names,
or a single number giving the column of the table which contains the row
names, or character string giving the name of the table column containing
the row names.
If there is a header and the first row contains one fewer field than the
number of columns, the first column in the input is used for the row
names. Otherwise if row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering.

col.names a vector of optional names for the variables. The default is to use "V"
followed by the column number.

as.is the default behavior of read.table is to convert character variables
(which are not converted to logical, numeric or complex) to factors. The
variable as.is controls this conversion. Its value is either a vector of
logicals (values are recycled if necessary), or a vector of numeric indices
which specify which columns should not be converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".

na.strings a vector of strings which are to be interpreted as NA values. Blank fields
are also considered to be missing values.

colClasses character. A vector of classes to be assumed for the columns. Recy-
cled as necessary. If this is not one of the atomic vector classes (logi-
cal, integer, numeric, complex and character), there needs to be an as
method for conversion from "character" to the specified class, or NA
when type.convert is used. NB: as is in package methods.

nrows the maximum number of rows to read in. Negative values are ignored.

skip the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are
checked to ensure that they are syntactically valid variable names. If
necessary they are adjusted (by make.names) so that they are, and also
to ensure that there are no duplicates.

fill logical. If TRUE then in case the rows have unequal length, blank fields
are implicitly added. See Details.

strip.white logical. Used only when sep has been specified, and allows the stripping
of leading and trailing white space from character fields (numeric fields
are always stripped). See scan for further details, remembering that the
columns may include the row names.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

read.table 555

comment.char character: a character vector of length one containing a single character
or an empty string. Use "" to turn off the interpretation of comments
altogether.

... Further arguments to read.table.

Details

If row.names is not specified and the header line has one less entry than the number of
columns, the first column is taken to be the row names. This allows data frames to be read
in from the format in which they are printed. If row.names is specified and does not refer
to the first column, that column is discarded from such files.

The number of data columns is determined by looking at the first five lines of input (or the
whole file if it has less than five lines), or from the length of col.names if it is specified and
is longer. This could conceivably be wrong if fill or blank.lines.skip are true.

read.csv and read.csv2 are identical to read.table except for the defaults. They are
intended for reading “comma separated value” files (‘.csv’) or the variant used in countries
that use a comma as decimal point and a semicolon as field separator. Similarly, read.delim
and read.delim2 are for reading delimited files, defaulting to the TAB character for the
delimiter. Notice that header = TRUE and fill = TRUE in these variants.

Comment characters are allowed unless comment.char = "", and complete comment lines
are allowed provided blank.lines.skip = TRUE However, comment lines prior to the
header must have the comment character in the first non-blank column.

Value

A data frame (data.frame) containing a representation of the data in the file. Empty input
is an error unless col.names is specified, when a 0-row data frame is returned: similarly
giving just a header line if header = TRUE results in a 0-row data frame.

This function is the principal means of reading tabular data into R.

Note

The columns referred to in as.is and colClasses include the column of row names (if
any).

Less memory will be used if colClasses is specified as one of the five atomic vector classes.

Using nrows, even as a mild over-estimate, will help memory usage.

Using comment.char = "" will be appreciably faster.

read.table is not the right tool for reading large matrices, especially those with many
columns: it is designed to read data frames which may have columns of very different
classes. Use scan instead.

See Also

The R Data Import/Export manual.

scan, type.convert, read.fwf for reading f ixed w idth f ormatted input; read.table.url
for “reading” data from the internet; write.table; data.frame.

count.fields can be useful to determine problems with reading files which result in reports
of incorrect record lengths.

556 readBin

readBin Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

Usage

readBin(con, what, n = 1, size = NA, signed = TRUE,
endian = .Platform$endian)

writeBin(object, con, size = NA, endian = .Platform$endian)

readChar(con, nchars)
writeChar(object, con, nchars = nchar(object), eos = "")

Arguments

con A connection object or a character string.

what Either an object whose mode will give the mode of the vector
to be read, or a character vector of length one describing the
mode: one of "numeric", "double", "integer", "int", "logical",
"complex", "character".

n integer. The (maximal) number of records to be read. You can use an
over-estimate here, but not too large as storage is reserved for n items.

size integer. The number of bytes per element in the byte stream. The default,
NA, uses the natural size. Size changing is not supported for complex
vectors.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the
quantity on file should be regarded as a signed or unsigned integer.

endian The endian-ness ("big" or "little" of the target system for the file.
Using "swap" will force swapping endian-ness.

object An R object to be written to the connection.

nchars integer, giving the lengths of (unterminated) character strings to be read
or written.

eos character. The terminator to be written after each string, followed by an
ASCII nul; use NULL for no terminator at all.

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is
opened for the duration of the call and then closed again.

If size is specified and not the natural size of the object, each element of the vector is
coerced to an appropriate type before being written or as it is read. Possible sizes are 1,
2, 4 and possibly 8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric
vectors. (Note that coercion occurs as signed types except if signed = FALSE when reading

readBin 557

integers of sizes 1 and 2.) Changing sizes is unlikely to preserve NAs, and the extended
precision sizes are unlikely to be portable across platforms.

readBin and writeBin read and write C-style zero-terminated character strings. readChar
and writeChar allow more flexibility, and can also be used on text-mode connections.

Handling R’s missing and special (Inf, -Inf and NaN values is discussed in the R Data
Import/Export manual.

Value

For readBin, a vector of appropriate mode and length the number of items read (which
might be less than n).

For readChar, a character vector of length the number of items read (which might be less
than length(nchars)).

For writeBin and writeChar, none.

Note

Integer read/writes of size 8 will be available if either C type long is of size 8 bytes or C
type long long exists and is of size 8 bytes.

Real read/writes of size sizeof(long double) (usually 12 or 16 bytes) will be available
only if that type is available and different from double.

Note that as R character strings cannot contain ASCII nul, strings read by readChar which
contain such characters will appear to be shorted than requested, but the additional bytes
are read from the file.

If the character length requested for readChar is longer than the string, as from version
1.4.0 what is available is returned.

See Also

The R Data Import/Export manual.

connections, readLines, writeLines.

.Machine for the sizes of long, long long and long double.

Examples

zz <- file("testbin", "wb")

writeBin(1:10, zz)

writeBin(pi, zz, endian="swap")

writeBin(pi, zz, size=4)

writeBin(pi^2, zz, size=4, endian="swap")

writeBin(pi+3i, zz)

writeBin("A test of a connection", zz)

z <- paste("A very long string", 1:100, collapse=" + ")

writeBin(z, zz)

if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

writeBin(as.integer(5^(1:10)), zz, size = 8)

if((s <-.Machine$sizeof.longdouble) > 8) writeBin((pi/3)^(1:10), zz, size = s)

close(zz)

zz <- file("testbin", "rb")

readBin(zz, integer(), 4)

readBin(zz, integer(), 6)

558 readline

readBin(zz, numeric(), 1, endian="swap")

readBin(zz, numeric(), size=4)

readBin(zz, numeric(), size=4, endian="swap")

readBin(zz, complex(), 1)

readBin(zz, character(), 1)

z2 <- readBin(zz, character(), 1)

if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

readBin(zz, integer(), 10, size = 8)

if((s <-.Machine$sizeof.longdouble) > 8) readBin(zz, numeric(), 10, size = s)

close(zz)

unlink("testbin")

stopifnot(z2 == z)

test fixed-length strings

zz <- file("testbin", "wb")

x <- c("a", "this will be truncated", "abc")

nc <- c(3, 10, 3)

writeChar(x, zz, nc, eos=NULL)

writeChar(x, zz, eos="\r\n")

close(zz)

zz <- file("testbin", "rb")

readChar(zz, nc)

readChar(zz, nchar(x)+3) # need to read the terminator explicitly

close(zz)

unlink("testbin")

signed vs unsigned ints

zz <- file("testbin", "wb")

x <- as.integer(seq(0, 255, 32))

writeBin(x, zz, size=1)

writeBin(x, zz, size=1)

x <- as.integer(seq(0, 60000, 10000))

writeBin(x, zz, size=2)

writeBin(x, zz, size=2)

close(zz)

zz <- file("testbin", "rb")

readBin(zz, integer(), 8, size=1)

readBin(zz, integer(), 8, size=1, signed=FALSE)

readBin(zz, integer(), 7, size=2)

readBin(zz, integer(), 7, size=2, signed=FALSE)

close(zz)

unlink("testbin")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal

Usage

readline(prompt="")

readLines 559

Arguments

prompt the string printed when prompting the user for input. Should usually end
with a space " ".

Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but
can be changed in the source code).

Value

A character vector of length one.

Examples

fun <- function() {

ANSWER <- readline("Are you a satisfied R user? ")

if (substr(ANSWER, 1, 1) == "n")

cat("This is impossible. YOU LIED!\n")

else

cat("I knew it.\n")

}

fun()

readLines Read Text Lines from a Connection

Description

Read text lines from a connection.

Usage

readLines(con = stdin(), n = -1, ok = TRUE)

Arguments

con A connection object or a character string.
n integer. The (maximal) number of lines to read. Negative values indicate

that one should read up to the end of the connection.
ok logical. Is it OK to reach the end of the connection before n > 0 lines are

read? If not, an error will be generated.

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is read from its current position. If it is not open, it is opened
for the duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether
the connection is blocking or not. For a blocking text-mode connection (or a non-text-
mode connection) the line will be accepted, with a warning. For a non-blocking text-mode
connection the incomplete line is pushed back, silently.

560 real

Value

A character vector of length the number of lines read.

See Also

connections, writeLines, scan

Examples

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",

sep="\n")

readLines("ex.data", n=-1)

unlink("ex.data") # tidy up

difference in blocking

cat("123\nabc", file = "test1")

readLines("test1") # line with a warning

con <- file("test1", "r", blocking = FALSE)

readLines(con) # empty

cat(" def\n", file = "test1", append = TRUE)

readLines(con) # gets both

close(con)

unlink("test1") # tidy up

real Real Vectors

Description

real creates a double precision vector of the specified length. Each element of the vector
is equal to 0.

as.real attempts to coerce its argument to be of real type.

is.real returns TRUE or FALSE depending on whether its argument is of real type or not.

Usage

real(length = 0)
as.real(x, ...)
is.real(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Note

R has no single precision data type. All real numbers are stored in double precision format.

Recall 561

Recall Recursive Calling

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows
the definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

See Also

do.call and call.

Examples

A trivial (but inefficient!) example:

fib <- function(n) if(n<=2) {if(n>=0) 1 else 0} else Recall(n-1) + Recall(n-2)

fibonacci <- fib; rm(fib)

renaming wouldn’t work without Recall

fibonacci(10) # 55

recordPlot Record and Replay Plots

Description

Functions to save the current plot in an R variable, and to replay it.

Usage

recordPlot()
replayPlot(x)

Arguments

x A saved plot.

Details

These functions record and replay the displaylist of the current graphics device. The re-
turned object is of class "recordedplot", and replayPlot acts as a print method for that
class.

The format of recorded plots was changed in R 1.4.0: plots saved in earlier versions can still
be replayed.

562 recover

Value

recordPlot returns an object of class "recordedplot", a list with components:

displaylist The saved display list, as a pairlist.

gpar The graphics state, as an integer vector.

replayPlot has no return value.

recover Browsing after an Error

Description

This function allows the user to browse directly on any of the currently active function calls,
and is suitable as an error option. The expression options(error=recover) will make this
the error option.

Usage

recover()

Details

When called, recover prints the list of current calls, and prompts the user to select one of
them. The standard R browser is then invoked from the corresponding environment; the
user can type ordinary S language expressions to be evaluated in that environment.

When finished browsing in this call, type c to return to recover from the browser. Type
another frame number to browse some more, or type 0 to exit recover.

The use of recover largely supersedes dump.frames as an error option, unless you really
want to wait to look at the error. If recover is called in non-interactive mode, it behaves
like dump.frames. For computations involving large amounts of data, recover has the
advantage that it does not need to copy out all the environments in order to browse in
them. If you do decide to quit interactive debugging, call dump.frames directly while
browsing in any frame (see the examples).

WARNING : The special Q command to go directly from the browser to the prompt level
of the evaluator currently interacts with recover to effectively turn off the error option for
the next error (on subsequent errors, recover will be called normally).

Value

Nothing useful is returned. However, you can invoke recover directly from a function,
rather than through the error option shown in the examples. In this case, execution con-
tinues after you type 0 to exit recover.

Compatibility Note

The R recover function can be used in the same way as the S-Plus function of the same
name; therefore, the error option shown is a compatible way to specify the error action.
However, the actual functions are essentially unrelated and interact quite differently with
the user. The navigating commands up and down do not exist in the R version; instead,
exit the browser and select another frame.

rect 563

References

John M. Chambers (1998). Programming with Data; Springer.
See the compatibility note above, however.

See Also

browser for details about the interactive computations; options for setting the error option;
dump.frames to save the current environments for later debugging.

Examples

options(error = recover) # setting the error option

Example of interaction

> myFit <- lm(y ~ x, data = xy, weights = w)

Error in lm.wfit(x, y, w, offset = offset, ...) :

missing or negative weights not allowed

Enter a frame number, or 0 to exit

1:lm(y ~ x, data = xy, weights = w)

2:lm.wfit(x, y, w, offset = offset, ...)

Selection: 2

Called from: eval(expr, envir, enclos)

Browse[1]> objects() # all the objects in this frame

[1] "method" "n" "ny" "offset" "tol" "w"

[7] "x" "y"

Browse[1]> w

[1] -0.5013844 1.3112515 0.2939348 -0.8983705 -0.1538642

[6] -0.9772989 0.7888790 -0.1919154 -0.3026882

Browse[1]> dump.frames() # save for offline debugging

Browse[1]> c # exit the browser

Enter a frame number, or 0 to exit

1:lm(y ~ x, data = xy, weights = w)

2:lm.wfit(x, y, w, offset = offset, ...)

Selection: 0 # exit recover

>

rect Draw a Rectangle

Description

rect draws a rectangle (or sequence of rectangles) with the given coordinates, fill and border
colors.

564 rect

Usage

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NULL, border = NULL, lty = NULL, lwd = par("lwd"),
xpd = NULL, ...)

Arguments

xleft a vector (or scalar) of left x positions.
ybottom a vector (or scalar) of bottom y positions.
xright a vector (or scalar) of right x positions.
ytop a vector (or scalar) of top y positions.
density the density of shading lines, in lines per inch. The default value of NULL

means that no shading lines are drawn. Non-positive values of density
also inhibit the drawing of shading lines.

angle angle (in degrees) of the shading lines.
col color(s) to fill or shade the rectangle(s) with. The default NULL, or also

NA do not fill, i.e., draw transparent rectangles.
border color for rectangle border(s).
lty line type for borders; defaults to "solid".
lwd width for borders.
xpd logical (“expand”); defaults to par("xpd"). See par(xpd=).
... other graphical parameters can be given as arguments.

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the
x-axis goes from 100 to 200 then xleft must be larger than 100 and xright must be less
than 200.

It is a primitive function used in hist, barplot, legend, etc.

See Also

box for the“standard”box around the plot; polygon and segments for flexible line drawing.

par for how to specify colors.

Examples

set up the plot region:

op <- par(bg = "thistle")

plot(c(100, 250), c(300, 450), type = "n", xlab="",

main = "2 x 11 rectangles; ‘rect(100+i,300+i, 150+i,380+i)’")

i <- 4*(0:10)

draw rectangles with bottom left (100, 300)+i and top right (150, 380)+i

rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))

rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)

Background alternating (transparent / "bg") :

j <- 10*(0:5)

rect(125+j, 360+j, 141+j, 405+j/2, col = c(NA,0), border = "gold", lwd = 2)

rect(125+j, 296+j/2, 141+j, 331+j/5, col = c(NA,"midnightblue"))

mtext("+ 2 x 6 rect(*, col = c(NA,0)) and col = c(NA,\"m..blue\"))")

par(op)

reg.finalizer 565

reg.finalizer Finalization of objects

Description

Registers an R function to be called upon garbage collection of object.

Usage

reg.finalizer(e, f)

Arguments

e Object to finalize. Must be environment or external pointer.

f Function to call on finalization. Must accept a single argument, which
will be the object to finalize.

Value

NULL.

Note

The purpose of this function is mainly to allow objects that refer to external items (a
temporary file, say) to perform cleanup actions when they are no longer referenced from
within R. This only makes sense for objects that are never copied on assignment, hence the
restriction to environments and external pointers.

Examples

f <- function(e) print("cleaning....")

g <- function(x){e<-environment(); reg.finalizer(e,f)}

g()

gc() # trigger cleanup

relevel Reorder Levels of Factor

Description

The levels of a factor are re-ordered so that the level specified by ref is first and the others
are moved down. This is useful for contr.treatment contrasts which take the first level as
the reference.

Usage

relevel(x, ref, ...)

566 REMOVE

Arguments

x An unordered factor.
ref The reference level.
... Additional arguments for future methods.

Value

A factor of the same length as x.

Author(s)

B. D. Ripley

See Also

factor, contr.treatment

Examples

data(warpbreaks)

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")

summary(lm(breaks ~ wool + tension, data=warpbreaks))

REMOVE Remove Add-on Packages

Description

Utility for removing add-on packages.

Usage

R CMD REMOVE [options] [-l lib] pkgs

Arguments

pkgs a list with the names of the packages to be removed.
lib the path name of the R library tree to remove from. May be absolute or

relative.
options further options.

Details

If used as R CMD REMOVE pkgs without explicitly specifying lib, packages are removed from
the library tree rooted at the first directory given in $R_LIBS if this is set and non-null, and
to the default library tree (which is rooted at ‘$R HOME/library’) otherwise.

To remove from the library tree lib, use R CMD REMOVE -l lib pkgs.

Use R CMD REMOVE --help for more usage information.

See Also

INSTALL

remove 567

remove Remove Objects from a Specified Environment

Description

remove and rm can be used to remove objects. These can be specified successively as
character strings, or in the character vector list, or through a combination of both. All
objects thus specified will be removed.

If envir is NULL then the the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with
the given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(0), pos = -1, envir = as.environment(pos),
inherits = FALSE)

rm (..., list = character(0), pos = -1, envir = as.environment(pos),
inherits = FALSE)

Arguments

... the objects to be removed, supplied individually and/or as a character
vector

list a character vector naming objects to be removed.
pos where to do the removal. By default, uses the current environment. See

the details for other possibilities.
envir the environment to use. See the details section.
inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment from which to remove the objects in any of
several ways: as an integer (the position in the search list); as the character string name of
an element in the search list; or as an environment (including using sys.frame to access
the currently active function calls). The envir argument is an alternative way to specify
an environment, but is primarily there for back compatibility.

See Also

ls, objects

Examples

tmp <- 1:4

work with tmp and cleanup

rm(tmp)

remove (almost) everything in the working environment.

You will get no warning, so don’t do this unless you are really sure.

rm(list = ls())

568 rep

remove.packages Remove Installed Packages

Description

Removes installed packages and updates index information as necessary.

Usage

remove.packages(pkgs, lib)

Arguments

pkgs a character vector with the names of the packages to be removed.

lib a character string giving the library directory to move the packages from.

See Also

REMOVE for a command line version; install.packages for installing packages.

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values in x according to the values given in times and length.out.

Usage

rep(x, times, length.out, each)
rep.int(x, times)

Arguments

x a vector (of any mode including a list) or a pairlist.

times non-negative integer. A vector giving the number of times to repeat each
element if of length length(x), or to repeat the whole vector if of length
1.

length.out integer. (Optional.) The desired length of the output vector.

each optional integer. Each element of x is repeated each times.

replace 569

Details

If times consists of a single integer, the result consists of the values in x repeated this many
times. If times is a vector of the same length as x, the result consists of x[1] repeated
times[1] times, x[2] repeated times[2] times and so on.

length.out may be given in place of times, in which case x is repeated as many times as
is necessary to create a vector of this length. If both length.out and times are specified,
times determines the replication, and length.out can be used to truncate the output
vector (or extend it by NAs).

Non-integer values of times will be truncated towards zero. If times is a computed quantity
it is prudent to add a small fuzz.

Note

If the original vector has names, these are also replicated and so will almost always contain
duplicates.

If length.out is used to extend the vector, the behaviour is different from that of S-PLUS,
which recycles the existing vector.

Function rep.int is a simple case handled by internal code, and provided as a separate
function purely for S compatibility.

See Also

seq, sequence.

Examples

rep(1:4, 2)

rep(1:4, each = 2) # not the same.

rep(1:4, c(2,2,2,2)) # same as second.

rep(1:4, c(2,1,2,1))

rep(1:4, each = 2, len = 4) # first 4 only.

rep(1:4, each = 2, len = 10) # 8 integers plus two NAs

rep(1, 40*(1-.8)) # length 7 on most platforms

rep(1, 40*(1-.8)+1e-7) # better

replicate a list

fred <- list(happy = 1:10, name = "squash")

rep(fred, 5)

more esoteric:

stopifnot(identical(rep(letters, 0), character(0)),

identical(rep.int(1:2, 0), integer(0)))

replace Replace Values in a Vector

Description

replace replaces the values in x with indexes given in list by those given in values. If
necessary, the values in values are recycled.

570 replications

Usage

replace(x, list, values)

Arguments

x vector

list an index vector

values replacement values

Value

A vector with the values replaced.

Note

x is unchanged: remember to assign the result.

replications Number of Replications of Terms

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects in formula.

na.action function for handling missing values. Defaults to a na.action attribute
of data, then a setting of the option na.action, or na.fail if that is not
set.

Details

If formula is a data frame and data is missing, formula is used for data with the formula
~ ..

Value

A vector or list with one entry for each term in the formula giving the number(s) of repli-
cations for each level. If all levels are balanced (have the same number of replications) the
result is a vector, otherwise it is a list with a component for each terms, as a vector, matrix
or array as required.

A test for balance is !is.list(replications(formula,data)).

reshape 571

Author(s)

B. D. Ripley

See Also

model.tables

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

replications(~ . - yield, npk)

reshape Reshape Grouped Data

Description

This function reshapes a dataframe between ‘wide’ format with repeated measurements in
separate columns of the same record and ‘long’ format with the repeated measurements in
separate records.

Usage

reshape(data, varying = NULL, v.names = NULL, timevar = "time",
idvar = "id", ids = 1:NROW(data),
times = seq(length = length(varying[[1]])),
drop = NULL, direction, new.row.names = TRUE,
split = list(regexp="\\.", include=FALSE))

Arguments

data a data frame

varying names of sets of variables in the wide format that correspond to single
variables in long format (‘time-varying’). A list of vectors (or optionally
a matrix for direction="wide"). See below for more details and options.

v.names names of variables in the long format that correspond to multiple variables
in the wide format.

timevar the variable in long format that differentiates multiple records from the
same group or individual.

idvar the variable in long format that identifies multiple records from the same
group/individual. This variable may also be present in wide format.

ids the values to use for a newly created idvar variable in long format.

572 reshape

times the values to use for a newly created timevar variable in long format.

drop a vector of names of variables to drop before reshaping

direction "wide" to reshape to wide format, "long" to reshape to long format.

new.row.names logical; if TRUE and direction="wide", create new row names in long
format from the values of the id and time variables.

split information for guessing the varying, v.names, and times arguments.
See below for details.

Details

The arguments to this function are described in terms of longitudinal data, as that is the
application motivating the functions. A ‘wide’ longitudinal dataset will have one record
for each individual with some time-constant variables that occupy single columns and some
time-varying variables that occupy a column for each time point. In ‘long’ format there
will be multiple records for each individual, with some variables being constant across these
records and others varying across the records. A ‘long’ format dataset also needs a ‘time’
variable identifying which time point each record comes from and an ‘id’ variable showing
which records refer to the same person.

If the data frame resulted from a previous reshape then the operation can be reversed by
specifying just the direction argument. The other arguments are stored as attributes on
the data frame.

If direction="long" and no varying or v.names arguments are supplied it is assumed
that all variables except idvar and timevar are time-varying. They are all expanded into
multiple variables in wide format.

If direction="wide" the varying argument can be a vector of column names or col-
umn numbers (converted to column names). The function will attempt to guess the
v.names and times from these names. The default is variable names like x.1, x.2,where
split=list(regexp="\.",include=FALSE) to specifies to split at the dot and drop it from
the name. To have alphabetic followed by numeric times use split=list(regexp="[A-Za-
z][0-9]",include=TRUE). This splits between the alphabetic and numeric parts of the
name and does not drop the regular expression.

Value

The reshaped data frame with added attributes to simplify reshaping back to the original
form.

See Also

stack, aperm

Examples

data(Indometh,package="nls")

summary(Indometh)

wide <- reshape(Indometh, v.names="conc", idvar="Subject",

timevar="time", direction="wide")

wide

reshape(wide, direction="long")

reshape(wide, idvar="Subject", varying=list(names(wide)[2:12]),

v.names="conc", direction="long")

residuals 573

times need not be numeric

df <- data.frame(id=rep(1:4,rep(2,4)), visit=I(rep(c("Before","After"),4)),

x=rnorm(4), y=runif(4))

df

reshape(df, timevar="visit", idvar="id", direction="wide")

warns that y is really varying

reshape(df, timevar="visit", idvar="id", direction="wide", v.names="x")

unbalanced ‘long’ data leads to NA fill in ‘wide’ form

df2 <- df[1:7,]

df2

reshape(df2, timevar="visit", idvar="id", direction="wide")

Alternative regular expressions for guessing names

df3 <- data.frame(id=1:4, age=c(40,50,60,50), dose1=c(1,2,1,2),

dose2=c(2,1,2,1), dose4=c(3,3,3,3))

reshape(df3, direction="long", varying=3:5,

split=list(regexp="[a-z][0-9]", include=TRUE))

an example that isn’t longitudinal data

data(state)

state.x77 <- as.data.frame(state.x77)

long <- reshape(state.x77, idvar="state", ids=row.names(state.x77),

times=names(state.x77), timevar="Characteristic",

varying=list(names(state.x77)), direction="long")

reshape(long, direction="wide")

reshape(long, direction="wide", new.row.names=unique(long$state))

residuals Extract Model Residuals

Description

residuals is a generic function which extracts model residuals from objects returned by
modeling functions.

The abbreviated form resid is an alias for residuals. It is intended to encourage users to
access object components through an accessor function rather than by directly referencing
an object slot.

All object classes which are returned by model fitting functions should provide a residuals
method. (Note that the method is ‘residuals’ and not ‘resid’.)

Methods can make use of naresid methods to compensate for the omission of missing
values. The default method does.

Usage

residuals(object, ...)
resid(object, ...)

574 restart-deprecated

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object object.

See Also

coefficients, fitted.values, glm, lm.

restart-deprecated Restart an Expression

Description

restart performs a type of non-local return.

Usage

restart(on = TRUE)

Arguments

on if true a jump point is set; if false the jump point is removed.

Details

When restart is called with on = TRUE the evaluator marks that function as a return
point. Any errors or signals (such as control-C on Unix) cause control to return to the start
of the function containing the call to restart. The most recently established function is
always entered first.

Note

The direct use of restart is likely to result in an infinite loop. Use try unless you are sure
you know what you are doing.

In fact, as restart is deprecated, don’t use it even if you are sure you know what you are
doing.

See Also

try for a safer interface.

options for setting error handlers and suppressing the printing of error messages.

rev 575

rev Reverse a Vector’s Elements

Description

rev provides a reversed version of its argument. It can be used in combination with sort
to obtain vectors sorted into descending order.

Usage

rev(x)

Arguments

x a vector.

See Also

seq, sort.

Examples

x <- c(1:5,5:3)

sort into descending order

rev(sort(x))

stopifnot(rev(1:7) == 7:1)#- don’t need ‘rev’ here

rgb RGB Color Specification

Description

This function creates “colors” corresponding to the given intensities (between 0 and max) of
the red, green and blue primaries. The names argument may be used to provide names for
the colors.

The values returned by rgb can be used with a col= specification in graphics functions or
in par.

Usage

rgb(red, green, blue, names=NULL, maxColorValue = 1)

Arguments

red, blue, green

vectors of same length with values in [0,M] where M is maxColorValue.
When this is 255, the red, blue and green values are coerced to integers
in 0:255 and the result is computed most efficiently.

names character. The names for the resulting vector.

maxColorValue number giving the maximum of the color values range, see above.

576 rivers

See Also

col2rgb the “inverse” for translating R colors to RGB vectors.
rainbow, hsv, gray.

Examples

rgb(0,1,0)

(u01 <- seq(0,1, length=11))

stopifnot(rgb(u01,u01,u01) == gray(u01))

reds <- rgb((0:15)/15, g=0,b=0, names=paste("red",0:15,sep="."))

reds

rgb(0, 0:12, 0, max = 255)# integer input

RHOME R Home Directory

Description

Returns the location of the R home directory, which is the root of the installed R tree.

Usage

R RHOME

rivers Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141“major”rivers in North America, as compiled
by the US Geological Survey.

Usage

data(rivers)

Format

A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

rle 577

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector – or the reverse operation.

Usage

rle(x)
print(x, digits = getOption("digits"), ...)
inverse.rle(x, ...)

Arguments

x a simple vector for rle() or an object of class "rle" for print() or
inverse.rle().

digits, ... potentially further arguments to the corresponding method.

Value

rle() returns an object of class "rle" which is a list with components

lengths an integer vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

inverse.rle() is the inverse function of rle().

Examples

x <- rev(rep(6:10, 1:5))

rle(x)

lengths [1:5] 5 4 3 2 1

values [1:5] 10 9 8 7 6

z <- c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)

rle(z)

rle(as.character(z))

stopifnot(x == inverse.rle(rle(x)),

z == inverse.rle(rle(z)))

578 Round

Round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the
smallest integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest
integers not greater than the corresponding elements of x.

round rounds the values in its first argument to the specified number of decimal places
(default 0). Note that for rounding off a 5, the IEEE standard is used, “go to the even
digit”. Therefore round(0.5) is 0 and round(-1.5) is -2.

signif rounds the values in its first argument to the specified number of significant digits.

trunc takes a single numeric argument x and returns a numeric vector containing the
integers by truncating the values in x toward 0.

zapsmall determines a digits argument dr for calling round(x, digits = dr) such that
values “close to zero” values are “zapped”, i.e., treated as 0.

Usage

ceiling(x)
floor(x)
round(x, digits = 0)
signif(x, digits = 6)
trunc(x)
zapsmall(x, digits= getOption("digits"))

Arguments

x a numeric vector.

digits integer indicating the precision to be used.

See Also

as.integer.

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4

(x1 <- seq(-2, 4, by = .5))

round(x1)#-- IEEE rounding !

x1[trunc(x1) != floor(x1)]

x1[round(x1) != floor(x1 + .5)]

(non.int <- ceiling(x1) != floor(x1))

stopifnot(

trunc(x1) == as.integer(x1),

non.int == (ceiling(x1) != trunc(x1) | trunc(x1) != floor(x1)),

(signif(x1, 1) != round(x1,1)) == (non.int & abs(x1) > 1)

)

x2 <- pi * 100^(-1:3)

round.POSIXt 579

round(x2, 3)

signif(x2, 3)

print (x2 / 1000, digits=4)

zapsmall(x2 / 1000, digits=4)

zapsmall(exp(1i*0:4*pi/2))

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

Usage

round(x, units=c("secs", "mins", "hours", "days"))
trunc.POSIXt(x, units=c("secs", "mins", "hours", "days"))

Arguments

x an object inheriting from "POSIXt".

units one of the units listed. Can be abbreviated.

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only
relevant to days, when midnight in the current timezone is used.

Value

An object of class "POSIXlt".

Note

trunc is not generic, so trunc.POSIXt has to be called explicitly.

See Also

DateTimeClasses

Examples

round(.leap.seconds + 1000, "hour")

trunc.POSIXt(Sys.time(), "day")

580 row/colnames

row Row Indexes

Description

Returns a matrix of integers indicating their row number in the matrix.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix.

as.factor a logical value indicating whether the value should be returned as a factor
rather than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to i.

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)

extract the diagonal of a matrix

dx <- x[row(x) == col(x)]

dx

create an identity 5-by-5 matrix

x <- matrix(0, nr = 5, nc = 5)

x[row(x) == col(x)] <- 1

x

row/colnames Row and Columnn Names

Description

Retrieve or set the row or column names of an object (the first or second component of its
dimnames).

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- namevector

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- namevector

rowsum 581

Arguments

x

do.NULL logical. Should this create names if they are NULL?

prefix for created names.

Details

If do.NULL is FALSE, a character vector (of length NROW(x) or NCOL(x) is returned in any
case, prepending prefix to simple numbers, if dimnames(x)[[i]] (i = 1 or 2) is NULL.

See Also

dimnames, case.names, variable.names.

Examples

m0 <- matrix(NA, 4, 0)

m2 <- cbind(1,1:4)

rownames(m0)

colnames(m2, do.NULL = FALSE)

colnames(m2) <- c("x","Y")

rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")

m2

rowsum Give row sums of a matrix or data frame, based on a grouping
variable

Description

Compute sums across rows of a matrix-like object for each level of a grouping variable.
rowsum is generic, with methods for matrices and data frames.

Usage

rowsum(x, group, reorder = TRUE,...)

Arguments

x a matrix, data frame or vector of numeric data. Missing values are al-
lowed.

group a vector giving the grouping, with one element per row of x. Missing
values will be treated as another group and a warning will be given

reorder if TRUE, then the result will be in order of sort(unique(group)), if
FALSE, it will be in the order that rows were encountered.

... other arguments for future methods

582 Rprof

Details

The default is to reorder the rows to agree with tapply as in the example below. Reordering
should not add noticeably to the time except when there are very many distinct values of
group and x has few columns.
The original function was written by Terry Therneau, but this is a new implementation
using hashing that is much faster for large matrices.
To add all the rows of a matrix (ie, a single group) use rowSums, which should be even
faster.

Value

a matrix or data frame containing the sums. There will be one row per unique value of
group.

See Also

tapply, aggregate,rowSums

Examples

x <- matrix(runif(100), ncol=5)

group <- sample(1:8, 20, TRUE)

xsum <- rowsum(x, group)

Slower versions

xsum2 <- tapply(x, list(group[row(x)], col(x)), sum)

xsum3<- aggregate(x,list(group),sum)

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution of R expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02)

Arguments

filename The file to be used for recording the profiling results. Set to NULL or ""
to disable profiling.

append logical: should the file be over-written or appended to?
interval real: time interval between samples.

Details

Enabling profiling automatically disables any existing profiling to another or the same file.
Profiling works by writing out the call stack every interval seconds, to the file specified.
Either the summaryRprof function or the Perl script R CMD Rprof can be used to process
the output file to produce a summary of the usage; use R CMD Rprof --help for usage
information.

rug 583

Note

Profiling is not available on all platforms. By default, it is attempted to compile support
for profiling. Configure R with --disable-R-profiling to change this.

As R profiling uses the same mechanisms as C profiling, the two cannot be used together,
so do not use Rprof in an executable built for profiling.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

summaryRprof

Examples

Rprof()

some code to be profiled

Rprof(NULL)

some code NOT to be profiled

Rprof(append=TRUE)

some code to be profiled

Rprof(NULL)

...

Post-process the output by

R CMD Rprof Rprof.out

at the shell prompt.

rug Add a Rug to a Plot

Description

Adds a rug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize=0.03, side=1, lwd=0.5, col,
quiet = getOption("warn") < 0, ...)

Arguments

x A numeric vector
ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards

ticks.
side On which side of the plot box the rug will be plotted. Normally 1 (bottom)

or 3 (top).
lwd The line width of the ticks.
col The colour the ticks are plotted in, default is black.
quiet logical indicating if there should be a warning about clipped values.
... further arguments, passed to axis(...), such as line or pos for specify-

ing the location of the rug.

584 sample

Details

Because of the way rug is implemented, only values of x that fall within the plot region are
included. There will be a warning if any finite values are omitted, but non-finite values are
omitted silently.

Because of the way colours are done the axis itself is coloured the same as the ticks. You
can always replot the box in black if you don’t like this feature.

Author(s)

B. D. Ripley

See Also

jitter which you may want for ties in x.

Examples

data(faithful)

attach(faithful)

plot(density(eruptions, bw=0.15))

rug(eruptions)

rug(jitter(eruptions, amount = .01), side = 3, col = "light blue")

detach("faithful")

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or
without replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

Arguments

x Either a (numeric, complex, character or logical) vector of more than one
element from which to choose, or a positive integer.

size A positive integer giving the number of items to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the vector
being sampled.

save 585

Details

If x has length 1, sampling takes place from 1:x.

By default size is equal to length(x) so that sample(x) generates a random permutation
of the elements of x (or 1:x).

The optional prob argument can be used to give a vector of weights for obtaining the
elements of the vector being sampled. They need not sum to one, but they should be
nonnegative and not all zero. If replace is false, these probabilities are applied sequentially,
that is the probability of choosing the next item is proportional to the probabilities amongst
the remaining items. The number of nonzero weights must be at least size in this case.

Examples

x <- 1:12

a random permutation

sample(x)

bootstrap sampling

sample(x,replace=TRUE)

100 Bernoulli trials

sample(c(0,1), 100, replace = TRUE)

save Save R Objects

Description

save writes a external representation of R objects to the specified file. The objects can be
read back from the file at a later date by using the function load (or data in some cases).

save.image() is just a short-cut for “save my current environment”, i.e., save(list =
ls(all=TRUE), file = ".RData"). It is what also happens with q("yes").

Usage

save(..., list = character(0), file = "", ascii = FALSE,
version = NULL, envir = parent.frame(), compress = FALSE)

save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = FALSE, safe = TRUE)

sys.load.image(name, quiet)
sys.save.image(name)

Arguments

... the names of the objects to be saved.
list A character vector containing the names of objects to be saved.
file a connection or the name of the file where the data will be saved. Must

be a file name for workspace format version 1.
ascii if TRUE, an ASCII representation of the data is written. This is useful

for transporting data between machines of different types. The default
value of ascii is FALSE which leads to a more compact binary file being
written.

586 save

version the workspace format version to use. NULL specifies the current default
format. The version used from R 0.99.0 to R 1.3.1 was version 1. The
default format as from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical specifying whether saving to a named file is to use compression.
Ignored when file is a connection and for workspace format version 1.

safe logical. If TRUE, a temporary file is used for creating the saved
workspace. The temporary file is renamed to file if the save succeeds.
This preserves an existing workspace file if the save fails, but at the cost
of using extra disk space during the save.

name name of image file to save or load.

quiet logical specifying whether a message should be printed.

Details

All R platforms use the XDR representation of binary objects in binary save-d files, and
these are portable across all R platforms.

Default values for save.image options can be modified with the save.image.defaults
option. This mechanism is experimental and subject to change.

sys.save.image is a system function that is called by q() and its GUI analogs;
sys.load.image is called by the startup code. These functions should not be called directly
and are subject to change.

sys.save.image closes all connections first, to ensure that it is able to open a connection
to save the image. This is appropriate when called from q() and allies, but reinforces the
warning that it should not be called directly.

See Also

dput, dump, load, data.

Examples

x <- runif(20)

y <- list(a = 1, b = TRUE, c = "oops")

save(x, y, file = "xy.Rdata")

save.image()

unlink("xy.Rdata")

unlink(".RData")

set save.image defaults using option:

options(save.image.defaults=list(ascii=TRUE, safe=FALSE))

save.image()

unlink(".RData")

savehistory 587

savehistory Load or Save or Display the Commands History

Description

Load or save or display the commands history.

Usage

loadhistory(file = ".Rhistory")
savehistory(file = ".Rhistory")
history(max.show = 25, reverse = FALSE)

Arguments

file The name of the file in which to save the history, or from which to load
it. The path is relative to the current working directory.

max.show The maximum number of lines to show. Inf will give all of the currently
available history.

reverse logical. If true, the lines are shown in reverse order. Note: this is not
useful when there are continuation lines.

Details

This works under the readline and GNOME interfaces, but not if readline is not avail-
able.

Note

If you want to save the history (almost) every session, you can put a call to savehistory()
in .Last.

scale Scaling and Centering of Matrix-like Objects

Description

scale is generic function whose default method centers and/or scales the columns of a
numeric matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix(like object).
center either a logical value or a numeric vector of length equal to the number

of columns of x.
scale either a logical value or a numeric vector of length equal to the number

of columns of x.

588 scan

Details

The value of center determines how column centering is performed. If center is a numeric
vector with length equal to the number of columns of x, then each column of x has the
corresponding value from center subtracted from it. If center is TRUE then centering
is done by subtracting the column means (omitting NAs) of x from their corresponding
columns, and if center is FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scale
is a numeric vector with length equal to the number of columns of x, then each column of
x is divided by the corresponding value from scale. If scale is TRUE then scaling is done
by dividing the (centered) columns of x by their root-mean-square, and if scale is FALSE,
no scaling is done.

The root-mean-square for a column is obtained by computing the square-root of the sum-
of-squares of the non-missing values in the column divided by the number of non-missing
values minus one.

Value

For scale.default, the centered, scaled matrix. The numeric centering and scalings used
(if any) are returned as attributes "scaled:center" and "scaled:scale"

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

Examples

x <- matrix(1:10, nc=2)

(centered.x <- scale(x, scale=FALSE))

cov(centered.scaled.x <- scale(x))# all 1

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if (sep=="\n") "" else "’\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE, quiet = FALSE,
blank.lines.skip = TRUE, multi.line = TRUE, comment.char = "")

scan 589

Arguments

file the name of a file to read data values from. If the specified file is "", then
input is taken from the keyboard (in this case input can be terminated by
a blank line or an EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows.).
Otherwise, the file name is interpreted relative to the current working
directory (given by getwd()), unless it specifies an absolute path. Tilde-
expansion is performed where supported.
Alternatively, file can be a connection, which will be opened if neces-
sary, and if so closed at the end of the function call.
file can also be a complete URL.

what the type of what gives the type of data to be read. If what is a list,
it is assumed that the lines of the data file are records each containing
length(what) items (“fields”).

nmax the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted (and nlines is not
set to a positive value), scan will read to the end of file.

n the maximum number of data values to be read, defaulting to no limit.
sep by default, scan expects to read white-space delimited input fields. Al-

ternatively, sep can be used to specify a character which delimits fields.
A field is always delimited by a newline unless it is quoted.

quote the set of quoting characters as a single character string.
dec decimal point character.
skip the number of lines of the input file to skip before beginning to read data

values.
nlines the maximum number of lines of data to be read.
na.strings character vector. Elements of this vector are to be interpeted as missing

(NA) values.
flush logical: if TRUE, scan will flush to the end of the line after reading the

last of the fields requested. This allows putting comments after the last
field, but precludes putting more that one record on a line.

fill logical: if TRUE, scan will implicitly add empty fields to any lines with
fewer fields than implied by what.

strip.white vector of logical value(s) corresponding to items in the what argument.
It is used only when sep has been specified, and allows the stripping of
leading and trailing white space from character fields (numeric fields
are always stripped).
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUE and the i-th field is of mode character (be-
cause what[i] is) then the leading and trailing white space from field i
is stripped.

quiet logical: if FALSE (default), scan() will print a line, saying how many items
have been read.

blank.lines.skip

logical: if TRUE blank lines in the input are ignored, except when counting
skip and nlines.

multi.line logical. Only used if what is a list. If FALSE, all of a record must appear
on one line (but more than one record can appear on a single line). Note
that using fill = TRUE implies that a record will terminated at the end
of a line.

590 scan

comment.char character: a character vector of length one containing a single character
or an empty string. Use "" to turn off the interpretation of comments
altogether (the default).

Details

The value of what can be a list of types, in which case scan returns a list of vectors with the
types given by the types of the elements in what. This provides a way of reading columnar
data. If any of the types is NULL, the corresponding field is skipped (but a NULL component
appears in the result).

The type of what or its components can be one of the five atomic types or NULL,

Empty numeric fields are always regarded as missing values. Empty character fields are
scanned as empty character vectors, unless na.strings contains "" when they are regarded
as missing values.

If sep is the default (""), the character \ in a quoted string escapes the following character,
so quotes may included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘.csv’ files where separators
inside quotes (or "") are ignored and quotes may be put inside strings by doubling them.
However, if sep = "
n" it is assumed by default that one wants to read entire lines verbatim.

Note that since sep is a separator and not a terminator, reading a file by scan("foo",
sep="
n", blank.lines.skip=FALSE) will give an empty file line if the file ends in a linefeed and
not if it does not. This might not be what you expected; see also readLines.

If comment.char occurs (except inside a quoted character field), it signals that the rest
of the line should be regarded as a comment and be discarded. Lines beginning with a
comment character (possibly after white space) are treated as blank lines.

Value

if what is a list, a list of the same length and same names (as any) as what.

Otherwise, a vector of the type of what.

Note

The default for multi.line differs from S. To read one record per line, use flush = TRUE
and multi.line = FALSE.

If number of items is not specified, the internal mechanism re-allocates memory in powers
of two and so could use up to three times as much memory as needed. (It needs both old
and new copies.) If you can, specify either n or nmax whenever inputting a large vector,
and nmax or nlines when inputting a large list.

See Also

read.table for more user-friendly reading of data matrices; readLines to read a file a line
at a time. write.

screen 591

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")

pp <- scan("ex.data", skip = 1, quiet= TRUE)

scan("ex.data", skip = 1)

scan("ex.data", skip = 1, nlines=1)# only 1 line after the skipped one

str(scan("ex.data", what = list("","",""))) # flush is F -> read "7"

str(scan("ex.data", what = list("","",""), flush = TRUE))

unlink("ex.data") # tidy up

screen Creating and Controlling Multiple Screens on a Single Device

Description

split.screen defines a number of regions within the current device which can, to some
extent, be treated as separate graphics devices. It is useful for generating multiple plots on
a single device. Screens can themselves be split, allowing for quite complex arrangements
of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen, which it does by filling with the background
colour.

close.screen removes the specified screen definition(s).

Usage

split.screen(figs, screen, erase = TRUE)
screen(n, new = TRUE)
erase.screen(n)
close.screen(n, all.screens = FALSE)

Arguments

figs A two-element vector describing the number of rows and the number of
columns in a screen matrix or a matrix with 4 columns. If a matrix, then
each row describes a screen with values for the left, right, bottom, and
top of the screen (in that order) in NDC units.

screen A number giving the screen to be split.

erase logical: should be selected screen be cleared?

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen).

new A logical value indicating whether the screen should be erased as part of
the preparation for drawing in the screen.

all.screens A logical value indicating whether all of the screens should be closed.

Details

The first call to split.screen places R into split-screen mode. The other split-screen
functions only work within this mode. While in this mode, certain other commands
should be avoided (see WARNINGS below). Split-screen mode is exited by the command
close.screen(all = TRUE)

592 screen

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no
arguments, split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments, screen
returns the number of the current screen.

close.screen returns a vector of valid screen numbers.

screen, erase.screen, and close.screen all return FALSE if R is not in split-screen mode.

Warning

These functions are totally incompatible with the other mechanisms for arranging plots on
a device: par(mfrow), par(mfcol), and layout().

The functions are also incompatible with some plotting functions, such as coplot, which
make use of these other mechanisms.

The functions should not be used with multiple devices.

erase.screen will appear not to work if the background colour is transparent (as it is by
default on most devices).

See Also

par, layout, Devices, dev.*

Examples

if (interactive()) {

par(bg = "white") # default is likely to be transparent

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,3), screen = 2) # now split the bottom half into 3

screen(1) # prepare screen 1 for output

plot(10:1)

screen(4) # prepare screen 4 for output

plot(10:1)

close.screen(all = TRUE) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens

split.screen(c(1,2),2) # split bottom half in two

plot(1:10) # screen 3 is active, draw plot

erase.screen() # forgot label, erase and redraw

plot(1:10, ylab= "ylab 3")

screen(1) # prepare screen 1 for output

plot(1:10)

screen(4) # prepare screen 4 for output

plot(1:10, ylab="ylab 4")

screen(1, FALSE) # return to screen 1, but do not clear

plot(10:1, axes=FALSE, lty=2, ylab="") # overlay second plot

axis(4) # add tic marks to right-hand axis

title("Plot 1")

close.screen(all = TRUE) # exit split-screen mode

}

sd 593

sd Standard Deviation

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then
missing values are removed before computation proceeds. If x is a matrix or a dataframe,
a vector of the standard deviation of the columns is returned.

Usage

sd(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame.

na.rm logical. Should missing values be removed?

See Also

var for its square, and mad, the most robust alternative.

Examples

sd(1:2) ^ 2

se.aov Internal Functions Used by model.tables

Description

Internal function for use by model.tables.

Usage

se.aov(object, n, type = "means")
se.aovlist(object, dn.proj, dn.strata, factors, mf, efficiency,

n, type = "diff.means", ...)

Author(s)

B. D. Ripley

See Also

model.tables

594 se.contrast

se.contrast Standard Errors for Contrasts in Model Terms

Description

Returns the standard errors for one or more contrasts in an aov object.

Usage

se.contrast(object, ...)
se.contrast(object, contrast.obj,
coef = contr.helmert(ncol(contrast))[, 1], data = NULL, ...)

Arguments

object A suitable fit, usually from aov.

contrast.obj The contrasts for which standard errors are requested. This can be speci-
fied via a list or via a matrix. A single contrast can be specified by a list of
logical vectors giving the cells to be contrasted. Multiple contrasts should
be specified by a matrix, each column of which is a numerical contrast
vector (summing to zero).

coef Used when {contrast.obj} is a list; it should be a vector of the same
length as the list with zero sum. The default value is the first Helmert
contrast, which contrasts the first and second cell means specified by the
list.

data The data frame used to evaluate contrast.obj.

... further arguments passed to or from other methods.

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier
to use se.contrast than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one stratum; the contrast
and standard error are computed in the lowest stratum and adjusted for efficiencies and
comparisons between strata.

Suitable matrices for use with coef can be found by calling contrasts and indexing the
columns by a factor.

Value

A vector giving the standard errors for each contrast.

Author(s)

B. D. Ripley

See Also

contrasts, model.tables

search 595

Examples

From Venables and Ripley (1997) p.210.

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)

P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)

K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)

yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,

55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),

K = factor(K), yield = yield)

options(contrasts=c("contr.treatment", "contr.poly"))

npk.aov1 <- aov(yield ~ block + N + K, npk)

se.contrast(npk.aov1, list(N=="0", N=="1"), data=npk)

or via a matrix

cont <- matrix(c(-1,1), 2, 1, dimnames=list(NULL, "N"))

se.contrast(npk.aov1, cont[N, , drop=FALSE]/12, data=npk)

test a multi-stratum model

npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), npk)

se.contrast(npk.aov2, list(N == "0", N == "1"))

search Give Search Path for R Objects

Description

Gives a list of attached packages (see library), and R objects, usually data.frames.

Usage

search()
searchpaths()

Value

A character vector, starting with ".GlobalEnv", and ending with "package:base" which
is R’s base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path
to the package used to load the code.

See Also

attach and detach to change the search “path”, objects to find R objects in there.

Examples

search()

searchpaths()

596 seek

seek Functions to Reposition Connections

Description

Functions to re-position connections.

Usage

seek(con, where = NA, origin = "start", rw = "", ...)
truncate(con, ...)

isSeekable(con)

Arguments

con a connection.

where integer. A file position (relative to the origin specified by origin), or NA.

rw character. Empty or "read" or "write", partial matches allowed.

origin character. One of "start", "current", "end".

... further arguments passed to or from other methods.

Details

seek with where = NA returns the current byte offset of a connection (from the beginning),
and with a non-missing where argument the connection is re-positioned (if possible) to the
specified position. isSeekable returns whether the connection in principle supports seek:
currently only file connections do.

File connections can be open for both writing/appending, in which case R keeps separate
positions for reading and writing. Which seek refers to can be set by its rw argument: the
default is the last mode (reading or writing) which was used. Most files are only opened for
reading or writing and so default to that state. If a file is open for reading and writing but
has not been used, the default is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for
writing is at the beginning of the file for modes "r+" and "r+b", otherwise at the end of
the file. Some platforms only allow writing at the end of the file in the append modes.

truncate truncates a file opened for writing at its current position. It works only for file
connections, and is not implemented on all platforms.

Value

seek returns the current position (before any move), as a byte offset, if relevant, or 0 if not.

truncate returns NULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection is support seek.

See Also

connections

segments 597

segments Add Line Segments to a Plot

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), lwd = par("lwd"), ...)

Arguments

x0,y0 coordinates of points from which to draw.

x1,y1 coordinates of points to which to draw.

col, lty, lwd usual graphical parameters as in par.

... further graphical parameters (from par).

Details

For each i, a line segment is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]).

The graphical parameters col and lty can be used to specify a color and line texture for
the line segments (col may be a vector).

See Also

arrows, polygon for slightly easier and less flexible line drawing, and lines for the usual
polygons.

Examples

x <- runif(12); y <- rnorm(12)

i <- order(x,y); x <- x[i]; y <- y[i]

plot(x,y, main="arrows(.) and segments(.)")

draw arrows from point to point :

s <- seq(length(x)-1)# one shorter than data

arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)

s <- s[-length(s)]

segments(x[s], y[s], x[s+2], y[s+2], col= ’pink’)

598 seq

seq Sequence Generation

Description

Generate regular sequences.

Usage

from:to
seq(from, to)
seq(from, to, by=)
seq(from, to, length=)
seq(along)

Arguments

from starting value of sequence.

to (maximal) end value of the sequence.

by increment of the sequence.

length desired length of the sequence.

along take the length from the length of this argument.

Details

The operator : and the first seq(.) form generate the sequence from, from+1, . . . , to.
seq is a generic function.

The second form generates from, from+by, . . . , to.

The third generates a sequence of length equally spaced values from from to to.

The last generates the sequence 1, 2, . . . , length(along).

If from and to are factors of the same length, then from : to returns the “cross” of the
two.

Very small sequences (with from - to of the order of 1e-14 times the larger of the ends)
will return from.

Value

The result is of mode "integer" if from is (numerically equal to an) integer and by is not
specified.

See Also

rep, sequence, row, col.

seq.POSIXt 599

Examples

1:4

pi:6 # float

6:pi # integer

seq(0,1, length=11)

str(seq(rnorm(20)))

seq(1,9, by = 2) # match

seq(1,9, by = pi)# stay below

seq(1,6, by = 3)

seq(1.575, 5.125, by=0.05)

stopifnot(

3 == seq(3,3, by=pi),

3 == seq(3,3.1,by=pi),

seq(1,6,by=3) == c(1,4),

seq(10,4.05,by=-3) == c(10,7)

)

for (x in list(NULL, letters[1:6], list(1,pi)))

cat("x=",deparse(x),"; seq(along = x):",seq(along = x),"\n")

f1 <- gl(2,3); f1

f2 <- gl(3,2); f2

f1:f2 # a factor, the ‘‘cross’’ f1 x f2

seq.POSIXt Generate Regular Sequences of Dates

Description

The method for seq for data-time classes.

Usage

seq(from, to, by, length.out=NULL, along.with=NULL, ...)

Arguments

from starting date. Required

to end date. Optional. If supplied must be after from.

by increment of the sequence. Optional. See Details.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in seconds.

• A object of class difftime

600 sequence

• A character string, containing one of "sec", "min", "hour", "day", "DSTday", "week",
"month" or "year". This can optionally be preceded by an integer and a space, or
followed by "s".

The difference between "day" and "DSTday" is that the former ignores changes to/from
daylight savings time and the latter takes the same clock time each day. ("week" ignores
DST, but "7 DSTdays") can be used as an alternative. "month" and "year" allow for DST
as from R 1.5.0.)

Value

A vector of class "POSIXct".

See Also

DateTimeClasses

Examples

first days of years

seq(ISOdate(1910,1,1), ISOdate(1999,1,1), "years")

by month

seq(ISOdate(2000,1,1), by="month", length=12)

quarters

seq(ISOdate(1990,1,1), ISOdate(2000,1,1), by="3 months")

days vs DSTdays

seq(ISOdate(2000,3,20), by="day", length = 10)

seq(ISOdate(2000,3,20), by="DSTday", length = 10)

seq(ISOdate(2000,3,20), by="7 DSTdays", length = 4)

sequence Create A Vector of Sequences

Description

For each element of nvec the sequence seq(nvec[i]) is created. These are appended and
the result returned.

Usage

sequence(nvec)

Arguments

nvec an integer vector each element of which specifies the upper bound of a
sequence.

See Also

gl, seq, rep.

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.

#> [1] 1 2 3 1 2

sets 601

sets Set Operations

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on
two vectors.

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)
is.element(el, set)

Arguments

x, y, el, set vectors (of the same mode) containing a sequence of items (conceptually)
with no duplicated values.

Details

Each of union, intersect and setdiff will remove any duplicated values in the arguments.

is.element(x, y) is identical to x %in% y.

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a
common mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

Author(s)

B. D. Ripley

See Also

%in%

Examples

(x <- c(sort(sample(1:20, 9)),NA))

(y <- c(sort(sample(3:23, 7)),NA))

union(x, y)

intersect(x, y)

setdiff(x, y)

setdiff(y, x)

setequal(x, y)

True for all possible x & y :

setequal(union(x,y),

c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

602 showConnections

is.element(x, y)# length 10

is.element(y, x)# length 8

SHLIB Build Shared Library for Dynamic Loading

Description

Compile given source files using R CMD COMPILE, and then link all specified object files into
a shared library which can be loaded into R using dyn.load or library.dynam.

Usage

R CMD SHLIB [options] [-o libname] files

Arguments

files a list specifying the object files to be included in the shared library. You
can also include the name of source files, for which the object files are
automagically made from their sources.

libname the full name of the shared library to be built, including the extension
(typically ‘.so’ on Unix systems). If not given, the name of the library is
taken from the first file.

options Further options to control the processing, or for obtaining information
about usage and version of the utility.

See Also

COMPILE, dyn.load, library.dynam

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections(all=FALSE)
getConnection(what)
closeAllConnections()

stdin()
stdout()
stderr()

sign 603

Arguments

all logical: if true all connections, including closed ones and the standard ones
are displayed. If false only open user-created connections are included.

what integer: a row number of the table given by showConnections.

Details

stdin(), stdout() and stderr() are standard connections corresponding to input, output
and error on the console respectively (and not necessarily to file streams). They are text-
mode connections of class "terminal" which cannot be opened or closed, and are read-only,
write-only and write-only respectively. The stdout() and stderr() connections can be re-
directed by sink.

showConnections returns a matrix of information. If a connection object has been lost or
forgotten, getConnection will take a row number from the table and return a connection
object for that connection, which can be used to close the connection, for example.

closeAllConnections closes (and destroys) all open user connections, restoring all sink
diversions as it does so.

Value

stdin(), stdout() and stderr() return connection objects.

showConnections returns a character matrix of information with a row for each connection,
by default only for open non-standard connections.

getConnection returns a connection object, or NULL.

See Also

connections

Examples

showConnections(all = TRUE)

textConnection(letters)

oops, I forgot to record that one

showConnections()

class description mode text isopen can read can write

#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"

close(getConnection(3))

showConnections()

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real
number is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

604 SignRank

Usage

sign(x)

Arguments

x a numeric vector

See Also

abs

Examples

sign(pi) # == 1

sign(-2:3)# -1 -1 0 1 1 1

Signals Interrupting Execution of R

Description

On receiving SIGUSR1 R will save the workspace and quit. SIGUSR2 has the same result
except that the .Last function and on.exit expressions will not be called.

Usage

kill -USR1 pid
kill -USR2 pid

Arguments

pid The process ID of the R process

Warning

It is possible that one or more R objects will be undergoing modification at the time the
signal is sent. These objects could be saved in a corrupted form.

SignRank Distribution of the Wilcoxon Signed Rank Statistic

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon Signed Rank statistic obtained from a sample with size n.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

sink 605

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

n numbers of observations in the sample. Must be positive integers less
than 50.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

This distribution is obtained as follows. Let x be a sample of size n from a continuous
distribution symmetric about the origin. Then the Wilcoxon signed rank statistic is the
sum of the ranks of the absolute values x[i] for which x[i] is positive. This statistic
takes values between 0 and n(n + 1)/2, and its mean and variance are n(n + 1)/4 and
n(n+ 1)(2n+ 1)/24, respectively.

Value

dsignrank gives the density, psignrank gives the distribution function, qsignrank gives
the quantile function, and rsignrank generates random deviates.

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dwilcox etc, for the two-sample Wilcoxon rank sum statistic.

Examples

par(mfrow=c(2,2))

for(n in c(4:5,10,40)) {

x <- seq(0, n*(n+1)/2, length=501)

plot(x, dsignrank(x,n=n), type=’l’, main=paste("dsignrank(x,n=",n,")"))

}

sink Send R Output to a File

Description

sink diverts R output to a connection.

sink.number() reports how many diversions are in use.

sink.number(type = "message") reports the number of the connection currently being
used for error messages.

606 sink

Usage

sink(file = NULL, append = FALSE, type = c("output", "message"))
sink.number(type = c("output", "message"))

Arguments

file a connection or a character string naming the file to write to, or NULL to
stop sink-ing.

append logical. If TRUE, output will be appended to file; otherwise, it will
overwrite the contents of file.

type character. Either the output stream or the messages stream.

Details

sink diverts R output to a connection. If file is a character string, a file connection with
that name will be established for the duration of the diversion.

Normal R output is diverted by the default type = "output". Only prompts and warn-
ing/error messages continue to appear on the terminal. These too can diverted by type =
"message" (see below).

sink() or sink(file=NULL) ends the last diversion (of the specified type). As from R
version 1.3.0 there is a stack of diversions for normal output, so output reverts to the
previous diversion (if there was one). The stack is of up to 21 connections (20 diversions).

If file is a connection if will be opened if necessary.

Sink-ing the messages stream should be done only with great care. For that stream file
must be an already open connection, and there is no stack of connections.

Value

For sink.

For sink.number() the number (0, 1, 2, . . .) of diversions of output in place.

For sink.number("message") the connection number used for messages, 2 if no diversion
has been used.

Warning

Don’t use a connection that is open for sink for any other purpose. The software will stop
you closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it
and hence the pitfalls.

Examples

sink("sink-examp.txt")

i <- 1:10

outer(i, i, "*")

sink()

unlink("sink-examp.txt")

capture all the output to a file.

zz <- file("all.Rout", open="wt")

sink(zz)

slotOp 607

sink(zz, type="message")

try(log("a"))

back to the console

sink(type="message")

sink()

try(log("a"))

sleep Students’ Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep) on groups
consisting of 10 patients each.

Usage

data(sleep)

Format

A data frame with 20 observations on 2 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor patient group

Source

Student (1908) The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959) The Analysis of Variance. New York, NY: Wiley.

Examples

data(sleep)

ANOVA

anova(lm(extra ~ group, data = sleep))

slotOp Extract or Replace Slots

Description

Operators to extract or replace tbe contents of a slot in a object with a formal class structure.

Usage

object@name
object@name <- value

608 solve

Arguments

object An object from a formally defined class.
name The character-string name of the slot.

Details

These operators support the formal classes of package methods. See slot for further details.

See Also

Extract, slot

solve Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector
or a matrix.

Usage

solve(a, b, tol = 1e-7, ...)

Arguments

a a numeric matrix containing the coefficients of the linear system.
b a numeric vector or matrix giving the right-hand side(s) of the linear

system. If omitted, b is taken to be an identity matrix and solve will
return the inverse of a.

tol the tolerance for detecting linear dependencies in the columns of a.
... further arguments passed to or from other methods

Details

As from R version 1.3.0, a or b can be complex, in which case LAPACK routine ZESV is
used. This uses double complex arithmetic which might not beavailable on all platforms.

See Also

backsolve, qr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

h8 <- hilbert(8); h8

solve(h8) # gives error: ‘singular’

sh8 <- solve(h8, tol = 1e-10)

round(sh8 %*% h8, 3)

A <- hilbert(4)

A[] <- as.complex(A)

might not be supported on all platforms

try(solve(A))

sort 609

sort Sorting or Ordering Vectors

Description

Sort (or order) a numeric or complex vector (partially) into ascending (or descending) order.

Usage

sort(x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

is.unsorted(x, na.rm = FALSE)

Arguments

x a numeric or complex vector.
partial a vector of indices for partial sorting.
na.last for controlling the treatment of NAs. If TRUE, missing values in the data

are put last; if FALSE, they are put first; if NA, they are removed.
decreasing logical. Should the sort be increasing or decreasing?
method character specifying the algorithm used.
index.return logical indicating if the ordering index vector should be returned as well;

this is only available for the default na.last = NA.
na.rm logical. Should missing values be removed?

Details

If partial is not NULL, it is taken to contain indices of elements of x which are to be placed
in their correct positions by partial sorting. After the sort, the values specified in partial
are in their correct position in the sorted array. Any values smaller than these values are
guaranteed to have a smaller index in the sorted array and any values which are greater are
guaranteed to have a bigger index in the sorted array.

The sort order for character vectors will depend on the collating sequence of the locale in
use: see Comparison.

is.unsorted returns a logical indicating if x is sorted increasingly, i.e. is.unsorted(x) is
true if any(x != sort(x)) (and there are no NAs).

method = "shell" uses Shellsort and was the only method before R version 1.5.x (although
improved there to an O(n4/3) variant of Sedgewick (1996)).

Method "quick" uses Singleton’s Quicksort implementation and is only available when x
is numeric, the sort is increasing and partial is NULL. It is normally somewhat faster than
Shellsort (perhaps twice as fast on vectors of length a million) but has poor performance in
the rare worst case. (Peto’s modification using a pseudo-random midpoint is used to make
the worst case rarer.)

Value

For sort the sorted vector unless index.return is true, when the result is a list with
components named x and ix containing the sorted numbers and the ordering index vector.
In the latter case, if method == "quick" ties may be reversed in the ordering, unlike
sort.list, as quicksort is not stable.

610 sort

References

Sedgewick, R. (1986) A new upper bound for Shell sort. J. Algorithms 7, 159–173.

Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm
347. Communications of the ACM 12, 185–187.

See Also

order, rank.

Examples

data(swiss)

x <- swiss$Education[1:25]

x; sort(x); sort(x, partial = c(10, 15))

median # shows you another example for ‘partial’

stopifnot(!is.unsorted(sort(x)),

!is.unsorted(LETTERS),

is.unsorted(c(NA,1:3,2), na.rm = TRUE))

illustrate ‘stable’ sorting (of ties):

sort(c(10:3,2:12), method = "sh", index=TRUE) # is stable

$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12

$ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19

sort(c(10:3,2:12), method = "qu", index=TRUE) # is not

$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12

$ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19

^^^^^

Small speed comparison simulation:

N <- 2000

Sim <- 20

rep <- 50 # << adjust to your CPU

c1 <- c2 <- numeric(Sim)

for(is in 1:Sim){

x <- rnorm(N)

gc() ## sort should not have to pay for gc

c1[is] <- system.time(for(i in 1:rep) sort(x, method = "shell"))[1]

c2[is] <- system.time(for(i in 1:rep) sort(x, method = "quick"))[1]

stopifnot(sort(x, meth = "s") == sort(x, meth = "q"))

}

100 * rbind(ShellSort = c1, QuickSort = c2)

cat("Speedup factor of quick sort():\n")

summary({qq <- c1 / c2; qq[is.finite(qq)]})

A larger test

x <- rnorm(1e6)

gc()

system.time(x1 <- sort(x, method = "shell"))

gc()

system.time(x2 <- sort(x, method = "quick"))

stopifnot(identical(x1, x2))

source 611

source Read R Code from a File or a Connection

Description

source causes R to accept its input from the named file (the name must be quoted). Input is
read from that file until the end of the file is reached. parse is used to scan the expressions
in, they are then evaluated sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"), prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE)

Arguments

file a connection or a character string giving the name of the file or URL to
read from.

local if local is FALSE, the statements scanned are evaluated in the user’s
workspace (the global environment), otherwise in the environment calling
source.

echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result of eval(i) is printed for each expression i;
defaults to echo.

verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during
parsing and evaluation of input, including extra info for each expression.

prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length

integer; is used only if echo is TRUE and gives the maximal length of the
“echo” of a single expression.

chdir logical; if TRUE, the R working directory is changed to the directory con-
taining file for evaluating.

Details

All versions of R accept input from a connection with end of line marked by LF (as used
on Unix), CRLF (as used on DOS/Windows) or CR (as used on Mac). The final line can
be incomplete, that is missing the final EOL marker.

If options(”keep.source”) is true (the default), the source of functions is keep so they can
be listed exactly as input. This imposes a limit of 128K chars on the function size and
a nesting limit of 265. Use option(keep.source = FALSE) when these limits might take
effect: if exceeded they generate an error.

See Also

demo which uses source; eval, parse and scan; options("keep.source").

612 Special

Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)
gamma(x)
lgamma(x)
digamma(x)
trigamma(x)
tetragamma(x)
pentagamma(x)
choose(n, k)
lchoose(n, k)

Arguments

a, b, x numeric vectors.

n, k integer vectors.

Details

The functions beta and lbeta return the beta function and the natural logarithm of the
beta function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm
of the absolute value of the gamma function.

The functions digamma, trigamma, tetragamma and pentagamma return the first, second,
third and fourth derivatives of the logarithm of the gamma function.

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

The functions choose and lchoose return binomial coefficients and their logarithms.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York:
Dover. Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sqrt for miscellaneous mathematical functions and Bessel for the
real Bessel functions.

splinefun 613

Examples

choose(5, 2)

for (n in 0:10) print(choose(n, k = 0:n))

curve(gamma(x),-3,4, n=1001, ylim=c(-10,100),

col="red", lwd=2, main="gamma(x)")

abline(h=0,v=0, lty=3, col="midnightblue")

x <- seq(.1, 4, length = 201); dx <- diff(x)[1]

par(mfrow = c(2, 3))

for (ch in c("", "l","di","tri","tetra","penta")) {

is.deriv <- nchar(ch) >= 2

if (is.deriv) dy <- diff(y) / dx

nm <- paste(ch, "gamma", sep = "")

y <- get(nm)(x)

plot(x, y, type = "l", main = nm, col = "red")

abline(h = 0, col = "lightgray")

if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}

par(mfrow = c(2, 2))

splinefun Interpolating Splines

Description

Perform cubic spline interpolation of given data points, returning either a list of points
obtained by the interpolation or a function performing the interpolation.

Usage

splinefun(x, y = NULL, method = "fmm")
spline(x, y = NULL, n = 3*length(x), method = "fmm",

xmin = min(x), xmax = max(x))

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alterna-
tively a single plotting structure can be specified: see xy.coords.

method specifies the type of spline to be used. Possible values are "fmm",
"natural" and "periodic".

n interpolation takes place at n equally spaced points spanning the interval
[xmin, xmax].

xmin left-hand endpoint of the interpolation interval.

xmax right-hand endpoint of the interpolation interval.

614 splinefun

Details

If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact cubic
is fitted through the four points at each end of the data, and this is used to determine the
end conditions). Natural splines are used when method = "natural", and periodic splines
when method = "periodic".

These interpolation splines can also be used for extrapolation, that is prediction at points
outside the range of x. Extrapolation makes little sense for method = "fmm"; for natural
splines it is linear using the slope of the interpolating curve at the nearest data point.

Value

spline returns a list containing components x and y which give the ordinates where inter-
polation took place and the interpolated values.

splinefun returns a function which will perform cubic spline interpolation of the given
data points. This is often more useful than spline.

References

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathe-
matical Computations.

See Also

approx and approxfun for constant and linear interpolation.

Package splines, especially interpSpline and periodicSpline for interpolation splines.
That package also generates spline bases that can be used for regression splines.

smooth.spline in package modreg for smoothing splines.

Examples

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))

n <- 9

x <- 1:n

y <- rnorm(n)

plot(x, y, main = paste("spline[fun](.) through", n, "points"))

lines(spline(x, y))

lines(spline(x, y, n = 201), col = 2)

y <- (x-6)^2

plot(x, y, main = "spline(.) -- 3 methods")

lines(spline(x, y, n = 201), col = 2)

lines(spline(x, y, n = 201, method = "natural"), col = 3)

lines(spline(x, y, n = 201, method = "periodic"), col = 4)

legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

f <- splinefun(x, y)

ls(envir = environment(f))

splinecoef <- eval(expression(z), envir = environment(f))

curve(f(x), 1, 10, col = "green", lwd = 1.5)

points(splinecoef, col = "purple", cex = 2)

par(op)

split 615

split Divide into Groups

Description

split divides the data in the vector x into the groups defined by f. The assignment forms
replace values corresponding to such a division. Unsplit reverses the effect of split.

Usage

split(x, f)
split.default(x, f)
split.data.frame(x, f)
split(x, f) <- value
split.default(x, f) <- value
split.data.frame(x, f) <- value
unsplit(value, f)

Arguments

x vector or data frame containing values to be divided into groups.

f a “factor” such that factor(f) defines the grouping, or a list of such
factors in which case their interaction is used for the grouping.

value a list of vectors or data frames compatible with a splitting of x

Details

f is recycled as necessary and if the length of x is not a multiple of the length of f a warning
is printed. unsplit works only with lists of vectors. The data frame method can also be
used to split a matrix into a list of matrices, and the assignment form likewise, provided
they are invoked explicitly.

Value

The value returned from split is a list of vectors containing the values for the groups. The
components of the list are named by the factor levels given be f. If f is longer than x some
of these will be of zero length. The assignment forms return their right hand side. unsplit
returns a vector for which split(x, f) equals value

See Also

cut

Examples

n <- 10; nn <- 100

g <- factor(round(n * runif(n * nn)))

x <- rnorm(n * nn) + sqrt(as.numeric(g))

xg <- split(x, g)

boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)

sapply(xg, length)

sapply(xg, mean)

616 sprintf

Calculate z-scores by group

z <- unsplit(lapply(split(x, g), scale), g)

tapply(z, g, mean)

or

z <- x

split(z, g) <- lapply(split(x, g), scale)

tapply(z, g, sd)

Split a matrix into a list by columns

ma <- cbind(x = 1:10, y = (-4:5)^2)

split(ma, col(ma))

split(1:10, 1:2)

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C function sprintf, that returns a character vector of length one con-
taining a formatted combination of text and variable values.

Usage

sprintf(fmt, ...)

Arguments

fmt a format string.

... values to be passed into fmt. Only logical, integer, real and character
vectors are accepted, and only the first value is read from each vector.

Details

This is a wrapper for the system’s C call. Attempts are made to check that the mode of the
values passed match the format supplied, and R’s special values (NA, Inf, -Inf and NaN)
are handled correctly.

The following is abstracted from K&R (see References, below). The string fmt contains
normal characters, which are passed through to the output string, and also special characters
that operate on the arguments provided through Special characters start with a % and
terminate with one of the letters in the set difeEgGs%. These letters denote the following
types:

d,i Integer value

f Double precision value, in decimal notation of the form ”[-]mmm.ddd”. The number of
decimal places is specified by the precision: the default is 6; a precision of 0 suppresses
the decimal point.

sprintf 617

e,E Double precision value, in decimal notation of the form [-]m.ddde[+-]xx or
[-]m.dddE[+-]xx

g,G Double precision value, in %e or %E format if the exponent is less than -4 or greater
than or equal to the precision, and %f format otherwise

s Character string

% Literal % (none of the formatting characters given below are permitted in this case)

In addition, between the initial % and the terminating conversion character there may be,
in any order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n)

- Left adjustment of converted argument in its field

+ Always print number with sign

a space Prefix a space if the first number is not a sign

0 For numbers, pad to the field width with leading zeros

Value

A character vector of length one. Character NAs are converted to "NA".

Author(s)

Original code by Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition,
Prentice Hall. describes the format options in table B-1 in the Appendix.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.

paste for another way of creating a vector combining text and values.

Examples

be careful with the format: most things in R are floats

sprintf("%s is %f feet tall\n", "Sven", 7) # OK

try(sprintf("%s is %i feet tall\n", "Sven", 7)) # not OK

sprintf("%s is %i feet tall\n", "Sven", as.integer(7)) # OK again

use a literal % :

sprintf("%.0f%% said yes (out of a sample of size %.0f)", 66.666, 3)

various formats of pi :

sprintf("%f", pi)

sprintf("%.3f", pi)

sprintf("%1.0f", pi)

sprintf("%5.1f", pi)

sprintf("%05.1f", pi)

618 stack

sprintf("%+f", pi)

sprintf("% f", pi)

sprintf("%-10f", pi)# left justified

sprintf("%e", pi)

sprintf("%E", pi)

sprintf("%g", pi)

sprintf("%g", 1e6 * pi) # -> exponential

sprintf("%.9g", 1e6 * pi) # -> "fixed"

sprintf("%G", 1e-6 * pi)

no truncation:

sprintf("%1.f",101)

More sophisticated:

lapply(c("a", "ABC", "and an even longer one"),

function(ch) sprintf("10-string ‘%10s’", ch))

sapply(1:18, function(n)

sprintf(paste("e with %2d digits = %.",n,"g",sep=""),

n, exp(1)))

stack Stack or Unstack Vectors from a Data Frame or List

Description

Stacking vectors concatenates multiple vectors into a single vector along with a factor
indicating where each observation originated. Unstacking reverses this operation.

Usage

stack(x, ...)
stack.default(x, ...)
stack.data.frame(x, select, ...)
unstack(x, ...)
unstack.default(x, form, ...)
unstack.data.frame(x, form = formula(x), ...)

Arguments

x object to be stacked or unstacked

select expression, indicating variables to select from a data frame

form a two-sided formula whose left side evaluates to the vector to be unstacked
and whose right side evaluates to the indicator of the groups to create.
Defaults to formula(x) in unstack.data.frame.

... further arguments passed to or from other methods.

Details

The stack function is used to transform data available as separate columns in a data frame
or list into a single column that can be used in an analysis of variance model or other linear
model. The unstack function reverses this operation.

stackloss 619

Value

unstack produces a list of columns according to the formula form. If all the columns have
the same length, the resulting list is coerced to a data frame.

stack produces a data frame with two columns

values the result of concatenating the selected vectors in x

ind a factor indicating from which vector in x the observation originated

Author(s)

Douglas Bates

See Also

lm, reshape

Examples

data(PlantGrowth)

formula(PlantGrowth) # check the default formula

pg <- unstack(PlantGrowth) # unstack according to this formula

pg

stack(pg) # now put it back together

stack(pg, select = -ctrl) # omitting one vector

stackloss Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

data(stackloss)

Format

stackloss is a data frame with 21 observations on 4 variables.

[,1] Air Flow Flow of cooling air
[,2] Water Temp Cooling Water Inlet Temperature
[,3] Acid Conc. Concentration of acid [per 1000, minus 500]
[,4] stack.loss Stack loss

For compatibility with S-PLUS, the data sets stack.x, a matrix with the first three (inde-
pendent) variables of the data frame, and stack.loss, the numeric vector giving the fourth
(dependent) variable, are provided as well.

620 standardGeneric

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to
nitric acid (HNO3). The nitric oxides produced are absorbed in a countercurrent absorption
tower.” (Brownlee, cited by Dodge, slightly reformatted by MM.)

Air Flow represents the rate of operation of the plant. Water Temp is the temperature
of cooling water circulated through coils in the absorption tower. Acid Conc. is the
concentration of the acid circulating, minus 50, times 10: that is, 89 corresponds to 58.9
per cent acid. stack.loss (the dependent variable) is 10 times the percentage of the
ingoing ammonia to the plant that escapes from the absorption column unabsorbed; that
is, an (inverse) measure of the over-all efficiency of the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and
Engineering. New York: Wiley. pp. 491–500.

References

Dodge, Y. (1996) The guinea pig of multiple regression. In: Robust Statistics, Data Anal-
ysis, and Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996,
Lecture Notes in Statistics 109, Springer-Verlag, New York.

Examples

data(stackloss)

summary(lm.stack <- lm(stack.loss ~ stack.x))

standardGeneric Formal Method System Placeholders

Description

These routines are primitives used with the methods package. They should not be used
without it and do not need to be called directly in any case.

standardGeneric: dispatch the method defined for generic function named f, using the
actual arguments in the frame from which standardGeneric is called.

objWithClass: return the result of setting the class of object to value. Defined as a
separate primitive function because R types cannot generally be changed in place.

dataClass: returns a single string for the class of object even in the case that the object
has an old-style class attribute with multiple strings.

topicName: the string used internally to find documenation of the given type and topic.
Called by the ? operator and the special prompt functions in the methods package.

Usage

standardGeneric(f)
objWithClass(object, value)
dataClass(object)
topicName(type, topic)

stars 621

Author(s)

John Chambers

stars Star (Spider/Radar) Plots and Segment Diagrams

Description

Draw star plots or segment diagrams of a multivariate data set. With one single location,
also draws “spider” (or “radar”) plots.

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, len = 1,
key.loc = NULL, key.labels = dimnames(x)[[2]], key.xpd = TRUE,
xlim = NULL, ylim = NULL, flip.labels = NULL,
draw.segments = FALSE, col.segments = 1:n.seg, col.stars = NA,
axes = FALSE, frame.plot = axes,
main = NULL, sub = NULL, xlab = "", ylab = "",
cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"),

1.1+ c(2*axes+ (xlab != ""), 2*axes+ (ylab != ""), 1,0)),
add=FALSE, plot=TRUE, ...)

Arguments

x matrix or data frame of data. One star or segment plot will be produced
for each row of x. Missing values (NA) are allowed, but they are treated
as if they were 0 (after scaling, if relevant).

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise,
they occupy the (upper) semicircle only.

scale logical flag: if TRUE, the columns of the data matrix are scaled indepen-
dently so that the maximum value in each column is 1 and the minimum
is 0. If FALSE, the presumption is that the data have been scaled by some
other algorithm to the range [0, 1].

radius logical flag: in TRUE, the radii corresponding to each variable in the data
will be drawn.

labels vector of character strings for labeling the plots. Unlike the S function
stars, no attempt is made to construct labels if labels = NULL.

locations Either two column matrix with the x and y coordinates used to place
each of the segment plots; or numeric of length 2 when all plots should be
superimposed (for a “spider plot”). By default, locations = NULL, the
segment plots will be placed in a rectangular grid.

nrow, ncol integers giving the number of rows and columns to use when locations
is NULL. By default, nrow == ncol, a square layout will be used.

len scale factor for the length of radii or segments.

622 stars

key.loc vector with x and y coordinates of the unit key.

key.labels vector of character strings for labeling the segments of the unit key. If
omitted, the second component of dimnames(x) is used, if available.

key.xpd clipping switch for the unit key (drawing and labeling), see par("xpd").

xlim vector with the range of x coordinates to plot.

ylim vector with the range of y coordinates to plot.

flip.labels logical indicating if the label locations should flip up and down from dia-
gram to diagram. Defaults to a somewhat smart heuristic.

draw.segments logical. If TRUE draw a segment diagram.

col.segments color vector (integer or character, see par), each specifying a color for one
of the segments (variables). Ignored if draw.segments = FALSE.

col.stars color vector (integer or character, see par), each specifying a color for one
of the stars (cases). Ignored if draw.segments = TRUE.

axes logical flag: if TRUE axes are added to the plot.

frame.plot logical flag: if TRUE, the plot region is framed.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

cex character expansion factor for the labels.

lwd line width used for drawing.

lty line type used for drawing.

xpd logical or NA indicating if clipping should be done, see par(xpd = .).

mar argument to par(mar = *), typically chosing smaller margings than by
default.

... further arguments, passed to the first call of plot(), see plot.default
and to box() if frame.plot is true.

add logical, if TRUE add stars to current plot.

plot logical, if FALSE, nothing is plotted.

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the input x. Variables (columns)
start on the right and wind counterclockwise around the circle. The size of the (scaled)
column is shown by the distance from the center to the point on the star or the radius of
the segment representing the variable.

Only one page of output is produced.

Note

This code started life as spatial star plots by David A. Andrews. See http://www.udallas.
edu:8080/~andrews/software/software.html.

Prior to 1.4.1, scaling only shifted the maximum to 1, although documented as here.

http://www.udallas.edu:8080/~andrews/software/software.html
http://www.udallas.edu:8080/~andrews/software/software.html

start 623

Author(s)

Thomas S. Dye

Examples

data(mtcars)

stars(mtcars[, 1:7], key.loc = c(14, 2),

main = "Motor Trend Cars : stars(*, full = F)", full = FALSE)

stars(mtcars[, 1:7], key.loc = c(14, 1.5),

main = "Motor Trend Cars : full stars()",flip.labels=FALSE)

‘Spider’ or ‘Radar’ plot:

stars(mtcars[, 1:7], locations = c(0,0), radius = FALSE,

key.loc=c(0,0), main="Motor Trend Cars", lty = 2)

Segment Diagrams:

palette(rainbow(12, s = 0.6, v = 0.75))

stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Trend Cars", draw.segments = TRUE)

stars(mtcars[, 1:7], len = 0.6, key.loc = c(1.5, 0),

main = "Motor Trend Cars", draw.segments = TRUE,

frame.plot=TRUE, nrow = 4, cex = .7)

data(USJudgeRatings)

scale linearly (not affinely) to [0, 1]

USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))

Jnam <- case.names(USJudgeRatings)

Snam <- abbreviate(substring(Jnam,1,regexpr("[,.]",Jnam) - 1), 7)

stars(USJudge, labels = Jnam, scale = FALSE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)

stars(USJudge, labels = Snam, scale = FALSE,

key.loc = c(13, 1.5), radius = FALSE)

loc <- stars(USJudge, labels = NULL, scale = FALSE,

radius = FALSE, frame.plot = TRUE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 1.2)

text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)

‘Segments’:

stars(USJudge, draw.segments = TRUE, scale = FALSE, key.loc = c(13,1.5))

‘Spider’:

stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.stars=1:10, key.loc = c(0,0), main="US Judges rated")

‘Radar-Segments’

stars(USJudgeRatings[1:10,], locations = 0:1, scale=FALSE,

draw.segments = TRUE, col.segments=0, col.stars=1:10,key.loc= 0:1,

main="US Judges 1-10 ")

palette("default")

stars(cbind(1:16,10*(16:1)),draw.segments=TRUE,

main = "A Joke -- do *not* use symbols on 2D data!")

start Encode the Terminal Times of Time Series

624 Startup

Description

Extract and encode the times the first and last observations were taken. Provided only for
compatibility with S version 2.

Usage

start(x, ...)
end(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use the tsp attribute of x if it exists. Their default
methods decode the start time from the original time units, so that for a monthly series
1995.5 is represented as c(1995, 7). For a series of frequency f, time n+i/f is presented
as c(n, i+1) (even for i = 0 and f = 1).

Warning

The representation used by start and end has no meaning unless the frequency is supplied.

See Also

ts, time, tsp.

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless --no-environ was given on the command line, R searches for user and site files to
process for setting environment variables. The name of the site file is the one pointed to by
the environment variable R_ENVIRON; if this is unset or empty, ‘$R HOME/etc/Renviron.site’
is used (if it exists, which it does not in a“factory-fresh”installation). The user files searched
for are ‘.Renviron’ in the current or in the user’s home directory (in that order). See Details
for how the files are read.

Then R searches for the site-wide startup profile unless the command line option --no-
site-file was given. The name of this file is taken from the value of the R_PROFILE
environment variable. If this variable is unset, the default is ‘$R HOME/etc/Rprofile.site’,
which is used if it exists (which it does not in a “factory-fresh” installation). This code is
loaded into package base.

Then, unless --no-init-file was given, R searches for a file called ‘.Rprofile’ in the cur-
rent directory or in the user’s home directory (in that order) and sources it into the user
workspace.

Startup 625

It then loads a saved image of the user workspace from ‘.RData’ if there is one (unless
--no-restore-data was specified, or --no-restore, on the command line).

Finally, if a function .First is found on the search path, it is executed as .First(). In a
“factory-fresh” version of R the .First in the system profile file ‘library/base/R/Rprofile’ is
used. (This requires the ctest library.)

A function .First (and .Last) can be defined in appropriate .Rprofile or Rprofile.site
files or have been saved in ‘.RData’.

The commands history is read from the file specified by the environment variable
R_HISTFILE (default .Rhistory) unless --no-restore-history was specified (or --no-
restore).

The command-line flag --vanilla implies --no-site-file, --no-init-file, --no-
restore and --no-environ.

Usage

.First <- function() { }

.Rprofile <startup file>

Details

Note that there are two sorts of files used in startup: environment files which contain lists
of environment variables to be set, and profile files which contain R code.

Lines in a site or user environment file should be either comment lines starting with #, or
lines of the form name=value. The latter sets the environmental variable name to value,
overriding an existing value. If value is of the form ${foo-bar}, the value is that of the
environmental variable foo if that exists and is set to a non-empty value, otherwise bar.
This construction can be nested, so bar can be of the same form (as in ${foo-${bar-
blah}}).

Leading and trailing white space in value are stripped. value is processed in a similar
way to a Unix shell. In particular quotes are stripped, and backslashes are removed except
inside quotes.

Note

Prior to R version 1.4.0, the environment files searched were ‘.Renviron’ in the current
directory, the file pointed to by R_ENVIRON if set, and ‘.Renviron’ in the user’s home directory.

Prior to R version 1.2.1, ‘.Rprofile’ was sourced after ‘.RData’ was loaded, although the
documented order was as here.

The format for site and user environment files was changed in version 1.2.0. Older files are
quite likely to work but may generate warnings on startup if they contained unnecessary
export statements.

Values in environment files were not processed prior to version 1.4.0.

See Also

.Last for final actions before termination.

626 stat.anova

Examples

Example ~/.Renviron on Unix

R_LIBS=~/R/library

PAGER=/usr/local/bin/less

Example .Renviron on Windows

R_LIBS=C:/R/library

TCL_LIBRARY=c:/packages/Tcl/lib/tcl8.3

Example of .Rprofile

options(width=65, digits=5)

options(show.signif.stars=FALSE)

ps.options(horizontal=FALSE)

set.seed(1234)

.First <- function() cat("\n Welcome to R!\n\n")

.Last <- function() cat("\n Goodbye!\n\n")

if .Renviron contains

FOOBAR="coo\bar"doh\ex"abc\"def’"

then we get

> cat(Sys.getenv("FOOBAR"), "\n")

coo\bardoh\exabc"def’

stat.anova GLM Anova Statistics

Description

This is a utility function, used in lm and glm methods for anova(..., test != NULL) and
should not be used by the average user.

Usage

stat.anova(table, test = c("Chisq", "F", "Cp"), scale, df.scale, n)

Arguments

table numeric matrix as results from anova.glm(..., test=NULL).

test a character string, matching one of "Chisq", "F" or "Cp".

scale a weighted residual sum of squares.

df.scale degrees of freedom corresponding to scale.

n number of observations.

Value

A matrix which is the original table, augmented by a column of test statistics, depending
on the test argument.

See Also

anova.lm, anova.glm.

state 627

Examples

##-- Continued from ‘‘?glm’’:

print(ag <- anova(glm.D93))

stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4, df = 4, n = 9)

state States of the U.S.A.

Description

Data sets related to the 50 states of the United States of America.

Usage

data(state)

Details

R currently contains the following “state” data sets. Note that all data are arranged accord-
ing to alphabetical order of the state names.

state.abb: character vector of 2-letter abbreviations for the state names.
state.area: numeric vector of state areas (in square miles).
state.center: list with components named x and y giving the approximate geographic

center of each state in negative longitude and latitude. Alaska and Hawaii are placed
just off the West Coast.

state.division: factor giving state divisions (New England, Middle Atlantic, South At-
lantic, East South Central, West South Central, East North Central, West North
Central, Mountain, and Pacific).

state.name: character vector giving the full state names.
state.region: factor giving the region (Northeast, South, North Central, West) that each

state belongs to.
state.x77: matrix with 50 rows and 8 columns giving the following statistics in the re-

spective columns.
Population: population estimate as of July 1, 1975
Income: per capita income (1974)
Illiteracy: illiteracy (1970, percent of population)
Life Exp: life expectancy in years (1969–71)
Murder: murder and non-negligent manslaughter rate per 100,000 population (1976)
HS Grad: percent high-school graduates (1970)
Frost: mean number of days with minimum temperature below freezing (1931–1960)

in capital or large city
Area: land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the
United States.
U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

628 step

stem Stem-and-Leaf Plots

Description

stem produces a stem-and-leaf plot of the values in x. The parameter scale can be used
to expand the scale of the plot. A value of scale=2 will cause the plot to be roughly twice
as long as the default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

Arguments

x a numeric vector.

scale This controls the plot length.

width The desired width of plot.

atom a tolerance.

Examples

data(islands)

stem(islands)

stem(log10(islands))

step Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object representing a model of an appropriate class (mainly "lm" and
"glm"). This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. This should
be either a single formula, or a list containing components upper and
lower, both formulae. See the details for how to specify the formulae and
how they are used.

scale used in the definition of the AIC statistic for selecting the models, cur-
rently only for lm, aov and glm models.

step 629

direction the mode of stepwise search, can be one of "both", "backward", or
"forward", with a default of "both". If the scope argument is miss-
ing the default for direction is "backward".

trace if positive, information is printed during the running of step. Larger
values may give more detailed information.

keep a filter function whose input is a fitted model object and the associated
AIC statistic, and whose output is arbitrary. Typically keep will select a
subset of the components of the object and return them. The default is
not to keep anything.

steps the maximum number of steps to be considered. The default is 1000
(essentially as many as required). It is typically used to stop the process
early.

k the multiple of the number of degrees of freedom used for the penalty.
Only k = 2 gives the genuine AIC: k = log(n) is sometimes referred to
as BIC or SBC.

... any additional arguments to extractAIC.

Details

step uses add1 and drop1 repeatedly; it will work for any method for which they work, and
that is determined by having a valid method for extractAIC. When the additive constant
can be chosen so that AIC is equal to Mallows’ Cp, this is done and the tables are labelled
appropriately.

The set of models searched is determined by the scope argument. The right-hand-side of
its lower component is always included in the model, and right-hand-side of the model
is included in the upper component. If scope is a single formula, it specifes the upper
component, and the lower model is empty. If scope is missing, the initial model is used as
the upper model.

Models specified by scope can be templates to update object as used by update.formula.

There is a potential problem in using glm fits with a variable scale, as in that case the de-
viance is not simply related to the maximized log-likelihood. The function extractAIC.glm
makes the appropriate adjustment for a gaussian family, but may need to be amended for
other cases. (The binomial and poisson families have fixed scale by default and do not
correspond to a particular maximum-likelihood problem for variable scale.)

Value

the stepwise-selected model is returned, with up to two additional components. There is
an "anova" component corresponding to the steps taken in the search, as well as a "keep"
component if the keep= argument was supplied in the call. The "Resid. Dev" column of
the analysis of deviance table refers to a constant minus twice the maximized log likelihood:
it will be a deviance only in cases where a saturated model is well-defined (thus excluding
lm, aov and survreg fits, for example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if
there are missing values and R’s default of na.action = na.omit is used. We suggest you
remove the missing values first.

630 stop

Note

This function differs considerably from the function in S, which uses a number of approxi-
mations and does not compute the correct AIC.

This is a minimal implementation. Use stepAIC for a wider range of object classes.

Author(s)

B. D. Ripley

See Also

stepAIC, add1, drop1

Examples

example(lm)

step(lm.D9)

data(swiss)

summary(lm1 <- lm(Fertility ~ ., data = swiss))

slm1 <- step(lm1)

summary(slm1)

slm1$anova

stop Stop Function Execution

Description

stop stops execution of the current expression, prints the message given as its argument,
then executes an error action.

geterrmessage gives the last error message.

Usage

stop(..., call. = TRUE)
geterrmessage()

Arguments

... character vectors (which are pasted together with no separator) or NULL.

call. logical, indicating if the call should become part of the error message.

Details

The error action is controlled by the current error handler set by options(error=).
The default behaviour (the NULL error-handler) in interactive use is to return to the
top level prompt, and in non-interactive use to (effectively) call q("no", status=1,
runLast=FALSE).

Errors will be truncated to getOption("warning.length") characters, default 1000.

stopifnot 631

Value

geterrmessage gives the last error message, as character string ending in "
n".

See Also

warning, try to catch errors and retry, and options for setting error handlers. stopifnot
for validity testing.

Examples

options(error = expression(NULL))# don’t stop on stop(.) << Use with CARE! >>

iter <- 12

if(iter > 10) stop("too many iterations")

tst1 <- function(...) stop("dummy error")

tst1(1:10,long,calling,expression)

tst2 <- function(...) stop("dummy error", call. = FALSE)

tst2(1:10,long,calling,expression,but.not.seen.in.Error)

options(error = NULL)# revert to default

stopifnot Ensure the ‘Truth’ of R Expressions

Description

If any of the expressions in ... are not all TRUE, stop is called, producing an error message
indicating the first element of ... which was not true.

Usage

stopifnot(...)

Arguments

... any number of (logical) R expressions which should evaluate to TRUE.

Details

stopifnot(A, B) is conceptually equivalent to { if(!all(A)) stop(...) ;
if(!all(B)) stop(...) }.

Value

(NULL if all statements in ... are TRUE.)

See Also

stop, warning.

632 str

Examples

stopifnot(1 == 1, all.equal(pi, 3.14159265), 1 < 2) # all TRUE

m <- matrix(c(1,3,3,1), 2,2)

stopifnot(m == t(m), diag(m) == rep(1,2)) # all(.) |=> TRUE

options(error = expression(NULL))# "disable stop(.)" << Use with CARE! >>

stopifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b")

stopifnot(all.equal(pi, 3.1415927), 2 < 2, all(1:10 < 12), "a" < "b")

options(error = NULL)# revert to default error handler

str Compactly Display the Structure of an Arbitrary R Object

Description

Compactly display the internal structure of an R object, a “diagnostic” function and an
alternative to summary (and to some extent, dput). Ideally, only one line for each “basic”
structure is displayed. It is especially well suited to compactly display the (abbreviated)
contents of (possibly nested) lists. The idea is to give reasonable output for any R object.
It calls args for (non-primitive) function objects.

ls.str and lsf.str are useful “versions” of ls, calling str on each object. They are
not foolproof and should rather not be used for programming, but are provided for their
usefulness.

Usage

str(object, ...)
str.data.frame(object, ...)
str.default(object, max.level = 0, vec.len = 4, digits.d = 3,

nchar.max = 128, give.attr = TRUE, give.length = TRUE,
wid = getOption("width"), nest.lev = 0,
indent.str = paste(rep(" ", max(0, nest.lev + 1)), collapse = ".."),
...)

ls.str(pos = 1, pattern, ..., envir = as.environment(pos), mode = "any",
max.level = 1, give.attr = FALSE)

lsf.str(pos = 1, ..., envir = as.environment(pos))

Arguments

object any R object about which you want to have some information.

max.level maximal level of nesting which is applied for displaying nested structures,
e.g., a list containing sub lists. Default 0: Display all nesting levels.

vec.len numeric (>= 0) indicating how many “first few” elements are displayed
of each vector. The number is multiplied by different factors (from .5 to
3) depending on the kind of vector. Default 4.

digits.d number of digits for numerical components (as for print).

str 633

nchar.max maximal number of characters to show for character strings. Longer
strings are truncated, see longch example below.

give.attr logical; if TRUE (default), show attributes as sub structures.

give.length logical; if TRUE (default), indicate length (as [1:...]).

wid the page width to be used. The default is the currently active
options("width").

nest.lev current nesting level in the recursive calls to str.

indent.str the indentation string to use.

... potential further arguments (required for Method/Generic reasons).

pos integer indicating search path position.

envir environment to use, see ls.

pattern regular expression passed to ls. Only names matching pattern are con-
sidered.

mode character specifying the mode of objects to consider. Passed to exists
and get.

Value

str does not return anything, for efficiency reasons. The obvious side effect is output to
the terminal.

ls.str and lsf.str invisibly return a character vector of the matching names, similarly
to ls.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉 since 1990.

See Also

summary, args.

Examples

The following examples show some of ‘str’ capabilities

str(1:12)

str(ls)

str(args)#- more useful than args(args) !

data(freeny); str(freeny)

str(str)

str(.Machine, digits = 20)

str(lsfit(1:9,1:9))

str(lsfit(1:9,1:9), max =1)

op <- options(); str(op)#- save first; otherwise internal options() is used.

need.dev <- !exists(".Device") || is.null(.Device)

if(need.dev) postscript()

str(par()); if(need.dev) graphics.off()

nchar(longch <- paste(rep(letters,100), collapse=""))

str(longch)

str(longch, nchar.max = 52)

lsf.str()#- how do the functions look like which I am using?

634 stripchart

ls.str(mode = "list")#- what are the structured objects I have defined?

which base functions have "file" in their name ?

lsf.str(pos = length(search()), pattern = "file")

stripchart 1-D Scatter Plots

Description

stripchart produces one dimensional scatter plots (or dot plots) of the given data. These
plots are are good alternative to boxplots when sample sizes are small.

Usage

stripchart(x, method="overplot", jitter=0.1, offset=1/3,
vertical=FALSE, group.names,
xlim=NULL, ylim=NULL, main="", ylab="", xlab="",
pch=0, col=par("fg"), cex=par("cex"))

Arguments

x the data from which the plots are to be produced. The data can be
specified as a single vector, or as list of vectors, each corresponding to a
component plot. Alternatively a symbolic specification of the form x ~
g can be given, indicating the the observations in the vector x are to be
grouped according to the levels of the factor g. NAs are allowed in the
data.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to
specify "jitter" to jitter the points, or "stack" have coincident points
stacked. The last method only makes sense for very granular data.

jitter when jittering is used, jitter gives the amount of jittering applied.

offset when stacking is used, points are stacked this many line-heights (symbol
widths) apart.

vertical when vertical is TRUE the plots are drawn vertically rather than the default
horizontal.

group.names group labels which will be printed alongside (or underneath) each plot.
xlim, ylim, main, ylab, xlab, pch, col, cex

Graphical parameters.

Details

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter
or Seber and Wild.

Examples

x <- round(rnorm(50), 1)

stripchart(x)

strptime 635

strptime Date-time Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of classes "POSIXlt"
and "POSIXct" representing calendar dates and times.

Usage

format.POSIXct(x, format = "", tz = "", usetz = FALSE, ...)
format.POSIXlt(x, format = "", usetz = FALSE, ...)

as.character(x, ...)

strftime(x, format="%Y-%m-%d %X", usetz = FALSE, ...)
strptime(x, format)

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion. System-specific,
but "" is the current time zone, and "GMT" is UTC.

format A character vector. The default is "%Y-%m-%d %H:%M:%S" if any com-
ponent has a time component which is not midnight, and "%Y-%m-%d"
otherwise.

... Further arguments to be passed from or to other methods.

usetz logical. Should the timezone be appended to the output? This is used
in printing time, and as a workaround for problems with using "%Z" on
most Linux systems.

year, month, day

numerical values to specify a day.
hour, min, sec

numerical values for a time within a day.

Details

strftime is an alias for format.POSIXlt, and format.POSIXct first converts to class
"POSIXct" by calling as.POSIXct. Note that only that conversion depends on the time
zone.

The usual vector re-cycling rules are applied to x and format so the answer will be of length
that of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and
available. This affects the names of the days and months, the AM/PM indicator (if used)
and the separators in formats such as %x and %X.

636 strptime

The details of the formats are system-specific, but the following are defined by the POSIX
standard for strftime and are likely to be widely available. Any character in the format
string other than the % escapes is interpreted literally (and %% gives %).

%a Abbreviated weekday name.
%A Full weekday name.
%b Abbreviated month name.
%B Full month name.
%c Date and time, locale-specific.
%d Day of the month as decimal number (01–31).
%H Hours as decimal number (00–23).
%I Hours as decimal number (01–12).
%j Day of year as decimal number (001–366).
%m Month as decimal number (01–12).
%M Minute as decimal number (00–59).
%p AM/PM indicator in the locale. Used in conjuction with %I and not with %H.
%S Second as decimal number (00–61), allowing for up to two leap-seconds.
%U Week of the year as decimal number (00–53) using the first Sunday as day 1 of week 1.
%w Weekday as decimal number (0–6, Sunday is 0).
%W Week of the year as decimal number (00–53) using the first Monday as day 1 of week 1.
%x Date, locale-specific.
%X Time, locale-specific.
%y Year without century (00–99). If you use this on input, which century you get is system-

specific. So don’t! Often values up to 69 are prefixed by 20 and 70–99 by 19.
%Y Year with century.
%Z (output only.) Time zone as a character string (empty if not available). Note: do not

use this on Linux unless the TZ environment variable is set.

Where leading zeros are shown they will be used on output but are optional on input.
ISOdatetime and ISOdate are convenience wrappers for strptime, that differ only in their
defaults.

Value

The format methods and strftime return character vectors representing the time.
strptime turns character representations into an object of class "POSIXlt".
ISOdatetime and ISOdate return an object of class "POSIXct".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses
a day as "2001-02-03" and a time as "14:01:02" using leading zeroes as here. The ISO
form uses no space to separate dates and times.
If the date string does not specify the date completely, the returned answer may be system-
specific. The most common behaviour is to assume that unspecified seconds, minutes or
hours are zero, and a missing year, month or day is the current one.
If the timezone specified is invalid on your system, what happens is system-specific but it
will probably be ignored.
OS facilities will probably not print years before 1CE (aka 1AD) correctly.

strsplit 637

References

International Organization for Standardization (1988, 1997, . . .) ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times.
The 1997 version is available on-line at ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf

See Also

DateTimeClasses for details of the date-time classes; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.

Examples

locale-specific version of date()

format(Sys.time(), "%a %b %d %X %Y")

we would include the timezone as in

format(Sys.time(), "%a %b %d %X %Y %Z")

but this crashes some Linux systems

read in date info in format ‘ddmmmyyyy’

This will give NA(s) in some locales; setting the C locale

as in the commented lines will overcome this on most systems.

lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")

z <- strptime(x, "%d%b%Y")

Sys.setlocale("LC_TIME", lct)

z

read in date/time info in format ‘m/d/y h:m:s’

dates <- c("02/27/92", "02/27/92", "01/14/92",

"02/28/92", "02/01/92")

times <- c("23:03:20", "22:29:56", "01:03:30",

"18:21:03", "16:56:26")

x <- paste(dates, times)

z <- strptime(x, "%m/%d/%y %H:%M:%S")

z

strsplit Split the Elements of a Character Vector

Description

Split the elements of a character vector x into substrings according to the presence of
substring split within them.

Usage

strsplit(x, split, extended = TRUE)

ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf

638 structure

Arguments

x character vector, to be split.

split character vector containing a regular expression to use as“split”. If empty
matches occur, in particular if split has length 0, x is split into single
characters. If split has length greater than 1, it is re-cycled along x.

extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.

Value

A list of length length(x) the i-th element of which contains the vector of splits of x[i].

See Also

paste for the reverse, grep and sub for string search and manipulation; further nchar,
substr.

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")

split x on the letter e

strsplit(x,"e")

unlist(strsplit("a.b.c", "."))

[1] "" "" "" "" ""

Note that ‘split’ is a regexp!

If you really want to split on ‘.’, use

unlist(strsplit("a.b.c", "\\."))

[1] "a" "b" "c"

a useful function: rev() for strings

strReverse <- function(x)

sapply(lapply(strsplit(x,NULL), rev), paste, collapse="")

strReverse(c("abc", "Statistics"))

a <- readLines(file.path(R.home(),"AUTHORS"))[-(1:8)]

a <- a[0:1-length(a)]

sub("\t.*","", a)

strReverse(sub(" .*","", a))

structure Attribute Specification

Description

structure returns the given object with its attributes set.

Usage

structure(.Data, ...)

strwidth 639

Arguments

.Data an object which will have various attributes attached to it.

... attributes, specified in tag=value form, which will be attached to data.

Examples

structure(1:6, dim = 2:3)

strwidth Plotting Dimensions of Character Strings and Math Expressions

Description

These functions compute the width or height, respectively, of the given strings or mathe-
matical expressions s[i] on the current plotting device in user coordinates, inches or as
fraction of the figure width par("fin").

Usage

strwidth(s, units = "user", cex = NULL)
strheight(s, units = "user", cex = NULL)

Arguments

s character vector or expressions whose string widths in plotting units
are to be determined. An attempt is made to coerce other vectors to
character, and other language objects to expressions.

units character indicating in which units s is measured; should be one of
"user", "inches", "figure"; partial matching is performed.

cex character expansion to which is applies. By default, the current
par("cex") is used.

Value

Numeric vector with the same length as s, giving the width or height for each s[i]. NA
strings are given width and height 0 (as they are not plotted).

See Also

text, nchar

Examples

str.ex <- c("W","w","I",".","WwI.")

op <- par(pty=’s’); plot(1:100,1:100); par(’usr’)

sw <- strwidth(str.ex); sw

sum(sw[1:4] == sw[5])#- since the last string contains the others

sw / strwidth(str.ex, cex = .5)

between 1.5 and 4.2 (!), font dependent

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]

unique(sw / sw.i)

640 strwrap

constant factor: 1 value

mean(sw.i / strwidth(str.ex, "fig")) / par(’fin’)[1] # = 1: are the same

See how letters fall in classes -- depending on graphics device and font!

all.lett <- c(letters, LETTERS)

shL <- strheight(all.lett, units = "inches")

table(shL)# all have same heights ...

mean(shL) / par("cin")[2] # should be 1 (exactly?)

swL <- strwidth(all.lett)

swL <- 3 * swL / min(swL)

all(swL == round(swL))#- TRUE !

swL <- as.integer(swL)

n.classes <- length(tL <- table(swL)); tL

iL <- order(swL)

structure(swL[iL], names = all.lett[iL])

lett.classes <- structure(vector("list", n.classes), names= names(tL))

for(i in 1:n.classes)

lett.classes[[i]] <- all.lett[swL == as.numeric(names(tL)[i])]

lett.classes

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)

strwidth(sumex)

strheight(sumex)

rm(sumex); par(op)#- reset to previous setting

strwrap Wrap Character Strings to Format Paragraphs

Description

Each character string in the input is first split into paragraphs (on lines containing whites-
pace only). The paragraphs are then formatted by breaking lines at word boundaries. The
target columns for wrapping lines and the indentation of the first and all subsequent lines
of a paragraph can be controlled independently.

Usage

strwrap(x, width = 0.9 * getOption("width"), indent = 0, exdent = 0,
prefix = "", simplify = TRUE)

Arguments

x a character vector

width a positive integer giving the target column for wrapping lines in the out-
put.

indent a non-negative integer giving the indentation of the first line in a para-
graph.

exdent a non-negative integer specifying the indentation of subsequent lines in
paragraphs.

prefix a character string to be used as prefix for each line.

subset 641

simplify a logical. If TRUE, the result is a single character vector of line text;
otherwise, it is a list of the same length as x the elements of which are
character vectors of line text obtained from the corresponding element of
x. (Hence, the result in the former case is obtained by unlisting that of
the latter.)

Details

Whitespace in the input is destroyed. Double spaces after periods (thought as representing
sentence ends) are preserved. Currently, it possible sentence ends at line breaks are not
considerd specially.

Indentation is relative to the number of characters in the prefix string.

Examples

Read in file ‘THANKS’.

x <- paste(readLines(file.path(R.home(), "THANKS")), collapse = "\n")

Split into paragraphs and remove the first three ones

x <- unlist(strsplit(x, "\n[\t\n]*\n"))[-(1:3)]

Join the rest

x <- paste(x, collapse = "\n\n")

Now for some fun:

writeLines(strwrap(x, width = 60))

writeLines(strwrap(x, width = 60, indent = 5))

writeLines(strwrap(x, width = 60, exdent = 5))

writeLines(strwrap(x, prefix = "THANKS> "))

subset Subsetting Vectors and Data Frames

Description

Return subsets of vectors or data frames which meet conditions.

Usage

subset(x, ...)
subset.default(x, subset, ...)
subset.data.frame(x, subset, select, ...)

Arguments

x object to be subsetted

... how to subset, depends on object

subset logical expression

select expression, indicating variables to select from a data frame

642 substitute

Details

For ordinary vectors, the result is simply x[subset & !is.na(subset)].

For dataframes, the subset argument works similarly on the rows. Note that subset will
be evaluated in the dataframe.

The select argument exists only for dataframes. It works by first replacing variable names
in the selection expression with the corresponding column numbers in the dataframe and
then using the resulting integer vector to index the columns. This allows the use of the
standard indexing conventions so that for examples ranges of variables can be specified
easily.

Value

Selected rows and columns of the object x.

Author(s)

Peter Dalgaard

See Also

[, transform

Examples

data(airquality)

subset(airquality, Temp > 80, select = c(Ozone, Temp))

subset(airquality, Day == 1, select = -Temp)

subset(airquality, select = Ozone:Wind)

attach(airquality)

subset(Ozone, Temp > 80)

substitute Substituting and Quoting Expressions

Description

substitute returns the parse tree for the (unevaluated) expression expr, substituting any
variables bound in env.

quote simply returns its argument. The argument is not evaluated and can be any R
expression.

Usage

substitute(expr, env=<<see below>>)
quote(expr)

Arguments

expr Any syntactically valid R expression

env An environment or a list object. Defaults to the current evaluation envi-
ronment.

substitute 643

Details

The typical use of substitute is to create informative labels for data sets and plots. The
myplot example below shows a simple use of this facility. It uses the functions deparse
and substitute to create labels for a plot which are character string versions of the actual
arguments to the function myplot.

Substitution takes place by examining each component of the parse tree as follows: If it is
not a bound symbol in env, it is unchanged. If it is a promise object, i.e. a formal argument
to a function or explicitly created using delay(), the expression slot of the promise replaces
the symbol. If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv
in which case the symbol is left unchanged.

Value

The mode of the result is generally "call" but may in principle be any type. In particular,
single-variable expressions have mode "name" and constants have the appropriate base
mode.

Note

Substitute works on a purely lexical basis. There is no guarantee that the resulting expres-
sion makes any sense.

Substituting and quoting often causes confusion when the argument is expression(...).
The result is a call to the expression constructor function and needs to be evaluated with
eval to give the actual expression object.

See Also

missing for argument “missingness”.

Examples

(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)

(s.s <- substitute(a + b, list(a = 1))) #> 1 + b

c(mode(s.e), typeof(s.e)) # "call", "language"

c(mode(s.s), typeof(s.s)) # (the same)

but:

(e.s.e <- eval(s.e)) #> expression(1 + b)

c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)

plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }

s1 <- function(x, y = substitute(x)) { x <- x + 1; y }

s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }

a <- 10

f1(a)# 11

s1(a)# 11

s2(a)# a

typeof(s2(a))# "symbol"

644 substr

substr Substrings of a Character Vector

Description

Extract or replace substrings in a character vector.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000)
substr(x, start, stop) <- value
substring(text, first, last = 1000000) <- value

Arguments

x, text a character vector

start, first integer. The first element to be replaced.

stop, last integer. The last element to be replaced.

value a character vector, recycled if necessary.

Details

substring is compatible with S, with first and last instead of start and stop. For
vector arguments, it expands the arguments cyclically to the length of the longest.

When extracting, if start is larger than the string length then "" is returned.

For the replacement functions, if start is larger than the string length then no replacement
is done. If the portion to be replaced is longer than the replacement string, then only the
portion the length of the string is replaced.

Value

For substr, a character vector of the same length as x.

For substring, a character vector of length the longest of the arguments.

Note

The S4 version of substring<- ignores last; this version does not.

See Also

strsplit, paste, nchar.

Examples

substr("abcdef",2,4)

print(ss <- substring("abcdef",1:6,1:6))

stopifnot(ss == strsplit ("abcdef",NULL)[[1]])

strsplit is more efficient ...

substr(rep("abcdef",4),1:4,4:5)

sum 645

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")

stopifnot(substr(x, 2, 5) == substring(x, 2, 5))

substr(x, 2, 5)

substring(x, 2, 4:6)

substring(x, 2) <- c("..", "+++")

x

sum Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments. If na.rm is FALSE an NA
value in any of the arguments will cause a value of NA to be returned, otherwise NA values
are ignored.

Usage

sum(..., na.rm=FALSE)

Arguments

... numeric or complex vectors.

na.rm logical. Should missing values be removed?

Value

The sum. If all of ... are of type integer, then so is the sum, and in that case the result
will be NA (with a warning) if integer overflow occurs.

NB: the sum of an empty set is zero, by definition.

summary Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various
model fitting functions. The function invokes particular methods which depend on the
class of the first argument.

Usage

summary(object, ...)

summary.default (object, ..., digits = max(3, getOption("digits")-3))
summary.data.frame(object, maxsum = 7,

digits = max(3, getOption("digits")-3), ...)
summary.factor (object, maxsum = 100, ...)
summary.matrix (object, ...)

646 summary.manova

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

digits integer, used for number formatting with signif() (for
summary.default) or format() (for summary.data.frame).

... additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, where
the less frequent levels are summarized in "(Others)" (resulting in maxsum frequencies).

The functions summary.lm and summary.glm are examples of particular methods which
summarise the results produced by lm and glm.

Value

The form of the value returned by summary depends on the class of its argument. See the
documentation of the particular methods for details of what is produced by that method.

See Also

anova, summary.glm, summary.lm.

Examples

data(attenu)

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision

summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

summary.manova Summary Method for Multivariate Analysis of Variance

Description

A summary method for class "manova".

Usage

summary(object,
test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
intercept = FALSE, ...)

Arguments

object An object of class "manova" or an aov object with multiple responses.

test The name of the test statistic to be used. Partial matching is used so the
name can be abbreviated.

intercept logical. If TRUE, the intercept term is included in the table.

... further arguments passed to or from other methods.

summary.manova 647

Details

The summary.manova method uses a multivariate test statistic for the summary table.
Wilks’ statistic is most popular in the literature, but the default Pillai-Bartlett statistic is
recommended by Hand and Taylor (1987).

Value

A list with components

SS A names list of sums of squares and product matrices.

Eigenvalues A matrix of eigenvalues,

stats A matrix of the statistics, approximate F value and degrees of freedom.

Author(s)

B.D. Ripley

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Ox-
ford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated
Measures. Chapman and Hall.

See Also

aov

Examples

Example on producing plastic filem from Krzanowski (1998, p. 381)

tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,

6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)

gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,

9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)

opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,

2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)

Y <- cbind(tear, gloss, opacity)

rate <- factor(gl(2,10), labels=c("Low", "High"))

additive <- factor(gl(2, 5, len=20), labels=c("Low", "High"))

fit <- manova(Y ~ rate * additive)

summary.aov(fit) # univariate ANOVA tables

summary(fit, test="Wilks") # ANOVA table of Wilks’ lambda

648 summaryRprof

summaryRprof Summarise Output of R Profiler

Description

Summarise the output of the Rprof function to show the amount of time used by different
R functions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000)

Arguments

filename Name of a file produced by Rprof()

chunksize Number of lines to read at a time

Details

This function is an alternative to R CMD Rprof. It provides the convenience of an all-R
implementation but will be slower for large files.

As the profiling output file could be larger than available memory, it is read in blocks
of chunksize lines. Increasing chunksize will make the function run faster if sufficient
memory is available.

Value

A list with components

by.self Timings sorted by ‘self’ time

by.total Timings sorted by ‘total’ time

sampling.time Total length of profiling run

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the
‘doc/manual’ subdirectory of the R source tree).

Rprof

Examples

Rprof() is not available on all platforms

Rprof(tmp <- tempfile())

example(glm)

Rprof()

summaryRprof(tmp)

unlink(tmp)

sunflowerplot 649

sunflowerplot Produce a Sunflower Scatter Plot

Description

Multiple points are plotted as “sunflowers” with multiple leaves (“petals”) such that over-
plotting is visualized instead of accidental and invisible.

Usage

sunflowerplot(x, y = NULL, number, log = "", digits = 6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
size = 1/8, seg.col = 2, seg.lwd = 1.5, ...)

Arguments

x numeric vector of x-coordinates of length n, say, or another valid plotting
structure, as for plot.default, see also xy.coords.

y numeric vector of y-coordinates of length n.

number integer vector of length n. number[i] = number of replicates for
(x[i],y[i]), may be 0.
Default: compute the exact multiplicity of the points x[],y[].

log character indicating log coordinate scale, see plot.default.

digits when number is computed (i.e., not specified), x and y are rounded to
digits significant digits before multiplicities are computes.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default is FALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of
sunflowers.

cex numeric; character size expansion of center points (s. pch).

cex.fact numeric shrinking factor to be used for the center points when there are
flower leaves, i.e. cex / cex.fact is used for these.

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8̈, approxi-
mately 3.2mm.

seg.col color to be used for the segments which make the sunflowers leaves, see
par(col=); col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... further arguments to plot [if add=FALSE].

650 sunflowerplot

Details

For number[i]==1, a (slightly enlarged) usual plotting symbol (pch) is drawn. For
number[i] > 1, a small plotting symbol is drawn and number[i] equi-angular “rays” em-
anate from it.

If rotate=TRUE and number[i] >= 2, a random direction is chosen (instead of the y-axis)
for the first ray. The goal is to jitter the orientations of the sunflowers in order to prevent
artefactual visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

Side Effects

A scatter plot is drawn with “sunflowers” as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port to
R by Martin Maechler 〈maechler@stat.math.ethz.ch〉.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods
for Data Analysis. Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots. The American
Statistician, 48, 303–305.

See Also

density

Examples

data(iris)

‘number’ is computed automatically:

sunflowerplot(iris[, 3:4])

Imitating Chambers et al., p.109, closely:

sunflowerplot(iris[, 3:4],cex=.2, cex.f=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

main = "Sunflower Plot of Rounded N(0,1)")

A ‘point process’ {explicit ‘number’ argument}:

sunflowerplot(rnorm(100),rnorm(100), number=rpois(n=100,lambda=2),

rotate=TRUE, main="Sunflower plot")

sunspots 651

sunspots Monthly Sunspot Numbers, 1749–1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal
Observatory, Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

data(sunspots)

Format

A time series of monthly data from 1749 to 1983.

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many
Fields for the Student and Research Worker. New York: Springer-Verlag.

See Also

sunspot.month (package ts) has a longer (and a bit different) series.

Examples

data(sunspots)

plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")

svd Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n, p), nv = min(n, p))
La.svd(x, nu = min(n, p), nv = min(n, p), method = c("dgesdd", "dgesvd"))

Arguments

x a matrix whose SVD decomposition is to be computed.

nu the number of left singular vectors to be computed. This must be one of
0, nrow(x) and ncol(x), except for method = "dgesdd".

nv the number of right singular vectors to be computed. This must be one
of 0 and ncol(x).

method The LAPACK routine to use in the real case.

652 svd

Details

The singular value decomposition plays an important role in many statistical techniques.

svd provides an interface to the LINPACK routine DSVDC. La.svd provides an inter-
face to the LAPACK routines DGESVD and DGESDD. The latter is usually substan-
tially faster if singular vectors are required: see http://www.cs.berkeley.edu/~demmel/
DOE2000/Report0100.html. Most benefit is seen with an optimized BLAS system.

La.svd is preferred to svd for new projects, but it is not an exact replacement as it returns
the transpose of the right singular vector matrix, and the signs of the singular vectors
may differ from those given by svd. (They may also differ between methods and between
platforms.)

Both functions handle complex matrices via LAPACK routine ZGESVD.

Computing the singular vectors is the slow part for large matrices.

Using method="dgesdd" requires IEEE 754 arithmetic. Should this not be supported on
your platform, method="dgesvd" is used, with a warning.

Value

The SVD decomposition of the matrix as computed by LINPACK,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with
the singular values Dii. Equivalently, D = U ′XV , which is verified in the examples, below.

The components in the returned value correspond directly to the values returned by
DSVDC.

d a vector containing the singular values of x.

u a matrix whose columns contain the left singular vectors of x.

v a matrix whose columns contain the right singular vectors of x.

For La.svd the return value replaces v by vt, the (conjugated if complex) transpose of v.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users
Guide. Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

eigen, qr.

capabilities to test for IEEE 754 arithmetic.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

str(X <- hilbert(9)[,1:6])

str(s <- svd(X))

Eps <- 100 * .Machine$double.eps

D <- diag(s$d)

http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.cs.berkeley.edu/~demmel/DOE2000/Report0100.html
http://www.netlib.org/lapack/lug/lapack_lug.html

sweep 653

stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V’

stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U’ X V

X <- cbind(1, 1:7)

str(s <- svd(X)); D <- diag(s$d)

stopifnot(abs(X - s$u %*% D %*% t(s$v)) < Eps)# X = U D V’

stopifnot(abs(D - t(s$u) %*% X %*% s$v) < Eps)# D = U’ X V

sweep Sweep out Array Summaries

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", ...)

Arguments

x an array.

MARGIN a vector of indices giving the extents of x which correspond to STATS.

STATS the summary statistic which is to be swept out.

FUN the function to be used to carry out the sweep. In the case of binary
operators such as "/" etc., the function name must be quoted.

... optional arguments to FUN.

Value

An array with the same shape as x, but with the summary statistics swept out.

See Also

apply on which sweep is based; scale for centering and scaling.

Examples

data(attitude)

med.att <- apply(attitude, 2, median)

sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

654 swiss

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

data(swiss)

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig, “common standardized fertility measure”
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % “draftees” receiving highest mark on army examination
[,4] Education % education beyond primary school for “draftees”.
[,5] Catholic % catholic (as opposed to “protestant”).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the “demographic transition”; i.e., its
fertility was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were
scaled to [0, 1].

Note

Files for all 182 districts in 1888 and other years are available at http://opr.princeton.
edu/archive/eufert/switz.html.

They state that variables Examination and Education are averages for 1887, 1888 and
1889.

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in
Statistics. Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Pop-
ulation Research, Princeton University, 1976. Unpublished data assembled under NICHD
contract number No 1-HD-O-2077.”

http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/eufert/switz.html

switch 655

Examples

data(swiss)

pairs(swiss, panel = panel.smooth, main = "swiss data",

col = 3 + (swiss$Catholic > 50))

summary(lm(Fertility ~ . , data = swiss))

switch Select One of a List of Alternatives

Description

switch evaluates EXPR and accordingly chooses one of the further arguments (in ...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives, given explicitly.

Details

If the value of EXPR is an integer between 1 and nargs()-1 then the corresponding element
of ... is evaluated and the result returned.

If EXPR returns a character string then that string is used to match the names of the elements
in If there is an exact match then that element is evaluated and returned if there is
one, otherwise the next element is chosen, e.g., switch("cc", a=1, cc=, d=2) evaluates
to 2.

In the case of no match, if there’s a further argument in switch that one is returned,
otherwise NULL.

Warning

Beware of partial matching: an alternative E = foo will match the first argument EXPR
unless that is named. See the examples for good practice in naming the first argument.

Examples

centre <- function(x, type) {

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}

x <- rcauchy(10)

centre(x, "mean")

centre(x, "median")

centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")

656 symbols

for(ch in ccc) cat(ch,":",switch(EXPR = ch, a=1, b=2:3), "\n")

for(ch in ccc) cat(ch,":",switch(EXPR = ch, a=,A=1, b=2:3, "Otherwise: last"),"\n")

Numeric EXPR don’t allow an ‘otherwise’:

for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

symbols Draw symbols on a plot

Description

This function draws symbols on a plot. One of six symbols; circles, squares, rectangles, stars,
thermometers, and boxplots, can be plotted at a specified set of x and y coordinates. Specific
aspects of the symbols, such as relative size, can be customized by additional parameters.

Usage

symbols(x, y, circles, squares, rectangles, stars,
thermometers, boxplots, inches=TRUE, add=FALSE,
fg=1, bg=NA, xlab = NULL, ylab = NULL, main = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x a vector giving the x coordinates of the symbols.

y a vector giving the y coordinates of the symbols.

circles a vector giving the radii of the circles.

squares a vector giving the length of the sides of the squares.

rectangles a matrix with two columns. The first column gives widths and the second
the heights of rectangle symbols.

stars a matrix with three or more columns giving the lengths of the rays from
the center of the stars. NA values are replaced by zeroes.

thermometers a matrix with three or four columns. The first two columns give the width
and height of the thermometer symbols. If there are three columns, the
third is taken as a proportion. The thermometers are filled from their
base to this proportion of their height. If there are four columns, the
third and fourth columns are taken as proportions. The thermometers
are filled between these two proportions of their heights.

boxplots a matrix with five columns. The first two columns give the width and
height of the boxes, the next two columns give the lengths of the lower
and upper whiskers and the fifth the proportion (with a warning if not in
[0,1]) of the way up the box that the median line is drawn.

inches If inches is FALSE, the units are taken to be those of the x axis. If inches
is TRUE, the symbols are scaled so that the largest symbol is one inch in
height. If a number is given the symbols are scaled to make largest symbol
this height in inches.

add if add is TRUE, the symbols are added to an existing plot, otherwise a new
plot is created.

symbols 657

fg colors the symbols are to be drawn in (the default is the value of the col
graphics parameter).

bg if specified, the symbols are filled with this color. The default is to leave
the symbols unfilled.

xlab the x label of the plot if add is not true; this applies to the following
arguments as well. Defaults to the deparsed expression used for x.

ylab the y label of the plot.

main a main title for the plot.

xlim numeric of length 2 giving the x limits for the plot.

ylim numeric of length 2 giving the y limits for the plot.

... graphics parameters can also be passed to this function.

Details

Observations which have missing coordinates or missing size parameters are not plotted.
The exception to this is stars. In that case, the length of any rays which are NA is reset to
zero.

Circles of radius zero are plotted at radius one pixel (which is device-dependent).

References

W. S. Cleveland (1985) The Elements of Graphing Data. Monterey, California: Wadsworth.

See Also

stars for drawing stars with a bit more flexibility; sunflowerplot.

Examples

x <- 1:10

y <- sort(10*runif(10))

z <- runif(10)

z3 <- cbind(z, 2*runif(10), runif(10))

symbols(x, y, thermometers=cbind(.5, 1, z), inches=.5, fg = 1:10)

symbols(x, y, thermometers = z3, inches=FALSE)

text(x,y, apply(format(round(z3, dig=2)), 1, paste, collapse = ","),

adj = c(-.2,0), cex = .75, col = "purple", xpd=NA)

data(trees)

Note that example(trees) shows more sensible plots!

N <- nrow(trees)

attach(trees)

Girth is diameter in inches

symbols(Height, Volume, circles=Girth/24, inches=FALSE,

main="Trees’ Girth")# xlab and ylab automatically

Colors too:

palette(rainbow(N, end = 0.9))

symbols(Height, Volume, circles=Girth/16, inches=FALSE, bg = 1:N,

fg="gray30", main="symbols(*, circles=Girth/16, bg = 1:N)")

palette("default"); detach()

658 symnum

symnum Symbolic Number Coding

Description

Symbolically encode a given numeric or logical vector or array.

Usage

symnum(x, cutpoints=c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols=c(" ", ".", ",", "+", "*", "B"),
legend = length(symbols) >= 3,
na="?", eps=1e-5,
corr = missing(cutpoints), show.max = if(corr) "1", show.min = NULL,
lower.triangular = corr & is.matrix(x),
diag.lower.tri = corr & !is.null(show.max))

Arguments

x numeric or logical vector or array.
cutpoints numeric vector whose values cutpoints[j] = cj (after augmentation, see

corr below) are used for intervals.
symbols character vector, one shorter than (the augmented, see corr below)

cutpoints. symbols[j]= sj are used as “code” for the (half open) inter-
val (cj , cj+1].
For logical argument x, the default is c(".","|") (graphical 0 / 1 s).

legend logical indicating if a "legend" attribute is desired.
na character or logical. How NAs are coded. If na == FALSE, NAs are coded

invisibly, including the "legend" attribute below, which otherwise men-
tions NA coding.

eps absolute precision to be used at left and right boundary.
corr logical. If TRUE, x contains correlations. The cutpoints are augmented by

0 and 1 and abs(x) is coded.
show.max If TRUE, or of mode character, the maximal cutpoint is coded especially.
show.min If TRUE, or of mode character, the minmal cutpoint is coded especially.
lower.triangular

logical. If TRUE and x is a matrix, only the lower triangular part of the
matrix is coded as non-blank.

diag.lower.tri

logical. If lower.triangular and this are TRUE, the diagonal part of the
matrix is shown.

Value

An atomic character object of class noquote and the same dimensions as x.

If legend (TRUE by default when there more than 2 classes), it has an attribute "legend"
containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

where cj = cutpoints[j] and sj = symbols[j].

Syntax 659

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

as.character

Examples

ii <- 0:8; names(ii) <- ii

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))

symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# use for logical

##-- Symbolic correlation matrices:

data(attitude)

symnum(cor(attitude), diag = FALSE)

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))

symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --

symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n

symnum(cm1, diag=FALSE)

symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n

symnum(cm2, lower=FALSE)

NA’s:

Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA

symnum(Cm, show.max=NULL)

Graphical P-values (aka "significance stars"):

pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))

symp <- symnum(pval, corr=FALSE,

cutpoints = c(0, .001,.01,.05, .1, 1),

symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

Syntax Operator Syntax

Description

Outlines R syntax and gives the precedence of operators

Details

The following unary and binary operators are defined. They are listed in precedence groups,
from highest to lowest.

[[[indexing
:: name space/variable name separator
$ @ component / slot extraction
^ exponentiation (right to left)
- + unary minus and plus

660 Sys.getenv

: sequence operator
%any% special operators
* / multiply, divide
+ - (binary) add, subtract
< > <= >= == != ordering and comparison
! negation
& && and
| || or
~ as in formulae
-> ->> rightwards assignment
= assignment (right to left)
<- _ <<- assignment (right to left)
? help (unary and binary)

Within an expression operators of equal precedence are evaluated from left to right except
where indicated.

The links in the See Also section covers most other aspects of the basic syntax.

Note

There are substantial precedence differences between R and S. In particular, in S ? has the
same precedence as + - and & && | || have equal precedence.

See Also

Arithmetic, Comparison, Control, Extract, Logic, Paren

The R Language Definition manual.

Sys.getenv Get Environment Variables

Description

Sys.getenv obtains the values of the environment variables named by x.

Usage

Sys.getenv(x)

Arguments

x a character vector, or missing

Value

A vector of the same length as x, with the variable names as its names attribute. Each
element holds the value of the environment variable named by the corresponding component
of x (or "" if no environment variable with that name was found).

On most platforms Sys.getenv() will return a named vector giving the values of all the
environment variables.

Sys.info 661

See Also

Sys.putenv, getwd for the working directory.

Examples

Sys.getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))

Sys.info Extract System and User Information

Description

Reports system and user information.

Usage

Sys.info()

Details

This function is not implemented on all R platforms, and returns NULL when not available.
Where possible it is based on POSIX system calls.

Sys.info() returns details of the platform R is running on, whereas R.version gives details
of the platform R was built on: they may well be different.

Value

A character vector with fields

sysname The operating system.

release The OS release.

version The OS version.

nodename A name by which the machine is known on the network (if any).

machine A concise description of the hardware.

login The user’s login name, or "unknown" if it cannot be ascertained.

user The name of the real user ID, or "unknown" if it cannot be ascertained.

The first five fields come from the uname(2) system call. The login name comes from
getlogin(2), and the user name from getpwuid(getuid())

Note

The meaning of OS “release” and “version” is highly system-dependent and there is no
guarantee that the node or login or user names will be what you might reasonably expect.
(In particular on some Linux distributions the login name is unknown from sessions with
re-directed inputs.)

Author(s)

B. D. Ripley

662 sys.parent

See Also

.Platform, and R.version.

Examples

Sys.info()

An alternative (and probably better) way to get the login name on Unix

Sys.getenv("LOGNAME")

sys.parent Functions to Access the Function Call Stack

Description

These functions provide access to environments (“frames” in S terminology) associated with
functions further up the calling stack.

Usage

sys.call(which = 0)
sys.frame(which = 0)
sys.nframe()
sys.function(n = 0)
sys.parent(n = 1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n = 1)

Arguments

which the frame number if non-negative, the number of generations to go back
if negative. (See the Details section.)

n the number of frame generations to go back.

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation
increases the frame stack by 1 and the environment for evaluation of that function is returned
by sys.frame with the appropriate index.

The parent of a function evaluation is the environment in which the function was called.
It is not necessarily numbered one less than the frame number of the current evaluation,
nor is it the environment within which the function was defined. sys.parent returns the
number of the parent frame if n is 1 (the default), the grandparent if n is 2, and so on.
sys.frame returns the environment associated with a given frame number.

sys.call and sys.frame both accept integer values for the argument which. Non-negative
values of which are normal frame numbers whereas negative values are counted back from
the frame number of the current evaluation.

sys.parent 663

sys.nframe returns the number of the current frame in that list. sys.function gives the
definition of the function curently being evaluated in the frame n generations back.

sys.frames gives a list of all the active frames and sys.parents gives the indices of the
parent frames of each of the frames.

Notice that even though the sys.xxx functions (except sys.status) are interpreted, their
contexts are not counted nor are they reported. There is no access to them.

sys.status() returns a list with components sys.calls, sys.parents and sys.frames.

sys.on.exit() retrieves the expression stored for use by on.exit in the function currently
being evaluated. (Note that this differs from S, which returns a list of expressions for the
current frame and its parents.)

parent.frame(n) is a convenient shorthand for sys.frame(sys.parent(n)) (implemented
slightly more efficiently).

See Also

eval for the usage of sys.frame and parent.frame.

Examples

ff <- function(x) gg(x)

gg <- function(y) sys.status()

str(ff(1))

gg <- function(y) {

ggg <- function() {

cat("current frame is", sys.nframe(), "\n")

cat("parents are", sys.parents(), "\n")

print(sys.function(0)) # ggg

print(sys.function(2)) # gg

}

if(y > 0) gg(y-1) else ggg()

}

gg(3)

t1 <- function() {

aa <- "here"

t2 <- function() {

in frame 2 here

cat("current frame is", sys.nframe(), "\n")

str(sys.calls()) ## list with two components t1() and t2()

cat("parents are frame nos", sys.parents(), "\n") ## 0 1

print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"

invisible()

}

t2()

}

t1()

test.sys.on.exit <- function() {

on.exit(print(1))

ex <- sys.on.exit()

str(ex)

cat("exiting...\n")

}

664 Sys.putenv

test.sys.on.exit()

gives ‘language print(1)’, prints 1 on exit

Sys.putenv Set Environment Variables

Description

putenv sets environment variables (for other processes called from within R or future calls
to Sys.getenv from this R process).

Usage

Sys.putenv(...)

Arguments

... arguments in name=value form, with value coercible to a character string.

Details

Non-standard R names must be quoted: see the Examples section.

Value

A logical vector of the same length as x, with elements being true if setting the corresponding
variable succeeded.

Note

Not all systems need support Sys.putenv.

See Also

Sys.getenv, setwd for the working directory.

Examples

print(Sys.putenv("R_TEST"="testit", ABC=123))

Sys.getenv("R_TEST")

Sys.sleep 665

Sys.sleep Suspend Execution for a Time Interval

Description

Suspend execution of R expressions for a given number of seconds

Usage

Sys.sleep(time)

Arguments

time The time interval to suspend execution for, in seconds.

Details

Using this function allows R to be given very low priority and hence not to interfere with
more important foreground tasks. A typical use is to allow a process lauched from R to set
itself up and read its input files before R execution is resumed.

The intention is that this function suspends execution of R expressions but wakes the process
up often enough to respond to GUI events, typically every 0.5 seconds.

There is no guarantee that the process will sleep for the whole of the specified interval, and
it may well take slightly longer in real time to resume execution. The resolution of the time
interval is system-dependent, but will normally be down to 0.02 secs or better.

Value

Invisible NULL.

Note

This function is not implemented on all systems.

Author(s)

B. D. Ripley

Examples

testit <- function(x)

{

p1 <- proc.time()

Sys.sleep(x)

proc.time() - p1 # The cpu usage should be negligible

}

testit(3.7)

666 Sys.time

sys.source Parse and Evaluate Expressions from a File

Description

Parses expressions in the given file, and then successively evaluates them in the specified
environment.

Usage

sys.source(file, envir = NULL, chdir = FALSE,
keep.source = getOption("keep.source.pkgs"))

Arguments

file a character string naming the file to be read from

envir an R object specifying the environment in which the expressions are to
be evaluated. May also be a list or an integer. The default value NULL
corresponds to evaluation in the base environment. This is probably not
what you want; you should typically supply an explicit envir argument.

chdir logical; if TRUE, the R working directory is changed to the directory con-
taining file for evaluating.

keep.source logical. If TRUE, functions “keep their source” including comments, see
options(keep.source = *) for more details.

Details

For large files, keep.source = FALSE may save quite a bit of memory.

See Also

source, and library which uses sys.source.

Sys.time Get Current Time and Timezone

Description

Sys.time returns the system’s idea of the current time and Sys.timezone returns the
current time zone.

Usage

Sys.time()
Sys.timezone()

Value

Sys.time returns an object of class "POSIXct" (see DateTimeClasses).

Sys.timezone returns an OS-specific character string, possibly an empty string.

system 667

See Also

date for the system time in a fixed-format character string.

Examples

Sys.time()

locale-specific version of date()

format(Sys.time(), "%a %b %d %X %Y")

Sys.timezone()

system Invoke a System Command

Description

system invokes the OS command specified by command.

Usage

system(command, intern = FALSE, ignore.stderr = FALSE)

Arguments

command the system command to be invoked, as a string.

intern a logical, indicates whether to make the output of the command an R
object.

ignore.stderr a logical indicating whether error messages (written to ‘stderr’) should be
ignored.

Details

If intern is TRUE then popen is used to invoke the command and the output collected, line
by line, into an R character vector which is returned as the value of system.

If intern is FALSE then the C function system is used to invoke the command and the
value returned by system is the exit status of this function.

unix is a deprecated alternative, available for backwards compatibility.

Value

If intern=TRUE, a character vector giving the output of the command, one line per character
string. If the command could not be run or gives an error a R error is generated.

If intern=FALSE, the return value is an error code.

See Also

.Platform for platform specific variables.

668 system.file

Examples

list all files in the current directory using the -F flag

system("ls -F")

t1 is a character vector, each one

representing a separate line of output from who

t1 <- system("who", TRUE)

system("ls fizzlipuzzli", TRUE, TRUE)# empty since file doesn’t exist

system.file Find Names of R System Files

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., package = "base", lib.loc = NULL, pkg, lib)

Arguments

... character strings, specifying subdirectory and file(s) within some package.
The default, none, returns the root of the package. Wildcards are not
supported.

package a character string with the name of a single package. An error occurs if
more than one package name is given.

lib.loc a character vector with path names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. If the default
is used, the loaded packages are searched before the libraries.

pkg previous name for argument package. Deprecated.

lib previous name for argument lib.loc. Deprecated.

Value

A character vector of positive length, containing the file names that matched ..., or the
empty string, "", if none matched. If matching the root of a package, there is no trailing
separator.

As a special case, system.file() gives the root of the base package only.

See Also

list.files

Examples

system.file() # The root of the ‘base’ package

system.file(package = "lqs") # The root of package ‘lqs’

system.file("INDEX")

system.file("help", "AnIndex", package = "stepfun")

system.time 669

system.time CPU Time Used

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr)
unix.time(expr)

Arguments

expr Valid R expression to be “timed”

Details

system.time calls the builtin proc.time, evaluates expr, and then calls proc.time once
more, returning the difference between the two proc.time calls.

The values returned by the proc.time are (on Unix) those returned by the C library
function times(3v), if available.

unix.time is an alias of system.time, for compatibility reasons.

Value

A numeric vector of length 5 containing the user cpu, system cpu, elapsed, subproc1, sub-
proc2 times. The subproc times are the user and system cpu time used by child processes
(and so are usually zero).

The resolution of the times will be system-specific; it is common for them to be recorded
to of the order of 1/100 second, and elapsed time is rounded to the nearest 1/100.

Note

It is possible to compile R without support for system.time, when all the values will be
NA.

See Also

proc.time, time which is for time series.

Examples

system.time(for(i in 1:50) mad(runif(500)))

exT <- function(n = 100) {

Purpose: Test if system.time works ok; n: loop size

system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}

#-- Try to interrupt one of the following (using Ctrl-C):

exT() #- ‘1.4’ on -O-optimized Ultra1

system.time(exT()) #~ +/- same

670 table

t Matrix Transpose

Description

Given a matrix or data.frame x, t returns the transpose of x.

Usage

t(x)

Arguments

x a matrix or data frame, typically.

Details

A data frame is first coerced to a matrix: see as.matrix. When x is a vector, it is treated
as “column”, i.e., the result is a 1-row matrix.

See Also

aperm for permuting the dimensions of arrays.

Examples

a <- matrix(1:30, 5,6)

ta <- t(a) ##-- i.e., a[i, j] == ta[j, i] for all i,j :

for(j in seq(ncol(a)))

if(! a[, j] == ta[j,]) stop("wrong transpose")

table Cross Tabulation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels.

Usage

table(..., exclude = c(NA, NaN), dnn, deparse.level = 1)
as.table(x, ...)
is.table(x)
as.data.frame.table(x, row.names = NULL, optional = FALSE, ...)

table 671

Arguments

... objects which can be interpreted as factors (including character strings),
or a list (or data frame) whose components can be so interpreted

exclude values to use in the exclude argument of factor when interpreting non-
factor objects

dnn the names to be given to the dimensions in the result (‘the dimname
names’).

deparse.level controls how the default dnn is constructed. See details.

x an arbitrary R object.

row.names a character vector giving the row names for the data frame.

optional a logical controlling whether row names are set. Currently not used.

Details

If the argument dnn is not supplied, the internal function list.names is called to compute
the ‘dimname names’. If the arguments in ... are named, those names are used. For the
remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses
the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

There is a summary method for contingency table objects created by table or xtabs, which
gives basic information and performs a chi-squared test for independence of factors (note
that the function chisq.test in package ctest currently only handles 2-d tables).

as.table and is.table coerce to and test for contingency table, respectively.

as.data.frame.table is a method for the generic function as.data.frame to convert the
array-based representation of a contingency table to a data frame containing the classifying
factors and the corresponding counts (the latter as component Freq). This is the inverse
of xtabs.

Examples

Simple frequency distribution

table(rpois(100,5))

data(warpbreaks)

attach(warpbreaks)

Check the design:

table(wool, tension)

data(state)

table(state.division, state.region)

data(airquality)

attach(airquality)

simple two-way contingency table

table(cut(Temp, quantile(Temp)), Month)

a <- letters[1:3]

table(a, sample(a)) # dnn is c("a", "")

table(a, sample(a), deparse.level = 0) # dnn is c("", "")

table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")

xtabs() <-> as.data.frame.table() :

data(UCBAdmissions) ## already a contingency table

DF <- as.data.frame(UCBAdmissions)

class(tab <- xtabs(Freq ~ ., DF))# xtabs & table

672 tapply

tab *is* ‘‘the same’’ as the original table:

all(tab == UCBAdmissions)

all.equal(dimnames(tab), dimnames(UCBAdmissions))

tabulate Tabulation for Vectors

Description

tabulate takes the integer valued vector bin and counts the number of times each integer
occurs in it. tabulate is used as the basis of the table function.

Usage

tabulate(bin, nbins = max(1, bin))

Arguments

bin a vector of integers, or a factor.

nbins the number of bins to be used.

Details

If bin is a factor, its internal integer representation is tabulated. If the elements of bin are
not integers, they are rounded to the nearest integer. Elements outside the range 1,...,
nbin are (silently) ignored in the tabulation.

See Also

factor, table.

Examples

tabulate(c(2,3,5))

tabulate(c(2,3,3,5), nb = 10)

tabulate(c(-2,0,2,3,3,5), nb = 3)

tabulate(factor(letters[1:10]))

tapply Apply a Function Over a “Ragged” Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values
given by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

tapply 673

Arguments

X an atomic object, typically a vector.
INDEX list of factors, each of same length as X.
FUN the function to be applied. In the case of functions like +, %*%, etc., the

function name must be quoted. If FUN is NULL, tapply returns a vector
which can be used to subscript the multi-way array tapply normally
produces.

... optional arguments to FUN.
simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the

default), then if FUN always returns a scalar, tapply returns an array with
the mode of the scalar.

Value

When FUN is present, tapply calls FUN for each cell that has any data in it. If FUN returns a
single atomic value for each cell (e.g., functions mean or var) and when simplify is TRUE,
tapply returns a multi-way array containing the values. The array has the same number
of dimensions as INDEX has components; the number of levels in a dimension is the number
of levels (nlevels()) in the corresponding component of INDEX.
Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.

If FUN does not return a single atomic value, tapply returns an array of mode list whose
components are the values of the individual calls to FUN, i.e., the result is a list with a dim
attribute.

See Also

the convenience function aggregate (using tapply); apply, lapply with its version sapply.

Examples

groups <- as.factor(rbinom(32, n = 5, p = .4))

tapply(groups, groups, length) #- is almost the same as

table(groups)

data(warpbreaks)

contingency table from data.frame : array with named dimnames

tapply(warpbreaks$breaks, warpbreaks[,-1], sum)

tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)

n <- 17; fac <- factor(rep(1:3, len = n), levels = 1:5)

table(fac)

tapply(1:n, fac, sum)

tapply(1:n, fac, sum, simplify = FALSE)

tapply(1:n, fac, range)

tapply(1:n, fac, quantile)

example of ... argument: find quarterly means

data(presidents)

tapply(presidents, cycle(presidents), mean, na.rm = TRUE)

ind <- list(c(1, 2, 2), c("A", "A", "B"))

table(ind)

tapply(1:3, ind) #-> the split vector

tapply(1:3, ind, sum)

674 taskCallback

taskCallback Add or remove a top-level task callback

Description

addTaskCallback registers an R function that is to be called each time a top-level task is
completed.

removeTaskCallback un-registers a function that was registered earlier via
addTaskCallback.

These provide low-level access to the internal/native mechanism for managing task-
completion actions. One can use taskCallbackManager at the S-language level to manage
S functions that are called at the completion of each task. This is easier and more direct.

Usage

addTaskCallback(f, data = NULL, name = character(0))
removeTaskCallback(id)

Arguments

f the function that is to be invoked each time a top-level task is successfully
completed. This is called with 5 or 4 arguments depending on whether
data is specified or not, respectively. The return value should be a logical
value indicating whether to keep the callback in the list of active callbacks
or discard it.

data if specified, this is the 5-th argument in the call to the callback function
f.

id a string or an integer identifying the element in the internal call-
back list to be removed. Integer indices are 1-based, i.e the first
element is 1. The names of currently registered handlers is avail-
able using getTaskCallbackNames and is also returned in a call to
addTaskCallback.

name character: names to be used.

Details

Top-level tasks are individual expressions rather than entire lines of input. Thus an input
line of the form expression1 ; expression2 will give rise to 2 top-level tasks.

A top-level task callback is called with the expression for the top-level task, the result of
the top-level task, a logical value indicating whether it was successfully completed or not
(always TRUE at present), and a logical value indicating whether the result was printed
or not. If the data argument was specified in the call to addTaskCallback, that value is
given as the fifth argument.

The callback function should return a logical value. If the value is FALSE, the callback is
removed from the task list and will not be called again by this mechanism. If the function
returns TRUE, it is kept in the list and will be called on the completion of the next top-level
task.

taskCallback 675

Value

addTaskCallback returns an integer value giving the position in the list of task callbacks
that this new callback occupies. This is only the current position of the callback. It can be
used to remove the entry as long as no other values are removed from earlier positions in
the list first.

removeTaskCallback returns a logical value indicating whether the specified element was
removed. This can fail (i.e. return FALSE) if an incorrect name or index is given that does
not correspond to the name or position of an element in the list.

Note

This is an experimental feature and the interface may be changed in the future.

There is also C-level access to top-level task callbacks to allow C routines rather than R
functions be used.

See Also

getTaskCallbackNames taskCallbackManager http://developer.r-project.org/
TaskHandlers.pdf

Examples

times <- function(total = 3, str="Task a") {

ctr <- 0

function(expr, value, ok, visible) {

ctr <<- ctr + 1

cat(str, ctr, "\n")

if(ctr == total) {

cat("handler removing itself\n")

}

return(ctr < total)

}

}

add the callback that will work for

4 top-level tasks and then remove itself.

n <- addTaskCallback(times(4))

now remove it, assuming it is still first in the list.

removeTaskCallback(n)

There is no point in running this

as

addTaskCallback(times(4))

sum(1:10)

sum(1:10)

sum(1:10)

sum(1:10)

sum(1:10)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

676 taskCallbackManager

taskCallbackManager Create an R-level task callback manager

Description

This provides an entirely S-language mechanism for managing callbacks or actions that
are invoked at the conclusion of each top-level task. Essentially, we register a single R
function from this manager with the underlying, native task-callback mechanism and this
function handles invoking the other R callbacks under the control of the manager. The
manager consists of a collection of functions that access shared variables to manage the list
of user-level callbacks.

Usage

taskCallbackManager(handlers = list(), registered = FALSE, verbose = FALSE)

Arguments

handlers this can be a list of callbacks in which each element is a list with an
element named "f" which is a callback function, and an optional element
named "data" which is the 5-th argument to be supplied to the callback
when it is invoked. Typically this argument is not specified, and one uses
add to register callbacks after the manager is created.

registered a logical value indicating whether the evaluate function has already been
registered with the internal task callback mechanism. This is usually
FALSE and the first time a callback is added via the add function, the
evaluate function is automatically registered. One can control when the
function is registered by specifying TRUE for this argument and calling
addTaskCallback manually.

verbose a logical value, which if TRUE, causes information to be printed to the
console about certain activities this dispatch manager performs. This is
useful for debugging callbacks and the handler itself.

Value

A list containing 6 functions:

add register a callback with this manager, giving the function, an optional 5-th
argument, an optional name by which the the callback is stored in the list,
and a register argument which controls whether the evaluate function
is registered with the internal C-level dispatch mechanism if necessary.

remove remove an element from the manager’s collection of callbacks, either by
name or position/index.

evaluate the ‘real’ callback function that is registered with the C-level dispatch
mechanism and which invokes each of the R-leve callbacks within this
manager’s control.

suspend a function to set the suspend state of the manager. If it is suspended,
none of the callbacks will be invoked when a task is completed. One sets
the state by specifying a logical value for the status argument.

taskCallbackNames 677

register a function to register the evaluate function with the internal C-level
dispatch mechanism. This is done automatically by the add function, but
can be called manually.

callbacks returns the list of callbacks being maintained by this manager.

Note

This is an experimental feature and the interface may be changed in the future.

See Also

addTaskCallback removeTaskCallback getTaskCallbackNames http://developer.
r-project.org/TaskHandlers.pdf

Examples

create the manager

h <- taskCallbackManager()

add a callback

h$add(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

}, name = "simpleHandler")

look at the internal callbacks.

getTaskCallbackNames()

look at the R-level callbacks

names(h$callback())

#

getTaskCallbackNames()

removeTaskCallback("R-taskCallbackManager")

taskCallbackNames Query the names of the current internal top-level task callbacks

Description

This provides a way to get the names (or identifiers) for the currently registered task
callbacks that are invoked at the conclusion of each top-level task. These identifies can be
used to remove a callback.

Usage

getTaskCallbackNames()

Arguments

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

678 TDist

Value

A character vector giving the name for each of the registered callbacks which are invoked
when a top-level task is completed successfully. Each name is the one used when registering
the callbacks and returned as the in the call to addTaskCallback.

Note

One can use taskCallbackManager to manage user-level task callbacks, i.e. S-language
functions, entirely within the S language and access the names more directly.

See Also

addTaskCallback removeTaskCallback taskCallbackManager http://developer.
r-project.org/TaskHandlers.pdf

Examples

n <- addTaskCallback(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

now remove it by name

removeTaskCallback("simpleHandler")

h <- taskCallbackManager()

h$add(function(expr, value, ok, visible) {

cat("In handler\n")

return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

removeTaskCallback("R-taskCallbackManager")

TDist The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribu-
tion with df degrees of freedom (and optional noncentrality parameter ncp).

Usage

dt(x, df, log = FALSE)
pt(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qt(p, df, lower.tail = TRUE, log.p = FALSE)
rt(n, df)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

TDist 679

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
df degrees of freedom (> 0, maybe non-integer).
ncp non-centrality parameter δ; currently ncp <= 37.62.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >

x].

Details

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as a the distribution
of Tν(δ) := U+δ

χν/
√

ν
where U and χν are independent random variables, U ∼ N (0, 1), and χ2

ν

is chi-squared, see pchisq.

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√

n
where X̄ is the mean and S the sample standard deviation (sd) of

X1, X2, . . . , Xn which are i.i.d. N(µ, σ2). Then T is distributed as non-centrally t with
df= n− 1 degrees of freedom and non-centrality parameter ncp= (µ− µ0)

√
n/σ.

Value

dt gives the density, pt gives the distribution function, qt gives the quantile function, and
rt generates random deviates.

References

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-
central t distribution, Appl. Statist. 38, 185–189.

See Also

df for the F distribution.

Examples

1 - pt(1:5, df = 1)

qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)

ncp <- seq(0,6, len=31)

ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))

image(tt,ncp,ptn, zlim=c(0,1),main=t.tit <- "Non-central t - Probabilities")

persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t", ylab = "noncentrality parameter", zlab = "Pr(T <= t)")

680 tempfile

tempfile Create Names for Temporary Files

Description

tempfile returns a vector of character strings which can be used as names for temporary
files in the directory given by tempdir.

Usage

tempfile(pattern = "file")
tempdir()

Arguments

pattern a non-empty character vector giving the initial part of the name.

Details

If pattern has length greater than one then the result is of the same length giving a
temporary file name for each component of pattern.

The names are very likely to be unique among calls to tempfile in an R session and across
simultaneous R sessions. The filenames are guaranteed not to be currently in use.

The file name is made of the pattern, the process number in hex and a random suffix in
hex. The filenames will be in the directory given by tempdir(). This will be a subdirectory
of the directory given TMPDIR if set, otherwise "/tmp".

Value

For tempfile a character vector giving the names of possible (temporary) files. Note that
no files are generated by tempfile.

For tempdir, the path of the per-session temporary directory.

See Also

unlink for deleting files.

Examples

tempfile(c("ab", "a b c")) # give file name with spaces in!

termplot 681

termplot Plot regression terms

Description

Plots regression terms against their predictors, optionally with standard errors and partial
residuals added.

Usage

termplot(model, data=NULL, envir=environment(formula(model)),
partial.resid=FALSE, rug=FALSE,
terms=NULL, se=FALSE, xlabs=NULL, ylabs=NULL, main = NULL,
col.term = 2, lwd.term = 1.5,
col.se = "orange", lty.se = 2, lwd.se = 1,
col.res = "gray", cex = 1, pch = par("pch"),
ask = interactive() && nb.fig < n.tms && .Device !="postscript",
use.factor.levels=TRUE,
...)

Arguments

model fitted model object

data data frame in which variables in model can be found

envir environment in which variables in model can be found

partial.resid logical; should partial residuals be plotted?

rug add rugplots (jittered 1-d histograms) to the axes?

terms which terms to plot (default NULL means all terms)

se plot pointwise standard errors?

xlabs vector of labels for the x axes

ylabs vector of labels for the y axes

main logical, or vector of main titles; if TRUE, the model’s call is taken as main
title, NULL or FALSE mean no titles.

col.term, lwd.term

color and line width for the “term curve”, see lines.
col.se, lty.se, lwd.se

color, line type and line width for the “twice-standard-error curve” when
se = TRUE.

col.res, cex, pch

color, plotting character expansion and type for partial residuals, when
partial.resid = TRUE, see points.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
use.factor.levels

Should x-axis ticks use factor levels or numbers for factor terms?

... other graphical parameters

682 terms

Details

The model object must have a predict method that accepts type=terms, eg glm in the
base package, coxph and survreg in the survival package.

For the partial.resid=TRUE option it must have a residuals method that accepts
type="partial", which lm and glm do.

The data argument should rarely be needed. One exception is that models with missing
data using na.action=na.omit will need to specify a data argument. A work-around is to
use na.action=na.exclude instead.

Nothing sensible happens for interaction terms.

See Also

For (generalized) linear models, plot.lm and predict.glm.

Examples

rs <- require(splines)

x <- 1:100

z <- factor(rep(LETTERS[1:4],25))

y <- rnorm(100,sin(x/10)+as.numeric(z))

model <- glm(y ~ ns(x,6) + z)

par(mfrow=c(2,2)) ## 2 x 2 plots for same model :

termplot(model, main = paste("termplot(", deparse(model$call)," ...)"))

termplot(model, rug=TRUE)

termplot(model, partial=TRUE, rug= TRUE,

main="termplot(..., partial = TRUE, rug = TRUE)")

termplot(model, partial=TRUE, se = TRUE, main = TRUE)

if(rs) detach("package:splines")

terms Model Terms

Description

The function terms is a generic function which can be used to extract terms objects from
various kinds of R data objects.

Usage

terms(x, ...)

Arguments

x object used to select a method to dispatch.

... further arguments passed to or from other methods.

Details

There are methods for classes "aovlist", and "terms" "formula" (see terms.formula):
the default method just extracts the terms component of the object (if any).

terms.formula 683

Value

An object of class c("terms", "formula") which contains the terms representation of a
symbolic model. See terms.object for its structure.

See Also

terms.object, terms.formula, lm, glm, formula.

terms.formula A function to construct a terms object from a formula.

Description

This function takes a formula and some optional arguments and constructs a terms object.
The terms object can then be used to construct a model.matrix.

Usage

terms.formula(x, specials=NULL, abb=NULL, data=NULL, neg.out=TRUE,
keep.order=FALSE, ...)

Arguments

x A formula.

specials What functions in the formula should be marked as special in the terms
object.

abb Unused in R.

data A data frame from which the meaning of the special symbol . can be
inferred. It is unused if there is no . in the formula.

neg.out TRUE if terms with a minus, - should be removed. If FALSE these are
kept in and indicate a negative order (for fractionate?).

keep.order A logical value indicating whether the terms should keep their positions.
If FALSE the terms are reordered so that main effects come first.

... further arguments passed to or from other methods.

Details

Not all of the options work in the same way that they do in S and not all are implemented.

Value

A terms object is returned.

See Also

terms.object, terms.default

684 terms.object

terms.object Description of Terms Objects

Description

An object of class terms holds information about a model. Usually the model was specified
in terms of a formula and that formula was used to determine the terms object.

The object itself is simply the formula supplied to the call of terms.formula. The object
has a number of attributes and they are used to construct the model frame.

Value

An object with the following attributes:

factors A matrix of variables by terms showing which variables appear in which
terms. The entries are 0 if the variable does not occur in the term, 1 if
it does occur and should be coded by contrasts, and 2 if it occurs and
should be coded via dummy variables for all levels (as when an intercept
or lower-order term is missing).

term.labels A character vector containing the labels for each of the terms in the model.

variables A list of the variables in the model

intercept Either 0, indicating no intercept is to be fit, or 1 indicating that an inter-
cept is to be fit.

order A vector of the same length as term.labels indicating the order of in-
teraction for each term

response The index of the variable (in variables) of the response (the left hand side
of the formula).

offset If the model contains offset terms there is an offset attribute indicating
which terms are offsets

specials If the specials argument was given to terms.formula there is a
specials attribute, a list of vectors indicating the terms that contain
these special functions.

The object has class c("terms", "formula").

Note

These objects are different from those found in S. In particular there is no formula attribute,
instead the object is itself a formula. Thus, the mode of a terms object is different as well.

An example of the specials argument can be seen in the aov function.

See Also

terms, terms.default, formula.

text 685

text Add Text to a Plot

Description

text draws the strings given in the vector labels at the coordinates given by x and y. y
may be missing since xy.coords(x,y) is used for construction of the coordinates.

Usage

text (x, ...)
text.default (x, y = NULL, labels = seq(along = x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, xpd = NULL, ...)

Arguments

x, y numeric vectors of coordinates where the text labels should be written.
If the length of x and y differs, the shorter one is recycled.

labels one or more character strings or expressions specifying the text to be
written. An attempt is made to coerce other vectors to character, and
other language objects to expressions.

adj one or two values in [0, 1] which specify the x (and optionally y) adjust-
ment of the labels. On most devices values outside that interval will also
work.

pos a position specifier for the text. If specified this overrides any adj value
given. Values of 1, 2, 3 and 4, respectively indicate positions below, to
the left of, above and to the right of the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the
specified coordinate in fractions of a character width.

vfont if a character vector of length 2 is specified, then Hershey vector fonts are
used. The first element of the vector selects a typeface and the second
element selects a style.

cex numeric character expansion factor; multiplied by par("cex") yields the
final character size.

col, font the color and font to be used; these default to the values of the global
graphical parameters in par().

xpd (where) should clipping take place? Defaults to par("xpd").

... further graphical parameters (from par).

Details

labels must be of type character or expression (or be coercible to such a type). In the
latter case, quite a bit of mathematical notation is available such as sub- and superscripts,
greek letters, fractions, etc.

adj allows adjustment of the text with respect to (x,y). Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top, respectively. The default is for centered text, i.e., adj =
c(0.5, 0.5). Accurate vertical centering needs character metric information on individual
characters, which is only available on some devices.

686 textConnection

The pos and offset arguments can be used in conjunction with values returned by
identify to recreate an interactively labelled plot.

Text can be rotated by using graphical parameters srt (see par); this rotates about the
centre set by adj.

Graphical parameters col, cex and font can be vectors and will then be applied cyclically
to the labels (and extra values will be ignored).

See Also

mtext, title, Hershey for details on Hershey vector fonts, plotmath for details and more
examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")

K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

The following two examples use latin1 characters: these may not

appear correctly (or be omitted entirely).

plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU l’, but not o ...")

mtext("ńISO-accentsz: ś éè øØ å<Å æ<Æ", side=3)

points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")

text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)

text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by ‘adj = c(0,0)’",

adj = c(0,0))

text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))

text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)", cex = .75)

text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

Two more latin1 examples

text(5,10.2,

"Le français, c’est façile: Règles, Liberté, Egalité, Fraternité...")

text(5,9.8, "Jetz no chli züritüütsch: (noch ein biSSchen Zürcher deutsch)")

textConnection Text Connections

Description

Input and output text connections.

Usage

textConnection(object, open = "r")

Arguments

object character. A description of the connection. For an input is an R character
vector object, and for an output connection the name for the R character
vector to receive the output.

open character. Either "r" (or equivalently "") for an input connection or "w"
or "a"for an output connection.

textConnection 687

Details

An input text connection is opened and the character vector is copied at time the connection
object is created, and close destroys the copy.

An output text connection is opened and creates an R character vector of the given name
in the user’s workspace. This object will at all times hold the completed lines of output to
the connection, and isIncomplete will indicate if there is an incomplete final line. Closing
the connection will output the final line, complete or not.

Opening a text connection with mode = "a" will attempt to append to an existing character
vector with the given name in the user’s workspace. If none is found (even if an object exists
of the right name but the wrong type) a new character vector wil be created, with a warning.

You cannot seek on a text connection, and seek will always return zero as the position.

Value

A connection object of class "textConnection" which inherits from class "connection".

See Also

connections, showConnections, pushBack

Examples

zz <- textConnection(LETTERS)

readLines(zz, 2)

scan(zz, "", 4)

pushBack(c("aa", "bb"), zz)

scan(zz, "", 4)

close(zz)

zz <- textConnection("foo", "w")

writeLines(c("testit1", "testit2"), zz)

cat("testit3 ", file=zz)

isIncomplete(zz)

cat("testit4\n", file=zz)

isIncomplete(zz)

close(zz)

foo

capture R output: use part of example from help(lm)

zz <- textConnection("foo", "w")

ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)

trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)

group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

weight <- c(ctl, trt)

sink(zz)

anova(lm.D9 <- lm(weight ~ group))

cat("\nSummary of Residuals:\n\n")

summary(resid(lm.D9))

sink()

close(zz)

cat(foo, sep = "\n")

688 time

time Sampling Times of Time Series

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time and deltat the time interval
between observations (see ts).

Usage

time(x, offset=0, ...)
cycle(x, ...)
frequency(x, ...)
deltat(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

offset can be used to indicate when sampling took place in the time unit. 0 (the
default) indicates the start of the unit, 0.5 the middle and 1 the end of
the interval.

... extra arguments for future methods.

Details

These are all generic functions, which will use the tsp attribute of x if it exists. time and
cycle have methods for class ts that coerce the result to that class.

See Also

ts, start, tsp, window.

date for clock time, system.time for CPU usage.

Examples

data(presidents)

cycle(presidents)

a simple series plot: c() makes the x and y arguments into vectors

plot(c(time(presidents)), c(presidents), type="l")

Titanic 689

Titanic Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage
of the ocean liner ‘Titanic’, summarized according to economic status (class), sex, age and
survival.

Usage

data(Titanic)

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The
variables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes

Details

The sinking of the Titanic is a famous event, and new books are still being published about
it. Many well-known facts—from the proportions of first-class passengers to the “women
and children first” policy, and the fact that that policy was not entirely successful in saving
the women and children in the third class—are reflected in the survival rates for various
classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of
the sinking. Note that there is not complete agreement among primary sources as to the
exact numbers on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public inter-
est in the Titanic. Very detailed data about the passengers is now available on the Internet,
at sites such as Encyclopedia Titanica (http://www.rmplc.co.uk/eduweb/sites/phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited. Journal of Statis-
tics Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.dawson.
html

The source provides a data set recording class, sex, age, and survival status for each person
on board of the Titanic, and is based on data originally collected by the British Board of
Trade and reprinted in:

British Board of Trade (1990), Report on the Loss of the ‘Titanic’ (S.S.). British Board of
Trade Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

690 title

Examples

data(Titanic)

mosaicplot(Titanic, main = "Survival on the Titanic")

Higher survival rates in children?

apply(Titanic, c(3, 4), sum)

Higher survival rates in females?

apply(Titanic, c(2, 4), sum)

Use loglm() in package ‘MASS’ for further analysis ...

title Plot Annotation

Description

This function can be used to add labels to a plot. Its first four principal arguments can also
be used as arguments in most high-level plotting functions. They must be of type character
or expression. In the latter case, quite a bit of mathematical notation is available such as
sub- and superscripts, greek letters, fractions, etc.

Usage

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and color par("col.main").

sub Sub-title (at bottom) using font and size par("font.sub") and color
par("col.sub").

xlab X axis label using font and character expansion par("font.axis") and
color par("col.axis").

ylab Y axis label, same font attributes as xlab.

line specifying a value for line overrides the default placement of labels, and
places them this many lines from the plot.

outer a logical value. If TRUE, the titles are placed in the outer margins of the
plot.

... further graphical parameters (from par).

Details

The labels passed to title can be simple strings or expressions, or they can be a list containing
the string to be plotted, and a selection of the optional modifying graphical parameters cex=,
col=, font=.

See Also

mtext, text; plotmath for details on mathematical annotation.

ToothGrowth 691

Examples

data(cars)

plot(cars, main = "") # here, could use main directly

title(main = "Stopping Distance versus Speed")

plot(cars, main = "")

title(main = list("Stopping Distance versus Speed", cex=1.5,

col="red", font=3))

x <- seq(-4, 4, len = 101)

y <- cbind(sin(x), cos(x))

matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",

plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken

xlab = expression(paste("Phase Angle ", phi)),

col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),

lab = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three
dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice
or ascorbic acid).

Usage

data(ToothGrowth)

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(ToothGrowth)

692 toString

coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: length vs dose, given type of supplement")

toString toString Converts its Argument to a Character String

Description

This is a helper function for format. It converts its argument to a string. If the argument
is a vector then its elements are concatenated with a , as a separtor. Most methods should
honor the width argument. The minimum value for width is six.

Usage

toString(x, ...)
toString.default(x, width, ...)

Arguments

x The object to be converted.

width The returned value is at most the first width characters.

... Optional arguments for methods.

Value

A character vector of length 1 is returned.

Author(s)

Robert Gentleman

See Also

format

Examples

x <- c("a", "b", "aaaaaaaaaaa")

toString(x)

toString(x, width=8)

trace 693

trace Interactive Tracing and Debugging of Calls to a Function or
Method

Description

A call to trace allows you to insert debugging code (e.g., a call to browser or recover) at
chosen places in any function. A call to untrace cancels the tracing. Specified methods can
be traced the same way, without tracing all calls to the function. Trace code can be any R
expression. Tracing can be temporarily turned on or off globally by calling tracingState.

Usage

trace(what, tracer, exit, at, print = TRUE, signature = NULL)
untrace(what, signature = NULL)

tracingState(on)

Arguments

what The name (quoted or not) of a function to be traced or untraced. More
than one name can be given in the quoted form, and the same action will
be applied to each one.

tracer Either a function or an unevaluated expression. The function will be
called or the expression will be evaluated either at the beginning of the
call, or before those steps in the call specified by the argument at. See
the details section.

exit Either a function or an unevaluated expression. The function will be
called or the expression will be evaluated on exiting the function. See the
details section.

at An optional numeric vector. If supplied, tracer will be called just before
the corresponding step in the body of the function. See the details section.

print If TRUE, a descriptive line is printed before any trace expression is evalu-
ated.

signature If this argument is supplied, it should be a signature for a method for
function what. In this case, the method, and not the function itself, is
traced.

on A call to tracingState returns TRUE if tracing is globally turned on,
FALSE otherwise. An argument of one or the other of those values sets
the state. If the tracing state is FALSE, none of the trace actions will
actually occur (used, for example, by debugging functions to shut off
tracing during debugging).

Details

The trace function operates by constructing a revised version of the function (or of the
method, if signature is supplied), and assigning the new object back where the original
was found. If only the what argument is given, a line of trace printing is produced for each
call to the function (back compatible with the earlier version of trace).

694 trace

The object constructed by trace is from a class that extends "function" and which con-
tains the original, untraced version. A call to untrace re-assigns this version.

If the argument tracer or exit is the name of a function, the tracing expression will be
a call to that function, with no arguments. This is the easiest and most common case,
with the functions browser and recover the likeliest candidates; the former browses in the
frame of the function being traced, and the latter allows browsing in any of the currently
active calls.

The tracer or exit argument can also be an unevaluated expression (such as returned by
a call to quote or substitute). This expression itself is inserted in the traced function, so
it will typically involve arguments or local objects in the traced function. An expression of
this form is useful if you only want to interact when certain conditions apply (and in this
case you probably want to supply print=FALSE in the call to trace also).

When the at argument is supplied, it should be a vector of integers referring to the substeps
of the body of the function (this only works if the body of the function is enclosed in {
...}. In this case tracer is not called on entry, but instead just before evauating each of
the steps listed in at. (Hint: you don’t want to try to count the steps in the printed version
of a function; instead, look at as.list(body(f)) to get the numbers associated with the
steps in function f.)

An intrinsic limitation in the exit argument is that it won’t work if the function itself uses
on.exit, since the existing calls will override the one supplied by trace.

Tracing does not nest. Any call to trace replaces previously traced versions of that function
or method, and untrace always restores an untraced version. (Allowing nested tracing has
too many potentials for confusion and for accidentally leaving traced versions behind.)

Tracing primitive functions (builtins and specials) from the base package works, but only by
a special mechanism and not very informatively. Tracing a primitive causes the primitive
to be replaced by a function with argument . . . (only). You can get a bit of information out,
but not much. A warning message is issued when trace is used on a primitive.

The practice of saving the traced version of the function back where the function came from
means that tracing carries over from one session to another, if the traced function is saved
in the session image. (In the next session, untrace will remove the tracing.) On the other
hand, functions that were in a package, not in the global environment, are not saved in the
image, so tracing expires with the session for such functions.

Tracing a method is basically just like tracing a function, with the exception that the traced
version is stored by a call to setMethod rather than by direct assignment, and so is the
untraced version after a call to untrace.

The version of trace described here is largely compatible with the version in S-Plus, al-
though the two work by entirely different mechanisms. The S-Plus trace uses the session
frame, with the result that tracing never carries over from one session to another (R does
not have a session frame). Another relevant distinction has nothing directly to do with
trace: The browser in S-Plus allows changes to be made to the frame being browsed, and
the changes will persist after exiting the browser. The R browser allows changes, but they
disappear when the browser exits. This may be relevant in that the S-Plus version allows
you to experiment with code changes interactively, but the R version does not. (A future
revision may include a “destructive” browser for R.)

Value

The traced function(s) name(s). The relevant consequence is the assignment that takes
place.

traceback 695

Note

The version of function tracing that includes any of the arguments except for the function
name requires the methods package (because it uses special classes of objects to store and
restore versions of the traced functions).

In rare cases, this may change some behavior. In particular, although the methods pack-
age generally supports older styles of classes and methods, it is stricter in treating class
attributes. Just occasionally, older code may stop on an error with the methods package
attached, but not otherwise.

See Also

browser and recover, the likeliest tracing functions; also, quote and substitute for con-
structing general expressions.

Examples

f <- function(x, y) {

y <- pmax(y, .001)

x ^ y

}

arrange to call the browser on entering and exiting

function f

trace("f", browser, exit = browser)

instead, conditionally assign some data, and then browse

on exit, but only then. Don’t bother me otherwise

trace("f", quote(if(any(y < 0)) yOrig <- y),

exit = quote(if(exists("yOrig")) browser()),

print = FALSE)

trace a utility function, with recover so we

can browse in the calling functions as well.

trace("as.matrix", recover)

turn off the tracing

untrace(c("f", "as.matrix"))

traceback Print Call Stack of Last Error

696 transform

Description

traceback() prints the call stack of the last error, i.e., the sequence of calls that lead to
the error. This is useful when an error occurs with an unidentifiable error message. This
stack is stored as a list in .Traceback, which traceback prints in a user-friendly format.

Usage

traceback()

Value

traceback() returns nothing, but prints the deparsed call stack deepest call first. The calls
may print on more that one line, and the first line is labelled by the frame number.

Examples

foo <- function(x) { print(1); bar(2) }

bar <- function(x) { x + a.variable.which.does.not.exist }

foo(2) # gives a strange error

traceback()

2: bar(2)

1: foo(2)

bar

Ah, this is the culprit ...

transform Transform an Object, e.g. a Data Frame

Description

transform is a generic function, which—at least currently—only does anything useful with
dataframes. transform.default converts its first argument to a dataframe if possible and
calls transform.data.frame.

Usage

transform(x, ...)
transform.default(x, ...)
transform.data.frame(x, ...)

Arguments

x The object to be transformed

... Further arguments of the form tag=value

Details

The ... arguments to transform.data.frame are tagged vector expressions, which are
evaluated in the dataframe x. The tags are matched against names(x), and for those that
match, the value replace the corresponding variable in x, and the others are appended to x.

trees 697

Value

The modified value of x.

Note

If some of the values are not vectors of the appropriate length, you deserve whatever you
get!

Author(s)

Peter Dalgaard

See Also

subset, list, data.frame

Examples

data(airquality)

transform(airquality, Ozone = -Ozone)

transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)

transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...

detach(airquality)

trees Girth, Height and Volume for Black Cherry Trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled
black cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft
6 in above the ground.

Usage

data(trees)

Format

A data frame with 31 observations on 3 variables.

[,1] Girth numeric Tree diameter in inches
[,2] Height numeric Height in ft
[,3] Volume numeric Volume of timber in cubic ft

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury
Press.

698 Trig

References

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford University Press.

Examples

data(trees)

pairs(trees, panel = panel.smooth, main = "trees data")

plot(Volume ~ Girth, data = trees, log = "xy")

coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)

summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))

summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))

step(fm2)

i.e. Volume ~= c * Height * Girth^2 seems reasonable

Trig Trigonometric Functions

Description

These functions give the obvious trigonometric functions. They respectively compute the
cosine, sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

Arguments

x, y numeric vector

Details

The arc-tangent of two arguments atan2(y,x) returns the angle between the x-axis and
the vector from the origin to (x, y), i.e., for positive arguments atan2(y,x) == atan(y/x).

Angles are in radians, not degrees (i.e. a right angle is π/2).

Examples

cos(0) == 1

sin(3*pi/2) == cos(pi)

x <- rnorm(99)

all.equal(sin(-x), - sin(x))

all.equal(cos(-x), cos(x))

x <- abs(x); y <- abs(rnorm(x))

all(abs(atan2(y, x) - atan(y/x)) <= .Machine$double.eps)# TRUE

table(abs(atan2(y, x) - atan(y/x)) / .Machine$double.eps) # depends!

try 699

x <- 1:99/100

all(Mod(1 - (cos(x) + 1i*sin(x)) / exp(1i*x)) < 1.1 * .Machine$double.eps)

2* abs(1 - x / acos(cos(x))) / .Machine$double.eps #-- depends ?

all(abs(1 - x / asin(sin(x))) <= .Machine$double.eps) # TRUE

all(abs(1 - x / atan(tan(x))) <= .Machine$double.eps) # TRUE

try Try an Expression Allowing Error Recovery.

Description

try is a wrapper to run an expression that might fail and allow the user’s code to handle
error-recovery.

Usage

try(expr, first = TRUE)

Arguments

expr an R expression to try

first not for user use!

Details

try is a user-friendly wrapper to restart. The argument first is used to record if restart
has already been used, and so ensure that restart is called only once.

Value

The value of the expression if expr is evaluated without error, but an invisible object of
class "try-error" containing the error message if it if fails. The normal error handling will
print the same message unless options("show.error.messages") is false.

See Also

options for setting error handlers and suppressing the printing of error messages;
geterrmessage for retrieving the last error message.

Examples

this example will not work correctly in example(try), but

it does work correctly if pasted in

options(show.error.messages = FALSE)

try(log("a"))

print(.Last.value)

options(show.error.messages = TRUE)

run a simulation, keep only the results that worked.

set.seed(123)

x <- rnorm(50)

doit <- function(x)

{

700 ts

x <- sample(x, replace=TRUE)

if(length(unique(x)) > 30) mean(x)

else stop("too few unique points")

}

options(show.error.messages = FALSE)

alternative 1

res <- lapply(1:100, function(i) try(doit(x)))

alternative 2

res <- vector("list", 100)

for(i in 1:100) res[[i]] <- try(doit(x))

options(show.error.messages = TRUE)

unlist(res[sapply(res, function(x) !inherits(x, "try-error"))])

ts Time-Series Objects

Description

The function ts is used to create time-series objects.

as.ts and is.ts coerce an object to a time-series and test whether an object is a time
series.

Usage

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class, names)

as.ts(x)
is.ts(x)

Arguments

data a numeric vector or matrix of the observed time-series values. A data
frame will be coerced to a numeric matrix via data.matrix.

start the time of the first observation. Either a single number or a vector of
two integers, which specify a natural time unit and a (1-based) number
of samples into the time unit. See the examples for the use of the second
form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g.,
1/12 for monthly data. Only one of frequency or deltat should be
provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their
absolute difference is less than ts.eps.

class class to be given to the result, or none if NULL or "none". The default is
"ts" for a single series, c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to
the colnames of data, or Series 1, Series 2,

x an arbitrary R object.

ts 701

Details

The function ts is used to create time-series objects. These are vector or matrices with
class of "ts" (and additional attributes) which represent data which has been sampled at
equispaced points in time. In the matrix case, each column of the matrix data is assumed
to contain a single (univariate) time series.

Class "ts" has a number of methods. In particular arithmetic will attempt to align time
axes, and subsetting to extract subsets of series can be used (e.g. EuStockMarkets[,
"DAX"]). However, subsetting the first (or only) dimension will return a matrix or vector,
as will matrix subsetting.

The value of argument frequency is used when the series is sampled an integral number
of times in each unit time interval. For example, one could use a value of 7 for frequency
when the data are sampled daily, and the natural time period is a week, or 12 when the
data are sampled monthly and the natural time period is a year. Values of 4 and 12 are
assumed in (e.g.) print methods to imply a quarterly and monthly series respectively.

as.ts will use the tsp attribute of the object if it has one to set the start and end times
and frequency.

See Also

tsp, frequency, start, end, time, window; print.ts, the print method for time series
objects; plot.ts, the plot method for time series objects. Standard package ts for many
additional time-series functions.

Examples

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959

print(ts(1:10, freq = 7, start = c(12, 2)), calendar = TRUE) # print.ts(.)

Using July 1954 as start date:

gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)

plot(gnp) # using ‘plot.ts’ for time-series plot

Multivariate

z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)

class(z)

plot(z)

plot(z, plot.type="single", lty=1:3)

Ensure working arithmetic for ‘ts’ objects :

stopifnot(z == z)

stopifnot(z-z == 0)

A phase plot:

data(nhtemp)

plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

a clearer way to do this would be

library(ts)

plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")

702 tsp

ts-methods Methods for Time Series Objects

Description

Methods for objects of class "ts", typically the result of ts.

Usage

diff(x, lag=1, differences=1, ...)
na.omit(object, ...)

Arguments

x an object of class "ts" containing the values to be differenced.
lag an integer indicating which lag to use.
differences an integer indicating the order of the difference.
object a univariate or multivariate time series.
... further arguments to be passed to or from methods.

Details

The na.omit method omits initial and final segments with missing values in one or more
of the series. ‘Internal’ missing values will lead to failure.

Value

For the na.omit method, a time series without missing values. The class of object will be
preserved.

Author(s)

B. D. Ripley

See Also

diff; na.omit, na.fail, na.contiguous.

tsp Tsp Attribute of Time-Series-like Objects

Description

tsp returns the tsp attribute (or NULL). It is included for compatibility with S version 2.
tsp<- sets the tsp attribute. hasTsp ensures x has a tsp attribute, by adding one if needed.

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Tukey 703

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 or NULL.

Details

The tsp attribute was previously described here as c(start(x), end(x), frequency(x)),
but this is incorrect. It gives the start time in time units, the end time and the frequency.

Assignments are checked for consistency.

Assigning NULL which removes the tsp attribute and any "ts" class of x.

See Also

ts, time, start.

Tukey The Studentized Range Distribution

Description

Functions on the distribution of the studentized range, R/s, where R is the range of a
standard normal sample of size n and s2 is independently distributed as chi-squared with
df degrees of freedom, see pchisq.

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom for s (see below).

nranges number of groups whose maximum range is considered.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If ng =nranges is greater than one, R is the maximum of ng groups of nmeans observations
each.

Value

ptukey gives the distribution function and qtukey its inverse, the quantile function.

704 TukeyHSD

Note

A Legendre 16-point formula is used for the integral of ptukey. The computations are
relatively expensive, especially for qtukey which uses a simple secant method for finding
the inverse of ptukey. qtukey will be accurate to the 4th decimal place.

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of sim-
ple effects in the two-way analysis of variance with fixed effects. Journal of Statistical
Computation and Simulation, 30, 1–15.

See Also

pnorm and qnorm for the corresponding functions for the normal distribution.

Examples

system.time(curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101))

(ptt <- ptukey(0:10, 2, df= 5))

(qtt <- qtukey(.95, 2, df= 2:11))

The precision may be not much more than about 8 digits:

summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

TukeyHSD Compute Tukey Honest Significant Differences

Description

Create a set of confidence intervals on the differences between the means of the levels of
a factor with the specified family-wise probability of coverage. The intervals are based on
the Studentized range statistic, Tukey’s ‘Honest Significant Difference’ method. There is a
plot method.

Usage

TukeyHSD(x, which = seq(along=tabs), ordered = FALSE, conf.level = 0.95, ...)

Arguments

x A fitted model object, usually an aov fit.

which A list of terms in the fitted model for which the intervals should be cal-
culated. Defaults to all the terms.

ordered A logical value indicating if the levels of the factor should be ordered
according to increasing average in the sample before taking differences.
If ordered is true then the calculated differences in the means will all be
positive. The significant differences will be those for which the lwr end
point is positive.

conf.level A numeric value between zero and one giving the family-wise confidence
level to use.

... Optional additional arguments. None are used at present.

type.convert 705

Details

When comparing the means for the levels of a factor in an analysis of variance, a simple
comparison using t-tests will inflate the probability of declaring a significant difference when
it is not in fact present. This because the intervals are calculated with a given coverage
probability for each interval but the interpretation of the coverage is usually with respect
to the entire family of intervals.

John Tukey introduced intervals based on the range of the sample means rather than the
individual differences. The intervals returned by this function are based on this Studentized
range statistics.

Technically the intervals constructed in this way would only apply to balanced designs
where there are the same number of observations made at each level of the factor. This
function incorporates an adjustment for sample size that produces sensible intervals for
mildly unbalanced designs.

Value

A list with one component for each term requested in which. Each component is a matrix
with columns diff giving the difference in the observed means, lwr giving the lower end
point of the interval, and upr giving the upper end point.

Author(s)

Douglas Bates

References

Miller, R. G. (1981) Simultaneous Statistical Inference. Springer.

Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall.

See Also

aov, qtukey, model.tables

Examples

data(warpbreaks)

summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))

TukeyHSD(fm1, "tension", ordered = TRUE)

plot(TukeyHSD(fm1, "tension"))

type.convert Type Conversion on Character Variables

Description

Convert a character vector to logical, integer, numeric, complex or factor as appropriate.

Usage

type.convert(x, na.strings = "NA", as.is = FALSE, dec = ".")

706 typeof

Arguments

x a character vector.

na.strings a vector of strings which are to be interpreted as NA values. Blank fields
are also considered to be missing values.

as.is logical. See Details.

dec the character to be assumed for decimal points.

Details

This is principally a helper function for read.table. Given a character vector, it attempts
to convert it to logical, integer, numeric or complex, and failing that converts it to factor
unless as.is = TRUE. The first type that can accept all the non-missing values is chosen.

Vectors which are entirely missing values are converted to logical, since NA is primarily
logical.

Value

A vector of the selected class, or a factor.

See Also

read.table

typeof The Type of an Object

Description

typeof determines the (R internal) type or storage mode of any object

Usage

typeof(x)

Arguments

x any R object.

Value

A character string.

See Also

mode, storage.mode.

Examples

typeof(2)

mode(2)

UCBAdmissions 707

UCBAdmissions Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments
in 1973 classified by admission and sex.

Usage

data(UCBAdmissions)

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The
variables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al. (1975).
At issue is whether the data show evidence of sex bias in admission practices. There were
2691 male applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female
applicants of whom 557 (30.4%) were admitted. This gives a sample odds ratio of 1.83,
indicating that males were almost twice as likely to be admitted. In fact, graphical meth-
ods (as in the example below) or log-linear modelling show that the apparent association
between admission and sex stems from differences in the tendency of males and females to
apply to the individual departments (females used to apply “more” to departments with
higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical
data, such as the general-purpose mosaic plot or the“fourfold display”for 2-by-2-by-k tables.
See the home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html)
for further information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions:
Data from Berkeley. Science, 187, 398–403.

Examples

data(UCBAdmissions)

Data aggregated over departments

apply(UCBAdmissions, c(1, 2), sum)

mosaicplot(apply(UCBAdmissions, c(1, 2), sum),

main = "Student admissions at UC Berkeley")

Data for individual departments

opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))

http://www.math.yorku.ca/SCS/friendly.html

708 Uniform

for(i in 1:6)

mosaicplot(UCBAdmissions[,,i],

xlab = "Admit", ylab = "Sex",

main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),

outer = TRUE, cex = 1.5)

par(opar)

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval from
min to max. dunif gives the density, punif gives the distribution function qunif gives the
quantile function and runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

min,max lower and upper limits of the distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.

The uniform distribution has density

f(x) =
1

max−min

for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed.

See Also

.Random.seed about random number generation, rnorm, etc for other distributions.

unique 709

Examples

u <- runif(20)

The following relations always hold :

punif(u) == u

dunif(u) == 1

runif(10, 2,2) == 2

var(runif(10000))#- ~ = 1/12 = .08333

unique Extract Unique Elements

Description

unique returns a vector, data frame or array like x but with duplicate elements removed.

Usage

unique(x, incomparables = FALSE, ...)
unique.array(x, incomparables = FALSE, MARGIN = 1, ...)

Arguments

x an atomic vector or a data frame or an array.

incomparables a vector of values that cannot be compared. Currently, FALSE is the only
possible value, meaning that all values can be compared.

... arguments for particular methods.

MARGIN the array margin to be held fixed: a single integer.

Details

This is a generic function with methods for vectors, data frames and arrays (including
matrices).

The array method calculates for each element of the dimension specified by MARGIN if the
remaining dimensions are identical to those for an earlier element (in row-major order).
This would most commonly be used to find unique rows (the default) or columns (with
MARGIN = 2).

Value

An object of the same type of x. but if an element is equal to one with a smaller index, it
is removed. Dimensions of arrays are not dropped.

See Also

duplicated which gives the indices of duplicated elements.

710 uniroot

Examples

unique(c(3:5, 11:8, 8 + 0:5))

length(unique(sample(100, 100, replace=TRUE)))

approximately 100(1 - 1/e) = 63.21

my.unique <- function(x) x[!duplicated(x)]

for(i in 1:4)

{ x <- rpois(100, pi); stopifnot(unique(x) == my.unique(x)) }

data(iris)

unique(iris)

stopifnot(dim(unique(iris)) == c(149, 5))

uniroot One Dimensional Root (Zero) Finding

Description

The function uniroot searches the interval from lower to upper for a root (i.e. zero) of
the function f with respect to its first argument.

Usage

uniroot(f, interval, lower = min(interval), upper = max(interval),
tol = .Machine$double.eps^0.25, maxiter = 1000, ...)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the
root.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.

... additional arguments to f.

Details

Either interval or both lower and upper must be specified. The function uses Fortran
subroutine ‘”zeroin”’ (from Netlib) based on algorithms given in the reference below.

If the algorithm does not converge in maxiter steps, a warning is printed and the current
approximation is returned.

Value

A list with four components: root and f.root give the location of the root and the value
of the function evaluated at that point. iter and estim.prec give the number of iterations
used and an approximate estimated precision for root.

units 711

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ:
Prentice-Hall.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

f <- function (x,a) x - a

str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up = 2, tol = 0.0001),

dig = 10)

str(uniroot(function(x) x*(x^2-1) + .5, low = -2, up =2 , tol = 1e-10),

dig = 10)

Find the smallest value x for which exp(x) > 0 (numerically):

r <- uniroot(function(x) 1e80*exp(x) -1e-300,,-1000,0, tol=1e-20)

str(r, digits= 15)##> around -745.1332191

exp(r$r) # = 0, but not for r$r * 0.999...

minexp <- r$r * (1 - .Machine$double.eps)

exp(minexp) # typically denormalized

units Graphical Units

Description

xinch and yinch convert the specified number of inches given as their arguments into the
correct units for plotting with graphics functions. Usually, this only makes sense when
normal coordinates are used, i.e., no log scale (see the log argument to par).

xyinch does the same for a pair of numbers xy, simultaneously.

cm translates inches in to cm (centimeters).

Usage

xinch(x = 1, warn.log = TRUE)
yinch(y = 1, warn.log = TRUE)
xyinch(xy = 1, warn.log = TRUE)
cm(x)

Arguments

x,y numeric vector

xy numeric of length 1 or 2.

warn.log logical; if TRUE, a warning is printed in case of active log scale.

712 unlink

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE

xyinch()

xyinch #- to see that is really delta{"usr"} / "pin"

cm(1)# = 2.54

plot labels offset 0.12 inches to the right

of plotted symbols in a plot

data(mtcars)

attach(mtcars)

plot(mpg, disp, pch=19, main= "Motor Trend Cars")

text(mpg + xinch(0.12), disp, rownames(mtcars),adj=0, cex = .7, col=’blue’)

detach(mtcars)

unlink Delete Files and Directories

Description

unlink deletes the file(s) or directories specified by x.

Usage

unlink(x, recursive = FALSE)

Arguments

x a character vector with the names of the file(s) or directories to be deleted.
Wildcards (normally ‘*’ and ‘?’) are allowed.

recursive logical. Should directories be deleted recusively?

Details

If recusive = FALSE directories are not deleted, not even empty ones.

file.remove can only remove files, but gives more detailed error information.

Value

The return value of the corresponding system command, rm -f, normally 0 for success, 1
for failure. Not deleting a non-existent file is not a failure.

Note

Prior to R version 1.2.0 the default on Unix was recursive = TRUE, and on Windows empty
directories could be deleted.

See Also

file.remove.

unlist 713

unlist Flatten Lists

Description

Given a list structure x, unlist simplifies it to produce a vector which contains all the
atomic components which occur in x.

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x A list or vector.
recursive logical. Should unlisting be applied to list components of x?
use.names logical. Should names be preserved?

Details

If recursive = FALSE, the function will not recurse beyond the first level items in x.

x can be a vector, but then unlist does nothing useful, not even drop names.

By default, unlist tries to retain the naming information present in x. If use.names =
FALSE all naming information is dropped.

Where possible the list elements are coerced to a common mode during the unlisting, and
so the result often ends up as a character vector.

A list is a (generic) vector, and the simplified vector might still be a list (and might be
unchanged). Non-vector elements of the list (for example language elements such as names,
formulas and calls) are not coerced, and so a list containing one or more of these remains a
list. (The effect of unlisting an lm fit is a list which has individual residuals as components,)

Value

A vector of an appropriate mode to hold the list components.

See Also

c, as.list.

Examples

unlist(options())

unlist(options(), use.names=FALSE)

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)

unlist(l.ex, recursive = FALSE)

unlist(l.ex, recursive = TRUE)

l1 <- list(a="a", b=2, c=pi+2i)

unlist(l1) # a character vector

l2 <- list(a="a", b=as.name("b"), c=pi+2i)

unlist(l2) # remains a list

714 update

unname Remove ‘names’ or ‘dimnames’

Description

Remove the names or dimnames attribute of an R object.

Usage

unname(obj, force = FALSE)

Arguments

obj the R object which is wanted “nameless”.

force logical; if true, the dimnames are even removed from data.frames. This
argument is currently experimental and hence might change!

Value

Object as obj but without names or dimnames.

Examples

Answering a question on R-help (14 Oct 1999):

col3 <- 750+ 100* rt(1500, df = 3)

breaks <- factor(cut(col3,breaks=360+5*(0:155)))

str(table(breaks)) # The names are quite larger than the data ...

barplot(unname(table(breaks)), axes= FALSE)

update Update and Re-fit a Model Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored
in the object, updating the call and (by default) evaluating that call. Sometimes it is useful
to call update with only one argument, for example if the data frame has been corrected.

Usage

update(object, ...)
update.default(object, formula., ..., evaluate = TRUE)

Arguments

object An existing fit from a model function such as lm, glm and many others.

formula. Changes to the formula – see update.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

update.formula 715

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

Author(s)

B.D. Ripley

See Also

update.formula

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))

weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)

lm.D9

summary(lm.D90 <- update(lm.D9, . ~ . - 1))

options(contrasts = c("contr.helmert", "contr.poly"))

update(lm.D9)

options(oldcon)

update.formula Model Updating

Description

update.formula is used to update model formulae. This typically involves adding or drop-
ping terms, but updates can be more general.

Usage

update.formula(old, new, ...)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

... further arguments passed to or from other methods.

Details

The function works by first identifying the left-hand side and right-hand side of the old
formula. It then examines the new formula and substitutes the lhs of the old formula for
any occurence of ”.” on the left of new, and substitutes the rhs of the old formula for any
occurence of ”.” on the right of new.

716 update.packages

Value

The updated formula is returned.

See Also

terms, model.matrix.

Examples

update.formula(y ~ x, ~ . + x2) #> y ~ x + x2

update.formula(y ~ x, log(.) ~ .) #> log(y) ~ x

update.packages Download Packages from CRAN

Description

These functions can be used to automatically compare the version numbers of installed
packages with the newest available version on CRAN and update outdated packages on the
fly.

Usage

update.packages(lib.loc = NULL, CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN),
method, instlib = NULL,
ask=TRUE, available=NULL, destdir=NULL)

installed.packages(lib.loc = NULL, priority = NULL)
CRAN.packages(CRAN = getOption("CRAN"), method = "auto",

contriburl = contrib.url(CRAN))
old.packages(lib.loc = NULL, CRAN = getOption("CRAN"),

contriburl = contrib.url(CRAN),
method, available = NULL)

download.packages(pkgs, destdir, available = NULL,
CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN), method = "auto")

install.packages(pkgs, lib, CRAN = getOption("CRAN"),
contriburl = contrib.url(CRAN),
method, available = NULL, destdir = NULL)

Arguments

lib.loc character vector describing the location of R library trees to search
through (and update packages therein).

CRAN character, the base URL of the CRAN mirror to use, i.e., the URL of a
CRAN root such as "http://cran.r-project.org" (the default) or its
Statlib mirror, "http://lib.stat.cmu.edu/R/CRAN".

contriburl URL of the contrib section of CRAN. Use this argument only if your
CRAN mirror is incomplete, e.g., because you burned only the contrib
section on a CD. Overrides argument CRAN.

update.packages 717

method Download method, see download.file.

pkgs character vector of the short names of packages whose current versions
should be downloaded from CRAN.

destdir directory where downloaded packages are stored.

priority character vector or NULL (default). If non-null, used to select packages;
"high" is equivalent to c("base","recommended").

available list of packages available at CRAN as returned by CRAN.packages.

lib,instlib character string giving the library directory where to install the packages.

ask logical indicating to ask before packages are actually downloaded and
installed.

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along lib.loc
and returns a list of package names, library paths and version numbers. CRAN.packages
returns a similar list, but corresponding to packages currently available in the contrib section
of CRAN, the comprehensive R archive network. The current list of packages is downloaded
over the internet (or copied from a local CRAN mirror). Both functions use read.dcf for
parsing the description files. old.packages compares the two lists and reports installed
packages that have newer versions on CRAN.

download.packages takes a list of package names and a destination directory, downloads
the newest versions of the package sources and saves the in destdir. If the list of available
packages is not given as argument, it is also directly obtained from CRAN. If CRAN is
local, i.e., the URL starts with "file:", then the packages are not downloaded but used
directly.

The main function of the bundle is update.packages. First a list of all packages found in
lib.loc is created and compared with the packages available on CRAN. Outdated packages
are reported and for each outdated package the user can specify if it should be automatically
updated. If so, the package sources are downloaded from CRAN and installed in the
respective library path (or instlib if specified) using the R INSTALL mechanism.

install.packages can be used to install new packages, it takes a vector of package names
and a destination library, downloads the packages from CRAN and installs them. If the
library is omitted it defaults to the first directory in .libPaths(), with a warning if there
is more than one.

For install.packages and update.packages, destdir is the directory to which packages
will be downloaded. If it is NULL (the default) a temporary directory is used, and the user
will be given the option of deleting the temporary files once the packages are installed.
(They will always be deleted at the end of the R session.)

See Also

See download.file for how to handle proxies and other options to monitor file transfers.

INSTALL, REMOVE, library, .packages, read.dcf

Examples

str(ip <- installed.packages(priority = "high"))

ip[, c(1,3:5)]

718 USArrests

url.show Display a text URL

Description

Extension of file.show to display text files on a remote server.

Usage

url.show(url, title = url, file = tempfile(),
delete.file = TRUE, method, ...)

Arguments

url The URL to read from.

title Title for the browser.

file File to copy to.

delete.file Delete the file afterwards?

method File transfer method: see download.file

... Arguments to pass to file.show.

See Also

url, file.show,download.file

Examples

url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt")

USArrests Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and
rape in each of the 50 US states in 1973. Also given is the percent of the population living
in urban areas.

Usage

data(USArrests)

Format

A data frame with 50 observations on 5 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

USJudgeRatings 719

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

See Also

The state data sets.

Examples

data(USArrests)

pairs(USArrests, panel = panel.smooth, main = "USArrests data")

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court

Usage

data(USJudgeRatings)

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.
[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

data(USJudgeRatings)

720 uspop

pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure

Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in the
categories; food and tobacco, household operation, medical and health, personal care, and
private education for the years 1940, 1945, 1950, and 1960.

Usage

data(USPersonalExpenditure)

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(USPersonalExpenditure)

USPersonalExpenditure

require(eda)

medpolish(log10(USPersonalExpenditure))

uspop The Population of the United States

Description

This data set gives the population of the United States (in millions) as recorded by the
decennial census for the period 1790–1970.

Usage

data(uspop)

Format

A time series of 19 values.

VADeaths 721

Source

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

data(uspop)

plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rate Data

Description

Death rates per 100 in Virginia in 1940.

Usage

data(VADeaths)

Format

A matrix with 5 rows and 5 columns.

Details

The death rates are cross-classified by age group (rows) and population group (columns).
The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74 and the population groups are
Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

Source

Moyneau, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by
color, sex, age, and rural or urban residence. American Sociological Review, 12, 525–535.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(VADeaths)

n <- length(dr <- c(VADeaths))

nam <- names(VADeaths)

d.VAD <- data.frame(

Drate = dr,

age = rep(ordered(rownames(VADeaths)),length=n),

gender= gl(2,5,n, labels= c("M", "F")),

site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,

panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))

722 vector

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(aov.VAD)

par(opar)

vcov Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage

vcov(object, ...)

Arguments

object a fitted model object.

... additional arguments for method functions. For the glm method this can
be used to pass a dispersion parameter.

Details

This is a generic function. Functions with names beginning in vcov. will be methods for
this function. Classes with methods for this function include: lm, glm, nls, lme, gls, coxph
and survreg

Value

A matrix of the estimated covariances between the parameter estimates in the linear or
non-linear predictor of the model.

vector Vectors

Description

vector produces a vector of the given length and mode.

as.vector, a generic, attempts to coerce its argument into a vector of mode mode (the
default is to coerce to whichever mode is most convenient). The attributes of x are removed.

is.vector returns TRUE if x is a vector (of mode logical, integer, real, complex, character
or list if not specified) and FALSE otherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

volcano 723

Arguments

mode A character string giving an atomic mode, or "any".

length A non-negative integer specifying the desired length.

x An object.

Details

is.vector returns FALSE if x has any attributes except names. (This is incompatible with
S.) On the other hand, as.vector removes all attributes including names.

Note that factors are not vectors; is.vector returns FALSE and as.vector converts to
character mode.

Value

For vector, a vector of the given length and mode. Logical vector elements are initialized
to FALSE, numeric vector elements to 0 and character vector elements to "".

See Also

c, is.numeric, is.list, etc.

Examples

df <- data.frame(x=1:3, y=5:7)

Error:

as.vector(data.frame(x=1:3, y=5:7), mode="numeric")

x <- c(a = 1, b = 2)

is.vector(x)

as.vector(x)

all.equal(x, as.vector(x)) ## FALSE

###-- All the following are TRUE:

is.list(df)

! is.vector(df)

! is.vector(df, mode="list")

is.vector(list(), mode="list")

is.vector(NULL, mode="NULL")

volcano Topographic Information for the Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This
data set gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

data(volcano)

724 warning

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to
west and columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as
accurate.

See Also

filled.contour for a nice plot.

Examples

data(volcano)

filled.contour(volcano, color = terrain.colors, asp = 1)

title(main = "volcano data: filled contour map")

warning Warning Messages

Description

Generates a warning message that corresponds to its argument(s) and (optionally) the
expression or function from which it was called.

Usage

warning(..., call. = TRUE)

Arguments

... character vectors (which are pasted together with no separator) or NULL.

call. logical, indicating if the call should become part of the warning message.

Details

The result depends on the value of options("warn").

If warn is negative warnings are ignored; if it is zero they are stored and printed after the
top–level function has completed; if it is one they are printed as they occur and if it is 2
(or larger) warnings are turned into errors.

If warn is zero (the default), a top-level variable last.warning is created. It contains the
warnings which can be printed via a call to warnings.

Warnings will be truncated to getOption("warning.length") characters, default 1000.

See Also

stop for fatal errors, warnings, and options with argument warn=.

warnings 725

Examples

testit <- function() warning("testit")

testit() ## shows call

testit <- function() warning("problem in testit", call. = FALSE)

testit() ## no call

warnings Print Warning Messages

Description

warnings prints the top-level variable last.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed to cat.

See Also

warning.

Examples

ow <- options("warn")

for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")

for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}

warnings()

options(ow) # reset

warpbreaks The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a
fixed length of yarn.

Usage

data(warpbreaks)

Format

A data frame with 54 observations on 3 variables.

726 weekdays

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH, BL,
BM, BH).

Source

Tippett, L. H. C. (1950) Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

See Also

xtabs for ways to display these data as a table.

Examples

data(warpbreaks)

summary(warpbreaks)

opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")

plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")

mtext("warpbreaks data", side = 3, outer = TRUE)

par(opar)

summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

anova(fm1)

weekdays Extract Parts of a POSIXt Object

Description

Extract the weekday, month or quarter, or the Julian time (days since some origin). These
are generic functions: the methods for the internal date-time classes are documented here.

Usage

weekdays(x, abbreviate = FALSE)
months(x, abbreviate = FALSE)
quarters(x, ...)
julian(x, origin = as.POSIXct("1970-01-01", tz="GMT"), ...)

Weibull 727

Arguments

x an object inheriting from class "POSIXt".

abbreviate logical. Should the names be abbreviated?

origin an length-one object inheriting from class "POSIXt".

... arguments for other methods.

Value

weekdays and months return a character vector of names in the locale in use.

quarters returns a character vector of "Q1" to "Q4".

julian returns the number of days (possibly fractional) since the origin, with the origin as
a "origin" attribute.

Note

Other components such as the day of the month or the year are very easy to compute: just
use as.POSIXlt and extract the relevant component.

See Also

DateTimeClasses

Examples

weekdays(.leap.seconds)

months(.leap.seconds)

quarters(.leap.seconds)

Weibull The Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the Weibull
distribution with parameters shape and scale.

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

728 weighted.mean

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape, scale shape and scale parameters, the latter defaulting to 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

The Weibull distribution with shape parameter a and scale parameter σ has density given
by

f(x) = (a/σ)(x/σ)a−1 exp(−(x/σ)a)

for x > 0. The cumulative is F (x) = 1− exp(−(x/σ)a), the mean is E(X) = σΓ(1 + 1/a),
and the V ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).

Value

dweibull gives the density, pweibull gives the distribution function, qweibull gives the
quantile function, and rweibull generates random deviates.

Note

The cumulative hazard H(t) = − log(1 − F (t)) is -pweibull(t, a, b, lower = FALSE,
log = TRUE) which is just H(t) = (t/b)a.

See Also

dexp for the Exponential which is a special case of a Weibull distribution.

Examples

x <- c(0,rlnorm(50))

all.equal(dweibull(x, shape = 1), dexp(x))

all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))

Cumulative hazard H():

all.equal(pweibull(x, 2.5, pi, lower=FALSE, log=TRUE), -(x/pi)^2.5, tol=1e-15)

all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

weighted.mean Weighted Arithmetic Mean

Description

Compute a weighted mean of a numeric vector.

Usage

weighted.mean(x, w, na.rm=FALSE)

weighted.residuals 729

Arguments

x a numeric vector containing the values whose mean is to be computed.

w a vector of weights the same length as x giving the weights to use for each
element of x.

na.rm a logical value indicating whether NA values in x should be stripped before
the computation proceeds.

Details

If w is missing then all elements of x are given the same weight.

Missing values in w are not handled.

See Also

mean

Examples

GPA from Siegel 1994

wt <- c(5, 5, 4, 1)/15

x <- c(3.7,3.3,3.5,2.8)

xm <- weighted.mean(x,wt)

weighted.residuals Compute Weighted Residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of class lm or glm.

drop0 logical. If TRUE, drop all cases with weights == 0.

Details

Weighted residuals are the usual residuals Ri, multiplied by
√
wi, where wi are the weights

as specified in lm’s call.

Dropping cases with weights zero is compatible with lm.influence and related functions.

Value

Numeric vector of length n′, where n′ is the number of of non-0 weights (drop0 = TRUE)
or the number of observations, otherwise.

730 which

See Also

residuals,lm.influence, etc.

Examples

example("lm")

all.equal(weighted.residuals(lm.D9),

residuals(lm.D9))

x <- 1:10

w <- 0:9

y <- rnorm(x)

weighted.residuals(lmxy <- lm(y ~ x, weights = w))

weighted.residuals(lmxy, drop0 = FALSE)

which Which indices are TRUE?

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE)

Arguments

x a logical vector or array. NAs are allowed and omitted (treated as if
FALSE).

arr.ind logical; should array indices be returned when x is an array?

Value

If arr.ind == FALSE (the default), an integer vector with length equal to sum(x), i.e., to
the number of TRUEs in x; Basically, the result is (1:length(x))[x].

If arr.ind == TRUE and x is an array (has a dim attribute), the result is a matrix who’s
rows each are the indices of one element of x; see Examples below.

Author(s)

Werner Stahel and Peter Holzer 〈holzer@stat.math.ethz.ch〉, for the array case.

See Also

Logic, which.min for the index of the minimum or maximum.

which.min 731

Examples

which(LETTERS == "R")

which(ll <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE))#> 1 3 7

names(ll) <- letters[seq(ll)]

which(ll)

which((1:12)%%2 == 0) # which are even?

str(which(1:10 > 3, arr.ind=TRUE))

(m <- matrix(1:12,3,4))

which(m %% 3 == 0)

which(m %% 3 == 0, arr.ind=TRUE)

rownames(m) <- paste("Case",1:3, sep="_")

which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m

which(m %% 3 == 0, arr.ind=FALSE)

which(m %% 3 == 0, arr.ind=TRUE)

vm <- c(m)

dim(vm) <- length(vm) #-- funny thing with length(dim(...)) == 1

which(vm %% 3 == 0, arr.ind=TRUE)

which.min Where is the Min() or Max() ?

Description

Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.

Usage

which.min(x)
which.max(x)

Arguments

x numeric vector, whose min or max is searched.

Value

an integer of length 1 or 0 (iff x has no non-NAs) , giving the index of the first minimum
or maximum respectively of x.

If this extremum is unique (or empty), the result is the same (but more efficient) as which(x
== min(x)) or which(x == max(x)) respectively.

Author(s)

Martin Maechler

See Also

which, max.col, max, etc.

732 Wilcoxon

Examples

x <- c(1:4,0:5,11)

which.min(x)

which.max(x)

data(presidents)

presidents[1:30]

range(presidents, na.rm = TRUE)

which.min(presidents)# 28

which.max(presidents)# 2

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic

Description

Density, distribution function, quantile function and random generation for the distribution
of the Wilcoxon rank sum statistic obtained from samples with size m and n, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

m, n numbers of observations in the first and second sample, respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X >
x].

Details

This distribution is obtained as follows. Let x and y be two random, independent samples of
size m and n. Then the Wilcoxon rank sum statistic is the number of all pairs (x[i], y[j])
for which y[j] is not greater than x[i]. This statistic takes values between 0 and m * n,
and its mean and variance are m * n / 2 and m * n * (m + n + 1) / 12, respectively.

Value

dwilcox gives the density, pwilcox gives the distribution function, qwilcox gives the quan-
tile function, and rwilcox generates random deviates.

window 733

Author(s)

Kurt Hornik 〈hornik@ci.tuwien.ac.at〉

See Also

dsignrank etc, for the one-sample Wilcoxon rank statistic.

Examples

x <- -1:(4*6 + 1)

fx <- dwilcox(x, 4, 6)

all(fx == dwilcox(x, 6, 4))

Fx <- pwilcox(x, 4, 6)

all(abs(Fx - cumsum(fx)) < 10 * .Machine$double.eps)

layout(rbind(1,2),width=1,heights=c(3,2))

plot(x, fx,type=’h’, col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")

plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")

abline(h=0:1, col="gray20",lty=2)

layout(1)# set back

N <- 200

hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2, border="red", col="pink",

sub = paste("N =",N))

mtext("N * f(x), f() = true ‘‘density’’", side=3, col="blue")

lines(x, N*fx, type=’h’, col=’blue’, lwd=2)

points(x, N*fx, cex=2)

Better is a Quantile-Quantile Plot

qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",

"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))

text(n+.2, n+.5, labels=tU, col="red")

window Time Windows

Description

window is a generic function which extracts the subset of the object x observed between the
times start and end. If a frequency is specified, the series is then re-sampled at the new
frequency.

Usage

window(x, ...)
window.default(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)
window.ts(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)

734 with

Arguments

x a time-series or other object.

start the start time of the period of interest.

end the end time of the period of interest.
frequency, deltat

the new frequency can be specified by either (or both if they are consis-
tent).

extend logical. If true, the start and end values are allowed to extend the series.
If false, attempts to extend the series give a warning and are ignored.

... further arguments passed to or from other methods.

Details

The start and end times can be specified as for ts. If there is no observation at the new
start or end, the immediately following (start) or preceding (end) observation time is
used.

Value

The value depends on the method. window.default will return a vector or matrix with an
appropriate tsp attribute.

window.ts differs from window.default only in ensuring the result is a ts object.

If extend = TRUE the series will be padded with NA if needed.

See Also

time, ts.

Examples

data(presidents)

window(presidents, 1960, c(1969,4)) # values in the 1960’s

window(presidents, deltat=1) # All Qtr1s

window(presidents, start=c(1945,3), deltat=1) # All Qtr3s

window(presidents, 1944, c(1979,2), extend=TRUE)

with Evaluate an Expression in a Data Environment

Description

Evaluate an R expression in an environment constructed from data.

Usage

with(data, expr, ...)

with 735

Arguments

data data to use for constructing an environment. For the default method this
may be an environment, a list, a data frame, or an integer as in sys.call.

expr expression to evaluate.

... arguments to be passed to future methods.

Details

with is a generic function that evaluates expr in a local environment constructed from data.
The environment has the caller’s environment as its parent. This is useful for simplifying
calls to modeling functions.

See Also

evalq.

Examples

#examples from glm:

library(MASS)

data(anorexia)

with(anorexia, {

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),

family = gaussian)

summary(anorex.1)

})

with(data.frame(u = c(5,10,15,20,30,40,60,80,100),

lot1 = c(118,58,42,35,27,25,21,19,18),

lot2 = c(69,35,26,21,18,16,13,12,12)),

list(summary(glm(lot1 ~ log(u), family=Gamma)),

summary(glm(lot2 ~ log(u), family=Gamma))))

example from boxplot:

data(ToothGrowth)

with(ToothGrowth, {

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,

subset= supp == "VC", col="yellow",

main="Guinea Pigs’ Tooth Growth",

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35))

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

subset= supp == "OJ", col="orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

})

alternate form that avoids subset argument:

with(subset(ToothGrowth, supp == "VC"),

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,

col="yellow", main="Guinea Pigs’ Tooth Growth",

xlab="Vitamin C dose mg",

ylab="tooth length", ylim=c(0,35)))

736 write

with(subset(ToothGrowth, supp == "OJ"),

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

col="orange"))

legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

women Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

data(women)

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of Actuaries Build and
Blood Pressure Study for some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing and
shoes, and heights with shoes.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

data(women)

plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")

write Write Data to a File

write.table 737

Description

The data (usually a matrix) x are written to file file. If x is a two-dimensional matrix
you need to transpose it to get the columns in file the same as those in the internal
representation.

Usage

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE)

Arguments

x the data to be written out.

file A connection, or a character string naming the file to write to. If "",
print to the standard output connection. If it is "|cmd", the output is
piped to the command given by ‘cmd’.

ncolumns the number of columns to write the data in.

append if TRUE the data x is appended to file file.

See Also

save for writing any R objects, write.table for data frames, and scan for reading data.

Examples

create a 2 by 5 matrix

x <- matrix(1:10,ncol=5)

the file data contains x, two rows, five cols

1 3 5 6 9 will form the first row

write(t(x))

the file data now contains the data in x,

two rows, five cols but the first row is 1 2 3 4 5

write(x)

unlink("data") # tidy up

write.table Data Output

Description

write.table prints its required argument x (after converting it to a data frame if it is not
one already) to file. The entries in each line (row) are separated by the value of sep.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

738 write.table

Arguments

x the object to be written, typically a data frame. If not, it is attempted to
coerce x to a data frame.

file either a character string naming a file or a connection. "" indicates output
to the console.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing
file of the name is destroyed.

quote a logical or a numeric vector. If TRUE, any character or factor columns
will be surrounded by double quotes. If a numeric vector, its elements
are taken as the indices of the variable (columns) to quote. In both cases,
row and columns names are quoted if they are written, but not if quote
is FALSE.

sep the field separator string. Values within each row of x are separated by
this string.

eol the character(s) to print at the end of each line (row).

na the string to use for missing values in the data.

dec the string to use for decimal points.

row.names either a logical value indicating whether the row names of x are to be
written along with x, or a character vector of row names to be written.

col.names either a logical value indicating whether the column names of x are to be
written along with x, or a character vector of column names to be written.

qmethod a character string specifying how to deal with embedded double quote
characters when quoting strings. Must be one of "escape" (default), in
which case the quote character is escaped in C style by a backslash, or
"double", in which case it is doubled. You can specify just the initial
letter.

Details

Normally there is no column name for a column of row names. If col.names=NA a blank
column name is added. This can be used to write CSV files for input to spreadsheets.

write.table can be slow for data frames with large numbers (hundreds or more) of columns:
this is inevitable as each column could be of a different class and so must be handled
separately. Function write.matrix in package MASS may be much more efficient if x is a
matrix or can be represented in a numeric matrix.

See Also

The ‘R Data Import/Export’ manual.

read.table, write.

write.matrix.

Examples

To write a CSV file for input to Excel one might use

write.table(x, file = "foo.csv", sep = ",", col.names = NA)

and to read this file back into R one needs

read.table("file.csv", header = TRUE, sep = ",", row.names=1)

writeLines 739

writeLines Write Lines to a Connection

Description

Write text lines to a connection.

Usage

writeLines(text, con = stdout(), sep = "\n")

Arguments

text A character vector

con A connection object or a character string.

sep character. A string to be written to the connection after each line of text.

Details

If the con is a character string, the functions call file to obtain an file connection which
is opened for the duration of the function call.

If the connection is open it is written from its current position. If it is not open, it is opened
for the duration of the call and then closed again.

Normally writeLines is used with a text connection, and the default separator is converted
to the normal separator for that platform (LF on Unix/Linux, CRLF on Windows, LF on
Macintosh). For more control, open a binary connection and specify the precise value
you want written to the file in sep. For even more control, use writeChar on a binary
connection.

See Also

connections, writeChar, readLines, cat

x11 X Window System Graphics

Description

X11 starts a graphics device driver for the X Window System (version 11). This can only
be done on machines that run X. x11 is recognized as a synonym for X11.

Usage

X11(display = "", width = 7, height = 7, pointsize = 12,
gamma = 1, colortype = getOption("X11colortype"),
maxcubesize = 256, canvas = "white")

740 xfig

Arguments

display the display on which the graphics window will appear. The default is to
use the value in the user’s environment variable DISPLAY.

width the width of the plotting window in inches.

height the height of the plotting window in inches.

pointsize the default pointsize to be used.

gamma the gamma correction factor. This value is used to ensure that the colors
displayed are linearly related to RGB values. A value of around 0.5 is
appropriate for many PC displays. A value of 1.0 (no correction) is usually
appropriate for high-end displays or Macintoshs.

colortype the kind of color model to be used. The possibilities are "mono", "gray",
"pseudo", "pseudo.cube" and "true". Ignored if an X11 is already open.

maxcubesize can be used to limit the size of color cube allocated for pseudocolor de-
vices.

canvas color. The color of the canvas, which is visible only when the background
color is transparent.

Details

By default, an X11 device will use the best color rendering strategy that it can. The choice
can be overriden with the colortype parameter. A value of "mono" results in black and
white graphics, "gray" in grayscale and "true" in truecolor graphics (if this is possible).
The values "pseudo" and "pseudo.cube" provide color strategies for pseudocolor displays.
The first strategy provides on-demand color allocation which produces exact colors until
the color resources of the display are exhausted. The second causes a standard color cube
to be set up, and requested colors are approximated by the closest value in the cube. The
default strategy for pseudocolor displays is "pseudo".

Note: All X11 devices share a colortype which is set by the first device to be opened.
To change the colortype you need to close all open X11 devices then open one with the
desired colortype.

With colortype equal to "pseudo.cube" or "gray" successively smaller palettes are tried
until one is completely allocated. If allocation of the smallest attempt fails the device will
revert to "mono".

See Also

Devices.

xfig XFig Graphics Device

Description

xfig starts the graphics device driver for producing XFig (version 3.2) graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to xfig and postscript.

xfig 741

Usage

xfig(file = "Rplots.fig", onefile = FALSE, ...)

Arguments

file a character string giving the name of the file. If it is "", the output
is piped to the command given by the argument command. For use with
onefile=FALSE give a printf format such as "Rplot%d.fig" (the default
in that case).

onefile logical: if true allow multiple figures in one file. If false, assume only one
page per file and generate a file number containing the page number.

... further options for xfig(), such as:

paper the size of paper in the printer. The choices are "A4", "Letter" and
"Legal" (and these can be lowercase). A further choice is "default",
which is the default. If this is selected, the papersize is taken from the
option "papersize" if that is set and to "A4" if it is unset or empty.

horizontal the orientation of the printed image, a logical. Defaults to true, that is
landscape orientation.

width, height the width and height of the graphics region in inches. The default is to
use the entire page less a 0.25 inch border.

family the font family to be used. This must be one of "AvantGarde",
"Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times".

pointsize the default point size to be used.

bg the default background color to be used.

fg the default foreground color to be used.

pagecentre logical: should the device region be centred on the page: defaults to TRUE.

Details

Although xfig can produce multiple plots in one file, the XFig format does not say how to
separate or view them. So onefile=FALSE is the default.

Note

On some line textures (0 <= lty > 4) are used. Eventually this will be partially remedied,
but the XFig file format does not allow as general line textures as the R model. Unimple-
mented line textures are displayed as dash-double-dotted.

There is a limit of 512 colours (plus white and black) per file.

See Also

Devices, postscript.

742 xtabs

xtabs Cross Tabulation

Description

Create a contingency table from cross-classifying factors, usually contained in a data frame,
using a formula interface.

Usage

xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)

Arguments

formula a formula object with the cross-classifying variables, separated by +, on
the right hand side. Interactions are not allowed. On the left hand side,
one may optionally give a vector or a matrix of counts; in the latter case,
the columns are interpreted as corresponding to the levels of a variable.
This is useful if the data has already been tabulated, see the examples
below.

data a data frame, list or environment containing the variables to be cross-
tabulated.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs.

exclude a vector of values to be excluded when forming the set of levels of the
classifying factors.

drop.unused.levels

a logical indicating whether to drop unused levels in the classifying fac-
tors. If this is FALSE and there are unused levels, the table will contain
zero marginals, and a subsequent chi-squared test for independence of the
factors will not work.

Details

There is a summary method for contingency table objects created by table or xtabs, which
gives basic information and performs a chi-squared test for independence of factors (note
that the function chisq.test in package ctest currently only handles 2-d tables).

If a left hand side is given in formula, its entries are simply summed over the cells corre-
sponding to the right hand side; this also works if the lhs does not give counts.

Value

A contingency table in array representation of class c("xtabs", "table"), with a "call"
attribute storing the matched call.

See Also

table for “traditional” cross-tabulation, and as.data.frame.table which is the inverse
operation of xtabs (see the DF example below).

xy.coords 743

Examples

data(esoph)

‘esoph’ has the frequencies of cases and controls for all levels of

the variables ‘agegp’, ‘alcgp’, and ‘tobgp’.

xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)

Output is not really helpful ... flat tables are better:

ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))

In particular if we have fewer factors ...

ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))

data(UCBAdmissions)

This is already a contingency table in array form.

DF <- as.data.frame(UCBAdmissions)

Now ‘DF’ is a data frame with a grid of the factors and the counts

in variable ‘Freq’.

DF

Nice for taking margins ...

xtabs(Freq ~ Gender + Admit, DF)

And for testing independece ...

summary(xtabs(Freq ~ ., DF))

data(warpbreaks)

Create a nice display for the warp break data.

warpbreaks$replicate <- rep(1:9, len = 54)

ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

xy.coords Extracting Plotting Structures

Description

xy.coords is used by many function to obtain x and y coordinates for plotting. The use of
this common mechanism across all R functions produces a measure of consistency.

plot.default and lowess are examples of functions which use this mechanism.

Usage

xy.coords(x, y, xlab=NULL, ylab=NULL, log=NULL, recycle = FALSE)

Arguments

x,y the x and y coordinates of a set of points. Alternatively, a single argument
x can be be provided. In this case, an attempt is made to interpret the
argument in a way suitable for plotting. If the argument is a formula yvar
~ xvar, xvar and yvar are used as x and y variables; if the argument is a
list containing components x and y, these are used are assumed to define
plotting coordinates; if the argument contains a time series, the x values
are taken to be time and the y values to be the time series; if the argument
is a matrix with two columns, the first is assumed to contain the x values
and the second the y values; in any other case, the argument is coerced
to a vector and the values plotted against their indices.

xlab,ylab names for the x and y variables to be extracted.

744 xyz.coords

log character, "x", "y" or both, as for plot. Sets negative values to NA and
gives a warning.

recycle logical; if TRUE, recycle (rep) the shorter of x or y if their lengths differ.

Value

A list with the components

x numeric (i.e. "double") vector of abscissa values.

y numeric vector of the same length as x.

xlab character(1) or NULL, the ‘label’ of x.

ylab character(1) or NULL, the ‘label’ of y.

Examples

xy.coords(fft(c(1:10)), NULL)

data(cars) ; attach(cars)

xy.coords(dist ~ speed, NULL)$xlab # = "speed"

str(xy.coords(1:3, 1:2, recycle=TRUE))

str(xy.coords(-2:10,NULL, log="y"))

##> warning: 3 y values <=0 omitted ..

xyz.coords Extracting Plotting Structures

Description

Utility for obtaining consistent x, y and z coordinates and labels for three dimensional (3D)
plots.

Usage

xyz.coords(x, y, z, xlab=NULL, ylab=NULL, zlab=NULL, log=NULL,
recycle=FALSE)

Arguments

x, y, z the x, y and z coordinates of a set of points. Alternatively, a single
argument x can be be provided. In this case, an attempt is made to
interpret the argument in a way suitable for plotting.
If the argument is a formula zvar ~ xvar + yvar, xvar, yvar and zvar
are used as x, y and z variables; if the argument is a list containing
components x, y and z, these are assumed to define plotting coordinates;
if the argument is a matrix with three columns, the first is assumed to
contain the x values, etc.
Alternatively, two arguments x and y can be be provided. One may be
real, the other complex; in any other case, the arguments are coerced to
vectors and the values plotted against their indices.

xlab, ylab, zlab

names for the x, y and z variables to be extracted.

zcbind 745

log character, "x", "y", "z" or combinations. Sets negative values to NA and
gives a warning.

recycle logical; if TRUE, recycle (rep) the shorter ones of x, y or z if their lengths
differ.

Value

A list with the components

x numeric (i.e. double) vector of abscissa values.

y numeric vector of the same length as x.

z numeric vector of the same length as x.

xlab character(1) or NULL, the axis label of x.

ylab character(1) or NULL, the axis label of y.

zlab character(1) or NULL, the axis label of z.

Author(s)

Uwe Ligges and Martin Maechler

See Also

xy.coords for 2D.

Examples

str(xyz.coords(data.frame(10*1:9, -4),y=NULL,z=NULL))

str(xyz.coords(1:6, fft(1:6),z=NULL,xlab="X", ylab="Y"))

y <- 2 * (x2 <- 10 + (x1 <- 1:10))

str(xyz.coords(y ~ x1 + x2,y=NULL,z=NULL))

str(xyz.coords(data.frame(x=-1:9,y=2:12,z=3:13),y=NULL,z=NULL,

log="xy"))

##> Warning message: 2 x values <= 0 omitted ...

zcbind Bind Two or More Time Series

Description

Bind Two or More Time Series which have common frequency.

Usage

.cbind.ts(sers, nmsers, dframe = FALSE, union = TRUE)

746 zip.file.extract

Arguments

sers a list of two or more univariate or multivariate time series, or objects
which can coerced to time series.

nmsers a character vector of the same length as sers with the names for the time
series.

dframe logical; if TRUE return the result as a data frame.

union logical; if TRUE, act as ts.union or ts.intersect.

Details

This is an internal function which is not to be called by the user.

zip.file.extract Extract File from a Zip Archive

Description

This will extract the file named file from the zip archive, if possible, and write it in a
temporary location.

Usage

zip.file.extract(file, zipname = "R.zip")

Arguments

file A file name.

zipname The file name of a zip archive, including the ".zip" extension if required.

Details

The method used is selected by options(unzip=). All platforms support an "internal"
unzip: this is the default under Windows and MacOS, and the fall-back under Unix if no
unzip program was found during configuration and R_UNZIPCMD is not set.

The file will be extracted if it is in the archive and any required unzip utility is available.
It will probably be extracted to the directory given by tempdir, overwriting an existing file
of that name.

Value

The name of the original or extracted file. Success is indicated by returning a different
name.

Note

The "internal" method is very simple, and will not set file dates.

Author(s)

B. D. Ripley

Chapter 2

The ctest package

ansari.test Ansari-Bradley Test

Description

Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

Usage

ansari.test(x, y, alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95, ...)

ansari.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values.

y numeric vector of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

exact a logical indicating whether an exact p-value should be computed.

conf.int a logical,indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving
the data values and rhs a factor with two levels giving the corresponding
groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

747

748 ansari.test

Details

Suppose that x and y are independent samples from distributions with densities f((t −
m)/s)/s and f(t−m), respectively, where m is an unknown nuisance parameter and s, the
ratio of scales, is the parameter of interest. The Ansari-Bradley test is used for testing the
null that s equals 1, the two-sided alternative being that s 6= 1 (the distributions differ only
in variance), and the one-sided alternatives being s > 1 (the distribution underlying x has
a larger variance, "greater") or s < 1 ("less").

By default (if exact is not specified), an exact p-value is computed if both samples contain
less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally, a nonparametric confidence interval and an estimator for s are computed. If
exact p-values are available, an exact confidence interval is obtained by the algorithm de-
scribed in Bauer (1972), and the Hodges-Lehmann estimator is employed. Otherwise, the
returned confidence interval and point estimate are based on normal approximations.

Value

A list with class "htest" containing the following components:

statistic the value of the Ansari-Bradley test statistic.

p.value the p-value of the test.

null.value the ratio of scales s under the null, 1.

alternative a character string describing the alternative hypothesis.

method the string "Ansari-Bradley test".

data.name a character string giving the names of the data.

conf.int a confidence interval for the scale parameter. (Only present if argument
conf.int = TRUE.)

estimate an estimate of the ratio of scales. (Only present if argument conf.int =
TRUE.)

Note

To compare results of the Ansari-Bradley test to those of the F test to compare two variances
(under the assumption of normality), observe that s is the ratio of scales and hence s2 is the
ratio of variances (provided they exist), whereas for the F test the ratio of variances itself is
the parameter of interest. In particular, confidence intervals are for s in the Ansari-Bradley
test but for s2 in the F test.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 83–92.

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the
American Statistical Association 67, 687–690.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
mood.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

bartlett.test 749

Examples

Hollander & Wolfe (1973, p. 86f):

Serum iron determination using Hyland control sera

ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)

jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)

ansari.test(ramsay, jung.parekh)

ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)

bartlett.test Bartlett Test for Homogeneity of Variances

Description

Performs Bartlett’s test of the null that the variances in each of the groups (samples) are
the same.

Usage

bartlett.test(x, g, ...)
bartlett.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors repre-
senting the respective samples, or fitted linear model objects (inheriting
from class "lm").

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples or fitted linear models to be compared for
homogeneity of variances. In this case, the elements must either all be numeric data vectors
or fitted linear model objects, g is ignored, and one can simply use bartlett.test(x) to
perform the test. If the samples are not yet contained in a list, use bartlett.test(list(x,
...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

750 binom.test

Value

A list of class "htest" containing the following components:

statistic Bartlett’s K-squared test statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the

test statistic.
p.value the p-value of the test.
method the character string "Bartlett test for homogeneity of

variances".
data.name a character string giving the names of the data.

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the
Royal Statistical Society Series A 160, 268–282.

See Also

var.test for the special case of comparing variances in two samples from normal distri-
butions; fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of
variances; ansari.test and mood.test for two rank based two-sample tests for difference
in scale.

Examples

data(InsectSprays)

plot(count ~ spray, data = InsectSprays)

bartlett.test(InsectSprays$count, InsectSprays$spray)

bartlett.test(count ~ spray, data = InsectSprays)

binom.test Exact Binomial Test

Description

Performs an exact test of a simple null hypothesis about the probability of success in a
Bernoulli experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x number of successes, or a vector of length 2 giving the numbers of successes
and failures, respectively.

n number of trials; ignored if x has length 2.
p hypothesized probability of success.
alternative indicates the alternative hypothesis and must be one of "two.sided",

"greater" or "less". You can specify just the initial letter.
conf.level confidence level for the returned confidence interval.

binom.test 751

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934).
This guarantees that the confidence level is at least conf.level, but in general does not
give the shortest-length confidence intervals.

Value

A list with class "htest" containing the following components:

statistic the number of successes.

parameter the number of trials.

p.value the p-value of the test.

conf.int a confidence interval for the probability of success.

estimate the estimated probability of success.

null.value the probability of success under the null, p.

alternative a character string describing the alternative hypothesis.

method the character string "Exact binomial test".

data.name a character string giving the names of the data.

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated
in the case of the binomial. Biometrika, 26, 404–413.

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 97–104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 15–22.

See Also

prop.test for a general (approximate) test for equal or given proportions.

Examples

Conover (1971), p. 97f.

Under (the assumption of) simple Mendelian inheritance, a cross

between plants of two particular genotypes produces progeny 1/4 of

which are ‘‘dwarf’’ and 3/4 of which are ‘‘giant’’, respectively.

In an experiment to determine if this assumption is reasonable, a

cross results in progeny having 243 dwarf and 682 giant plants.

If ‘‘giant’’ is taken as success, the null hypothesis is that p =

3/4 and the alternative that p != 3/4.

binom.test(c(682, 243), p = 3/4)

binom.test(682, 682 + 243, p = 3/4) # The same.

=> Data are in agreement with the null hypothesis.

752 chisq.test

chisq.test Pearson’s Chi-squared Test for Count Data

Description

chisq.test performs chi-squared tests on contingency tables.

Usage

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)),
simulate.p.value = FALSE, B = 2000)

Arguments

x a vector or matrix.

y a vector; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic.

p a vector of probabilities of the same length of x.
simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simula-
tion.

B an integer specifying the number of replicates used in the Monte Carlo
simulation.

Details

If x is a matrix with one row or column, or if x is a vector and y is not given, x is treated
as a one-dimensional contingency table. In this case, the hypothesis tested is whether the
population probabilities equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional
contingency table, and hence its entries should be nonnegative integers. Otherwise, x and
y must be vectors or factors of the same length; incomplete cases are removed, the objects
are coerced into factor objects, and the contingency table is computed from these. Then,
Pearson’s chi-squared test of the null that the joint distribution of the cell counts in a 2-
dimensional contingency table is the product of the row and column marginals is performed.
If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-squared
distribution of the test statistic; continuity correction is only used in the 2-by-2 case if
correct is TRUE. Otherwise, if simulate.p.value is TRUE, the p-value is computed by
Monte Carlo simulation with B replicates. This is done by random sampling from the set of
all contingency tables with given marginals, and works only if the marginals are positive.

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic, NA if the p-value is computed by Monte Carlo simulation.

cor.test 753

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether
Monte Carlo simulation or continuity correction was used.

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) / sqrt(expected).

Examples

data(InsectSprays) # Not really a good example

chisq.test(InsectSprays$count > 7, InsectSprays$spray)

Prints test summary

chisq.test(InsectSprays$count > 7, InsectSprays$spray)$obs

Counts observed

chisq.test(InsectSprays$count > 7, InsectSprays$spray)$exp

Counts expected under the null

Effect of simulating p-values

x <- matrix(c(12, 5, 7, 7), nc = 2)

chisq.test(x)$p.value # 0.4233

chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value

around 0.29!

Testing for population probabilities

Case A. Tabulated data

x <- c(A = 20, B = 15, C = 25)

chisq.test(x)

chisq.test(as.table(x)) # the same

Case B. Raw data

x <- trunc(5 * runif(100))

chisq.test(table(x)) # NOT ‘chisq.test(x)’!

cor.test Test for Association Between Paired Samples

Description

Test for association between paired samples, using one of Pearson’s product moment cor-
relation coefficient, Kendall’s τ or Spearman’s ρ.

Usage

cor.test(x, y,
alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

cor.test(formula, data, subset, na.action, ...)

754 cor.test

Arguments

x, y numeric vectors of data values. x and y must have the same length.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. "greater"
corresponds to positive association, "less" to negative association.

method a character string indicating which correlation coefficient is to be used for
the test. One of "pearson", "kendall", or "spearman", can be abbrevi-
ated.

exact a logical indicating whether an exact p-value should be computed. Only
used for Kendall’s τ . See the Details for the meaning of NULL (the default).

conf.level confidence level for the returned confidence interval. Currently only used
for the Pearson product moment correlation coefficient if there are at least
4 complete pairs of observations.

formula a formula of the form ~ u + v, where each of u and v are numeric variables
giving the data values for one sample. The samples must be of the same
length.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The three methods each estimate the association between paired samples and compute a
test of the value being zero. They use different measures of association, all in the range
[−1, 1] with 0 indicating no association. These are sometimes referred to as tests of no
correlation, but that term is often confined to the default method.

If method is "pearson", the test statistic is based on Pearson’s product moment correlation
coefficient cor(x, y) and follows a t distribution with length(x)-2 degrees of freedom if
the samples follow independent normal distributions. If there are at least 4 complete pairs
of observation, an asymptotic confidence interval is given based on Fisher’s Z transform.

If method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to
estimate a rank-based measure of association. These tests may be used if the data do not
necessarily come from a bivariate normal distribution.

For Kendall’s test, by default (if exact is NULL), an exact p-value is computed if there are
less than 50 paired samples containing finite values and there are no ties. Otherwise, the
test statistic is the estimate scaled to zero mean and unit variance, and is approximately
normally distributed.

For Spearman’s test, p-values are computed using algorithm AS 89.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the test statistic in the case that it follows a t
distribution.

cor.test 755

p.value the p-value of the test.

estimate the estimated measure of association, with name "cor", "tau", or "rho"
correspoding to the method employed.

null.value the value of the association measure under the null hypothesis, always 0.

alternative a character string describing the alternative hypothesis.

method a character string indicating how the association was measured.

data.name a character string giving the names of the data.

conf.int a confidence interval for the measure of association. Currently only given
for Pearson’s product moment correlation coefficient in case of at least 4
complete pairs of observations.

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of
Spearman’s ρ. Applied Statistics, 24, 377–379.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 185–194 (Kendall and Spearman tests).

Examples

Hollander & Wolfe (1973), p. 187f.

Assessment of tuna quality. We compare the Hunter L measure of

lightness to the averages of consumer panel scores (recoded as

integer values from 1 to 6 and averaged over 80 such values) in

9 lots of canned tuna.

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)

y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

The alternative hypothesis of interest is that the

Hunter L value is positively associated with the panel score.

cor.test(x, y, method = "kendall", alternative = "greater")

=> p=0.05972

cor.test(x, y, method = "kendall", alternative = "greater",

exact = FALSE) # using large sample approximation

=> p=0.04765

Compare this to

cor.test(x, y, method = "spearm", alternative = "g")

cor.test(x, y, alternative = "g")

Formula interface.

data(USJudgeRatings)

pairs(USJudgeRatings)

cor.test(~ CONT + INTG, data = USJudgeRatings)

756 fisher.test

fisher.test Fisher’s Exact Test for Count Data

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a
contingency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
or = 1, alternative = "two.sided", conf.level = 0.95)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor
object.

y a factor object; ignored if x is a matrix.

workspace an integer specifying the size of the workspace used in the network algo-
rithm.

hybrid a logical indicating whether the exact probabilities (default) or a hybrid
approximation thereof should be computed. In the hybrid case, asymp-
totic chi-squared probabilities are only used provided that the “Cochran”
conditions are satisfied.

or the hypothesized odds ratio. Only used in the 2 by 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used
in the 2 by 2 case.

conf.level confidence level for the returned confidence interval. Only used in the 2
by 2 case.

Details

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

In the one-sided 2 by 2 cases, p-values are obtained directly using the hypergeometric
distribution. Otherwise, computations are based on a C version of the FORTRAN subrou-
tine FEXACT which implements the network developed by Mehta and Patel (1986) and
improved by Clarkson, Fan & Joe (1993). The FORTRAN code can be obtained from
http://www.netlib.org/toms/643.

In the 2 by 2 case, the null of conditional independence is equivalent to the hypothesis
that the odds ratio equals one. Exact inference can be based on observing that in general,
given all marginal totals fixed, the first element of the contingency table has a non-central
hypergeometric distribution with non-centrality parameter given by the odds ratio (Fisher,
1935).

http://www.netlib.org/toms/643

fisher.test 757

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.

conf.int a confidence interval for the odds ratio. Only present in the 2 by 2 case.

estimate an estimate of the odds ratio. Note that the conditional Maximum Like-
lihood Estimate (MLE) rather than the unconditional MLE (the sample
odds ratio) is used. Only present in the 2 by 2 case.

null.value the odds ratio under the null, or. Only present in the 2 by 2 case.

alternative a character string describing the alternative hypothesis.

method the character string "Fisher’s Exact Test for Count Data".

data.name a character string giving the names of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 59–66.

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical
Society Series A 98, 39–54.

Fisher, R. A. (1962). Confidence limits for a cross-product ratio. Australian Journal of
Statistics 4, 41.

Cyrus R. Mehta & Nitin R. Patel (1986). Algorithm 643. FEXACT: A Fortran subrou-
tine for Fisher’s exact test on unordered r ∗ c contingency tables. ACM Transactions on
Mathematical Software, 12, 154–161.

Douglas B. Clarkson, Yuan-an Fan & Harry Joe (1993). A Remark on Algorithm 643:
FEXACT: An Algorithm for Performing Fisher’s Exact Test in r × c Contingency Tables.
ACM Transactions on Mathematical Software, 19, 484–488.

See Also

chisq.test

Examples

Agresti (1990), p. 61f, Fisher’s Tea Drinker

A British woman claimed to be able to distinguish whether milk or

tea was added to the cup first. To test, she was given 8 cups of

tea, in four of which milk was added first. The null hypothesis

is that there is no association between the true order of pouring

and the women’s guess, the alternative that there is a positive

association (that the odds ratio is greater than 1).

TeaTasting <-

matrix(c(3, 1, 1, 3),

nr = 2,

dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))

fisher.test(TeaTasting, alternative = "greater")

=> p=0.2429, association could not be established

Fisher (1962), Convictions of like-sex twins in criminals

Convictions <-

matrix(c(2, 10, 15, 3),

nr = 2,

758 fligner.test

dimnames =

list(c("Dizygotic", "Monozygotic"),

c("Convicted", "Not convicted")))

Convictions

fisher.test(Convictions, alternative = "less")

fisher.test(Convictions, conf.level = 0.95)$conf.int

fisher.test(Convictions, conf.level = 0.99)$conf.int

fligner.test Fligner-Killeen Test for Homogeneity of Variances

Description

Performs a Fligner-Killeen (median) test of the null that the variances in each of the groups
(samples) are the same.

Usage

fligner.test(x, g, ...)
fligner.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples to be compared for homogeneity of
variances, and hence have to be numeric data vectors. In this case, g is ignored, and one
can simply use fligner.test(x) to perform the test. If the samples are not yet contained
in a list, use fligner.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

The Fligner-Killeen (median) test has been determined in a simulation study as one of
the many tests for homogeneity of variances which is most robust against departures from
normality, see Conover, Johnson & Johnson (1981). It is a k-sample simple linear rank
which uses the ranks of the absolute values of the centered samples and weights a(i) =
qnorm((1 + i/(n+ 1))/2). The version implemented here uses median centering in each of
the samples (F-K:med X2 in the reference).

friedman.test 759

Value

A list of class "htest" containing the following components:

statistic the Fligner-Killeen:med X2 test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic.

p.value the p-value of the test.

method the character string "Fligner-Killeen test for homogeneity of
variances".

data.name a character string giving the names of the data.

References

W. J. Conover & Mark E. Johnson & Myrie M. Johnson (1981). A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf bidding
data. Technometrics 23, 351–361.

See Also

ansari.test and mood.test for rank-based two-sample test for a difference in scale param-
eters; var.test and bartlett.test for parametric tests for the homogeneity of variances.

Examples

data(InsectSprays)

plot(count ~ spray, data = InsectSprays)

fligner.test(InsectSprays$count, InsectSprays$spray)

fligner.test(count ~ spray, data = InsectSprays)

Compare this to bartlett.test()

friedman.test Friedman Rank Sum Test

Description

Performs a Friedman rank sum test with unreplicated blocked data.

Usage

friedman.test(y, groups, blocks, ...)
friedman.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

formula a formula of the form a ~ b | c, where a, b and c give the data values
and corresponding groups and blocks, respectively.

760 friedman.test

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

friedman.test can be used for analyzing unreplicated complete block designs (i.e., there
is exactly one observation in y for each combination of levels of groups and blocks) where
the normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is
the same in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respec-
tively. NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks
are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Friedman’s chi-squared statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic.

p.value the p-value of the test.

method the character string "Friedman rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 139–146.

See Also

quade.test.

Examples

Hollander & Wolfe (1973), p. 140ff.

Comparison of three methods (‘‘round out’’, ‘‘narrow angle’’, and

‘‘wide angle’’) for rounding first base. For each of 18 players

and the three method, the average time of two runs from a point on

the first base line 35ft from home plate to a point 15ft short of

second base is recorded.

RoundingTimes <-

matrix(c(5.40, 5.50, 5.55,

5.85, 5.70, 5.75,

5.20, 5.60, 5.50,

5.55, 5.50, 5.40,

5.90, 5.85, 5.70,

5.45, 5.55, 5.60,

5.40, 5.40, 5.35,

kruskal.test 761

5.45, 5.50, 5.35,

5.25, 5.15, 5.00,

5.85, 5.80, 5.70,

5.25, 5.20, 5.10,

5.65, 5.55, 5.45,

5.60, 5.35, 5.45,

5.05, 5.00, 4.95,

5.50, 5.50, 5.40,

5.45, 5.55, 5.50,

5.55, 5.55, 5.35,

5.45, 5.50, 5.55,

5.50, 5.45, 5.25,

5.65, 5.60, 5.40,

5.70, 5.65, 5.55,

6.30, 6.30, 6.25),

nr = 22,

byrow = TRUE,

dimnames = list(1 : 22,

c("Round Out", "Narrow Angle", "Wide Angle")))

friedman.test(RoundingTimes)

=> strong evidence against the null that the methods are equivalent

with respect to speed

data(warpbreaks)

wb <- aggregate(warpbreaks$breaks,

by = list(w = warpbreaks$wool,

t = warpbreaks$tension),

FUN = mean)

wb

friedman.test(wbx, wbw, wb$t)

friedman.test(x ~ w | t, data = wb)

kruskal.test Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, g, ...)
kruskal.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements
of x. Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

762 kruskal.test

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location pa-
rameters of the distribution of x are the same in each group (sample). The alternative is
that they differ in at least one.

If x is a list, its elements are taken as the samples to be compared, and hence have to be
numeric data vectors. In this case, g is ignored, and one can simply use kruskal.test(x) to
perform the test. If the samples are not yet contained in a list, use kruskal.test(list(x,
...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the
same length as x giving the group for the corresponding elements of x.

Value

A list with class "htest" containing the following components:

statistic the Kruskal-Wallis rank sum statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic.

p.value the p-value of the test.

method the character string "Kruskal-Wallis rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 115–120.

See Also

The Wilcoxon rank sum test (wilcox.test) as the special case for two samples; lm together
with anova for performing one-way location analysis under normality assumptions; with
Student’s t test (t.test) as the special case for two samples.

Examples

Hollander & Wolfe (1973), 116.

Mucociliary efficiency from the rate of removal of dust in normal

subjects, subjects with obstructive airway disease, and subjects

with asbestosis.

x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects

y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease

z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis

kruskal.test(list(x, y, z))

Equivalently,

x <- c(x, y, z)

g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",

"Subjects with obstructive airway disease",

ks.test 763

"Subjects with asbestosis"))

kruskal.test(x, g)

Formula interface.

data(airquality)

boxplot(Ozone ~ Month, data = airquality)

kruskal.test(Ozone ~ Month, data = airquality)

ks.test Kolmogorov-Smirnov Tests

Description

Performs one or two sample Kolmogorov-Smirnov tests.

Usage

ks.test(x, y, ..., alternative = c("two.sided", "less", "greater"),
exact = NULL)

Arguments

x a numeric vector of data values.

y either a numeric vector of data values, or a character string naming a
distribution function.

... parameters of the distribution specified by y.

alternative indicates the alternative hypothesis and must be one of "two.sided"
(default), "less", or "greater". You can specify just the initial letter.

exact NULL or a logical indicating whether an exact p-value should be computed.
See Details for the meaning of NULL. Only used in the two-sided two-
sample case.

Details

If y is numeric, a two-sample test of the null hypothesis that x and y were drawn from the
same continuous distribution is performed.

Alternatively, y can be a character string naming a continuous distribution function. In
this case, a one sample test of the null that the distribution function underlying x is y with
parameters specified by ... is carried out.

The presence of ties generates a warning, since continuous distributions do not generate
them.

The possible values "two.sided", "less" and "greater" of alternative specify the null
hypothesis that the true distribution function of x is equal to, not less than or not greater
than the hypothesized distribution function (one-sample case) or the distribution function
of y (two-sample case), respectively.

Exact p-values are only available for the two-sided two-sample test with no ties. In that case,
if exact = NULL (the default) an exact p-value is computed if the product of the sample
sizes is less than 10000. Otherwise, asymptotic distributions are used whose approximations
may be inaccurate in small samples.

764 mantelhaen.test

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

References

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 295–301 (one-sample “Kolmogorov” test), 309–314 (two-sample “Smirnov” test).

See Also

shapiro.test which performs the Shapiro-Wilk test for normality.

Examples

x <- rnorm(50)

y <- runif(30)

Do x and y come from the same distribution?

ks.test(x, y)

Does x come from a shifted gamma distribution with shape 3 and scale 2?

ks.test(x+2, "pgamma", 3, 2) # two-sided

ks.test(x+2, "pgamma", 3, 2, alternative = "gr")

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for Count Data

Description

Performs a Cochran-Mantel-Haenszel chi-squared test of the null that two nominal vari-
ables are conditionally independent in each stratum, assuming that there is no three-way
interaction.

Usage

mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)

Arguments

x either a 3-dimensional contingency table in array form where each dimen-
sion is at least 2 and the last dimension corresponds to the strata, or a
factor object with at least 2 levels.

y a factor object with at least 2 levels; ignored if x is an array.

z a factor object with at least 2 levels identifying to which stratum the
corresponding elements in x and y belong; ignored if x is an array.

mantelhaen.test 765

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used
in the 2 by 2 by K case.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic. Only used in the 2 by 2 by K case.

exact a logical indicating whether the Mantel-Haenszel test or the exact condi-
tional test (given the strata margins) should be computed. Only used in
the 2 by 2 by K case.

conf.level confidence level for the returned confidence interval. Only used in the 2
by 2 by K case.

Details

If x is an array, each dimension must be at least 2, and the entries should be nonnegative
integers. NA’s are not allowed. Otherwise, x, y and z must have the same length. Triples
containing NA’s are removed. All variables must take at least two different values.

Value

A list with class "htest" containing the following components:

statistic Only present if no exact test is performed. In the classical case
of a 2 by 2 by K table (i.e., of dichotomous underlying variables),
the Mantel-Haenszel chi-squared statistic; otherwise, the generalized
Cochran-Mantel-Haenszel statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic (1 in the classical case). Only present if no exact test is
performed.

p.value the p-value of the test.

conf.int a confidence interval for the common odds ratio. Only present in the 2
by 2 by K case.

estimate an estimate of the common odds ratio. If an exact test is performed,
the conditional Maximum Likelihood Estimate is given; otherwise, the
Mantel-Haenszel estimate. Only present in the 2 by 2 by K case.

null.value the common odds ratio under the null of independence, 1. Only present
in the 2 by 2 by K case.

alternative a character string describing the alternative hypothesis. Only present in
the 2 by 2 by K case.

method a character string indicating the method employed, and whether or not
continuity correction was used.

data.name a character string giving the names of the data.

Note

The asymptotic distribution is only valid if there is no three-way interaction. In the classical
2 by 2 by K case, this is equivalent to the conditional odds ratios in each stratum being
identical. Currently, no inference on homogeneity of the odds ratios is performed.

See also the example below.

766 mantelhaen.test

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 230–235.

Examples

Agresti (1990), pages 231--237, Penicillin and Rabbits

Investigation of the effectiveness of immediately injected or 1.5

hours delayed penicillin in protecting rabbits against a lethal

injection with beta-hemolytic streptococci.

Rabbits <-

array(c(0, 0, 6, 5,

3, 0, 3, 6,

6, 2, 0, 4,

5, 1, 6, 0,

2, 5, 0, 0),

dim = c(2, 2, 5),

dimnames = list(

Delay = c("None", "1.5h"),

Response = c("Cured", "Died"),

Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))

Rabbits

Classical Mantel-Haenszel test

mantelhaen.test(Rabbits)

=> p = 0.047, some evidence for higher cure rate of immediate

injection

Exact conditional test

mantelhaen.test(Rabbits, exact = TRUE)

=> p - 0.040

Exact conditional test for one-sided alternative of a higher

cure rate for immediate injection

mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")

=> p = 0.020

UC Berkeley Student Admissions

data(UCBAdmissions)

mantelhaen.test(UCBAdmissions)

No evidence for association between admission and gender

when adjusted for department. However,

apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

This suggests that the assumption of homogeneous (conditional)

odds ratios may be violated. The traditional approach would be

using the Woolf test for interaction:

woolf <- function(x) {

x <- x + 1 / 2

k <- dim(x)[3]

or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

w <- apply(x, 3, function(x) 1 / sum(1 / x))

1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)

}

woolf(UCBAdmissions)

=> p = 0.003, indicating that there is significant heterogeneity.

(And hence the Mantel-Haenszel test cannot be used.)

mcnemar.test 767

mcnemar.test McNemar’s Chi-squared Test for Count Data

Description

Performs McNemar’s chi-squared test for symmetry of rows and columns in a two-
dimensional contingency table.

Usage

mcnemar.test(x, y = NULL, correct = TRUE)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor
object.

y a factor object; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when comput-
ing the test statistic.

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries
should be nonnegative integers. Otherwise, both x and y must be vectors of the same
length. Incomplete cases are removed, the vectors are coerced into factor objects, and the
contingency table is computed from these.

Continuity correction is only used in the 2-by-2 case if correct is TRUE.

Value

A list with class "htest" containing the following components:

statistic the value of McNemar’s statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic.

p.value the p-value of the test.

method a character string indicating the type of test performed, and whether
continuity correction was used.

data.name a character string giving the name(s) of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 350–354.

768 mood.test

Examples

Agresti (1990), p. 350.

Presidential Approval Ratings.

Approval of the President’s performance in office in two surveys,

one month apart, for a random sample of 1600 voting-age Americans.

Performance <-

matrix(c(794, 86, 150, 570),

nr = 2,

dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))

Performance

mcnemar.test(Performance)

=> very strong association between the two successive ratings

mood.test Mood Two-Sample Test of Scale

Description

Performs Mood’s two-sample test for a difference in scale parameters.

Usage

mood.test(x, y, alternative = c("two.sided", "less", "greater"), ...)
mood.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided"
(default), "greater" or "less" all of which can be abbreviated.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving
the data values and rhs a factor with two levels giving the corresponding
groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The underlying model is that the two samples are drawn from f(x− l) and f((x− l)/s)/s,
respectively, where l is a common location parameter and s is a scale parameter.

The null hypothesis is s = 1.

There are more useful tests for this problem.

oneway.test 769

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method the character string "Mood two-sample test of scale".

data.name a character string giving the names of the data.

References

Conover, W. J. (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 234f.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

Examples

Same data as for the Ansari-Bradley test:

Serum iron determination using Hyland control sera

ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)

jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)

mood.test(ramsay, jung.parekh)

Compare this to ansari.test(ramsay, jung.parekh)

oneway.test Test for Equal Means in a One-Way Layout

Description

Test whether two or more samples from normal distributions have the same means. The
variances are not necessarily assumed to be equal.

Usage

oneway.test(formula, data, subset, na.action, var.equal = FALSE)

Arguments

formula a formula of the form lhs ~ rhs where lhs gives the sample values and
rhs the corresponding groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

770 pairwise.prop.test

var.equal a logical variable indicating whether to treat the variances in the samples
as equal. If TRUE, then a simple F test for the equality of means in a one-
way analysis of variance is preformed. If FALSE, an approximate method
of Welch (1951) is used, which generalizes the commonly known 2-sample
Welch test to the case of arbitrarily many samples.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the exact or approximate F distribution of the
test statistic.

p.value the p-value of the test.

method a character string indicating the test performed.

data.name a character string giving the names of the data.

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach.
Biometrika, 38, 330–336.

See Also

The standard t test (t.test) as the special case for two samples; the Kruskal-Wallis test
kruskal.test for a nonparametric test for equal location parameters in a one-way layout.

Examples

data(sleep)

Not assuming equal variances

oneway.test(extra ~ group, data = sleep)

Assuming equal variances

oneway.test(extra ~ group, data = sleep, var.equal = TRUE)

which gives the same result as

anova(lm(extra ~ group, data = sleep))

pairwise.prop.test Pairwise comparisons of proportions

Description

Calculate pairwise comparisons between pairs of proportions with correction for multiple
testing

Usage

pairwise.prop.test(x, n, p.adjust.method=p.adjust.methods, ...)

pairwise.t.test 771

Arguments

x Vector of counts of successes or a matrix with 2 columns giving the counts
of successes and failures, respectively.

n Vector of counts of trials; ignored if x is a matrix.
p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to prop.test

Value

Object of class "pairwise.htest"

See Also

prop.test, p.adjust

Examples

smokers <- c(83, 90, 129, 70)

patients <- c(86, 93, 136, 82)

pairwise.prop.test(smokers, patients)

pairwise.t.test Pairwise t tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.t.test(x, g, p.adjust.method=p.adjust.methods, pool.sd=TRUE, ...)

Arguments

x Response vector

g Grouping vector or factor
p.adjust.method

Method for adjusting p values (see p.adjust)

pool.sd Switch to allow/disallow the use of a pooled SD

... Additional arguments to pass to t.test

Value

Object of class "pairwise.htest"

See Also

t.test, p.adjust

772 pairwise.table

Examples

data(airquality)

attach(airquality)

Month <- factor(Month, labels = month.abb[5:9])

pairwise.t.test(Ozone, Month)

pairwise.t.test(Ozone, Month, p.adj = "bonf")

pairwise.t.test(Ozone, Month, pool.sd = FALSE)

detach()

pairwise.table Tabulate p values for pairwise comparisons

Description

Creates table of p values for pairwise comparisons with corrections for multiple testing.

Usage

pairwise.table(compare.levels, level.names, p.adjust.method)

Arguments

compare.levels

Function to compute (raw) p value given indices i and j

level.names Names of the group levels

p.adjust.method

Method for multiple testing adjustment

Details

Functions that do multiple group comparisons create separate compare.levels functions
(assumed to be symmetrical in i and j) and passes them to this function.

Value

Table of p values in lower triangular form.

See Also

pairwise.t.test, et al.

pairwise.wilcox.test 773

pairwise.wilcox.test Pairwise Wilcoxon rank sum tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.wilcox.test(x, g, p.adjust.method=p.adjust.methods, ...)

Arguments

x Response vector

g Grouping vector or factor
p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to t.test

Value

Object of class "pairwise.htest"

See Also

wilcox.test, p.adjust

Examples

data(airquality)

attach(airquality)

Month <- factor(Month, labels = month.abb[5:9])

pairwise.wilcox.test(Ozone, Month)

pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")

detach()

power.prop.test Power calculations two sample test for of proportions

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05,
power=NULL,
alternative=c("two.sided", "one.sided"))

774 power.t.test

Arguments

n Number of observations (per group)

p1 probability in one group

p2 probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative One- or two-sided test

Details

Exactly one of the parameters n, p1, p2, power, and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that sig.level has a non-NULL
default so NULL must be explicitly passed if you want it computed.

Value

Object of class "power.htest", a list of the arguments (including the computed one) aug-
mented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it,
notably about inability to bracket the root when invalid arguments are given. If one of
them is computed p1 < p2 will hold, although this is not enforced when both are specified.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

prop.test, uniroot

Examples

power.prop.test(n=50, p1=.50, p2=.75)

power.prop.test(p1=.50, p2=.75, power=.90)

power.prop.test(n=50, p1=.5, power=.90)

power.t.test Power calculations for one and two sample t tests

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n=NULL, delta=NULL, sd=1, sig.level=0.05, power=NULL,
type=c("two.sample", "one.sample", "paired"),
alternative=c("two.sided", "one.sided"))

print.pairwise.htest 775

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

type Type of t test

alternative One- or two-sided test

Details

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as
NULL, and that parameter is determined from the others. Notice that the last two have
non-NULL defaults so NULL must be explicitly passed if you want to compute them.

Value

Object of class "power.htest", a list of the arguments (including the computed one) aug-
mented with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it,
notably about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

t.test, uniroot

Examples

power.t.test(n=20, delta=1)

power.t.test(power=.90, delta=1)

power.t.test(power=.90, delta=1, alt="one.sided")

print.pairwise.htest Print method for pairwise tests

Description

Display results of pairwise comparison procedures

Usage

print(x, ...)

776 print.power.htest

Arguments

x Object of class "pairwise.htest"

... further arguments to be passed to or from methods.

Value

None

See Also

pairwise.t.test, et al.

print.power.htest Print method for power calculation object

Description

Print object of class "power.htest" in nice layout.

Usage

print(x, ...)

Arguments

x Object of class "power.htest".

... further arguments to be passed to or from methods.

Details

A power.htest object is just a named list of numbers and character strings, supplemented
with method and note elements. The method is displayed as a title, the note as a footnote,
and the remaining elements are given in an aligned ‘name = value’ format.

Value

none

Author(s)

Peter Dalgaard

See Also

power.t.test, power.prop.test

prop.test 777

prop.test Test for Equal or Given Proportions

Description

prop.test can be used for testing the null that the proportions (probabilities of success)
in several groups are the same, or that they equal certain given values.

Usage

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

Arguments

x a vector of counts of successes or a matrix with 2 columns giving the
counts of successes and failures, respectively.

n a vector of counts of trials; ignored if x is a matrix.

p a vector of probabilities of success. The length of p must be the same
as the number of groups specified by x, and its elements must be greater
than 0 and less than 1.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter. Only used for testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single
number between 0 and 1. Only used when testing the null that a single
proportion equals a given value, or that two proportions are equal; ignored
otherwise.

correct a logical indicating whether Yates’ continuity correction should be applied.

Details

Only groups with finite numbers of successes and failures are used. Counts of successes
and failures must be nonnegative and hence not greater than the corresponding numbers of
trials which must be positive. All finite counts should be integers.

If p is NULL and there is more than one group, the null tested is that the proportions in
each group are the same. If there are two groups, the alternatives are that the probability
of success in the first group is less than, not equal to, or greater than the probability of
success in the second group, as specified by alternative. A confidence interval for the
difference of proportions with confidence level as specified by conf.level and clipped to
[−1, 1] is returned. Continuity correction is used only if it does not exceed the difference of
the sample proportions in absolute value. Otherwise, if there are more than 2 groups, the
alternative is always "two.sided", the returned confidence interval is NULL, and continuity
correction is never used.

If there is only one group, then the null tested is that the underlying probability of success
is p, or .5 if p is not given. The alternative is that the probability of success if less than, not
equal to, or greater than p or 0.5, respectively, as specified by alternative. A confidence

778 prop.test

interval for the underlying proportion with confidence level as specified by conf.level and
clipped to [0, 1] is returned. Continuity correction is used only if it does not exceed the
difference between sample and null proportions in absolute value.

Finally, if p is given and there are more than 2 groups, the null tested is that the underlying
probabilities of success are those given by p. The alternative is always "two.sided", the
returned confidence interval is NULL, and continuity correction is never used.

Value

A list with class "htest" containing the following components:

statistic the value of Pearson’s chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the
test statistic.

p.value the p-value of the test.

estimate a vector with the sample proportions x/n.

conf.int a confidence interval for the true proportion if there is one group, or for
the difference in proportions if there are 2 groups and p is not given, or
NULL otherwise. In the cases where it is not NULL, the returned confidence
interval has an asymptotic confidence level as specified by conf.level,
and is appropriate to the specified alternative hypothesis.

null.value the value of p if specified by the null, or NULL otherwise.

alternative a character string describing the alternative.

method a character string indicating the method used, and whether Yates’ conti-
nuity correction was applied.

data.name a character string giving the names of the data.

See Also

binom.test for an exact test of a binomial hypothesis.

Examples

heads <- rbinom(1, size=100, pr = .5)

prop.test(heads, 100) # continuity correction TRUE by default

prop.test(heads, 100, correct = FALSE)

Data from Fleiss (1981), p. 139.

H0: The null hypothesis is that the four populations from which

the patients were drawn have the same true proportion of smokers.

A: The alternative is that this proportion is different in at

least one of the populations.

smokers <- c(83, 90, 129, 70)

patients <- c(86, 93, 136, 82)

prop.test(smokers, patients)

prop.trend.test 779

prop.trend.test Test for trend in proportions

Description

Performs chi-squared test for trend in proportions, i.e., a test asymptotically optimal for
local alternatives where the log odds vary in proportion with score. By default, score is
chosen as the group numbers.

Usage

prop.trend.test(x, n, score = 1:length(x))

Arguments

x Number of events

n Number of trials

score Group score

Value

An object of class "htest" with title, test statistic, p-value, etc.

Note

This really should get integrated with prop.test

Author(s)

Peter Dalgaard

See Also

prop.test

Examples

smokers <- c(83, 90, 129, 70)

patients <- c(86, 93, 136, 82)

prop.test(smokers, patients)

prop.trend.test(smokers, patients)

prop.trend.test(smokers, patients,c(0,0,0,1))

780 quade.test

quade.test Quade Test

Description

Performs a Quade test with unreplicated blocked data.

Usage

quade.test(y, groups, blocks, ...)
quade.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a
vector; ignored if y is a matrix. If not a factor object, it is coerced to one.

formula a formula of the form a ~ b | c, where a, b and c give the data values
and corresponding groups and blocks, respectively.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

quade.test can be used for analyzing unreplicated complete block designs (i.e., there is
exactly one observation in y for each combination of levels of groups and blocks) where
the normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is
the same in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respec-
tively. NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks
are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Quade’s F statistic.

parameter a vector with the numerator and denominator degrees of freedom of the
approximate F distribution of the test statistic.

p.value the p-value of the test.

method the character string "Quade test".

data.name a character string giving the names of the data.

shapiro.test 781

References

D. Quade (1979), Using weighted rankings in the analysis of complete blocks with additive
block effects. Journal of the American Statistical Association, 74, 680–683.

W. J. Conover (1999), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 373–380.

See Also

friedman.test.

Examples

Conover (1999, p. 375f):

Numbers of five brands of a new hand lotion sold in seven stores

during one week.

y <- matrix(c(5, 4, 7, 10, 12,

1, 3, 1, 0, 2,

16, 12, 22, 22, 35,

5, 4, 3, 5, 4,

10, 9, 7, 13, 10,

19, 18, 28, 37, 58,

10, 7, 6, 8, 7),

nr = 7, byrow = TRUE,

dimnames =

list(Store = as.character(1:7),

Brand = LETTERS[1:5]))

y

quade.test(y)

shapiro.test Shapiro-Wilk Normality Test

Description

Performs the Shapiro-Wilk test for normality.

Usage

shapiro.test(x)

Arguments

x a numeric vector of data values, the number of which must be between 3
and 5000. Missing values are allowed.

Value

A list with class "htest" containing the following components:

statistic the value of the Shapiro-Wilk statistic.
p.value the p-value for the test.
method the character string "Shapiro-Wilk normality test".
data.name a character string giving the name(s) of the data.

782 t.test

References

Patrick Royston (1982) An Extension of Shapiro and Wilk’s W Test for Normality to Large
Samples. Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: The W Test for Normality. Applied Statistics,
31, 176–180.

Patrick Royston (1995) A Remark on Algorithm AS 181: TheW Test for Normality. Applied
Statistics, 44, 547–551.

See Also

qqnorm for producing a normal quantile-quantile plot.

Examples

shapiro.test(rnorm(100, mean = 5, sd = 3))

shapiro.test(runif(100, min = 2, max = 4))

t.test Student’s t-Test

Description

Performs one and two sample t-tests on vectors of data.

Usage

t.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

t.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values.

y an optional numeric vector data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

mu a number indicating the true value of the mean (or difference in means if
you are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being
equal. If TRUE then the pooled variance is used to estimate the variance
otherwise the Welch approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving
the data values and rhs a factor with two levels giving the corresponding
groups.

data an optional data frame containing the variables in the model formula.

t.test 783

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

If paired is TRUE then both x and y must be specified and they must be the same length.
Missing values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled
estimate of the variance is used. By default, if var.equal is FALSE then the variance is
estimated separately for both groups and the Welch modification to the degrees of freedom
is used.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative
hypothesis.

estimate the estimated mean or difference in means depending on whether it was
a one-sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending
on whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

See Also

prop.test

Examples

t.test(1:10,y=c(7:20)) # P = .00001855

t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

Classical example: Student’s sleep data

data(sleep)

plot(extra ~ group, data = sleep)

Traditional interface

attach(sleep)

t.test(extra[group == 1], extra[group == 2])

detach()

Formula interface

t.test(extra ~ group, data = sleep)

784 var.test

var.test F Test to Compare Two Variances

Description

Performs an F test to compare the variances of two samples from normal populations.

Usage

var.test(x, y, ratio = 1, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

var.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values, or fitted linear model objects (inheriting
from class "lm").

ratio the hypothesized ratio of the population variances of x and y.
alternative a character string specifying the alternative hypothesis, must be one of

"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

conf.level confidence level for the returned confidence interval.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving

the data values and rhs a factor with two levels giving the corresponding
groups.

data an optional data frame containing the variables in the model formula.
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain

NAs. Defaults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The null hypothesis is that the ratio of the variances of the populations from which x and
y were drawn, or in the data to which the linear models x and y were fitted, is equal to
ratio.

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.
parameter the degrees of the freedom of the F distribtion of the test statistic.
p.value the p-value of the test.
conf.int a confidence interval for the ratio of the population variances.
estimate the ratio of the sample variances of x and y.
null.value the ratio of population variances under the null.
alternative a character string describing the alternative hypothesis.
method the character string "F test to compare two variances".
data.name a character string giving the names of the data.

wilcox.test 785

See Also

bartlett.test for testing homogeneity of variances in more than two samples from normal
distributions; ansari.test and mood.test for two rank based (nonparametric) two-sample
tests for difference in scale.

Examples

x <- rnorm(50, mean = 0, sd = 2)

y <- rnorm(30, mean = 1, sd = 1)

var.test(x, y) # Do x and y have the same variance?

var.test(lm(x ~ 1), lm(y ~ 1)) # The same.

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data.

Usage

wilcox.test(x, y = NULL, alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

wilcox.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values.

y an optional numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

mu a number specifying an optional location parameter.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

correct a logical indicating whether to apply continuity correction in the normal
approximation for the p-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving
the data values and rhs a factor with two levels giving the corresponding
groups.

data an optional data frame containing the variables in the model formula.

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain
NAs. Defaults to getOption("na.action").

... further arguments to be passed to or from methods.

786 wilcox.test

Details

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed rank
test of the null that the distribution of x (in the one sample case) or of x-y (in the paired
two sample case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test
(equivalent to the Mann-Whitney test) is carried out. In this case, the null hypothesis is
that the location of the distributions of x and y differ by mu.

By default (if exact is not specified), an exact p-value is computed if the samples contain
less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval and an
estimator for the pseudomedian (one-sample case) or for the difference of the location pa-
rameters x-y is computed. (The pseudomedian of a distribution F is the median of the
distribution of (u + v)/2, where u and v are independent, each with distribution F . If
F is symmetric, then the pseudomedian and median coincide. See Hollander & Wolfe
(1973), page 34.) If exact p-values are available, an exact confidence interval is obtained by
the algorithm described in Bauer (1972), and the Hodges-Lehmann estimator is employed.
Otherwise, the returned confidence interval and point estimate are based on normal ap-
proximations.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.

parameter the parameter(s) for the exact distribution of the test statistic.

p.value the p-value for the test.

null.value the location parameter mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if argu-
ment conf.int = TRUE.)

estimate an estimate of the location parameter. (Only present if argument
conf.int = TRUE.)

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric statistical inference. New York:
John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the
American Statistical Association 67, 687–690.

See Also

kruskal.test for testing homogeneity in location parameters in the case of two or more
samples; t.test for a parametric alternative under normality assumptions.

wilcox.test 787

Examples

One-sample test.

Hollander & Wolfe (1973), 29f.

Hamilton depression scale factor measurements in 9 patients with

mixed anxiety and depression, taken at the first (x) and second

(y) visit after initiation of a therapy (administration of a

tranquilizer).

x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)

y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)

wilcox.test(x, y, paired = TRUE, alternative = "greater")

wilcox.test(y - x, alternative = "less") # The same.

wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample

approximation

Two-sample test.

Hollander & Wolfe (1973), 69f.

Permeability constants of the human chorioamnion (a placental

membrane) at term (x) and between 12 to 26 weeks gestational

age (y). The alternative of interest is greater permeability

of the human chorioamnion for the term pregnancy.

x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)

y <- c(1.15, 0.88, 0.90, 0.74, 1.21)

wilcox.test(x, y, alternative = "g") # greater

wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample

approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

Formula interface.

data(airquality)

boxplot(Ozone ~ Month, data = airquality)

wilcox.test(Ozone ~ Month, data = airquality,

subset = Month %in% c(5, 8))

788 wilcox.test

Chapter 3

The eda package

line Robust Line Fitting

Description

Fit a line robustly as recommended in Exploratory Data Analysis.

Usage

line(x, y)

coef(object, ...)
residuals(object, type, ...)
fitted(object, ...)
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x,y the arguments can be any way of specifying x-y pairs.

object a tukeyline object, typically the result of line(*).

digits number of significant digits to use, see print.

type, ... potentially further arguments, required by generic.

Value

An object of class "tukeyline".

Methods are available for the generic functions coef, residuals, fitted, and print.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

lm.

789

790 medpolish

Examples

library(eda)

data(cars)

plot(cars)

(z <- line(cars))

abline(coef(z))

Tukey-Anscombe Plot :

plot(residuals(z) ~ fitted(z), main = deparse(z$call))

medpolish Median Polish of a Matrix

Description

Fits an additive model using Tukey’s median polish procedure.

Usage

medpolish(x, eps = 0.01, maxiter = 10, trace.iter = TRUE)

Arguments

x a numeric matrix.

eps real number greater than 0. A tolerance for convergence: see Details.

maxiter the maximum number of iterations

trace.iter logical. Should progress in convergence be reported?

Details

The model fitted is additive (constant + rows + columns). The algorithm works by al-
ternately removing the row and column medians, and continues until the proportional re-
duction in the sum of absolute residuals is less than eps or until there have been maxiter
iterations. The sum of absolute residuals is printed at each iteration of the fitting process,
if trace.iter is TRUE.

medpolish returns an object of class medpolish (see below). There are printing and plotting
methods for this class, which are invoked via by the generics print and plot.

Value

An object of class medpolish with the following named components:

overall the fitted constant term.

row the fitted row effects.

col the fitted column effects.

residuals the residuals.

name the name of the dataset.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

smooth 791

See Also

median; aov for a mean instead of median decomposition.

Examples

Deaths from sport parachuting; from ABC of EDA, p.224:

deaths <-

rbind(c(14,15,14),

c(7, 4, 7),

c(8, 2,10),

c(15, 9,10),

c(0, 2, 0))

dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),

paste(1973:1975))

deaths

(med.d <- medpolish(deaths))

plot(med.d)

Check decomposition:

all(deaths == med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$resid)

smooth Tukey’s (Running Median) Smoothing

Description

Tukey’s smoothers, 3RS3R, 3RSS, 3R, etc.

Usage

smooth(x, kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
twiceit = FALSE,
endrule = "Tukey", do.ends = FALSE)

print(x, ...)
summary(object, ...)

Arguments

x a vector or time series

kind a character string indicating the kind of smoother required; defaults to
"3RS3R".

twiceit logical, indicating if the result should be “twiced”. Twicing a smoother
S(y) means S(y) + S(y − S(y)), i.e., adding smoothed residuals to the
smoothed values. This decreases bias (increasing variance).

endrule a character string indicating the rule for smoothing at the boundary. Ei-
ther "Tukey" (default) or "copy".

do.ends logical, indicating if the 3-splitting of ties should also happen at the
boundaries (“ends”). This is only used for kind = "S".

object (and x in print(.)): object of class ”tukeysmooth”, typically the result
of smooth(.).

... potentially further arguments, required by generic.

792 smooth

Details

3 is Tukey’s short notation for running medians of length 3,
3R stands for Repeated 3 until convergence, and
S for Splitting of horizontal stretches of length 2 or 3.

Hence, 3RS3R is a concatenation of 3R, S and 3R, 3RSS similarly, whereas 3RSR means first
3R and then (S and 3) Repeated until convergence – which can be bad.

Value

An object of class "tukeysmooth" (which has print and summary methods) and is a vector
or time series containing the smoothed values with additional attributes.

Note

S and S-PLUS use a different (somewhat better) Tukey smoother in smooth(*). Note
that there are other smoothing methods which provide rather better results. These were
designed for hand calculations and may be used mainly for didactical purposes.

Since R version 1.2, smooth does really implement Tukey’s end-point rule correctly (see
argument endrule).

kind = "3RSR" has been the default till R-1.1, but it can have very bad properties, see the
examples.

Note that repeated application of smooth(*) does smooth more, for the "3RS*" kinds.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

lowess; loess, supsmu and smooth.spline in package ‘modreg’.

Examples

see also demo(smooth) !

x1 <- c(4, 1, 3, 6, 6, 4, 1, 6, 2, 4, 2) # very artificial

(x3R <- smooth(x1, "3R")) # 2 iterations of "3"

smooth(x3R, kind = "S")

sm.3RS <- function(x, ...)

smooth(smooth(x, "3R", ...), "S", ...)

y <- c(1,1, 19:1)

plot(y, main = "misbehaviour of \"3RSR\"", col.main = 3)

lines(sm.3RS(y))

lines(smooth(y))

lines(smooth(y, "3RSR"), col = 3, lwd = 2)# the horror

x <- c(8:10,10, 0,0, 9,9)

plot(x, main = "breakdown of 3R and S and hence 3RSS")

matlines(cbind(smooth(x,"3R"),smooth(x,"S"), smooth(x,"3RSS"),smooth(x)))

data(presidents)

presidents[is.na(presidents)] <- 0 # silly

smooth 793

summary(sm3 <- smooth(presidents, "3R"))

summary(sm2 <- smooth(presidents,"3RSS"))

summary(sm <- smooth(presidents))

all.equal(c(sm2),c(smooth(smooth(sm3, "S"), "S"))) # 3RSS === 3R S S

all.equal(c(sm), c(smooth(smooth(sm3, "S"), "3R")))# 3RS3R === 3R S 3R

plot(presidents, main = "smooth(presidents0, *) : 3R and default 3RS3R")

lines(sm3,col = 3, lwd = 1.5)

lines(sm, col = 2, lwd = 1.25)

794 smooth

Chapter 4

The lqs package

cov.rob Resistant Estimation of Multivariate Location and Scatter

Description

Compute a multivariate location and scale estimate with a high breakdown point – this can
be thought of as estimating the mean and covariance of the good part of the data. cov.mve
and cov.mcd are compatibility wrappers.

Usage

cov.rob(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
method = c("mve", "mcd", "classical"), nsamp = "best", seed)

cov.mve(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

cov.mcd(x, cor = FALSE, quantile.used = floor((n + p + 1)/2),
nsamp = "best", seed)

Arguments

x a matrix or data frame.

cor should the returned result include a correlation matrix?

quantile.used the minimum number of the data points regarded as good points.

method the method to be used – minimum volume ellipsoid, minimum covariance
determinant or classical product-moment. Using cov.mve or cov.mcd
forces mve or mcd respectively.

nsamp the number of samples or "best" or "exact" or "sample". If "sample"
the number chosen is min(5*p, 3000), taken from Rousseeuw and Hubert
(1997). If "best" exhaustive enumeration is done up to 5000 samples: if
"exact" exhaustive enumeration will be attempted however many sam-
ples are needed.

seed the seed to be used for random sampling: see RNGkind. The current value
of .Random.seed will be preserved if it is set.

795

796 cov.rob

Details

For method "mve", an approximate search is made of a subset of size quantile.used with
an enclosing ellipsoid of smallest volume; in method "mcd" it is the volume of the Gaussian
confidence ellipsoid, equivalently the determinant of the classical covariance matrix, that
is minimized. The mean of the subset provides a first estimate of the location, and the
rescaled covariance matrix a first estimate of scatter. The Mahalanobis distances of all
the points from the location estimate for this covariance matrix are calculated, and those
points within the 97.5% point under Gaussian assumptions are declared to be good. The
final estimates are the mean and rescaled covariance of the good points.

The rescaling is by the appropriate percentile under Gaussian data; in addition the first
covariance matrix has an ad hoc finite-sample correction given by Marazzi.

For method "mve" the search is made over ellipsoids determined by the covariance matrix
of p of the data points. For method "mcd" an additional improvement step suggested by
Rousseeuw and van Driessen (1999) is used, in which once a subset of size quantile.used
is selected, an ellipsoid based on its covariance is tested (as this will have no larger a
determinant, and may be smaller).

Value

A list with components

center the final estimate of location.

cov the final estimate of scatter.

cor (only is cor = TRUE) the estimate of the correlation matrix.

sing message giving number of singular samples out of total

crit the value of the criterion on log scale. For MCD this is the determinant,
and for MVE it is proportional to the volume.

best the subset used. For MVE the best sample, for MCD the best set of size
quantile.used.

n.obs total number of observations.

Author(s)

B.D. Ripley

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth
and Brooks/Cole.

P. J. Rousseeuw and B. C. van Zomeren (1990) Unmasking multivariate outliers and leverage
points, Journal of the American Statistical Association, 85, 633–639.

P. J. Rousseeuw and K. van Driessen (1999) A fast algorithm for the minimum covariance
determinant estimator. Technometrics 41, 212–223.

P. Rousseeuw and M. Hubert (1997) Recent developments in PROGRESS. In L1-Statistical
Procedures and Related Topics ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201–214.

See Also

lqs

lqs 797

Examples

data(stackloss)

set.seed(123)

cov.rob(stackloss)

cov.rob(stack.x, method = "mcd", nsamp = "exact")

lqs Resistant Regression

Description

Fit a regression to the good points in the dataset, thereby achieving a regression estimator
with a high breakdown point. lmsreg and ltsreg are compatibility wrappers.

Usage

lqs(x, ...)
lqs.formula(formula, data, ...,

method = c("lts", "lqs", "lms", "S", "model.frame"),
subset, na.action = na.fail, model = TRUE,
x = FALSE, y = FALSE, contrasts = NULL)

lqs.default(x, y, intercept = TRUE, method = c("lts", "lqs", "lms", "S"),
quantile, control = lqs.control(...), k0 = 1.548, seed, ...)

lmsreg(...)
ltsreg(...)

Arguments

formula a formula of the form y ~ x1 + x2 +

data data frame from which variables specified in formula are preferentially to
be taken.

subset an index vector specifying the cases to be used in fitting. (NOTE: If given,
this argument must be named exactly.)

na.action function to specify the action to be taken if NAs are found. The de-
fault action is for the procedure to fail. Alternatives include na.omit
and na.exclude, which lead to omission of cases with missing values on
any required variable. (NOTE: If given, this argument must be named
exactly.)

model logical. If TRUE the model frame is returned.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

x a matrix or data frame containing the explanatory variables.

y the response: a vector of length the number of rows of x.

intercept should the model include an intercept?

method the method to be used. model.frame returns the model frame: for the
others see the Details section. Using lmsreg or ltsreg forces "lms" and
"lts" respectively.

quantile the quantile to be used: see Details. This is over-ridden if method =
"lms".

798 lqs

control additional control items: see Details.

k0 the cutoff / tuning constant used for χ() and ψ() functions when method
= "S", currently corresponding to Tukey’s “biweight”.

seed the seed to be used for random sampling: see .Random.seed. The current
value of .Random.seed will be preserved if it is set..

... arguments to be passed to lqs.default or lqs.control, see control
above and Details.

Details

Suppose there are n data points and p regressors, including any intercept.

The first three methods minimize some function of the sorted squared residuals. For meth-
ods "lqs" and "lms" is the quantile squared residual, and for "lts" it is the sum of the
quantile smallest squared residuals. "lqs" and "lms" differ in the defaults for quantile,
which are floor((n+p+1)/2) and floor((n+1)/2) respectively. For "lts" the default is
floor(n/2) + floor((p+1)/2).

The "S" estimation method solves for the scale s such that the average of a function chi of
the residuals divided by s is equal to a given constant.

The control argument is a list with components

psamp: the size of each sample. Defaults to p.

nsamp: the number of samples or "best" (the default) or "exact" or "sample". If "sample"
the number chosen is min(5*p, 3000), taken from Rousseeuw and Hubert (1997). If
"best" exhaustive enumeration is done up to 5000 samples; if "exact" exhaustive
enumeration will be attempted however many samples are needed.

adjust: should the intercept be optimized for each sample? Defaults to TRUE.

Value

An object of class "lqs". This is a list with components

crit the value of the criterion for the best solution found, in the case of method
== "S" before IWLS refinement.

sing character. A message about the number of samples which resulted in
singular fits.

coefficients of the fitted linear model

bestone the indices of those points fitted by the best sample found (prior to ad-
justment of the intercept, if requested).

fitted.values the fitted values.

residuals the residuals.

scale estimate(s) of the scale of the error. The first is based on the fit criterion.
The second (not present for method == "S") is based on the variance
of those residuals whose absolute value is less than 2.5 times the initial
estimate.

predict.lqs 799

Note

There seems no reason other than historical to use the lms and lqs options. LMS estima-
tion is of low efficiency (converging at rate n−1/3) whereas LTS has the same asymptotic
efficiency as an M estimator with trimming at the quartiles (Marazzi, 1993, p.201). LQS
and LTS have the same maximal breakdown value of (floor((n-p)/2) + 1)/n attained if
floor((n+p)/2) <= quantile <= floor((n+p+1)/2). The only drawback mentioned of
LTS is greater computation, as a sort was thought to be required (Marazzi, 1993, p.201)
but this is not true as a partial sort can be used (and is used in this implementation).

Adjusting the intercept for each trial fit does need the residuals to be sorted, and may be
significant extra computation if n is large and p small.

Opinions differ over the choice of psamp. Rousseeuw and Hubert (1997) only consider p;
Marazzi (1993) recommends p+1 and suggests that more samples are better than adjust-
ment for a given computational limit.

The computations are exact for a model with just an intercept and adjustment, and for LQS
for a model with an intercept plus one regressor and exhaustive search with adjustment.
For all other cases the minimization is only known to be approximate.

Author(s)

B. D. Ripley

References

P. J. Rousseeuw and A. M. Leroy (1987) Robust Regression and Outlier Detection. Wiley.

A. Marazzi (1993) Algorithms, Routines and S Functions for Robust Statistics. Wadsworth
and Brooks/Cole.

P. Rousseeuw and M. Hubert (1997) Recent developments in PROGRESS. In L1-Statistical
Procedures and Related Topics, ed Y. Dodge, IMS Lecture Notes volume 31, pp. 201–214.

See Also

predict.lqs

Examples

data(stackloss)

set.seed(123)

lqs(stack.loss ~ ., data = stackloss)

lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")

predict.lqs Predict from an lqs Fit

Description

Predict from an resistant regression fitted by lqs.

Usage

predict(object, newdata, ...)

800 predict.lqs

Arguments

object object inheriting from class "lqs"

newdata matrix or data frame of cases to be predicted or, if object has a formula,
a data frame with columns of the same names as the variables used. A
vector will be interpreted as a row vector. If newdata is missing, an
attempt will be made to retrieve the data used to fit the lqs object.

... arguments to be passed from or to other methods.

Details

This function is a method for the generic function predict() for class lqs. It can be
invoked by calling predict(x) for an object x of the appropriate class, or directly by
calling predict.lqs(x) regardless of the class of the object.

Missing values in newdata are handled by returning NA if the linear discriminants cannot
be evaluated. If newdata is omitted and the na.action of the fit omitted cases, these will
be omitted on the prediction.

Value

A vector of predictions.

Author(s)

B.D. Ripley

See Also

lqs

Examples

data(stackloss)

set.seed(123)

fm <- lqs(stack.loss ~ ., data = stackloss, method = "S", nsamp = "exact")

predict(fm, stackloss)

Chapter 5

The methods package

.BasicFunsList List of Builtin and Special Functions

Description

A named list providing instructions for turning builtin and special functions into generic
functions.

Functions in R that are defined as .Primitive(<name>) are not suitable for formal methods,
because they lack the basic reflectance property. You can’t find the argument list for these
functions by examining the function object itself.

Future versions of R may fix this by attaching a formal argument list to the corresponding
function. While generally the names of arguments are not checked by the internal code
implementing the function, the number of arguments frequently is.

In any case, some definition of a formal argument list is needed if users are to define methods
for these functions. In particular, if methods are to be merged from multiple packages, the
different sets of methods need to agree on the formal arguments.

In the absence of reflectance, this list provides the relevant information via a dummy func-
tion associated with each of the known specials for which methods are allowed.

At the same, the list flags those specials for which methods are meaningless (e.g., for) or
just a very bad idea (e.g., .Primitive).

A generic function created via setMethod, for example, for one of these special functions
will have the argument list from .BasicFunsList. If no entry exists, the argument list (x,
...) is assumed.

as Force an Object to Belong to a Class

Description

These functions manage the relations that allow coercing an object to a given class.

801

802 as

Usage

as(object, Class, strict=TRUE)

as(object, Class) <- value

setAs(from, to, def, replace, where = 1)

Arguments

object Any object.

Class The name of the class to which object should be coerced.

strict A logical flag. If TRUE, the returned object must be strictly from the
target class (unless that class is a virtual class, in which case the object
will be from the closest actual class (often the original object, if that class
extends the virtual class directly).
If strict = FALSE, any simple extension of the target class will be re-
turned, without further change. A simple extension is, roughly, one that
just adds slots to an existing class.

value The value to use to modify object (see the discussion below). You should
supply an object with class Class; some coercion is done, but you’re
unwise to rely on it.

from, to The classes between which def performs coercion.
(In the case of the coerce function these are objects from the classes, not
the names of the classes, but you’re not expected to call coerce directly.)

def A function of one argument. It will get an object from class from and
had better return an object of class to. (If you want to save setAs a little
work, make the name of the argument from, but don’t worry about it,
setAs will do the conversion.)

replace If supplied, the function to use as a replacement method.

where The position or environment in which to store the resulting method for
coerce; by default, the global environment.

Summary of Functions

as: Returns the version of this object coerced to be the given Class.
If the corresponding is relation is true, it will be used. In particular, if the relation
has a coerce method, the method will be invoked on object.
If the is relation is FALSE, and coerceFlag is TRUE, the coerce function will be called
(which will throw an error if there is no valid way to coerce the two objects). Otherwise,
NULL is returned.
Coerce methods are pre-defined for basic classes (including all the types of vectors,
functions and a few others). The object asFunctions contains the list of such pre-
defined relations: names(asFunctions) gives the names of all the classes.
Beyond these two sources of methods, further methods are defined by calls to the
setAs function.

coerce: Coerce from to be of the same class as to.
Not a function you should usually call explicitly. The function setAs creates methods
for coerce for the as function to use.

as 803

setAs: The function supplied as the third argument is to be called to implement as(x,
to) when x has class from. Need we add that the function should return a suitable
object with class to.

How Functions ‘as’ and ‘setAs’ Work

The function as contrives to turn object into an object with class Class. In doing so, it
uses information about classes and methods, but in a somewhat special way. Keep in mind
that objects from one class can turn into objects from another class either automatically
or by an explicit call to the as function. Automatic conversion is special, and comes from
the designer of one class of objects asserting that this class extends a another class (see
setClass and setIs).

Because inheritance is a powerful assertion, it should be used sparingly (otherwise your
computations may produce unexpected, and perhaps incorrect, results). But objects can
also be converted explicitly, by calling as, and that conversion is designed to use any
inheritance information, as well as explicit methods.

As a first step in conversion, the as function determines whether is(object, Class) is
TRUE. This can be the case either because the class definition of object includes Class as a
“super class” (directly or indirectly), or because a call to setIs established the relationship.

Either way, the inheritance relation defines a method to coerce object to Class. In the
most common case, the method is just to extract from object the slots needed for Class,
but it’s also possible to specify a method explicitly in a setIs call.

So, if inheritance applies, the as function calls the appropriate method. If inheritance does
not apply, and coerceFlag is FALSE, NULL is returned.

By default, coerceFlag is TRUE. In this case the as function goes on to look for a method
for the function coerce for the signature c(from = class(object), to = Class).

Method selection is used in the as function in two special ways. First, inheritance is
applied for the argument from but not for the argument to (if you think about it, you’ll
probably agree that you wouldn’t want the result to be from some class other than the
Class specified). Second, the function tries to use inheritance information to convert the
object indirectly, by first converting it to an inherited class. It does this by examining the
classes that the from class extends, to see if any of them has an explicit conversion method.
Suppose class "by" does: Then the as function implicitly computes as(as(object, "by"),
Class).

With this explanation as background, the function setAs does a fairly obvious computation:
It constructs and sets a method for the function coerce with signature c(from, to), using
the def argument to define the body of the method. The function supplied as def can
have one argument (interpreted as an object to be coerced) or two arguments (the from
object and the to class). Either way, setAs constructs a function of two arguments, with
the second defaulting to the name of the to class. The method will be called from as with
the object as the only argument: The default for the second argument is provided so the
method can know the intended to class.

The function coerce exists almost entirely as a repository for such methods, to be selected
as desribed above by the as function. In fact, it would usually be a bad idea to call coerce
directly, since then you would get inheritance on the to argument; as mentioned, this is not
likely to be what you want.

The Function ‘as’ Used in Replacements

When as appears on the left of an assignment, the intuitive meaning is “Replace the part
of object that was inherited from Class by the value on the right of the assignment.”

804 as

This usually has a straightforward interpretation, but you can control explicitly what hap-
pens, and sometimes you should to avoid possible corruption of objects.

When object inherits from Class in the usual way, by including the slots of Class, the
default as method is to set the corresponding slots in object to those in value.

The default computation may be reasonable, but usually only if all other slots in object
are unrelated to the slots being changed. Often, however, this is not the case. The class
of object may have extended Class with a new slot whose value depends on the inherited
slots. In this case, you may want to define a method for replacing the inherited information
that recomputes all the dependent information. Or, you may just want to prohibit replacing
the inherited information directly .

The way to control such replacements is through the replace argument to function setIs.
This argument is a method that function as calls when used for replacement. It can do
whatever you like, including calling stop if you want to prohibit replacements. It should
return a modified object with the same class as the object argument to as.

In R, you can also explicitly supply a replacement method, even in the case that inheritance
does not apply, through the replace argument to setAs. It works essentially the same way,
but in this case by constructing a method for "coerce<-". (Replace methods for coercion
without inheritance are not in the original description and so may not be compatible with
S-Plus, at least not yet.)

When inheritance does apply, coerce and replace methods can be specified through either
setIs or setAs; the effect is essentially the same.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

Examples

using the definition of class "track" from Classes

setAs("track", "numeric", function(from)from@y)

t1 <- new("track", x=1:20, y=(1:20)^2)

as(t1, "numeric")

The next example shows:

1. A virtual class to define setAs for several classes at once.

2. as() using inherited information

setClass("ca", representation(a = "character", id = "numeric"))

setClass("cb", representation(b = "character", id = "numeric"))

http://www.omegahat.org/RSMethods/index.html

BasicClasses 805

setClass("id")

setIs("ca", "id")

setIs("cb", "id")

setAs("id", "numeric", function(from) from@id)

CA <- new("ca", a ="A", id = 1)

CB <- new("cb", b = "B", id = 2)

setAs("cb", "ca", function(from, to)new(to, a=from@b, id = from@id))

as(CB, "numeric")

BasicClasses Classes Corresponding to Basic Data Types

Description

Formal classes exist corresponding to the basic R data types, allowing these types to be
used in method signatures, as slots in class definitions, and to be extended by new classes.

Usage

The following are all basic vector classes.
They can appear as class names in method signatures,
in calls to as(), is(), and new().
"character"
"complex"
"double"
"expression"
"integer"
"list"
"logical"
"numeric"
"single"

the class
"vector"
is a virtual class, extended by all the above

The following are additional basic classes
"NULL" # NULL objects
"function" # function objects, including primitives
"externalptr" # raw external pointers for use in C code

"ANY" # virtual classes used by the methods package itself
"VIRTUAL"

806 BasicFunctions

"missing"

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
class name, and the remaining arguments if any are objects to be interpreted as vectors of
this class. Multiple arguments will be concatenated.

The class "expression" is slightly odd, in that the . . . arguments will not be evaluated;
therefore, don’t enclose them in a call to quote().

Extends

Class "vector", directly.

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the
corresponding basic function, for example, as(x, "numeric") calls as.numeric(x).

BasicFunctions Group Generic Functions

Description

These are group generic functions. Methods defined for them will be used for any of the
specific functions belonging to the particular group, provided no specific methods override.

These functions should never be called directly (a suitable error message will result if they
are).

Usage

Arith(e1, e2)
Compare(e1, e2)
Ops(e1, e2)

Math(x)
Math2(x, digits)

Summary(x, ..., na.rm = FALSE)

Complex(z)

Arguments

e1, e2 Arguments to the various binary operators.

x The argument to the Math or Summary groups of functions.

callNextMethod 807

Details

The functions belonging to the various groups are as follows:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Ops "Arith", "Compare"

Math "log", "sqrt", "log10", "cumprod", "abs", "acos", "acosh", "asin",
"asinh", "atan", "atanh", "ceiling", "cos", "cosh", "cumsum", "exp",
"floor", "gamma", "lgamma", "sin", "sinh", "tan", "tanh", "trunc"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

All the functions in these groups (other than the group generics themselves) are basic
functions in R. They are not by default generic functions, and many of them are defined as
primitives, meaning that they do not have formal arguments. However, you can still define
methods for them. The effect of doing so is to create a generic function with the appropriate
arguments, in the environment where the method definition is to be stored. It all works
more or less as you might expect, admittedly via a bit of trickery in the background.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

callNextMethod Call an Inherited Method

Description

A call to callNextMethod can only appear inside a method definition. It then results in
a call to the first inherited method after the current method, with the arguments to the
current method passed down to the next method. The value of that method call is the
value of callNextMethod.

Usage

callNextMethod(...)

Arguments

... If included, the call to the next methods uses these as its arguments (but
note that the dispatch is as described below.) The recommendation for
most applications is to use callNextMethod with no explicit arguments.

http://www.omegahat.org/RSMethods/index.html

808 callNextMethod

Details

The definition of the first inherited method is that is the method which would have been
called if the current method did not exist. This is more-or-less literally what happens:
The current method is deleted from a copy of the methods for the current generic, and
selectMethod is called to find the next method (the result is cached in a special object, so
the search only typically happens once per session per combination of argument classes).

It is also legal, and often useful, for the method called by callNextMethod to itself have a
call to callNextMethod. This works the same way, except that now two methods are deleted
before selecting the next method, and so on for further nested calls to callNextMethod.

The statement that the method is called with the current arguments is more precisely as
follows. Arguments that were missing in the current call are still missing (remember that
"missing" is a valid class in a method signature). For a formal argument, say x, that
appears in the original call, there is a corresponding argument in the next method call
equivalent to “x = x”. In effect, this means that the next method sees the same actual
arguments, but arguments are evaluated only once.

Value

The value returned by the selected method.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods for the general behavior of method dispatch

Examples

some class definitions with simple inheritance

setClass("B0" , representation(b0 = "numeric"))

setClass("B1", "B0")

setClass("B2", representation("B1", b2 = "logical"))

and a rather silly function to illustrate callNextMethod

f <- function(x) class(x)

setMethod("f", "B0", function(x) c(x@b0, callNextMethod()))

setMethod("f", "B2", function(x) c(x@b2, callNextMethod()))

http://developer.r-project.org/methodsPackage.html

class 809

b2 <- new("B2", b2 = FALSE, b0 = 10)

b1 <- new("B1", b0 = 2)

f(b2)

f(b1)

class Class of an Object

Description

Returns the name of the object’s class as a character string.

In contrast to the version of this function in the base package, this version of class never
returns NULL. For objects that do not have a formal class definition, and do not have the
"class" attribute set, the value returned is effectively the same as data.class.

The replacement version of the function sets the class to the value provided. For classes
that have a formal definition, directly replacing the class this way is strongly deprecated.
The expression as(object, value) is the way to coerce an object to a particular class.

Usage

class(object)

class(object) <- value

Arguments

object Any R object (including basic objects for which no class is currently de-
fined). When assigning the class, however, it must be possible to coerce
the object to the specified class: the semantics of assigning a class to
object are equivalent to object <- as(object, value).

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

as

http://www.omegahat.org/RSMethods/index.html

810 Classes

Classes Class Definitions

Description

Class definitions are objects that contain the formal definition of a class of R objects.

Details

When a class is defined, an object is stored that contains the information about that class,
including:

slots Each slot is a component object. Like elements of a list these may be extracted (by
name) and set. However, they differ from list components in important ways.
All the objects from a particular class have the same set of slot names; specifically, the
slot names that are contained in the class definition. Each slot in each object always
has the same class; again, this is defined by the overall class definition.
Classes don’t need to have any slots, and many useful classes do not. These objects
usually extend other, simple objects, such as numeric or character vectors. Finally,
classes can have no data at all—these are known as virtual classes and are in fact very
important programming tools. They are used to group together ordinary classes that
want to share some programming behavior, without necessarily restricting how the
behavior is implemented.

extends The names of the classes that this class extends. A class Fancy, say, extends a
class Simple if an object from the Fancy class has all the capabilities of the Simple
class (and probably some more as well). In particular, and very usefully, any method
defined to work for a Simple object can be applied to a Fancy object as well.
In other programming languages, this relationship is sometimes expressed by saying
that Simple is a superclass of Fancy, or that Fancy is a subclass of Simple.
The actual class definition object contains the names of all the classes this class extends.
But those classes can themselves extend other classes also, so the complete extension
can only be known by obtaining all those class definitions.
Class extension is usually defined when the class itself is defined, by including
the names of superclasses as unnamed elements in the representation argument to
setClass.
An object from a given class will then have all the slots defined for its own class and
all the slots defined for its superclasses as well.
Note that extends relations can be defined in other ways as well, by using the setIs
function.

prototype Each class definition contains a prototype object from the class. This must
have all the slots, if any, defined by the class definition.
The prototype most commonly just consists of the prototypes of all its slots. But that
need not be the case: the definition of the class can specify any valid object for any of
the slots.
There are a number of “basic” classes, corresponding to the ordinary kinds of data
occurring in R. For example, "numeric" is a class corresponding to numeric vectors.
These classes are predefined and can then be used as slots or as superclasses for any
other class definitions. The prototypes for the vector classes are vectors of length 0 of
the corresponding type.

classRepresentation-class 811

There are also a few basic virtual classes, the most important being "vector", grouping
together all the vector classes; and "language", grouping together all the types of
objects making up the R language.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

Methods, setClass, is, as, new, slot

classRepresentation-class

Class Objects

Description

These are the objects that hold the definition of classes of objects. They are constructed
and stored as meta-data by calls to the function setClass. Don’t manipulate them directly,
except perhaps to look at individual slots.

Details

Class definitions are stored as metadata in various packages. Additional metadata supplies
information on inheritance (the result of calls to setIs). Inheritance information implied
by the class definition itself (because the class contains one or more other classes) is also
constructed automatically.

When a class is to be used in an R session, this information is assembled to complete
the class definition. The completion is a second object of class "classRepresentation",
cached for the session or until something happens to change the information. A call to
getClass returns the completed definition of a class; a call to getClassDef returns the
stored definition (uncompleted).

In particular, completion fills in the upward- and downward-pointing inheritance informa-
tion for the class, in slots contains and subclasses respectively. It’s in principle important
to note that this information can depend on which packages are installed, since these may
define additional subclasses or superclasses.

http://www.omegahat.org/RSMethods/index.html

812 EmptyMethodsList-class

Slots

slots: A named list of the slots in this class; the elements of the list are the classes to which
the slots must belong (or extend), and the names of the list gives the corresponding
slot names.

contains: A named list of the classes this class “contains”; the elements of the list are
objects of SClassExtension-class. The list may be only the direct extensions or all
the currently known extensions (see the details).

virtual: Logical flag, set to TRUE if this is a virtual class.

prototype: The object that represents the standard prototype for this class; i.e., the data
and slots returned by a call to new for this class with no special arguments. Don’t
mess with the prototype object directly.

validity: Optionally, a function to be used to test the validity of objects from this class.
See validObject.

access: Access control information. Not currently used.

className: The character string name of the class.

package: The character string name of the package to which the class belongs. Nearly
always the package on which the metadata for the class is stored, but in operations
such as constructing inheritance information, the internal package name rules.

subclasses: A named list of the classes known to extend this class’; the elements of the
list are objects of SClassExtension-class. The list is currently only filled in when
completing the class definition. (see the details).

versionKey: Object of class "externalptr"; eventually will perhaps hold some versioning
information, but not currently used.

sealed: Object of class "logical"; is this class sealed? If so, no modifications are allowed.

See Also

See function setClass to supply the information in the class definition. See Classes for a
more basic discussion of class information.

Examples

##---- Should be DIRECTLY executable !! ----

EmptyMethodsList-class

Internal Class representing Empty Methods List

Description

Objects from class "EmptyMethodsList" are generated during method selection to indicate
failed search (forcing backtracking). Other classes described here are used internally in
method dispatch. All these are for internal use.

environment-class 813

Usage

class described below
"EmptyMethodsList"

Other, virtual classes used in method dispatch
"OptionalMethods"
"PossibleMethod"

Slots

argument: Object of class "name" the argument names being selected on.

sublist: Object of class "list" (unused, and perhaps to be dropped in a later version.)

Methods

No methods defined with class ”EmptyMethodsList” in the signature.

See Also

Function MethodsListSelect uses the objects; see MethodsList-class for the non-empty
methods list objects.

environment-class Class ”environment”

Description

A formal class for R environments.

Objects from the Class

Objects can be created by calls of the form new("environment", ...). The arguments in
. . . , if any, should be named and will be assigned to the newly created environment.

Methods

coerce signature(from = "ANY", to = "environment"): calls as.environment.

initialize signature(object = "environment"): Implements the assignments in the new
environment. Note that the object argument is ignored; a new environment is always
created, since environments are not protected by copying.

See Also

new.env

814 genericFunction-class

genericFunction-class

Generic Function Objects

Description

Generic functions (objects from or extending class genericFunction) are extended function
objects, containing information used in creating and dispatching methods for this function.
They also identify the package associated with the function and its methods.

Objects from the Class

Generic functions are created and assigned by setGeneric or setGroupGeneric and, indi-
rectly, by setMethod.

As you might expect setGeneric and setGroupGeneric create objects of class
"genericFunction" and "groupGenericFunction" respectively.

Slots

.Data: Object of class "function", the function definition of the generic, usually created
automatically as a call to standardGeneric.

generic: Object of class "character", the name of the generic function.

package: Object of class "character", the name of the package to which the function
definition belongs (and not necessarily where the generic function is stored). If the
package is not specified explicitly in the call to setGeneric, it is usually the package
on which the corresponding non-generic function exists.

group: Object of class "list", the group or groups to which this generic function belongs.
Empty by default.

valueClass: Object of class "character"; if not an empty character vector, identifies one
or more classes. It is asserted that all methods for this function return objects from
these class (or from classes that extend them).

signature: Object of class "character", the vector of formal argument names that can
appear in the signature of methods for this generic function. By default, it is all the
formal arguments, except for Order matters for efficiency: the most commonly
used arguments in specifying methods should come first.

default: Object of class "OptionalMethods", the default method for this function. Gen-
erated automatically and used to initialize method dispatch.

skeleton: Object of class "call", a slot used internally in method dispatch. Don’t expect
to use it directly.

Extends

Class "function", from data part.
Class "OptionalMethods", by class ”function”.
Class "PossibleMethod", by class ”function”.

GenericFunctions 815

Methods

Generic function objects are used in the creation and dispatch of formal methods; infor-
mation from the object is used to create methods list objects and to merge or update the
existing methods for this generic.

GenericFunctions Tools for Managing Generic Functions

Description

The functions documented here manage collections of methods associated with a generic
function, as well as providing information about the generic functions themselves.

Usage

isGeneric(f, where, fdef, getName = FALSE)

isGroup(f, where, fdef)

removeGeneric(f, where)

standardGeneric(f)

dumpMethod(f, signature, file, where, def)

existsFunction(f, generic = TRUE, where)

findFunction(f, generic=TRUE)

dumpMethods(f, file, signature, methods, where)

signature(...)

removeMethods(f, where)

setReplaceMethod(f, ...)

getGenerics(where, searchForm = FALSE)

allGenerics(where, searchForm = FALSE)

callGeneric(...)

Arguments

f The character string naming the function.

where Where on the search list of attached packages to look for functions or
methods. By default, use the whole search list to find the relevant ob-
ject(s).

816 GenericFunctions

signature The class signature of the relevant method. A signature is a named or
unnamed vector of character strings. If named, the names must be formal
argument names for the generic function. If signature is unnamed, the
default is to use the first length(signature) formal arguments of the
function.

file The file on which to dump method definitions.
def The function object defining the method; if omitted, the current method

definition corresponding to the signature.
... Named or unnamed arguments to form a signature.
generic In testing or finding functions, should generic functions be included. Sup-

ply as FALSE to get only non-generic functions.
fdef Optional, the generic function definition.

Usually omitted in calls to isGeneric

getName If TRUE, isGeneric returns the name of the generic. By default, it returns
TRUE.

methods The methods object containing the methods to be dumped. By default,
the methods defined for this generic (optionally on the specified where
location).

searchForm In getGenerics, if TRUE, the package slot of the returned result is in
the form used by search(), otherwise as the simple package name (e.g,
"package:base" vs "base").

Summary of Functions

isGeneric: Is there a function named f, and if so, is it a generic?
The getName argument allows a function to find the name from a function definition.
If it is TRUE then the name of the generic is returned, or FALSE if this is not a generic
function definition.
The behavior of isGeneric and getGeneric for primitive functions is slightly differ-
ent. These functions don’t exist as formal function objects (for efficiency and histor-
ical reasons), regardless of whether methods have been defined for them. A call to
isGeneric tells you whether methods have been defined for this primitive function,
anywhere in the current search list, or in the specified position where. In contrast, a
call to getGeneric will return what the generic for that function would be, even if no
methods have been currently defined for it.

removeGeneric, removeMethods: Remove the all the methods for the generic function of
this name. In addition, removeGeneric removes the function itself; removeMethods
restores the non-generic function which was the default method. If there was no default
method, removeMethods leaves a generic function with no methods.

standardGeneric: Dispatches a method from the current function call for the generic func-
tion f.

getMethods: The list of methods for the specified generic.
dumpMethod: Dump the method for this generic function and signature.
existsFunction: Is there a function of this name. If generic is FALSE, generic functions

are not counted.
findFunction: return all the elements of the search list on which a function definition for

name exists.
NOTE: Use this rather than find with mode="function", which is not as meaningful,
and has a few subtle bugs from its use of regular expressions.

GenericFunctions 817

selectMethod: Returns the method (a function) that R would use to evaluate a call to this
generic, with arguments corresponding to the specified signature.
f = the name of the generic function, signature is the signature of classes to match
to the arguments of f.

dumpMethods: Dump all the methods for this generic.

signature: Returns a named list of classes to be matched to arguments of a generic func-
tion.

getGenerics: Returns the names of the generic functions that have methods defined on
where; this argument can be an environment or an index into the search list. By
default, the whole search list is used.
The methods definitions are stored with package qualifiers; for example, methods for
function "initialize" might refer to two different functions of that name, on different
packages. The package names corresponding to the method list object are contained in
the slot package of the returned object. The form of the returned name can be plain
(e.g., "base"), or in the form used in the search list ("package:base") according to
the value of searchForm

callGeneric: In the body of a method, this function will make a call to the current generic
function. If no arguments are passed to callGeneric, the arguments to the current
call are passed down; otherwise, the arguments are interpreted as in a call to the
generic function.

Details

setGeneric: If there is already a non-generic function of this name, it will be used to define
the generic unless def is supplied, and the current function will become the default
method for the generic.
If def is supplied, this defines the generic function, and no default method will exist
(often a good feature, if the function should only be available for a meaningful subset
of all objects).
Arguments group and valueClass are retained for consistency with S-Plus, but are
currently not used.

isGeneric: If the fdef argument is supplied, take this as the definition of the generic, and
test whether it is really a generic, with f as the name of the generic. (This argument
is not available in S-Plus.)

removeGeneric: If where supplied, just remove the version on this element of the search
list; otherwise, removes the first version encountered.

standardGeneric: Generic functions should usually have a call to standardGeneric as
their entire body. They can, however, do any other computations as well.
The usual setGeneric (directly or through calling setMethod) creates a function with
a call to standardGeneric.

getMethods: If the function is not a generic function, returns NULL. The f argument can
be either the character string name of the generic or the object itself.
The where argument optionally says where to look for the function, if f is given as
the name.

dumpMethod: The resulting source file will recreate the method.

findFunction: If generic is FALSE, ignore generic functions.

selectMethod: The vector of strings for the classes can be named or not. If named, the
names must match formal argument names of f. If not named, the signature is assumed
to apply to the arguments of f in order.

818 getClass

If mustFind is TRUE, an error results if there is no method (or no unique method)
corresponding to this signature. Otherwise may return NULL or a MethodsList object.

dumpMethods: If signature is supplied only the methods matching this initial signature are
dumped. (This feature is not found in S-Plus: don’t use it if you want compatibility.)

signature: The advantage of using signature is to provide a check on which arguments
you meant, as well as clearer documentation in your method specification. In addition,
signature checks that each of the elements is a single character string.

removeMethods: Returns TRUE if f was a generic function, FALSE (silently) otherwise.
If there is a default method, the function will be re-assigned as a simple function with
this definition. Otherwise, the generic function remains but with no methods (so any
call to it will generate an error). In either case, a following call to setMethod will
consistently re-establish the same generic function as before.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setGeneric, setClass, showMethods

getClass Get Class Definition

Description

Get the definition of a class.

Usage

getClass(Class, .Force = FALSE)
getClassDef(Class, where=-1)

Arguments

Class the character-string name of the class.

.Force if TRUE, return NULL if the class is undefined; otherwise, an undefined class
results in an error.

where where to search for the definition; by default, anywhere on the current
search list.

http://developer.r-project.org/methodsPackage.html

getMethod 819

Details

A call to getClass returns the complete definition of the class supplied as a string, including
all slots, etc. in classes that this class extends. A call to getClassDef returns the definition
of the class from the environment where, unadorned. It’s usually getClass you want.

If you really want to know whether a class is formally defined, call isClass.

Value

The object defining the class. This is an object of class "classRepEnvironment". However,
do not deal with the contents of the object directly unless you are very sure you know what
you’re doing. Even then, it is nearly always better practice to use functions such as setClass
and setIs. Messing up a class object will cause great confusion.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

Classes, setClass, isClass.

Examples

getClass("numeric") ## a built in class

getMethod Get or Test for the Definition of a Method

Description

The functions getMethod and selectMethod get the definition of a particular method; the
functions existsMethod and hasMethod test for the existence of a method. In both cases
the first function only gets direct definitions and the second uses inheritance. The function
findMethod returns the package(s) in the search list (or in the packages specified by the
where argument) that contain a method for this function and signature.

The other functions are support functions: see the details below.

http://www.omegahat.org/RSMethods/index.html

820 getMethod

Usage

getMethod(f, signature=character(), where, optional=FALSE)

findMethod(f, signature, where)

getMethods(f, where=-1)

existsMethod(f, signature = character(), where)

hasMethod(f, signature=character())

selectMethod(f, signature, optional=FALSE, useInherited,
mlist=getMethods(f), fdef = getGeneric(f))

MethodsListSelect(f, env, mlist, fEnv, finalDefault, evalArgs,
useInherited, fdef)

Arguments

f The character-string name of the generic function.
In getMethods only, this argument may be a function definition, in which
case the special methods list object, if any, stored in the environment of
the function is returned. (This usage is largely for internal purposes; you
aren’t likely to have such a function definition for direct use.)

signature The signature of classes to match to the arguments of f. The vector of
strings for the classes should be named, and the names must match formal
argument names of f. If not named, the signature is assumed to apply to
the arguments of f in order, but note below for selectMethod.
For selectMethod, the signature can optionally be an environment with
classes assigned to the names of the corresponding arguments. Note: the
names correspond to the names of the classes, not to the objects supplied
in a call to the generic function.

where The position or environment in which to look for the method: by default,
anywhere in the current search list.

optional If the selection does not produce a unique result, an error is generated,
unless this argument is TRUE. In that case, the value returned is either a
MethodsList object, if more than one method matches this signature, or
NULL if no method matches.

mlist, fdef In selectMethod, the MethodsList object and/or the generic function
object can be explicitly supplied. (Unlikely to be used, except in the
recursive call that finds matches to more than one argument.)

env The environment in which argument evaluations are done in
MethodsListSelect. Currently must be supplied, but should usually
be sys.frame(sys.parent()) when calling the function explicitly for
debugging purposes.

fEnv, finalDefault, evalArgs, useInherited

Internal-use arguments for the function’s environment, the method to
use as the overall default, whether to evaluate arguments, and which
arguments should use inheritance.

getMethod 821

Details

A call to getMethod returns the method for a particular function and signature. As with
other get functions, argument where controls where the function looks (by default anywhere
in the search list) and argument optional controls whether the function returns NULL or
generates an error if the method is not found. The search for the method makes no use of
inheritance.

The function selectMethod also looks for a method given the function and signature, but
makes full use of the method dispatch mechanism; i.e., inherited methods and group generics
are taken into account just as they would be in dispatching a method for the corresponding
signature, with the one exception that conditional inheritance is not used. Like getMethod,
selectMethod returns NULL or generates an error if the method is not found, depending on
the argument optional.

The functions existsMethod and hasMethod return TRUE or FALSE according to whether a
method is found, the first corresponding to getMethod (no inheritance) and the second to
selectMethod.

The function getMethods returns all the methods for a particular generic (in the form of a
generic function with the methods information in its environment). The function is called
from the evaluator to merge method information, and is not intended to be called directly.

The function MethodsListSelect performs a full search (including all inheritance and group
generic information: see the Methods documentation page for details on how this works).
The call returns a possibly revised methods list object, incorporating any method found as
part of the allMethods slot.

Normally you won’t call MethodsListSelect directly, but it is possible to use it for debug-
ging purposes (only for distinctly advanced users!).

Note that the statement that MethodsListSelect corresponds to the selection done by the
evaluator is a fact, not an assertion, in the sense that the evaluator code constructs and
executes a call to MethodsListSelect when it does not already have a cached method for
this generic function and signature. (The value returned is stored by the evaluator so that
the search is not required next time.)

Value

The call to selectMethod or getMethod returns a MethodDefinition-class object, the
selected method, if a unique selection exists. (This class extends function, so you can use
the result directly as a function if that is what you want.) Otherwise an error is thrown if
optional is FALSE. If optional is TRUE, the value returned is NULL if no method matched,
or a MethodsList object if multiple methods matched.

The call to getMethods returns the MethodsList object containing all the methods re-
quested. If there are none, NULL is returned: getMethods does not generate an error in this
case.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface

822 getPackageName

developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

getPackageName The name associated with a given package

Description

The functions below produce the package associated with a particular environment or posi-
tion on the search list, or of the package containing a particular function. They are primarily
used to support computations that need to differentiate objects on multiple packages.

Usage

getPackageName(where = 1)
functionPackageName(name)

Arguments

where The environment or position on the search list associated with the desired
package.

name The name of a function: functionPackageName finds the function and
returns the package name corresponding. Note that if there are multiple
instances of the function, all the corresponding names are returned.

pkg The name to be assigned to the package internally.

Details

Package names are normally installed during loading of the package, by the INSTALL script
or by the library function. (Currently, the name is stored as the object .packageName
but don’t trust this for the future.)

Value

All the functions return the character-string name of the package (without the extraneous
"package:" found in the search list).

See Also

search

Examples

both the following usually return "base"

getPackageName(length(search()))

functionPackageName("rnorm")

http://developer.r-project.org/methodsPackage.html

hasArg 823

hasArg Look for an Argument in the Call

Description

Returns TRUE is name corresponds to an argument in the call, either a formal argument to
the function, or a component of ..., and FALSE otherwise.

Usage

hasArg(name)

Arguments

name The unquoted name of a potential argument.

Details

The expression hasArg(x), for example, is similar to !missing(x), with two exceptions.
First, hasArg will look for an argument named x in the call if x is not a formal argument to
the calling function, but ... is. Second, hasArg never generates an error if given a name
as an argument, whereas missing(x) generates an error if x is not a formal argument.

Value

Always TRUE or FALSE as described above.

See Also

missing

Examples

ftest <- function(x1, ...) c(hasArg(x1), hasArg(y2))

ftest(1) ## c(TRUE, FALSE)

ftest(1, 2) ## c(TRUE, FALSE)

ftest(y2=2) ## c(FALSE, TRUE)

ftest(y=2) ## c(FALSE, FALSE) (no partial matching)

ftest(y2 = 2, x=1) ## c(TRUE, TRUE) partial match x1

824 is

is Is an Object from a Class

Description

is: With two arguments, tests whether object can be treated as from class2.

With one argument, returns all the super-classes of this object’s class.

extends: Does the first class extend the second class? Returns maybe if the extension
includes a test.

setIs: Defines class1 to be an extension of class2.

Usage

is(object, class2)

extends(class1, class2, maybe=TRUE)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = NULL, where = 1)

Arguments

object Any R object.
class1, class2

The names of the classes between which is relations are to be defined.

maybe What value to return if the relationship is conditional.
test, coerce, replace

Functions optionally supplied to test whether the relation is defined, to
coerce the object to class2, and to alter the object so that is(object,
class2) is identical to value.

by The name of an intermediary class. Coercion will proceed by first coerc-
ing to this class and from there to the target class. (The intermediate
coercions have to be valid.)

where Where to store the metadata defining the relationship. Default is the
global environment.

Details

setIs:

The relationship can be conditional, if a function is supplied as the test argument. If a
function is supplied as the coerce argument, this function will be applied to any class1
object in order to turn it into a class2 object. If the relationship is to be defined indirectly
through a third class, this class can be named in the by argument.

Extension may imply that a class1 object contains a class2 object. The default sense of
containing is that all the slots of the simpler class are found in the more elaborate one. If
the replace argument is supplied as an S replacement function, this function will be used
to implement as(obj, class2) <- value.

language-class 825

The coerce, replace, and by arguments behave as described for the setAs function. It’s
unlikely you would use the by argument directly, but it is used in defining cached information
about classes. The value returned (invisibly) by setIs is the extension information, as a
list.

Information about setIs relations can be stored in the metadata for either class1 (in the
extends information) or in the metadata for class2 (in the subclasses information). For
the information to be retained for a future session, one of these classes must be defined
in the global environment, since only objects assigned there are saved by save.image. If
neither class is defined in environment where, setIs generates an error.

Because only global environment information is saved, it rarely makes sense to give a value
other than the default for argument where. One exception is where=0, which modifies the
cached (i.e., session-scope) information about the class. Class completion computations use
this version, but don’t use it yourself unless you are quite sure you know what you’re doing.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

Examples

a class definition (see setClass for the example)

setClass("trackCurve",

representation("track", smooth = "numeric"))

A class similar to "trackCurve", but with different structure

allowing matrices for the "y" and "smooth" slots

setClass("trackMultiCurve", representation(x="numeric", y="matrix", smooth="matrix"),

prototype = structure(list(), x=numeric(), y=matrix(0,0,0), smooth= matrix(0,0,0)))

Define a multi-curve to extend a single curve ONLY

if the y data is one variable.

setIs("trackMultiCurve", "trackCurve", test = function(obj) {ncol(slot(obj, "y")) == 1},

coerce = function(obj) { new("trackCurve", x = slot(obj, "x"),

y = as.numeric(slot(obj,"y")), curve = as.numeric(slot(obj, "curve")))})

language-class Classes to Represent Unevaluated Language Objects

Description

The virtual class "language" and the specific classes that extend it represent unevaluated
objects, as produced for example by the parser or by functions such as quote.

http://developer.r-project.org/methodsPackage.html

826 languageEl

Usage

each of these classes corresponds to an unevaluated object
in the S language. The class name can appear in method signatures,
and in a few other contexts (such as some calls to as()).

"("
"<-"
"call"
"for"
"if"
"repeat"
"while"
"name"
"{"

Each of the classes above extends the virtual class

"language"

Objects from the Class

"language" is a virtual class; no objects may be created from it.

Objects from the other classes can be generated by a call to new(Class, ...), where Class
is the quoted class name, and the . . . arguments are either empty or a single object that is
from this class (or an extension).

Methods

coerce signature(from = "ANY", to = "call"). A method exists for as(object,
"call"), calling as.call().

languageEl Elements of Language Objects

Description

Internal routines to support some operations on language objects.

Usage

languageEl(object, which)

isGrammarSymbol(symbol)

LinearMethodsList-class 827

Summary of Functions

languageEl: extract an element of a language object, consistently for different kinds of
objects.
The 1st., etc. elements of a function are the corresponding formal arguments, with
the default expression if any as value.
The first element of a call is the name or the function object being called.
The 2nd, 3rd, etc. elements are the 1st, 2nd, etc. arguments expressions. Note that
the form of the extracted name is different for R and S-Plus. When the name (the first
element) of a call is replaced, the languageEl replacement function coerces a character
string to the internal form for each system.
The 1st, 2nd, 3rd elements of an if expression are the test, first, and second branch.
The 1st element of a for object is the name (symbol) being used in the loop, the
second is the expression for the range of the loop, the third is the body of the loop.
The first element of a while object is the loop test, and the second the body of the
loop.

isGrammarSymbol: Checks whether the symbol is part of the grammar. Don’t use this
function directly.

LinearMethodsList-class

Class ”LinearMethodsList”

Description

A version of methods lists that has been “linearized” for producing summary information.
The actual objects from class "MethodsList" used for method dispatch are defined recur-
sively over the arguments involved.

Objects from the Class

The function linearizeMlist converts an ordinary methods list object into the linearized
form.

Slots

methods: Object of class "list", the method definitions.

arguments: Object of class "list", the corresponding formal arguments.

classes: Object of class "list", the corresponding classes in the signatures.

fromClasses: Object of class "list"

Future Note

The current version of linearizeMlist does not take advantage of the MethodDefinition
class, and therefore does more work for less effect than it could. In particular, we may move
to redefine both the function and the class to take advantage of the stored signatures. Don’t
write code depending precisely on the present form, although all the current information
will be obtainable in the future.

828 makeClassRepresentation

See Also

Function linearizeMlist for the computation, and MethodsList-class for the original,
recursive form.

makeClassRepresentation

Create a Class Definition

Description

Constructs a classRepresentation-class object to describe a particular class. Mostly
a utility function, but you can call it to create a class definition without assigning it, as
setClass would do.

Usage

makeClassRepresentation(name, slots=list(), superClasses=character(),
prototype=NULL, package, validity, access, version, sealed, virtual=NA)

Arguments

name character string name for the class
slots named list of slot classes as would be supplied to setClass, but without

the unnamed arguments for superClasses if any.
superClasses what classes does this class extend
prototype an object providing the default data for the class, e.g, the result of a call

to prototype.
package The character string name for the package in which the class will be stored;

see getPackageName.
validity Optional validity method. See validObject, and the discussion of validity

methods in the reference.
access Access information. Not currently used.
version

sealed

virtual Is this known to be a virtual class?

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.
While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setClass

http://developer.r-project.org/methodsPackage.html

MethodDefinition-class 829

MethodDefinition-class

Classes to Represent Method Definitions

Description

These classes extend the basic class "function" when functions are to be stored and used
as method definitions.

Details

Method definition objects are functions with additional information defining how the func-
tion is being used as a method. The target slot is the class signature for which the method
will be dispatched, and the defined slot the signature for which the method was orignally
specified (that is, the one that appeared in some call to setMethod).

Objects from the Class

The action of setting a method creates an object of this class. It’s unwise to create them
directly.

Slots

.Data: Object of class "function"; the data part of the definition.

target: Object of class "signature"; the signature for which the method was wanted.

defined: Object of class "signature"; the signature for which a method was found. If the
method was inherited, this will not be identical to target.

Extends

Class "function", from data part.
Class "PossibleMethod", directly.
Class "OptionalMethods", by class ”function”.

See Also

class MethodsList-class for the objects defining sets of methods associated with a partic-
ular generic function. The individual method definitions stored in these objects are from
class MethodDefinition, or an extension. MethodWithNext-class for an extension used
by callNextMethod.

830 Methods

Methods General Information on Methods

Description

This documentation section covers some general topics on how methods work and how the
methods package interacts with the rest of R. The information is usually not needed to get
started with methods and classes, but may be helpful for moderately ambitious projects,
or when something doesn’t work as expected.

The section How Methods Work describes the underlying mechanism; Class Inheri-
tance and Method Selection provides more details on how class definitions determine
which methods are used.

The section Changes with the Methods Package outlines possible effects on other
computations when running with package methods.

How Methods Work

A generic function is a function that has associated with it a collection of other functions
(the methods), all of which agree in formal arguments with the generic. In R, the“collection”
is an object of class "MethodsList", which contains a named list of methods (the methods
slot), and the name of one of the formal arguments to the function (the argument slot). The
names of the methods are the names of classes, and the corresponding element defines the
method or methods to be used if the corresponding argument has that class. For example,
suppose a function f has formal arguments x and y. The methods list object for that
function has the object as.name("x") as its argument slot. An element of the methods
named "track" is selected if the actual argument corresponding to x is an object of class
"track". If there is such an element, it can generally be either a function or another
methods list object.

In the first case, the function defines the method to use for any call in which x is of class
"track". In the second case, the new methods list object defines the selection of methods
depending on the remaining formal arguments, in this example, y. The same selection
process takes place, recursively, using the new methods list. Eventually, the selection returns
either a function or NULL, meaning that no method matched the actual arguments.

Each method selected corresponds conceptually to a signature; that is a named list of
classes, with names corresponding to some or all of the formal arguments. In the previous
example, if selecting class "track" for x, finding that the selection was another methods
list and then selecting class "numeric" for y would produce a method associated with the
signature x = "track", y = "numeric".

The actual selection is done recursively, but you can see the methods arranged by signature
by calling the function showMethods, and objects with the methods arranged this way (in
two different forms) are returned by the functions listFromMlist and linearizeMlist.

In an R session, each generic function has a single methods list object defining all the
currently available methods. The session methods list object is created the first time the
function is called by merging all the relevant method definitions currently visible. Whenever
something happens that might change the definitions (such as attaching or detaching a
package with methods for this function, or explicitly defining or removing methods), the
merged methods list object is removed. The next call to the function will recompute the
merged definitions.

When methods list are merged, they can come from two sources:

Methods 831

1. Methods list objects for the same function anywhere on the current search list. These
are merged so that methods in an environment earlier in the search list override meth-
ods for the same function later in the search list. A method overrides only another
method for the same signature. See the comments on class "ANY" in the section on
Inheritance.

2. Methods list objects corresponding the group generic functions, if any, for this function.
Any generic function can be defined to belong to a group generic. The methods for the
group generic are available as methods for this function. The group generic can itself
be defined as belong to a group; as a result there is a list of group generic functions.
A method defined for a function and a particular signature overrides a method for the
same signature for that function’s group generic.

Merging is done first on all methods for a particular function, and then over the generic
and its group generics.

The result is a single methods list object that contains all the methods directly defined for
this function. As calls to the function occur, this information may be supplemented by
inherited methods, which we consider next.

Class Inheritance and Method Selection

If no method is found directly for the actual arguments in a call to a generic function, an
attempt is made to match the available methods to the arguments by using inheritance.

Each class definition potentially includes the names of one or more classes that the new
class extends. (These are sometimes called the superclasses of the new class.) These classes
themselves may extend other classes. Putting all this information together produces the full
list of superclasses for this class. (You can see this list for any class "A" from the expression
extends("A").) In addition, any class implicitly extends class "ANY".

A method will be selected by inheritance if we can find a method in the methods list
for a signature corresponding to any combination of superclasses for each of the relevant
arguments. The search for such a method is performed by the function MethodsListSelect,
working as follows.

For the first formal argument of the function, a list of classes is made up from the class
itself, all its superclasses, and class "ANY". For each of these, the selection computation
looks for an element of the methods with the corresponding name. Each time it finds one,
it then calls the selection process recursively if necessary to select a method directly or by
inheritance for the remaining arguments.

Each one of these recursive calls can fail or it can return a function (the method). As long
as the calls fail, the selection process moves on to the next superclass and tries again. The
last step corresponds to class "ANY", the default method defined at this level.

The effect of this definition of the selection process is to order all possible inherited methods,
first by the superclasses for the first argument, then within this by the superclasses for the
second argument, and so on. Superclasses are ordered by how direct they are: first, the
direct superclasses, then the superclasses of these classes.

Changes with the Methods Package

The methods package is designed to leave other computations in R unchanged. There
are, however, a few areas where the default functions and behavior are overridden when
running with the methods package attached. This section outlines those known to have
some possible effect.

832 MethodsList

class: The methods package enforces the notion that every object has a class; in particular,
class(x) is never NULL, as it would be for basic vectors, for example, when not using
methods.
In addition, when assigning a class, the value is required to be a single string. (How-
ever, objects can have multiple class names if these were generated by old-style class
computations. The methods package does not hide the “extra” class names.)
Computations using the notion of NULL class attributes or of class attributes with
multiple class names are not really compatible with the ideas in the methods package.
Formal classes and class inheritance are designed to give more flexible and reliable
implementations of similar ideas.
If you do have to mix the two approaches, any operations that use class attributes
in the old sense should be written in terms of attr(x, "class"), not class(x). In
particular, test for no class having been assigned with is.null(attr(x, "class")).

Printing To provide appropriate printing automatically for objects with formal class def-
initions, the methods package overrides print.default, to look for methods for the
generic function show, and to use a default method for objects with formal class defi-
nitions.
The revised version of print.default is intended to produce identical printing to the
original version for any object that does not have a formally defined class, including
honoring old-style print methods. So far, no exceptions are known.

plot A version of the plot function is included in the current methods package, differing
from the one in the base package in that it has a y argument (necessary if methods for
plot are to be defined for the y data; see the examples for setMethod). This version
will move into base as soon as it is tested.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

setGeneric, setClass

MethodsList MethodsList Objects

Description

These functions create and manipulate MethodsList objects, the objects used in R to store
methods for dispatch. You should not call any of these functions from code that you want
to port to S-Plus. Instead, use the functions described in the references.

http://www.omegahat.org/RSMethods/index.html

MethodsList 833

Usage

MethodsList(.ArgName, ...)

makeMethodsList(object, level=1)

SignatureMethod(names, signature, definition)

insertMethod(mlist, signature, args, def, cacheOnly)

inheritedSubMethodLists(object, thisClass, mlist, ev)

showMlist(mlist, includeDefs = TRUE, inherited = TRUE,
classes, useArgNames, printTo = stdout())

print.MethodsList(x, ...)

listFromMlist(mlist, prefix = list())

linearizeMlist(mlist, inherited = TRUE)

finalDefaultMethod(mlist, fname = "NULL")

mergeMethods(m1, m2)

loadMethod(method, fname, envir)

Details

Note that MethodsList objects represent methods only in the R implementation. You can
use them to find or manipulate information about methods, but avoid doing so if you want
your code to port to S-Plus.

Details

MethodsList: Create a MethodsList object out of the arguments.
Conceptually, this object is a named collection of methods to be dispatched when the
(first) argument in a function call matches the class corresponding to one of the names.
A final, unnamed element (i.e., with name "") corresponds to the default method.
The elements can be either a function, or another MethodsList. In the second case,
this list implies dispatching on the second argument to the function using that list,
given a selection of this element on the first argument. Thus, method dispatching on
an arbitrary number of arguments is defined.
MethodsList objects are used primarily to dispatch OOP-style methods and, in R, to
emulate S4-style methods.

SignatureMethod: construct a MethodsList object containing (only) this method, corre-
sponding to the signature; i.e., such that signature[[1]] is the match for the first
argument, signature[[2]] for the second argument, and so on. The string "missing"
means a match for a missing argument, and "ANY" means use this as the default setting
at this level.
The first argument is the argument names to be used for dispatch corresponding to
the signatures.

834 MethodsList-class

insertMethod: insert the definition def into the MethodsList object, mlist, corresponding
to the signature. By default, insert it in the slot "methods", but cacheOnly=TRUE
inserts it into the "allMethods" slot (used for dispatch but not saved).

inheritedSubMethodLists: Utility function to match the object or the class (if the object
is NULL) to the elements of a methods list. Used in finding inherited methods, and not
meant to be called directly.

showMlist: Prints the contents of the MethodsList. If includeDefs the signatures and
the corresonding definitions will be printed; otherwise, only the signatures.
The function calls itself recursively: prev is the previously selected classes.

listFromMlistForPrint: Undo the recursive nature of the methods list, making a list
of function defintions, with the names of the list being the corresponding signatures
(designed for printing; for looping over the methods, use listFromMlist instead).
The function calls itself recursively: prev is the previously selected classes.

finalDefaultMethod: The true default method for the methods list object mlist (the
method that matches class "ANY" for as many arguments as are used in methods
matching for this generic function). If mlist is null, returns the function called fname,
or NULL if there is no such function.

mergeMethods: Merges the methods in the second MethodsList object into the first, and
returns the merged result. Called from getAllMethods.

loadMethod: Called, if necessary, just before a call to method is dispatched in the frame
envir. The function exists so that methods can be defined for special classes of objects.
Usually the point is to assign or modify information in the frame environment to be
used evaluation. For example, the standard class MethodDefinition has a method
that stores the target and defined signatures in the environment.
Any methods defined for loadMethod must return the function definition to be used
for this call; typically, this is just the method argument.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

MethodsList-class Class MethodsList, Representation of Methods for a Generic
Function

Description

Objects from this class are generated and revised by the definition of methods for a generic
function.

http://developer.r-project.org/methodsPackage.html

MethodSupport 835

Slots

argument: Object of class "name". The name of the argument being used for dispatch at
this level.

methods: A named list of the methods (and method lists) defined explicitly for this argu-
ment, with the names being the classes for which the methods have been defined.

allMethods: A named list, which may be empty if this object has not been used in dispatch
yet. Otherwise, it contains all the directly defined methods from the methods slot, plus
any inherited methods.

Extends

Class "OptionalMethods", directly.

MethodSupport Additional (Support) Functions for Methods

Description

These are support routines for computations on formal methods.

Usage

getMethodsForDispatch(f, fdef)

cacheMethod(f, sig, def, args, fdef)

resetGeneric(f, fdef)

Summary of Functions

resetGeneric: reset the currently defined methods for this generic by removing the corre-
sponding definition from the methods metadata (to be remerged when the function is
next called). Returns TRUE or FALSE according to whether information for the function
was found in the metadata.
You must call this function when you change relevant inheritance information during
a session, to guarantee that the new information is used if this generic has already
been called.

cacheMethod: Store the definition for this function and signature in the method metadata
for the function. Used to store extensions of coerce methods found through inheritance.
No persistent effect, since the method metadata is session-scope only.

getMethodsForDispatch: Get the current methods list object representing the methods
for function f, merged from the various packages and with any additional caching
information stored in the allMethods slot.
If methods have not yet been merged, calling getMethodsForDispatch will cause the
merge to take place.

836 methodUtilities

methodUtilities Utility Functions for Methods and S-Plus Compatibility

Description

These are utilities, currently in the methods package, that either provide some functionality
needed by the package (e.g., element matching by name), or add compatibility with S-Plus,
or both.

Usage

functionBody(fun=sys.function(sys.parent()))

allNames(x)

getFunction(name, generic=TRUE, mustFind=TRUE, where)

el(object, where)

elNamed(x, name, mustFind=FALSE)

formalArgs(def)

Quote()

message(...)

showDefault(object, oldMethods = TRUE)

initMethodDispatch()

Summary of Functions

allNames: the character vector of names (unlike names(), never returns NULL).

getFunction: find the object as a function.

elNamed: get the element of the vector corresponding to name. Unlike the [, [[, and $
operators, this function requires name to match the element name exactly (no partial
matching).

formalArgs: Returns the names of the formal arguments of this function.

existsFunction: Is there a function of this name? If generic is FALSE, generic functions
are not counted.

findFunction: return all the indices of the search list on which a function definition for
name exists.
If generic is FALSE, ignore generic functions.

message: Output all the arguments, pasted together with no intervening spaces.

showDefault: Utility, used to enable show methods to be called by the automatic printing
(via print.default).

MethodWithNext-class 837

initMethodDispatch: Turn on the internal method dispatch code. Called on at-
taching the package. Also, if dispatch has been turned off (by calling
.isMethodsDispatchOn(FALSE)—a very gutsy thing to do), calling this function
should turn dispatch back on again.

MethodWithNext-class Class MethodWithNext

Description

Class of method definitions set up for callNextMethod

Objects from the Class

Objects from this class are generated as a side-effect of calls to callNextMethod.

Slots

.Data: Object of class "function"; the actual function definition.

nextMethod: Object of class "PossibleMethod" the method to use in response to a
callNextMethod() call.

excluded: Object of class "list"; one or more signatures excluded in finding the next
method.

target: Object of class "signature", from class "MethodDefinition"

defined: Object of class "signature", from class "MethodDefinition"

Extends

Class "MethodDefinition", directly. Class "function", from data part. Class
"PossibleMethod", by class ”MethodDefinition”. Class "OptionalMethods", by class
”MethodDefinition”.

Methods

findNextMethod signature(method = "MethodWithNext"): used internally by method
dispatch.

loadMethod signature(method = "MethodWithNext"): used internally by method dis-
patch.

show signature(object = "MethodWithNext")

See Also

callNextMethod, and MethodDefinition-class.

838 new

new Generate an Object from a Class

Description

Given the the name or the definition of a class, plus optionally data to be included in the
object, new returns an object from that class.

Usage

new(Class, ...)

initialize(.Object, ...)

Arguments

Class Either the name of a class (the usual case) or the object describing the
class (e.g., the value returned by getClass).

... Data to include in the new object. Named arguments correspond to slots
in the class definition. Unnamed arguments must be objects from classes
that this class extends.

.Object An object: see the Details section.

Details

The function new begins by copying the prototype object from the class definition. Then
information is inserted according to the ... arguments, if any.

The interpretation of the ... arguments can be specialized to particular classes, if an
appropriate method has been defined for the generic function "initialize". The new
function calls initialize with the object generated from the prototype as the .Object
argument to initialize.

By default, unnamed arguments in the ... are interpreted as objects from a superclass,
and named arguments are interpreted as objects to be assigned into the correspondingly
named slots. Thus, explicit slots override inherited information for the same slot, regardless
of the order in which the arguments appear.

The initialize methods do not have to have ... as there second argument (see the
examples), and generally it is better design not to have ... as a formal argument, if only
a fixed set of arguments make sense.

Note that the basic vector classes, "numeric", etc. are implicitly defined, so one can use
new for these classes.

Author(s)

John Chambers

new 839

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

Classes

Examples

using the definition of class "track" from Classes

a new object with two slots specified

t1 <- new("track", x = seq(along=ydata), y = ydata)

a new object including an object from a superclass, plus a slot

t2 <- new("trackCurve", t1, smooth = ysmooth)

define a method for initialize, to ensure that new objects have

equal-length x and y slots.

setMethod("initialize", "track", function(.Object, x = numeric(0), y = numeric(0)) {

if(nargs() > 1) {

if(length(x) != length(y))

stop("specified x and y of different lengths")

.Object@x <- x

.Object@y <- y

}

.Object

})

the next example will cause an error (x will be numeric(0)),

because we didn’t build in defaults for x,

although we could with a more elaborate method for initialize

try(new("track", y = sort(rnorm(10))))

a better way to implement the previous initialize method.

Why? By using callNextMethod to call the default initialize method

we don’t inhibit classes that extend "track" from using the general

form of the new() function. In the previous version, they could only

use x and y as arguments to new, unless they wrote their own

intialize method.

setMethod("initialize", "track", function(.Object, ...) {

.Object <- callNextMethod()

if(length(.Object@x) != length(.Object@y))

stop("specified x and y of different lengths")

.Object

})

http://www.omegahat.org/RSMethods/index.html

840 promptClass

ObjectsWithPackage-class

A Vector of Object Names, with associated Package Names

Description

This class of objects is used to represent ordinary character string object names, extended
with a package slot naming the package associated with each object.

Objects from the Class

The function getGenerics returns an object of this class.

Slots

.Data: Object of class "character": the object names.

package: Object of class "character" the package names.

Extends

Class "character", from data part. Class "vector", by class ”character”.

See Also

Methods for general background.

promptClass Generate a Shell for Documentation of a Formal Class

Description

Assembles all relevant slot and method information for a class, with minimal markup for
Rd processing; no QA facilities at present.

Usage

promptClass(clName, filename, type = "class", keywords = "classes", where)

Arguments

clName character string naming the class to be documented.

filename Usually, the filename on which the documentation shell should be written.
By default it is the topic name for the class documentation, followed by
”.Rd”. See the example below. The argument can also be any writable
connection.

type The documentation type to be declared in the output file.

keywords The keywords to include in the shell of the documentation. The keyword
"classes" should be one of them.

where where to look for the definition of the class and of methods that use it:
by default, anywhere in the current search list.

promptMethods 841

Details

The class definition is found on the search list. Using that definition, information about
classes extended and slots is determined.

In addition, the currently available generics with methods for this class are found (using
getGenerics). Note that these methods need not be in the same environment as the class
definition; in particular, this part of the output may depend on which packages are currently
in the search list.

As with other prompt-style functions, the documentation shell is written to a file, which will
need editing to give information about the meaning of the class. The output of promptClass
can only contain information from the metadata about the formal definition and how it is
used.

Value

The name of the file to which the shell is written (the value is invisible). A message is
also printed notifying the user about the file.

Author(s)

VJ Carey 〈stvjc@channing.harvard.edu〉 and John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

prompt for documentation of functions, promptMethods for documentation of method def-
initions.

For processing of the edited documentation, either use R CMD Rdconv, or include the edited
file in the ‘man’ subdirectory of a package.

Examples

> promptClass("track")

A shell of class documentation has been written to the

file "track-class.Rd".

promptMethods Generate a Shell for Documentation of Formal Methods

Description

Generates a shell of documentation for the methods of a generic function.

http://www.omegahat.org/RSMethods/index.html

842 RClassUtils

Usage

promptMethods(f, filename, methods)

Arguments

f The name of the generic function whose methods are to be documented.

filename Optional file on which to write the documentation shell. If supplied, it
can be the name of a file, a connection, or FALSE.
If FALSE, the text is returned, presumably to be inserted some other
documentation file, such as the documentation of the generic function
itself (see prompt).
The default file name is the same as the coded topic name for these
methods (currently "f-methods.Rd".

methods Optional methods list object giving the methods to be documented. By
default, the first methods object for this generic is used (for example, if
the current global environment has some methods for f, these would be
documented).
If this argument is supplied, it is likely to be getMethods(f, where),
with where some package containing methods for f.

Value

If filename is FALSE, the text generated; otherwise, the name of the file written.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

prompt and promptClass

RClassUtils Utilities for Managing Class Definitions

Description

These are various functions to support the definition and use of formal classes. Most of
them are rarely suitable to be called directly.

http://developer.r-project.org/methodsPackage.html

RClassUtils 843

Usage

testVirtual(properties, extends, prototype)

makePrototypeFromClassDef(properties, prototype, extends)

newEmptyObject()

completeClassDefinition(Class, ClassDef)

getProperties(ClassDef)

getSlots(x, complete = TRUE)

getExtends(ClassDef)

getAccess(ClassDef)

getAllSuperClasses(ClassDef)

superClassDepth(ClassDef, soFar)

getPrototype(ClassDef)

getVirtual(ClassDef)

isVirtualClass(Class)

getSubclasses(ClassDef)

getClassName(ClassDef)

assignClassDef(Class, def, where=.GlobalEnv)

newBasic(Class, ...)

makeExtends(Class, to, coerce, test, replace, by, package, slots,
classDef1, classDef2)

reconcilePropertiesAndPrototype(name, properties, prototype, superClasses)

tryNew(Class)

trySilent(expr)

empty.dump()

showClass(Class, complete=TRUE, propertiesAreCalled="Properties")

showExtends(ext, printTo = stdout())

getFromClassMetaData(name)

844 RClassUtils

assignToClassMetaData(name, value)

removeFromClassMetaData(name)

possibleExtends(class1, class2)

completeExtends(ClassDef)

classMetaName(name)

methodsPackageMetaName(prefix, name)

metaNameUndo(strings, prefix = "M", searchForm = FALSE)

requireMethods(functions, signature, message)

checkSlotAssignment(obj, name, value)

defaultPrototype()

isClassDef(object)

validSlotNames(names)

getDataPart(object)
setDataPart(object, value)

Summary of Functions

testVirtual: Test for a Virtual Class. Figures out, as well as possible, whether the class
with these properties, extension, and prototype is a virtual class. Can be forced to be
virtual by extending ”VIRTUAL”.
Otherwise, a class is virtual only if it has no slots, extends no non-virtual classes, and
has a NULL Prototype.

makePrototypeFromClassDef: Makes the prototype implied by the class definition.
The following three rules are applied in this order.
If the class has slots, then the prototype for each slot is used by default, but a corre-
sponding element in the explicitly supplied prototype, if there is one, is used instead
(but it must be coercible to the class of the slot).
If there are no slots but a non-null prototype was specified, this is returned.
If there is a single non-virtual superclass (a class in the extends list), then its prototype
is used.
If all three of the above fail, the prototype is NULL.

newEmptyObject: Utility function to create an empty object into which slots can be set.
Currently just creates an empty list with class "NULL".
Later version should create a special object reference that marks an object currently
with no slots and no data.

completeClassDefinition: Completes the definition of Class, relative to the current ses-
sion.

RClassUtils 845

The completed definition is stored in the session’s class metadata, to be retrieved the
next time that getClass is called on this class, and is returned as the value of the call.
If ClassDef is omitted, the initial definition is obtained from the first package having
a meta-object for this class.

getFromClassDef: Extracts one of the intrinsically defined class definition properties
(”.Properties”, etc.) Strictly a utility function.

getProperties: Extracts the class’s Properties information from the class representation
(only, not from the name of the class).

getSlots: Returns a named character vector. The names are the names of the slots, the
values are the classes of the corresponding slots. If complete is TRUE, all slots from
all superclasses will be included. The argument x can either be the name of a class or
an object having that class.

getExtends: Extracts the class’s Extends information from the class representation (only,
not from the name of the class)
Contrast with the possibleExtends and is functions, both of which use indirect
information as well.

getAllSuperClasses, superClassDepth: Get the names of all the classes that this class
definition extends.
getAllSuperClasses is a utility function used to complete a class definition. It returns
all the superclasses reachable from this class, in breadth-first order (which is the order
used for matching methods); that is, the first direct superclass followed by all its
superclasses, then the next, etc. (The order is relevant only in the case that some of
the superclasses have multiple inheritance.)
superClassDepth, which is called from getAllSuperClasses, returns the same infor-
mation, but as a list with components label and depth, the latter for the number of
generations back each class is in the inheritance tree. The argument soFar is used to
avoid loops in the network of class relationships.

getPrototype: extract the class’s Prototype information from the class representation
(only, not from the name of the class)

getAccess: extract the class’s Access information from the class representation (only, not
from the name of the class)

getVirtual: extract the class’s Virtual information from the class representation (only, not
from the name of the class)

isVirtualClass: Is the named class a virtual class?
A class is virtual if explicitly declared to be, and also if the class is not formally defined.

getSubclasses: extract the class’s Subclasses information from the class representation
(only, not from the name of the class)

getClassName: The internal property in the class definition for the class name.

assignClassDef: assign the definition of the class to the specially named object

newBasic: the implementation of the function new for basic classes that don’t have a formal
definition.
Any of these could have a formal definition, except for Class="NULL" (disallowed
because NULL can’t have attributes). For all cases except "NULL", the class of the
result will be set to Class.
See new for the interpretation of the arguments.

makeExtends: convert the argument to a list defining the extension mechanism.

846 RClassUtils

reconcilePropertiesAndPrototype: makes a list or a structure look like a prototype for
the given class.
Specifically, returns a structure with attributes corresponding to the slot names in
properties and values taken from prototype if they exist there, from new(classi) for
the class, classi of the slot if that succeeds, and NULL otherwise.
The prototype may imply slots not in the properties list, since properties does not
include inherited slots (these are left unresolved until the class is used in a session).

tryNew: Tries to generate a new element from this class, but if the attempt fails (as, e.g.,
when the class is undefined or virtual) just returns NULL.
This is inefficient and also not a good idea when actually generating objects, but is
useful in the initial definition of classes.

showClass: Print the information about a class definition.
If complete is TRUE, include the indirect information about extensions.

showExtends: Print the elements of the list of extensions.
(Used also by promptClass to get the list of what and how for the extensions.)

possibleExtends: Find the information that says whether class1 extends class2, directly
or indirectly.
This can be either a logical value or an object of class SClassExtension-class con-
taining various functions to test and/or coerce the relationship.

completeExtends: complete the extends information in the class definition, by following
transitive chains.
Elements in the immediate extends list may be added and current elements may be
replaced, either by replacing a conditional relation with an unconditional one, or by
adding indirect relations.

classMetaName: a name for the object storing this class’s definition

methodsPackageMetaName: a name mangling device to hide metadata defining method and
class information.

metaNameUndo As its name implies, this function undoes the name-mangling
used to produce meta-data object names, and returns a object of class
ObjectsWithPackage-class.

requireMethods: Require a subclass to implement methods for the generic functions, for
this signature.
For each generic, setMethod will be called to define a method that throws an error,
with the supplied message.
The requireMethods function allows virtual classes to require actual classes that ex-
tend them to implement methods for certain functions, in effect creating an API for
the virtual class.
Otherwise, default methods for the corresponding function would be called, resulting
in less helpful error messages or (worse still) silently incorrect results.

checkSlotAssignment: Check that the value provided is allowed for this slot, by consulting
the definition of the class. Called from the C code that assigns slots.
For privileged slots (those that can only be set by accesor functions defined along
with the class itself), the class designer may choose to improve efficiency by validating
the value to be assigned in the accessor function and then calling slot<- with the
argument check=FALSE, to prevent the call to checkSlotAssignment.

defaultPrototype: The prototype for a class which will have slots, is not a virtual class,
and does not extend one of the basic classes. In future releases, this will likely be a
non-vector R object type, but none of the current types (as of release 1.4) is suitable.

representation 847

SessionClassMetaData: Contains the name of the special table in which class information
is cached during the session.

.InitBasicClasses, .InitMethodsListClass, .setCoerceGeneric: These functions
perform part of the initialization of classes and methods, and are called (only!) from
.First.lib.

isClassDef: Is object a representation of a class?

validSlotNames: Returns names unless one of the names is reserved, in which case there
is an error. (As of writing, "class" is the only reserved slot name.)

getDataPart, setDataPart: Utilities called from the base C code to implement
object@.Data.

representation Construct a Representation or a Prototype for a Class Definition

Description

In calls to setClass, these two functions construct, respectively, the representation and
prototype arguments. They do various checks and handle special cases. You’re encouraged
to use them when defining classes that, for example, extend other classes as a data part or
have multiple superclasses, or that combine extending a class and slots.

Usage

representation(...)
prototype(...)

Arguments

... The call to representation takes arguments that are single character
strings. Unnamed arguments are classes that a newly defined class ex-
tends; named arguments name the explicit slots in the new class, and
specify what class each slot should have.
In the call to prototype, if an unnamed argument is supplied, it uncon-
ditionally forms the basis for the prototype object. Remaining arguments
are taken to correspond to slots of this object. It is an error to supply
more than one unnamed argument.

Details

The representation function applies tests for the validity of the arguments. Each must
specify the name of a class.

The classes named don’t have to exist when representation is called, but if they do, then
the function will check for any duplicate slot names introduced by each of the inherited
classes.

The arguments to prototype are usually named initial values for slots, plus an optional
first argument that gives the object itself. The unnamed argument is typically useful if
there is a data part to the definition (see the examples below).

848 RMethodUtils

Value

The value pf representation is just the list of arguments, after these have been checked
for validity.

The value of prototype is the object to be used as the prototype. Slots will have been set
consistently with the arguments, but the construction does not use the class definition to
test validity of the contents (it hardly can, since the prototype object is usually supplied to
create the definition).

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

setClass

Examples

representation for a new class with a directly define slot "smooth"

which should be a "numeric" object, and extending class "track"

representation("track", smooth ="numeric")

setClass("Character",representation("character"))

setClass("TypedCharacter",representation("Character",type="character"),

prototype(character(0),type="plain"))

ttt <- new("TypedCharacter", "foo", type = "character")

RMethodUtils RMethodUtils

Description

Utility functions to support the definition and use of formal methods. Most of these func-
tions will not normally be called directly by the user.

http://www.omegahat.org/RSMethods/index.html

RMethodUtils 849

Usage

makeGeneric(f, fdef, fdefault, group=character(),
valueClass=character(), package, signature, genericFunction)

makeStandardGeneric(f, fdef)

generic.skeleton(name, fdef, fdefault)

defaultDumpName(generic, signature)

getAllMethods(f, fdef, libs=search())

setAllMethodsSlot(mlist)

doPrimitiveMethod(name, def, call=sys.call(-1), ev=sys.frame(-2))

conformMethod(signature, mnames, fnames)

getGeneric(f, mustFind=FALSE)

getGroup(fdef, recursive=FALSE)

matchSignature(signature, fun)

manage method metadata
getFromMethodMetaData(name)

assignToMethodMetaData(name, value)

removeFromMethodMetaData(name)

removeMethodsObject(f, where)

findUnique(what, doFind, message)

MethodAddCoerce(method, argName, thisClass, methodClass)

is.primitive(fdef)

cacheMetaData(where, attach = TRUE)

cacheGenericsMetaData(generics, attach = TRUE, where, package)

setPrimitiveMethods(f, fdef, code, generic, mlist)

printNoClass(x, digits, quote, na.print, print.gap, right, ...)

print.default(x, ...)

missingArg(symbol, envir = parent.frame(), eval)

balanceMethodsList(mlist, args, check = TRUE)

850 RMethodUtils

sigToEnv(signature)

rematchDefinition(definition, generic, mnames, fnames)
unRematchDefinition(definition)

asMethodDefinition(def, signature)

findNextMethod(method, f, mlist, optional = FALSE, envir)

Summary of Functions

makeGeneric: Makes a generic function object corresponding to the given function name,
optional definition and optional default method. Other arguments supply optional
elements for the slots of genericFunction-class.

makeStandardGeneric: a utility function that makes a valid function calling standard-
Generic for name f. Works (more or less) even if the actual definition, fdef, is not a
proper function, that is, it’s a primitive or internal.

conformMethod: If the formal arguments, mnames, are not identical to the formal arguments
to the function, fnames, conformMethod determines whether the signature and the two
sets of arguments conform, and returns the signature, possibly extended.
The method assignment conforms if either method and function have identical formal
argument lists. It can also conform if the method omits some of the formal arguments
of the function but: (1) the non-omitted arguments are a subset of the function argu-
ments, appearing in the same order; (2) there are no arguments to the method that are
not arguments to the function; and (3) the omitted formal arguments do not appear
as explicit classes in the signature.

defaultDumpName: the default name to be used for dumping a method.

getAllMethods: a generic function (with methods) representing the merge of all the ver-
sions of f on the specified packages (anything on the current search path by default).
If the generic f has a group generic, methods for this group generic (and further
generations of group generics, if any) are also merged.
The merging rule is as follows: each generic is merged across packages, and the group
generics are then merged, finally adding the directly defined methods of f.
The effect of the merging rule is that any method directly defined for f on any included
package overrides a method for the same signature defined for the group generic;
similarly for the group generic and its group, if any, etc.
For f or for a specific group generic, methods override in the order of the packages
being searched. A method for a particular signature on a particular package overrides
any methods for the same signature on packages later on in the list of packages being
searched.
The slot ”allMethods” of the merged methods list is set to a copy of the methods slot;
this is the slot where inherited methods are stored.

doPrimitiveMethod: do a primitive call to builtin function name the definition and call
provided, and carried out in the environment ev.
A call to doPrimitiveMethod is used when the actual method is a .Primitive. (Be-
cause primitives don’t behave correctly as ordinary functions, not having either formal
arguments nor a function body).

RMethodUtils 851

getGeneric: return the definition of the function named f as a generic.
If there is no definition in the current search list, throws an error or returns NULL
according to the value of mustFind.
Primitive functions are dealt with specially, since there is never a formal generic defini-
tion for them. The value returned is the formal definition used for assigning methods to
this primitive. Not all primitives can have methods; if this one can’t, then getGeneric
returns NULL or throws an error.

getGroup: return the groups to which this generic belongs.
If recursive=TRUE, also all the group(s) of these groups.

matchSignature Matches the signature object (a partially or completely named subset of
the signature arguments of the generic function object fun), and return a vector of
all the classes in the order specified by fun@signature. The classes not specified by
‘signature’ will be "ANY" in the value, but extra trailing "ANY"’s are removed. When
the input signature is empty, the returned signature is a single "ANY" matching the
first formal argument (so the returned value is always non-empty).
Generates an error if any of the supplied signature names are not legal; that is, not in
the signature slot of the generic function.

getMethodsMetaData, assignMethodsMetaData, mlistMetaName: utilities to manage
methods list objects in a particular environment. Not to be called directly.

getFromMethodMetaData, assignToMethodMetaData, removeFromMethodMetaData
Functions to manage the session metadata for methods. Don’t call these directly.

MethodAddCoerce Possibly modify one or more methods to explicitly coerce this argument
to methodClass, the class for which the method is explicitly defined. Only modifies
the method if an explicit coerce is required to coerce from thisClass to methodClass.

is.primitive Is this object a primitive function (either a builtin or special)?

removeMethodsObject: remove the metadata object containing methods for f.

findUnique: Find the first position on the search list containing object what; if more than
one is found, a warning message is generated, using message to identify what was
being searched for.
If doFind is supplied, it’s the version of find used to do the search (e.g., findFunction.

cacheMetaData, cacheGenericsMetaData, setPrimitiveMethods: Utilities for ensuring
that the session-scope information about class and method definitions is up to date.
Should normally be called automatically whenever needed (for example, when a
method or class definition changes, or when a package is attached or detached.
The environment must be one of the environments on the current search list; note in
particular that even on detaching (attach=FALSE), the environment will normally still
be on the search list.
The setPrimitiveMethods function resets the caching information for a particular
primitive function. Don’t call it directly.

printNoClass,print.default: printNoClass is equivalent to the version of
print.default in the base package. The methods package overrides the lat-
ter function to provide meaningful printing for formally defined classes, and
printNoClass is used to get the original default printing.

missingArg: Returns TRUE if the symbol supplied is missing from the call corresponding
to the environment supplied (by default, environment of the call to missingArg). If
eval is true, the argument is evaluated to get the name of the symbol to test. Note
that missingArg is closer to the “blue-book” sense of the missing function, not that
of the current R base package implementation. But beware that it works reliably only

852 SClassExtension-class

if no assignment has yet been made to the argument. (For method dispatch this is
fine, because computations are done at the begining of the call.)

balanceMethodsList: Called from setMethod to ensure that all nodes in the list have
the same depth (i.e., the same number of levels of arguments). Balance is needed to
ensure that all necessary arguments are examined when inherited methods are being
found and added to the allMethods slot. No actual recomputation is needed usually
except when a new method uses a longer signature than has appeared before.
Balance requires that all methods be added to the generic via setMethod (how else
could you do it?) or by the initial setGeneric call converting the ordinary function.

sigToEnv: Turn the signature (a named vector of classes) into an environment with
the classes assigned to the names. The environment is then suitable for calling
MethodsListSelect, with evalArgs=FALSE, to select a method corresponding to the
signature. Usually not called directly: see selectMethod.

.saveImage: Flag, used in dynamically initializing the methods package from .First.lib

SClassExtension-class

Class to Represent Inheritance (Extension) Relations

Description

An object from this class represents a single “is” relationship; lists of these objects are used
to represent all the extensions (superclasses) and subclasses for a given class. The object
contains information about how the relation is defined and methods to coerce, test, and
replace correspondingly.

Objects from the Class

Objects from this class are generated by setIs, both from direct calls

Slots

superClass: The name of the class being extended.

package: The package to which that class belongs.

coerce: A function to carry out the as() computation implied by the relation. Note that
these functions should not be used directly. They only deal with the strict=TRUE
calls to the as function, with the full method constructed from this mechanically.

test: The function that would test whether the relation holds. Except for explicitly spec-
ified test arguments to setIs, this function is trivial.

replace: The method used to implement as(x, Class) <- value.

simple: A "logical" flag, TRUE if this is a simple relation, either because one class is
contained in the definition of another, or because a class has been explicitly stated
to extend a virtual class. For simple extensions, the three methods are generated
automatically.

by: If this relation has been constructed transitively, the first intermediate class from the
subclass.

dataPart: A "logical" flag, TRUE if the extended class is in fact the data part of the
subclass. In this case the extended class is a basic class (i.e., a type).

Session 853

Methods

No methods defined with class ”SClassExtension” in the signature.

See Also

is, as and classRepresentation-class.

Session Deprecated: Session Data and Debugging Tools

Description

The functions traceOn and traceOff have been replaced by extended versions of the func-
tions trace and untrace, and should not be used.

Usage

sessionData()

traceOn(what, tracer=browseAll, exit=NULL)

traceOff(what)

browseAll()

Details

sessionData: return the index of the session data in the search list, attaching it if it is not
attached.

traceOn: initialize tracing on calls to function what. The function or expression tracer is
called on entry, and the function or expression exit on exit.

traceOff: turn off tracing of this function.

browseAll: browse the current stack of function calls.
Uses the function debugger to set up browser calls on the frames. On exit from that
function, computation continues after the call to browseAll. Computations done in
the frames will have no effect.

Author(s)

John Chambers

References

See Programming with Data (John M. Chambers, Springer, 1998) for the equivalent func-
tions.

854 setClass

setClass Create a Class Definition

Description

Create a formally defined class with specified slots and/or relationships to other classes.
Also functions to remove a class definition, to test whether a class has been defined, to test
whether an object is a class definition, and to reset the internal definition of a class.

Usage

setClass(Class, representation, prototype, contains=character(), validity,
access, where=1, version=FALSE, sealed, package)

removeClass(Class, where=-1, removeSubclassLinks = TRUE)

isClass(Class, formal=TRUE)
isClassDef(object)

getClasses(where)

findClass(Class)

resetClass(Class, resetSubclasses = TRUE)

Arguments

Class character string name for the class
representation

the slots that the new class should have and/or other classes that this
class extends. Usually a call to the representation function.

prototype an object (usually a list) providing the default data for the slots specified
in the representation.

contains what classes does this class extend? (These are called superclasses in some
languages.) When these classes have slots, all their slots will be contained
in the new class as well.

where What environment to use to store or remove the definition (as metadata).
By default, uses the global environment for setClass and searches for a
definition to remove, for removeClass.

validity, access, version

Control arguments included for compatibility with the S-Plus API, but
not currently used.

sealed If TRUE, the class definition will be sealed, so that another call to setClass
will fail on this class name.

package An optional package name for the class. By default (and usually) the
package where the class definition is assigned will be used.

x an arbitrary object.

formal Should a formal definition be required?

setClass 855

object any R object.
removeSubclassLinks

When a class is removed, any links to that class from other classes will be-
come invalid. If this argument is not supplied as FALSE, then removeClass
will search for all such links and delete them. You can omit the argument,
or supply it as the positions in the search list to look for these links (by
default all attached object tables will be searched).

resetSubclasses

Should resetClass also reset all known subclasses. Usually TRUE, unless
you know from the context these will be reset elsewhere.

Details

These are the functions that create and manipulate formal class definitions. Brief docu-
mentation is provided below. See the references for an introduction and for more details.

setClass: Define Class to be an S-style class. The effect is to create an object, of class
"classRepEnvironment", and store this (hidden) in the specified environment or
database. Objects can be created from the class (e.g., by calling new), manipulated
(e.g., by accessing the object’s slots), and methods may be defined including the class
name in the signature (see setMethod).

removeClass: Remove the definition of this class. Calling this always resets the version of
the class cached for the session. If where=0, that’s all it does. Otherwise, it removes
the version from the specified environment or database (from the global environment
by default).

isClass: Is this a the name of a formally defined class? (Argument formal is for compat-
ibility and is ignored.)

isClassDef: Is this object a class definition (it will be, for example, if it is the value of a call
to getClass, the complete definition of a class with its extensions, or to getClassDef,
the local definition of the class).

getClasses: The names of all the classes formally defined on where. If called with no
argument, all the classes currently known in the session (which does not include classes
that may be defined on one of the attached packages, but have not yet been used in
the session).

findClass: Where on the current search list the class named Class is defined. (If there is
more than one definition, all corresponding elements of the search list are returned.)

unclass: Returns the object containing the values of all the slots in this object’s class
definition (specifically, if the returned object has attributes corresponding to each
slot), in the case that the object’s class is formally defined with slots. For classes that
extend a single other class (e.g., a basic class such as "numeric") the result is an object
of that class.

resetClass: Reset the internal definition of a class. The effect is that the next time the
definition of this class is needed, it will be recomputed from the information in the
currently attached packages.
This function is called when aspects of the class definition are changed. You would
need to call it explicitly if you changed the definition of a class that this class extends
(but doing that in the middle of a session is living dangerously, since it may invalidate
existing objects).

856 setClass

Inheritance and Prototypes

Defining new classes that inherit from (“extend”) other classes is a powerful technique, but
has to be used carefully and not over-used. Otherwise, you will often get unintended results
when you start to compute with objects from the new class.

As shown in the examples below, the simplest and safest form of inheritance is to start with
an explicit class, with some slots, that does not extend anything else. It only does what we
say it does.

Then extensions will add some new slots and new behavior.

Another variety of extension starts with one of the basic classes, perhaps with the intension
of modifying R’s standard behavior for that class. Perfectly legal and sometimes quite
helpful, but you may need to be more careful in this case: your new class will inherit much
of the behavior of the basic (informally defined) class, and the results can be surprising.
Just proceed with caution and plenty of testing.

As an example, the class "matrix" is included in the pre-defined classes, to behave essen-
tially as matrices do without formal class definitions. Suppose we don’t like all of this; in
particular, we want the default matrix to have 0 rows and columns (not 1 by 1 as it is now).

setClass("myMatrix", "matrix", prototype = matrix(0,0,0))

The arguments above illustrate two short-cuts relevant to such examples. We abbreviated
the representation argument to the single superclass, because the new class doesn’t add
anything to the representation of class "matrix". Also, we provided an object from the
superclass as the prototype, not a list of slots.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods, makeClassRepresentation

Examples

A simple class with two slots

setClass("track",

representation(x="numeric", y="numeric"))

A class extending the previous, adding one more slot

setClass("trackCurve",

representation("track", smooth = "numeric"))

A class similar to "trackCurve", but with different structure

allowing matrices for the "y" and "smooth" slots

setClass("trackMultiCurve", representation(x="numeric", y="matrix", smooth="matrix"),

prototype = list(x=numeric(), y=matrix(0,0,0), smooth= matrix(0,0,0)))

##

http://developer.r-project.org/methodsPackage.html

setGeneric 857

Suppose we want trackMultiCurve to be like trackCurve when there’s only

one column

First, the wrong way.

try(setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1}))

why didn’t that work? You can only override the slots "x", "y", and "smooth"

if you provide an explicit coerce function to correct any inconsistencies:

setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1},

coerce = function(obj) { new("trackCurve", x = slot(obj, "x"),

y = as.numeric(slot(obj,"y")), smooth = as.numeric(slot(obj, "smooth")))})

setGeneric Define a New Generic Function

Description

Create a new generic function of the given name, for which formal methods can then be
defined. Typically, an existing non-generic function becomes the default method, but there
is much optional control. See the details section.

Usage

setGeneric(name, def, group=NULL, valueClass=NULL, where=1, package,
signature, useAsDefault, genericFunction)

setGroupGeneric(name, def, group=NULL, valueClass=NULL, knownMembers,
package, where=1)

Arguments

name The character string name of the generic function. In the simplest and
most common case, a function of this name is already defined. The exist-
ing function may be non-generic or already a generic (see the details).

def An optional function object, defining the generic. This argument is usu-
ally only needed (and is then required) if there is no current function of
this name. In that case, the formal arguments and default values for the
generic are taken from def. You can also supply this argument if you want
the generic function to do something other than just dispatch methods
(an advanced topic best left alone unless you are sure you want it).
Note that def is not the default method; use argument useAsDefault if
you want to specify the default separately.

group Optionally, a character string giving the group of generic functions to
which this function belongs. Methods can be defined for the corresponding
group generic, and these will then define methods for this specific generic
function, if no method has been explicitly defined for the corresponding
signature. See the references for more discussion.

858 setGeneric

valueClass An optional character vector or unevaluated expression. The value re-
turned by the generic function must have (or extend) this class, or one of
the classes; otherwise, an error is generated. See the details section for
supplying an expression.

package The name of the package with which this function is associated. Usu-
ally determined automatically (as the package containing the non-generic
version if there is one, or else the package where this generic is to be
saved).

where Where to store the resulting initial methods definition, and possibly the
generic function; by default, stored into the top-level environment.

signature Optionally, the signature of arguments in the function that can be used
in methods for this generic. By default, all arguments other than ... can
be used. The signature argument can prohibit methods from using some
arguments. The argument, if provided, is a vector of formal argument
names.

genericFunction

The object to be used as a (nonstandard) generic function definition.
Supply this explicitly only if you know what you are doing!

useAsDefault Override the usual choice of default argument (an existing non-generic
function or no default if there is no such function). Argument
useAsDefault can be supplied, either as a function to use for the de-
fault, or as a logical value. FALSE says not to have a default method at
all, so that an error occurs if there is not an explicit or inherited method
for a call. TRUE says to use the existing function as default, uncondi-
tionally (hardly ever needed as an explicit argument). See the section on
details.

knownMembers (For setGroupGeneric only) The names of functions that are known to
be members of this group. This information is used to reset cached defi-
nitions of the member generics when information about the group generic
is changed.

Details

The setGeneric function is called to initialize a generic function in an environment (usually
the global environment), as preparation for defining some methods for that function.

The simplest and most common situation is that name is already an ordinary non-generic
function, and you now want to turn this function into a generic. In this case you will most
often supply only name. The existing function becomes the default method, and the special
group and valueClass properties remain unspecified.

A second situation is that you want to create a new, generic function, unrelated to any
existing function. In this case, you need to supply a skeleton of the function definition, to
define the arguments for the function. The body of a generic function is usually a standard
form, standardGeneric(name) where name is the quoted name of the generic function.

When calling setGeneric in this form, you would normally supply the def argument as
a function of this form. If not told otherwise, setGeneric will try to find a non-generic
version of the function to use as a default. If you don’t want this to happen, supply the
argument useAsDefault. That argument can be the function you want to be the default
method. You can supply the argument as FALSE to force no default (i.e., to cause an error
if there is not direct or inherited method on call to the function).

setGeneric 859

The same no-default situation occurs if there is no non-generic form of the function, and
useAsDefault=FALSE. Remember, though, you can also just assign the default you want
(even one that generates an error) rather than relying on the prior situation.

Usually, calling setGeneric if there is already a generic function of this name has no effect.
If you want to force a new definition, supply doAssign = TRUE (but it would be cleaner
in most cases to remove the old generic before creating the new one; see removeGeneric).
There is one absolute restriction: you cannot create an explicit generic for the primitive
functions in the base library. These are dispatched from C code for efficiency and are not
to be redefined in any case.

As mentioned, the body of a generic function usually does nothing except for dispatching
methods by a call to standardGeneric. Under some circumstances you might just want
to do some additional computation in the generic function itself. As long as your function
eventually calls standardGeneric that is permissible (though perhaps not a good idea,
in that it makes the behavior of your function different from the usual S model). If your
explicit definition of the generic function does not call standardGeneric you are in trouble,
because none of the methods for the function will ever be dispatched.

By default, the generic function can return any object. If valueClass is supplied, it should
be a vector of class names; the value returned by a method is then required to satisfy
is(object, Class) for one of the specified classes. An empty (i.e., zero length) vector of
classes means anything is allowed. Note that more complicated requirements on the result
can be specified explicitly, by defining a non-standard generic function.

The setGroupGeneric function behaves like setGeneric except that it constructs a group
generic function, differing in two ways from an ordinary generic function. First, this function
cannot be called directly, and the body of the function created will contain a stop call with
this information. Second, the group generic function contains information about the known
members of the group, used to keep the members up to date when the group definition
changes, through changes in the search list or direct specification of methods, etc.

Value

The setGeneric function exists for its side effect: saving the generic function to allow
methods to be specified later. It returns name.

Generic Functions and Primitive Functions

A number of the basic R functions are specially implemented as primitive functions, to
be evaluated directly in the underlying C code rather than by evaluating an S language
definition. Primitive functions are eligible to have methods, but are handled differently by
setGeneric and setGroupGeneric. A call to setGeneric for a primitive function does not
create a new definition of the function, and the call is allowed only to “turn on” methods
for that function.

A call to setGeneric for a primitive causes the evaluator to look for methods for that
generic; a call to setGroupGeneric for any of the groups that include primitives ("Arith",
"Logic", "Compare", "Ops", "Math", "Math2", "Summary", and "Complex") does the
same for each of the functions in that group.

You usually only need to use either function if the methods are being defined only for the
group generic. Defining a method for a primitive function, say "+", by a call to setMethod
turns on method dispatch for that function. But in R defining a method for the corre-
sponding group generic, "Arith", does not currently turn on method dispatch (for efficiency
reasons). If there are no non-group methods for the functions, you have two choices.

860 setGeneric

You can turn on method dispatch for all the functions in the group by calling
setGroupGeneric("Arith"), or you can turn on method dispatch for only some of the
functions by calling setGeneric("+"), etc. Note that in either case you should give the
name of the generic function as the only argument.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods for a discussion of other functions to specify and manipulate the methods of generic
functions.

Examples

A non-standard generic function. It insists that the methods

return a non-empty character vector (a stronger requirement than

valueClass = "character" in the call to setGeneric)

setGeneric("authorNames",

function(text) {

value <- standardGeneric("authorNames")

if(!(is(value, "character") && any(nchar(value)>0)))

stop("authorNames methods must return non-empty strings")

value

})

An example of group generic methods, using the class

"track"; see the documentation of setClass for its definition

#define a method for the Arith group

setMethod("Arith", c("track", "numeric"),

function(e1, e2){

e1@y <- callGeneric(e1@y , e2)

e1

})

setMethod("Arith", c("numeric", "track"),

function(e1, e2){

e2@y <- callGeneric(e1, e2@y)

e2

})

http://developer.r-project.org/methodsPackage.html

setMethod 861

now arithmetic operators will dispatch methods:

t1 <- new("track", x=1:10, y=sort(rnorm(10)))

t1 - 100

1/t1

setMethod Create and Save a Method

Description

Create and save a formal method for a given function and list of classes.

Usage

setMethod(f, signature=character(), definition, where=1, valueClass)

removeMethod(f, signature, where)

Arguments

f The character-string name of the generic function.

signature A match of formal argument names for f with the character-string names
of corresponding classes. This argument can also just be the vector of
class names, in which case the first name corresponds to the first formal
argument, the next to the second formal argument, etc.

definition A function definition, which will become the method called when the ar-
guments in a call to f match the classes in signature, directly or through
inheritance.

where The database in which to store the definition of the method; by default,
the current global environment.
For removeMethod, the default is the location of the (first) instance of the
method for this signature.

valueClass If supplied, this argument asserts that the method will return a value of
this class. (At present this argument is stored but not explicitly used.)

Details

R methods for a particular generic function are stored in an object of class MethodsList,
which in turn is stored with the definition of the generic function. The effect of calling
setMethod is to store definition in a MethodsList object in a definition of the generic
function on database where. If no such function exists (on that database) one will be
created, by copying the generic function from where it is found in the current search list.
Finally, if f doesn’t exist as a generic function, but there is an ordinary function of the same
name and the same formal arguments, a new generic function is created, and the previous
non-generic version of f becomes the default method.

862 setMethod

Methods are stored in a hierarchical structure, by formal arguments to f: see MethodsList
for details. The class names in the signature can be any formal class, plus predefined basic
classes such as "numeric", "character", and "matrix". Two additional special class names
can appear: "ANY", meaning that this argument can have any class at all; and "missing",
meaning that this argument must not appear in the call in order to match this signature.
Don’t confuse these two: if an argument isn’t mentioned in a signature, it corresponds
implicitly to class "ANY", not to "missing". See the example below.

While f can correspond to methods defined on several packages or environments, the un-
derlying model is that these together make up the definition for a single generic function.
When R proceeds to select and evaluate methods for f, the methods on the current search
list are merged to form a single generic. In particular, all the versions of f and all the meth-
ods must correspond to the same formal arguments (including, in the present definition,
the same default expressions for the arguments). For compatibility with S-Plus, the cur-
rent implementation enforces this partly with a warning and a reconstruction of a method
that fails to match, but don’t count on this for the future: Make the formal arguments of
definition match those of the generic..

Value

These functions exist for their side-effect, in setting or removing a method in the object
defining methods for the specified generic.

The value returned by removeMethod is TRUE if a method was found to be removed.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

Methods, MethodsList for details of the implementation

Examples

methods for plotting track objects (see the example for setClass)

##

First, with only one object as argument:

setMethod("plot", signature(x="track", y="missing"),

function(x, y, ...) plot(slot(x, "x"), slot(x, "y"), ...)

)

Second, plot the data from the track on the y-axis against anything

as the x data.

setMethod("plot", signature(y = "track"),

function(x, y, ...) plot(x, slot(y, "y"), ...)

)

http://developer.r-project.org/methodsPackage.html

setOldClass 863

and similarly with the track on the x-axis (using the short form of

specification for signatures)

setMethod("plot", "track",

function(x, y, ...) plot(slot(x, "y"), y, ...)

)

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

slot(tc1, "smooth") <- smooth.spline(slot(tc1, "x"), slot(tc1, "y"))$y #$

plot(t1)

plot(qnorm(ppoints(20)), t1)

An example of inherited methods, and of conforming method arguments

(note the dotCurve argument in the method, which will be pulled out

of ... in the generic.

setMethod("plot", c("trackCurve", "missing"),

function(x, y, dotCurve = FALSE, ...) {

plot(as(x, "track"))

if(length(slot(x, "smooth") > 0))

lines(slot(x, "x"), slot(x, "smooth"),

lty = if(dotCurve) 2 else 1)

}

)

the plot of tc1 alone has an added curve; other uses of tc1

are treated as if it were a "track" object.

plot(tc1, dotCurve = TRUE)

plot(qnorm(ppoints(20)), tc1)

defining methods for a special function.

Although "[" and "length" are not ordinary functions

methods can be defined for them.

setMethod("[", "track",

function(x, i, j, ..., drop) {

x@x <- x@x[i]; x@y <- x@y[i]

x

})

plot(t1[1:15])

setMethod("length", "track", function(x)length(x@y))

length(t1)

methods can be defined for missing arguments as well

setGeneric("summary") ## make the function into a generic

A method for summary()

The method definition can include the arguments, but

if they’re omitted, class "missing" is assumed.

setMethod("summary", "missing", function() "<No Object>")

setOldClass Specify Names for Old-Style Classes

864 show

Description

The Classes argument is an old-style class assignment. In particular, if there is more than
one name, we expect old-style class inheritance. Calling setOldClass establishes similar
inheritance for formal method dispatch, so that the class names can be used in a call to
setMethod.

Usage

setOldClass(Classes, where = 1)

Arguments

Classes A character vector of names for old-style classes.

where Where to store the class definitions.

Details

Each of the names will be defined as a virtual class, extending the remaining classes in
Classes, and the class oldClass, which is the “root” of all old-style classes.

See the list .OldClassesList for the old-style classes that are defined by the methods
package. Each element of the list is an old-style list, with multiple character strings if
inheritance is included. Each element of the list was passed to setOldClass when creating
the methods package.

See Also

setClass, setMethod

Examples

setOldClass(c("mlm", "lm"))

setGeneric("dfResidual", function(model)standardGeneric("dfResidual"))

setMethod("dfResidual", "lm", function(model)model$df.residual)

dfResidual will work on mlm objects as well as lm objects

myData <- data.frame(time = 1:10, y = (1:10)^.5)

myLm <- lm(cbind(y, y^3) ~ time, myData)

rm(myData, myLm)

removeGeneric("dfResidual")

removeClass("mlm")

removeClass("lm")

show Show an Object

show 865

Description

Display the object, by printing, plotting or whatever suits its class.

The function show exists to be specialized by methods; the default method calls
showDefault.

With library methods attached, methods for show will usually be invoked for automatic
printing (see the details).

The function showDefault allows redirection of output and optional use of old-style print
methods, but normally will not be called directly.

Usage

show(object)

showDefault(object, oldMethods = TRUE)

Arguments

object Any R object

oldMethods Should old-style print methods be used for this object? TRUE by default
if called directly, but FALSE when called from the methods package for
automatic printing (to avoid potential recursion; see the details below).

Details

The methods package overrides the base definition of print.default to arrange for au-
tomatic printing to honor methods for the function show. This does not quite manage to
override old-style printing methods, since the automatic printing in the evaluator will look
first for the old-style method.

If you have a class myClass and want to define a method for show, all will be well unless there
is already a function named print.myClass. In that case, to get your method dispatched
for automatic printing, it will have to be a method for print. A slight cheat is to override
the function print.myClass yourself, and then call that function also in the method for
show with signature "myClass".

Value

show returns an invisible NULL.

For showDefault, if printTo is FALSE, the value is a character vector containing the lines
that would otherwise have been printed.

See Also

showMethods prints all the methods for one or more functions; showMlist prints individual
methods lists; showClass prints class definitions. Neither of the latter two normally needs
to be called directly.

Examples

following the example shown in the setMethod documentation ...

setClass("track",

representation(x="numeric", y="numeric"))

setClass("trackCurve",

866 showMethods

representation("track", smooth = "numeric"))

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

setMethod("show", "track",

function(object)print(rbind(x = object@x, y=object@y))

)

The method will now be used for automatic printing of t1

t1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12

y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

x 13 14 15 16 17 18 19 20

y 169 196 225 256 289 324 361 400

and also for tc1, an object of a class that extends "track"

tc1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12

y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

x 13 14 15 16 17 18 19 20

y 169 196 225 256 289 324 361 400

showMethods Show all the methods for the specified function(s)

Description

Show a summary of the methods for one or more generic functions, possibly restricted to
those involving specified classes.

Usage

showMethods(f=character(), where=-1, classes=NULL, includeDefs=FALSE,
inherited=TRUE, printTo = stdout())

Arguments

f One or more function names. If omitted, all functions will be examined.
where If where is supplied, the methods definition from that position will be

used; otherwise, the current definition is used (which will include inherited
methods that have arisen so far in the session). If f is omitted, where
controls where to look for generic functions.

classes If argument classes is supplied, it is a vector of class names that restricts
the displayed results to those methods whose signatures include one or
more of those classes.

showMethods 867

includeDefs If includeDefs is TRUE, include the definitions of the individual methods
in the printout.

inherited If inherits is TRUE, then methods that have been found by inheritance,
so far in the session, will be included and marked as inherited.

printTo The connection on which the printed information will be written. If
printTo is FALSE, the output will be collected as a character vector and
returned as the value of the call to showMethod. See show.

Details

The output style is different from S-Plus in that it does not show the database from which
the definition comes, but can optionally include the method definitions.

Value

If printTo is FALSE, the character vector that would have been printed is returned; other-
wise the value is the connection or filename.

Author(s)

John Chambers

References

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

The functions in this package emulate the facility for classes and methods described in
Programming with Data (John M. Chambers, Springer, 1998). See this book for further
details and examples.

See Also

setMethod, and GenericFunctions for other tools involving methods; show

Examples

assuming the methods for plot

are set up as in the documentation for setMethod,

print (without definitions) the methods that involve

class "track"

showMethods("plot", classes = "track")

Function "plot":

x = ANY, y = track

x = track, y = missing

x = track, y = ANY

http://www.omegahat.org/RSMethods/index.html

868 slot

signature-class Class ”signature” For Method Definitions

Description

This class represents the mapping of some of the formal arguments of a function onto the
names of some classes. It is used as one of two slots in the MethodDefinition-class.

Objects from the Class

Objects can be created by calls of the form new("signature", functionDef, ...). The
functionDef argument, if it is supplied as a function object, defines the formal names. The
other arguments define the classes.

Slots

.Data: Object of class "character" the classes.

names: Object of class "character" the corresponding argument names.

Extends

Class "character", from data part. Class "vector", by class ”character”.

Methods

initialize signature(object = "signature"): see the discussion of objects from the
class, above.

See Also

MethodDefinition-class for the use of this class

slot The Slots in an Object from a Formal Class

Description

These functions return or set information about the individual slots in an object.

Usage

object@name
object@name <- value

slot(object, name)
slot(object, name) <- value

slotNames(x)

slot 869

Arguments

object An object from a formally defined class.

name The character-string name of the slot. The name must be a valid slot
name: see Details below.

value

x Either the name of a class or an object from that class. Print
getClass(class) to see the full description of the slots.

Details

The "@" operator and the slot function extract or replace the formally defined slots for
the object. The operator takes a fixed name, which can be unquoted if it is syntactically
a name in the language. A slot name can be any non-empty string, but if the name is not
made up of letters, numbers, and ".", it needs to be quoted.

In the case of the slot function, the slot name can be any expression that evaluates to
a valid slot in the class definition. Generally, the only reason to use the functional form
rather than the simpler operator is because the slot name has to be computed.

The definition of the class contains the names of all slots diretly and indirectly defined.
Each slot has a name and an associated class. Extracting a slot returns an object from that
class. Setting a slot first coerces the value to the specified slot and then stores it.

Unlike attributes, slots are not partially matched, and asking for (or trying to set) a slot
with an invalid name for that class generates an error.

Author(s)

John Chambers

References

Chambers, J. M. (1998) Programming with Data, Springer.

The web page http://www.omegahat.org/RSMethods/index.html is the primary docu-
mentation.

See Also

@, Classes, Methods, getClass

Examples

slot(myTrack, "x")

slot(myTrack, "y") <- log(slot(myTrack, "x"))

slotNames("track")

http://www.omegahat.org/RSMethods/index.html

870 substituteDirect

StructureClasses Classes Corresponding to Basic Structures

Description

The virtual class structure and classes that extend it are formal classes analogous to S
language structures such as arrays and time-series

Usage

The folowing class names can appear in method signatures,
as the class in as() and is() expressions, and, except for
the classes commented as VIRTUAL, in calls to new()

"matrix"
"array"
"ts"

"structure" ## VIRTUAL

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
name of the specific class (e.g., "matrix"), and the other arguments, if any, are interpreted
as arguments to the corresponding function, e.g., to function matrix(). There is no partic-
ular advantage over calling those functions directly, unless you are writing software designed
to work for multiple classes, perhaps with the class name and the arguments passed in.

Extends

The specific classes all extend class "structure", directly, and class "vector", by class
”structure”.

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the
corresponding basic function, for example, as(x, "matrix") calls as.matrix(x).

substituteDirect SubstituteDirect

Description

Substitute for the variables named in the second argument the corresponding objects, sub-
stituting into object. The argument frame is a named list; if omitted, the environment of
the caller is used.

This function differs from the ordinary substitute in that it treats its first argument in
the standard S way, by evaluating it. In contrast, substitute does not evaluate its first
argument.

The goal is to replace this with an eval= argument to substitute.

TraceClasses 871

Usage

substituteDirect(object, frame, cleanFunction=TRUE)

TraceClasses Classes Used Internally to Control Tracing

Description

The classes described here are used by the R function trace to create versions of functions
and methods including browser calls, etc., and also to untrace the same objects.

Usage

Objects from the following classes are generated
by calling trace() on an object from the corresponding
class without the "WithTrace" in the name.

"functionWithTrace"
"MethodDefinitionWithTrace"
"MethodWithNextWithTrace"
"genericFunctionWithTrace"
"groupGenericFunctionWithTrace"

the following is a virtual class extended by each of the
classes above

"traceable"

Objects from the Class

Objects will be created from these classes by calls to trace. (There is an initialize
method for class "traceable", but you are unlikely to need it directly.)

Slots

.Data: The data part, which will be "function" for class "functionWithTrace", and
similarly for the other classes.

original: Object of the original class; e.g., "function" for class "functionWithTrace".

Extends

Each of the classes extends the corresponding untraced class, from the data part;
e.g., "functionWithTrace" extends "function". Each of the specific classes extends
"traceable", directly, and class "VIRTUAL", by class ”traceable”.

Methods

The point of the specific classes is that objects generated from them, by function trace(),
remain callable or dispatchable, in addition to their new trace information.

See Also

function trace

872 validObject

validObject Test the Validity of an Object

Description

The validity of object related to its class definition is tested. If the object is valid, TRUE is
returned; otherwise, either a vector of strings describing validity failures is returned, or an
error is generated (according to whether test is TRUE).

The functions getValidity and setValidity get and set the validity method of a class.
This method is a function of one object that returns TRUE or a description of the non-validity.

Usage

validObject(object, test)

getValidity(ClassDef)
setValidity(Class, method, where = 1)

Arguments

object Any object, but not much will happen unless the object’s class has a
formal definition.

test If test is TRUE, and validity fails the function returns a vector of strings
describing the problems. If test is FALSE (the default) validity failure
generates an error.

Class The name or class definition of the class whose validity method is to be
set.

ClassDef The class definition of the class whose validity method is to be retrieved.

method A validity method; that is, either NULL or a function of one argument (the
object). Like validObject, the function should return TRUE if the object
is valid, and one or more descriptive strings if any problems are found.
Unlike validObject, it should never generate an error.

where The modified class definition will be stored in this position on the search
list.

Note that validity methods do not have to check validity of any slots or superclasses: the
logic of validObject ensures these tests are done once only. As a consequence, if one
validity method wants to use another, it should extract and call the method from the other
definition of the other class by calling getValidity: it should not call validObject.

Details

Validity testing takes place “bottom up”: first the validity of the object’s slots, if any, is
tested. Then for each of the classes that this class extends (the “superclasses”), the explicit
validity method of that class is called, if one exists. Finally, the validity method of object’s
class is called, if there is one.

Testing generally stops at the first stage of finding an error, except that all the slots will be
examined even if a slot has failed its validity test.

validObject 873

Value

validObject returns TRUE if the object is valid. Otherwise a vector of strings describing
problems found, except that if test is FALSE, validity failure generates an error, with the
corresponding strings in the error message.

References

The R package methods implements, with a few exceptions, the programming interface for
classes and methods in the book Programming with Data (John M. Chambers, Springer,
1998), in particular sections 1.6, 2.7, 2.8, and chapters 7 and 8.

While the programming interface for the methods package follows the reference, the R soft-
ware is an original implementation, so details in the reference that reflect the S4 implemen-
tation may appear differently in R. Also, there are extensions to the programming interface
developed more recently than the reference. For a discussion of details and ongoing devel-
opment, see the web page http://developer.r-project.org/methodsPackage.html and
the pointers from that page.

See Also

setClass.

Examples

setClass("track",

representation(x="numeric", y = "numeric"))

t1 <- new("track", x=1:10, y=sort(rnorm(10)))

A valid "track" object has the same number of x, y values

validTrackObject <- function(x){

if(length(x@x) == length(x@y)) TRUE

else paste("Unequal x,y lengths: ", length(x@x), ", ", length(x@y),

sep="")

}

assign the function as the validity method for the class

setValidity("track", validTrackObject)

t1 should be a valid "track" object

validObject(t1)

Now we do something bad

t1@x <- 1:20

This should generate an error

try(validObject(t1))

http://developer.r-project.org/methodsPackage.html

874 validObject

Chapter 6

The modreg package

ksmooth Kernel Regression Smoother

Description

The Nadaraya-Watson kernel regression estimate.

Usage

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5,
range.x = range(x), n.points = max(100, length(x)), x.points)

Arguments

x input x values

y input y values

kernel the kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as
probability densities) are at ± 0.25*bandwidth.

range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing, n.points are
chosen uniformly to cover range.x.

Value

A list with components

x values at which the smoothed fit is evaluated. Guaranteed to be in in-
creasing order.

y fitted values corresponding to x.

Note

This function is implemented purely for compatibility with S, although it is nowhere near
as slow as the S function. Better kernel smoothers are available in other packages.

875

876 loess

Author(s)

B. D. Ripley

Examples

data(cars)

attach(cars)

plot(speed, dist)

lines(ksmooth(speed, dist, "normal", bandwidth=2), col=2)

lines(ksmooth(speed, dist, "normal", bandwidth=5), col=3)

lines(ksmooth(speed, dist, "normal", bandwidth=10), col=4)

detach()

loess Local Polynomial Regression Fitting

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

Arguments

formula a formula specifying the response and one to four numeric predictors (best
specified via an interaction, but can also be specified additively).

data an optional data frame within which to look first for the response, pre-
dictors and weights.

weights optional weights for each case.

subset an optional specification of a subset of the data to be used.

na.action the action to be taken with missing values in the response or predictors.
The default is to stop.

model should the model frame be returned?

span the parameter α which controls the degree of smoothing.

enp.target an alternative way to specify span, as the approximate equivalent number
of parameters to be used.

degree the degree of the polynomials to be used, up to 2.

parametric should any terms be fitted globally rather than locally? Terms can be
specified by name, number or as a logical vector of the same length as the
number of predictors.

loess 877

drop.square for fits with more than one predictor and degree=2, should the quadratic
term (and cross-terms) be dropped for particular predictors? Terms are
specified in the same way as for parametric.

normalize should the predictors be normalized to a common scale if there is more
than one? The normalization used is to set the 10% trimmed standard
deviation to one. Set to false for spatial coordinate predictors and others
know to be a common scale.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.
control control parameters: see loess.control.
... control parameters can also be supplied directly.

Details

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a neigh-
bourhood of x, weighted by their distance from x (with differences in ‘parametric’ variables
being ignored when computing the distance). The size of the neighbourhood is controlled
by α (set by span or enp.target). For α < 1, the neighbourhood includes proportion α

of the points, and these have tricubic weighting (proportional to (1 − (dist/maxdist)3)3.
For α > 1, all points are used, with the ‘maximum distance’ assumed to be α1/p times the
actual maximum distance for p explanatory variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric" a
few iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware that
as the initial value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See loess.control
for details.

Value

An object of class "loess".

Note

As this is based on the cloess package available at netlib, it is similar to but not identical
to the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the number of
points, with 1000 points taking about 10Mb.

Author(s)

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

References

W.S. Cleveland, E. Grosse and W.M. Shyu (1992) Local regression models. Chapter 8 of
Statistical Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

See Also

loess.control, predict.loess.

lowess, the ancestor of loess (with different defaults!).

878 loess.control

Examples

data(cars)

cars.lo <- loess(dist ~ speed, cars)

predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)

to allow extrapolation

cars.lo2 <- loess(dist ~ speed, cars,

control = loess.control(surface = "direct"))

predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

loess.control Set Parameters for Loess

Description

Set control parameters for loess fits.

Usage

loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)

Arguments

surface should be fitted surface be computed exactly or via interpolation from a
kd tree?

statistics should the statistics be computed exactly or approximately? Exact com-
putation can be very slow.

trace.hat should the trace of the smoother matrix be computed exactly or approxi-
mately? It is recommended to use the approximation for more than about
1000 data points.

cell if interpolation is used this controls the accuracy of the approximation
via the maximum number of points in a cell in the kd tree. Cells with
more than floor(n*span*cell) points are subdivided.

iterations the number of iterations used in robust fitting.

... further arguments which are ignored.

Value

A list with components

surface

statistics

trace.hat

cell

iterations

with meanings as explained under ‘Arguments’.

modreg-internal 879

Author(s)

B.D. Ripley

See Also

loess

modreg-internal Internal modreg functions

Description

Internal modreg functions.

Usage

predLoess(y, x, newx, s, weights, robust, span, degree, normalize,
parametric, drop.square, surface, cell, family, kd, divisor,
se = FALSE)

simpleLoess(y, x, weights, span = 0.75, degree = 2, parametric = FALSE,
drop.square = FALSE, normalize = TRUE, statistics = "approximate",
surface = "interpolate", cell = 0.2, iterations = 1,
trace.hat = "exact")

pointwise(results, coverage)

Details

These are not to be called by the user.

plot.ppr Plot Ridge Functions for Projection Pursuit Regression Fit

Description

Plot ridge functions for projection pursuit regression fit.

Usage

plot(x, ask, type = "o", ...)

Arguments

x A fit of class "ppr" as produced by a call to ppr.

ask the graphics parameter ask: see par for details. If set to TRUE will ask
between the plot of each cross-section.

type the type of line to draw

... further graphical parameters

880 ppr

Value

None

Side Effects

A series of plots are drawn on the current graphical device, one for each term in the fit.

See Also

ppr, par

Examples

data(rock)

attach(rock)

area1 <- area/10000; peri1 <- peri/10000

par(mfrow=c(3,2))# maybe: , pty="s")

rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)

plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")

plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")

plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")

ppr Projection Pursuit Regression

Description

Fit a projection pursuit regression model.

Usage

ppr(formula, data = sys.parent(), weights,
subset, na.action, contrasts = NULL,
ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1)

ppr(x, y, weights = rep(1,n),
ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1)

Arguments

formula a formula specifying one or more response variables and the explanatory
variables.

x matrix of explanatory variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

y matrix of response variables. Rows represent observations, and columns
represent variables. Missing values are not accepted.

ppr 881

nterms number of terms to include in the final model.

data data frame from which variables specified in formula are preferentially to
be taken.

weights a vector of weights w_i for each case.

ww a vector of weights for each response, so the fit criterion is the sum over
case i and responses j of w_i ww_j (y_ij - fit_ij)^2 divided by the
sum of w_i.

subset an index vector specifying the cases to be used in the training sample.
(NOTE: If given, this argument must be named.)

na.action a function to specify the action to be taken if NAs are found. The default
action is for the procedure to fail. An alternative is na.omit, which leads
to rejection of cases with missing values on any required variable. (NOTE:
If given, this argument must be named.)

contrasts the contrasts to be used when any factor explanatory variables are coded.

max.terms maximum number of terms to choose from when building the model.

optlevel integer from 0 to 3 which determines the thoroughness of an optimization
routine in the SMART program. See the Details section.

sm.method the method used for smoothing the ridge functions. The default is to
use Friedman’s super smoother supsmu. The alternatives are to use the
smoothing spline code underlying smooth.spline, either with a specified
(equivalent) degrees of freedom for each ridge functions, or to allow the
smoothness to be chosen by GCV.

bass super smoother bass tone control used with automatic span selection (see
supsmu); the range of values is 0 to 10, with larger values resulting in
increased smoothing.

span super smoother span control (see supsmu). The default, 0, results in
automatic span selection by local cross validation. span can also take a
value in (0, 1].

df if sm.method is "spline" specifies the smoothness of each ridge term via
the requested equivalent degrees of freedom.

gcvpen if sm.method is "gcvspline" this is the penalty used in the GCV selection
for each degree of freedom used.

Details

The basic method is given by Friedman (1984), and is essentially the same code used by
S-PLUS’s ppreg. This code is extremely sensitive to the compiler used.

The algorithm first adds up to max.terms ridge terms one at a time; it will use less if it
is unable to find a term to add that makes sufficient difference. It then removes the least
“important” term at each step until nterm terms are left.

The levels of optimization (argument optlevel) differ in how thoroughly the models are
refitted during this process. At level 0 the existing ridge terms are not refitted. At level 1 the
projection directions are not refitted, but the ridge functions and the regression coefficients
are. Levels 2 and 3 refit all the terms and are equivalent for one response; level 3 is more
careful to re-balance the contributions from each regressor at each step and so is a little
less likely to converge to a saddle point of the sum of squares criterion.

882 ppr

Value

A list with the following components, many of which are for use by the method functions.

call the matched call

p the number of explanatory variables (after any coding)

q the number of response variables

mu the argument nterms

ml the argument max.terms

gof the overall residual (weighted) sum of squares for the selected model

gofn the overall residual (weighted) sum of squares against the number of
terms, up to max.terms. Will be invalid (and zero) for less than nterms.

df the argument df

edf if sm.method is "spline" or "gcvspline" the equivalent number of de-
grees of freedom for each ridge term used.

xnames the names of the explanatory variables

ynames the names of the response variables

alpha a matrix of the projection directions, with a column for each ridge term

beta a matrix of the coefficients applied for each response to the ridge terms:
the rows are the responses and the columns the ridge terms

yb the weighted means of each response

ys the overall scale factor used: internally the responses are divided by ys
to have unit total weighted sum of squares.

fitted.values the fitted values, as a matrix if q > 1.

residuals the residuals, as a matrix if q > 1.

smod internal work array, which includes the ridge functions evaluated at the
training set points.

References

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression. Journal of the
American Statistical Association, 76, 817–823.

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics,
Stanford University Technical Report No. 1.

Venables, W. N. & Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Springer.

See Also

plot.ppr, supsmu, smooth.spline

Examples

Note: your numerical values may differ

data(rock)

attach(rock)

area1 <- area/10000; peri1 <- peri/10000

rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)

rock.ppr

predict.loess 883

Call:

ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,

nterms = 2, max.terms = 5)

#

Goodness of fit:

2 terms 3 terms 4 terms 5 terms

8.737806 5.289517 4.745799 4.490378

summary(rock.ppr)

..... (same as above)

.....

#

Projection direction vectors:

term 1 term 2

area1 0.34357179 0.37071027

peri1 -0.93781471 -0.61923542

shape 0.04961846 0.69218595

#

Coefficients of ridge terms:

term 1 term 2

1.6079271 0.5460971

par(mfrow=c(3,2))# maybe: , pty="s")

plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")

plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")

plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")

detach()

predict.loess Predict Loess Curve or Surface

Description

Predictions from a loess fit, optionally with standard errors.

Usage

predict(object, newdata = NULL, se = FALSE, ...)

Arguments

object an object fitted by loess.

newdata an optional data frame specifying points at which to do the predictions.
If missing, the original data points are used.

se should standard errors be computed?

... arguments passed to or from other methods.

884 predict.smooth.spline

Details

The standard errors calculation is slower than prediction.

When the fit was made using surface="interpolate" (the default), predict.loess will
not extrapolate – so points outside an axis-aligned hypercube enclosing the original data
will have missing (NA) predictions and standard errors.

Value

If se = FALSE, a vector giving the prediction for each row of newdata (or the original data).
If se = TRUE, a list containing components

fit the predicted values.

se an estimated standard error for each predicted value.
residual.scale

the estimated scale of the residuals used in computing the standard errors.

df an estimate of the effective degrees of freedom used in estimating the
residual scale, intended for use with t-based confidence intervals.

Author(s)

B.D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

See Also

loess

Examples

data(cars)

cars.lo <- loess(dist ~ speed, cars)

predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)

to get extrapolation

cars.lo2 <- loess(dist ~ speed, cars,

control=loess.control(surface="direct"))

predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

predict.smooth.spline

Predict from Smoothing Spline Fit

Description

Predict a smoothing spline fit at new points, return the derivative if desired. The predicted
fit is linear beyond the original data.

Usage

predict(object, x, deriv = 0, ...)

predict.smooth.spline 885

Arguments

object a fit from smooth.spline.
x the new values of x.
deriv integer; the order of the derivative required.
... further arguments passed to or from other methods.

Value

A list with components

x The input x.
y The fitted values or derivatives at x.

Author(s)

B.D. Ripley

See Also

smooth.spline

Examples

data(cars)

attach(cars)

cars.spl <- smooth.spline(speed, dist, df=6.4)

"Proof" that the derivatives are okay, by comparing with approximation

diff.quot <- function(x,y) {

Difference quotient (central differences where available)

n <- length(x); i1 <- 1:2; i2 <- (n-1):n

c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),

diff(y[i2]) / diff(x[i2]))

}

xx <- unique(sort(c(seq(0,30, by = .2), kn <- unique(speed))))

i.kn <- match(kn, xx)# indices of knots within xx

op <- par(mfrow = c(2,2))

plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")

lines(pp <- predict(cars.spl, xx), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")

mtext("s(x)", col = "red")

for(d in 1:3){

n <- length(pp$x)

plot(pp$x, diff.quot(pp$x,pp$y), type = ’l’, xlab="x", ylab="",

col = "blue", col.main = "red",

main= paste("s",paste(rep("’",d), collapse=""),"(x)", sep=""))

mtext("Difference quotient approx.(last)", col = "blue")

lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")

abline(h=0, lty = 3, col = "gray")

}

detach(); par(op)

886 scatter.smooth

rock Measurements on Petroleum Rock Samples

Description

Measurements on 48 rock samples from a petroleum reservoir.

Usage

data(rock)

Format

A data frame with 48 rows and 4 numeric columns.

[,1] area area of pores space, in pixels out of 256 by 256
[,2] peri perimeter in pixels
[,3] shape perimeter/sqrt(area)
[,4] perm permeability in milli-Darcies

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core
sample was measured for permeability, and each cross-section has total area of pores, total
perimeter of pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

scatter.smooth Scatter Plot with Smooth Curve Fitted by Loess

Description

Plot and add a smooth curve computed by loess to a scatter plot.

Usage

scatter.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"),
xlab = deparse(substitute(x)), ylab = deparse(substitute(y)),
ylim = range(y, prediction$y), evaluation = 50, ...)

loess.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation=50, ...)

smooth.spline 887

Arguments

x x coordinates for scatter plot.

y y coordinates for scatter plot.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and if family="symmetric" a
re-descending M estimator is used.

xlab label for x axis.

ylab label for y axis.

ylim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

... graphical parameters.

Details

loess.smooth is an auxiliary function.

Value

None.

Author(s)

B.D. Ripley

See Also

loess

Examples

data(cars)

attach(cars)

scatter.smooth(speed, dist)

detach()

smooth.spline Fit a Smoothing Spline

Description

Fits a cubic smoothing spline to the supplied data.

Usage

smooth.spline(x, y = NULL, w = NULL, df, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = NULL,
df.offset = 0, penalty = 1, control.spar = list())

888 smooth.spline

Arguments

x a vector giving the values of the predictor variable, or a list or a two-
column matrix specifying x and y.

y responses. If y is missing, the responses are assumed to be specified by x.

w optional vector of weights of the same length as x; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother
matrix).

spar smoothing parameter, typically (but not necessarily) in (0, 1]. The coeffi-
cient λ of the integral of the squared second derivative in the fit (penalized
log likelihood) criterion is a monotone function of spar, see the details
below.

cv ordinary (TRUE) or “generalized” cross-validation (GCV) when FALSE.

all.knots if TRUE, all distinct points in x are used as knots. If FALSE (default),
a subset of x[] is used, specifically x[j] where the nknots indices are
evenly spaced in 1:n, see also the next argument nknots.

nknots integer giving the number of knots to use when all.knots=FALSE. Per
default, this is less than n, the number of unique x values for n > 49.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV
criterion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

control.spar optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.
Note that this is partly experimental and may change with general spar
computation improvements!

low: lower bound for spar; defaults to -1.5 (used to implicitly default to
0 in R versions earlier than 1.4).

high: upper bound for spar; defaults to +1.5.
tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly

1e-3).
eps: the relative precision used; defaults to 2e-8 (formerly 0.00244).
trace: logical indicating if iterations should be traced.
maxit: integer giving the maximal number of iterations; defaults to 500.

Note that spar is only searched for in the interval [low, high].

Details

The x vector should contain at least four distinct values. Distinct here means “distinct after
rounding to 6 significant digits”, i.e., x will be transformed to unique(sort(signif(x,
6))), and y and w are pooled accordingly.

The computational λ used (as a function of s = spar) is λ = r ∗ 2563s−1 where r =
tr(X ′WX)/tr(Σ), Σ is the matrix given by Σij =

∫
B′′

i (t)B′′
j (t)dt, X is given by Xij =

Bj(xi), W is the diagonal matrix of weights (scaled such that its trace is n, the original
number of observations) and Bk(.) is the k-th B-spline.

Note that with these definitions, fi = f(xi), and the B-spline basis representation f = Xc
(i.e. c is the vector of spline coefficients), the penalized log likelihood is L = (y− f)′W (y−
f) + λc′Σc, and hence c is the solution of the (ridge regression) (X ′WX + λΣ)c = X ′Wy.

smooth.spline 889

If spar is missing or NULL, the value of df is used to determine the degree of smoothing. If
both are missing, leave-one-out cross-validation (ordinary or “generalized” as determined by
cv) is used to determine λ. Note that from the above relation, spar is s = s0+0.0601∗log λ,
which is intentionally different from the S-plus implementation of smooth.spline (where
spar is proportional to λ). In R’s (log λ) scale, it makes more sense to vary spar linearly.

Note however that currently the results may become very unreliable for spar values smaller
than about -1 or -2. The same may happen for values larger than 2 or so. Don’t think of
setting spar or the controls low and high outside such a safe range, unless you know what
you are doing!

The “generalized” cross-validation method will work correctly when there are duplicated
points in x. However, it is ambiguous what leave-one-out cross-validation means with
duplicated points, and the internal code uses an approximation that involves leaving out
groups of duplicated points. cv=TRUE is best avoided in that case.

Value

An object of class "smooth.spline" with components

x the distinct x values in increasing order, see the Details above.

y the fitted values corresponding to x.

w the weights used at the unique values of x.

yin the y values used at the unique y values.

lev leverages, the diagonal values of the smoother matrix.

cv.crit (generalized) cross-validation score.

pen.crit penalized criterion

crit the criterion value minimized in the underlying .Fortran routine ‘sslvrg’.

df equivalent degrees of freedom used. Note that (currently) this value may
become quite unprecise when the true df is between and 1 and 2.

spar the value of spar computed or given.

lambda the value of λ corresponding to spar, see the details above.

iparms named integer(3) vector where ..$ipars["iter"] gives number of spar
computing iterations used.

fit list for use by predict.smooth.spline, with components

knot: the knot sequence (including the repeated boundary knots).
nk: number of coefficients or number of “proper” knots plus 2.
coef: coefficients for the spline basis used.
min, range: numbers giving the corresponding quantities of x.

call the matched call.

Note

The default all.knots = FALSE and nknots = NULL entails using only O(n0.2) knots in-
stead of n for n > 49. This cuts speed and memory requirements, but not drastically
anymore since R version 1.5.1 where it is only O(nk) + O(n) where nk is the number of
knots. In this case where not all unique x values are used as knots, the result is not a
smoothing spline in the strict sense, but very close unless a small smoothing parameter (or
large df) is used.

890 supsmu

Author(s)

B.D. Ripley and Martin Maechler (spar/lambda, etc).

References

Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear
Models: A Roughness Penalty Approach; Chapman and Hall.

See Also

predict.smooth.spline for evaluating the spline and its derivatives.

Examples

data(cars)

attach(cars)

plot(speed, dist, main = "data(cars) & smoothing splines")

cars.spl <- smooth.spline(speed, dist)

(cars.spl)

This example has duplicate points, so avoid cv=TRUE

lines(cars.spl, col = "blue")

lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")

legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

"s(* , df = 10)"), col = c("blue","red"), lty = 1:2,

bg=’bisque’)

detach()

##-- artificial example

y18 <- c(1:3,5,4,7:3,2*(2:5),rep(10,4))

xx <- seq(1,length(y18), len=201)

(s2 <- smooth.spline(y18)) # GCV

(s02 <- smooth.spline(y18, spar = 0.2))

plot(y18, main=deparse(s2$call), col.main=2)

lines(s2, col = "gray"); lines(predict(s2, xx), col = 2)

lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3)

The following shows the problematic behavior of ‘spar’ searching:

(s2 <- smooth.spline(y18, con=list(trace=TRUE,tol=1e-6, low= -1.5)))

(s2m <- smooth.spline(y18, cv=TRUE, con=list(trace=TRUE,tol=1e-6, low= -1.5)))

both above do quite similarly (Df = 8.5 +- 0.2)

supsmu Friedman’s SuperSmoother

Description

Smooth the (x, y) values by Friedman’s “super smoother”.

Usage

supsmu(x, y, wt = rep(1, length(y)), span = "cv", periodic = FALSE,
bass = 0)

supsmu 891

Arguments

x x values for smoothing
y y values for smoothing
wt case weights
span the fraction of the observations in the span of the running lines smoother,

or "cv" to choose this by leave-one-out cross-validation.
periodic if TRUE, the x values are assumed to be in [0, 1] and of period 1.
bass controls the smoothness of the fitted curve. Values of up to 10 indicate

increasing smoothness.

Details

supsmu is a running lines smoother which chooses between three spans for the lines. The
running lines smoothers are symmetric, with k/2 data points each side of the predicted
point, and values of k as 0.5 * n, 0.2 * n and 0.05 * n, where n is the number of data
points. If span is specified, a single smoother with span span * n is used.
The best of the three smoothers is chosen by cross-validation for each prediction. The best
spans are then smoothed by a running lines smoother and the final prediction chosen by
linear interpolation.
The FORTRAN code says: “For small samples (n < 40) or if there are substantial serial
correlations between observations close in x - value, then a prespecified fixed span smoother
(span > 0) should be used. Reasonable span values are 0.2 to 0.4.”

Value

A list with components

x the input values in increasing order with duplicates removed.
y the corresponding y values on the fitted curve.

Author(s)

B. D. Ripley

References

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics,
Stanford University Technical Report No. 1.
Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational
Statistics, Stanford University Technical Report No. 5.

See Also

ppr

Examples

data(cars)

attach(cars)

plot(speed, dist)

lines(supsmu(speed, dist))

lines(supsmu(speed, dist, bass=7), lty=2)

detach()

892 supsmu

Chapter 7

The mva package

ability.cov Ability and Intelligence Tests

Description

Six tests were given to 112 individuals. The covariance matrix is given in this object.

Usage

data(ability.cov)

Details

The tests are described as

general: a non-verbal measure of general intelligence using Cattell’s culture-fair test.

picture: a picture-completion test

blocks: block design

maze: mazes

reading: reading comprehension

vocab: vocabulary

Bartholomew gives both covariance and correlation matrices, but these are inconsistent.
Neither are in the original paper.

Source

Barthlomew, D. J. (1987) Latent Variable Analysis and Factor Analysis. Griffin.

Barthlomew, D. J. and Knott, M. (1990) Latent Variable Analysis and Factor Analysis.
Second Edition, Arnold.

References

Smith, G. A. and Stanley G. (1983) Clocking g: relating intelligence and measures of timed
performance. Intelligence, 7, 353–368.

893

894 as.hclust

Examples

data(ability.cov)

(ability.FA <- factanal(factors = 1, covmat=ability.cov))

update(ability.FA, factors=2)

update(ability.FA, factors=2, rotation="promax")

as.hclust Convert Objects to Class hclust

Description

Converts objects from other hierarchical clustering functions to class "hclust".

Usage

as.hclust(x, ...)
as.hclust.default(x, ...)
as.hclust.twins(x, ...)

Arguments

x Hierarchical clustering object

... further arguments passed to or from other methods.

Details

Currently there is only support for converting objects of class "twins" as produced by the
functions diana and agnes from the package ‘cluster’.

Value

An object of class "hclust".

See Also

hclust, diana, agnes

Examples

x <- matrix(rnorm(30), ncol=3)

hc <- hclust(dist(x), method="complete")

if(require(cluster)) {# is a required package

ag <- agnes(x, method="complete")

hcag <- as.hclust(ag)

The dendrograms order slightly differently:

op <- par(mfrow=c(1,2))

plot(hc) ; mtext("hclust", side=1)

plot(hcag); mtext("agnes", side=1)

}

stopifnot(identical(hc, hhc <- as.hclust(hc)),

identical(hhc, as.hclust(hhc)))

biplot 895

biplot Biplot of Multivariate Data

Description

Plot a biplot on the current graphics device.

Usage

biplot(x, ...)

biplot.default(x, y, var.axes = TRUE, col, cex = rep(par("cex"), 2),
xlabs = NULL, ylabs = NULL, expand = 1,
xlim = NULL, ylim = NULL, arrow.len = 0.1, ...)

Arguments

x The biplot, a fitted object. For biplot.default, the first set of points
(a two-column matrix), usually associated with observations.

y The second set of points (a two-column matrix), usually associated with
variables.

var.axes If TRUE the second set of points have arrows representing them as (un-
scaled) axes.

col A vector of length 2 giving the colours for the first and second set of points
respectively (and the corresponding axes). If a single colour is specified
it will be used for both sets.

cex The character expansion factor used for labelling the points. The labels
can be of different sizes for the two sets by supplying a vector of length
two.

xlabs A vector of character strings to label the first set of points: the default is
to use the row dimname of x, or 1:n is the dimname is NULL.

ylabs A vector of character strings to label the second set of points: the default
is to use the row dimname of y, or 1:n is the dimname is NULL.

expand An expansion factor to apply when plotting the second set of points rel-
ative to the first. This can be used to get the two sets on to a physically
comparable scale.

arrow.len The length of the arrow heads on the axes plotted in var.axes is true.
The arrow head can be suppressed by arrow.len = 0.

xlim, ylim, ...

graphical parameters.

Details

A biplot is plot which aims to represent both the observations and variables of a matrix of
multivariate data on the same plot. There are many variations on biplots (see the references)
and perhaps the most widely used one is implemented by biplot.princomp. The function
biplot.default merely provides the underlying code to plot two sets of variables on the
same figure.

Graphical parameters can also be given to biplot.

896 biplot.princomp

Side Effects

a plot is produced on the current graphics device.

Author(s)

B.D. Ripley

References

K. R. Gabriel (1971). The biplot graphical display of matrices with application to principal
component analysis. Biometrika 58, 453–467.

J.C. Gower and D. J. Hand (1996). Biplots. Chapman & Hall.

See Also

biplot.princomp, also for examples.

biplot.princomp Biplot for Principal Components

Description

Produces a biplot (in the strict sense) from the output of princomp.

Usage

biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

Arguments

x an object of class "princomp".

choices length 2 vector specifying the components to plot. Only the default is a
biplot in the strict sense.

scale The variables are scaled by lambda ^ scale and the observations are
scaled by lambda ^ (1-scale) where lambda are the singular values as
computed by princomp. Normally 0 <= scale <= 1, and a warning will
be issued if the specified scale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a ”principal component bi-
plot”, with lambda = 1 and observations scaled up by sqrt(n) and vari-
ables scaled down by sqrt(n). Then inner products between variables ap-
proximate covariances and distances between observations approximate
Mahalanobis distance.

... optional arguments to be passed to biplot.default.

Details

This is a method for the generic function biplot. There is considerable confusion over
the precise definitions: those of the original paper, Gabriel (1971), are followed here.
Gabriel and Odoroff (1990) use the same definitions, but their plots actually correspond to
pc.biplot = TRUE.

cancor 897

Side Effects

a plot is produced on the current graphics device.

References

Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal
component analysis. Biometrika, 58, 453–467.

Gabriel, K. R. and Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in
Medicine, 9, 469–485.

See Also

biplot, princomp.

Examples

data(USArrests)

biplot(princomp(USArrests))

cancor Canonical Correlations

Description

Compute the canonical correlations between two data matrices.

Usage

cancor(x, y, xcenter = TRUE, ycenter = TRUE)

Arguments

x numeric matrix (n× p1), containing the x coordinates.

y numeric matrix (n× p2), containing the y coordinates.

xcenter logical or numeric vector of length p1, describing any centering to be done
on the x values before the analysis. If TRUE (default), subtract the column
means. If FALSE, do not adjust the columns. Otherwise, a vector of values
to be subtracted from the columns.

ycenter analogous to xcenter, but for the y values.

Details

The canonical correlation analysis seeks linear combinations of the y variables which are
well explained by linear combinations of the x variables. The relationship is symmetric as
‘well explained’ is measured by correlations.

898 cmdscale

Value

A list containing the following components:

cor correlations.

xcoef estimated coefficients for the x variables.

ycoef estimated coefficients for the y variables.

xcenter the values used to adjust the x variables.

ycenter the values used to adjust the x variables.

References

Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321–327.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley, p. 506f.

See Also

qr, svd.

Examples

data(LifeCycleSavings)

pop <- LifeCycleSavings[, 2:3]

oec <- LifeCycleSavings[, -(2:3)]

cancor(pop, oec)

x <- matrix(rnorm(150), 50, 3)

y <- matrix(rnorm(250), 50, 5)

(cxy <- cancor(x, y))

all(abs(cor(x %*% cxy$xcoef,

y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)

all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)

all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)

cmdscale Classical (Metric) Multidimensional Scaling

Description

Classical multidimensional scaling of a data matrix.

Usage

cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

cmdscale 899

Arguments

d a distance structure such as that returned by dist or a full symmetric
matrix containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must
be in {1, 2, . . . , n− 1}.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constant c∗ should be computed, and
added to the non-diagonal dissimilarites such that all n − 1 eigenvalues
are non-negative.

x.ret indicates whether the doubly centered symmetric distance matrix should
be returned.

Details

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that
the distances between the points are approximately equal to the dissimilarities.

The functions isoMDS and sammon in package MASS provide alternative ordination tech-
niques.

When add = TRUE, an additive constant c∗ is computed, and the dissimilarities dij + c∗ are
used instead of the original dij ’s.

Whereas S-PLUS computes this constant using an approximation suggested by Torgerson,
R uses the exact analytical solution of Cailliez (1983), see also Cox and Cox (1994).

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give
the coordinates of the points chosen to represent the dissimilarities.

Otherwise, a list containing the following components.

points a matrix with k columns whose rows give the coordinates of the points
chosen to represent the dissimilarities.

eig the n− 1 eigenvalues computed during the scaling process if eig is true.

x the doubly centered distance matrix if x.ret is true.

GOF a numeric vector of length 2, equal to say (g1, g2), where gi =
(
∑k

j=1 λj)/(
∑n

j=1 Ti(λj)), where λj are the eigenvalues (sorted decreas-
ingly), T1(v) = |v|, and T2(v) = max(v, 0).

References

Cox, T. F. and Cox, M. A. A. (1994) Multidimensional Scaling. Chapman and Hall.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis,
London: Academic Press.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley.

Torgerson, W. S. (1958). Theory and Methods of Scaling. New York: Wiley.

Cailliez, F. (1983) The analytical solution of the additive constant problem. Psychometrika
48, 343–349.

900 cophenetic

See Also

dist. Also isoMDS and sammon in package MASS.

Examples

data(eurodist)

loc <- cmdscale(eurodist)

x <- loc[,1]

y <- -loc[,2]

plot(x, y, type="n", xlab="", ylab="", main="cmdscale(eurodist)")

text(x, y, names(eurodist), cex=0.8)

cmdsE <- cmdscale(eurodist, k=20, add = TRUE, eig = TRUE, x.ret = TRUE)

str(cmdsE)

cophenetic Cophenetic Distances for a Hierarchical Clustering

Description

Computes the cophenetic distances for a hierarchical clustering.

Usage

cophenetic(x)

Arguments

x an object of class hclust or with a method for as.hclust() such as
agnes.

Details

The cophenetic distance between two observations that have been clustered is defined to be
the intergroup dissimilarity at which the two observations are first combined into a single
cluster. Note that this distance has many ties and restrictions.

It can be argued that a dendrogram is an appropriate summary of some data if the cor-
relation between the original distances and the cophenetic distances is high. Otherwise, it
should simply be viewed as the description of the output of the clustering algorithm.

Value

An object of class dist.

Author(s)

Robert Gentleman

References

Sneath, P.H.A. and Sokal, R.R (1973) Numerical Taxonomy: The Principles and Practice
of Numerical Classification, p. 278 ff; Freeman, San Francisco.

cutree 901

See Also

dist, hclust

Examples

data(USArrests)

library(mva)

d1 <- dist(USArrests)

hc <- hclust(d1, "ave")

d2 <- cophenetic(hc)

cor(d1,d2) # 0.7659

Example from Sneath & Sokal, Fig. 5-29, p.279

d0 <- c(1,3.8,4.4,5.1, 4,4.2,5, 2.6,5.3, 5.4)

attributes(d0) <- list(Size = 5, diag=TRUE)

class(d0) <- "dist"

names(d0) <- letters[1:5]

d0

str(upgma <- hclust(d0, method = "average"))

plot(upgma, hang = -1)

#

(d.coph <- cophenetic(upgma))

cor(d0, d.coph) # 0.9911

cutree Cut a tree into groups of data

Description

Cuts a tree, e.g., as resulting from hclust, into several groups either by specifying the
desired number(s) of groups or the cut height(s).

Usage

cutree(tree, k=NULL, h=NULL)

Arguments

tree a tree as produced by hclust. cutree() only expects a list with compo-
nents merge, height, and labels, of appropriate content each.

k an integer scalar or vector with the desired number of groups

h numeric scalar or vector with heights where the tree should be cut.

At least one of k or h must be specified, k overrides h if both are given.

Value

cutree returns a vector with group memberships if k or h are scalar, otherwise a matrix
with group meberships is returned where each column corresponds to the elements of k or
h, respectively (which are also used as column names).

See Also

hclust

902 dendrogram

Examples

require(mva)

data(USArrests)

hc <- hclust(dist(USArrests))

cutree(hc, k=1:5)#k = 1 is trivial

cutree(hc, h=250)

Compare the 2 and 3 grouping:

g24 <- cutree(hc, k = c(2,4))

table(g24[,"2"], g24[,"4"])

dendrogram General Tree Structures

Description

Class "dendrogram" provides general functions for handling tree-like structures. It is
intended as a replacement for similar functions in hierarchical clustering and classifica-
tion/regression trees, such that all of these can use the same engine for plotting or cutting
trees.

The code is still in testing stage and the API may change in the future.

Usage

as.dendrogram(object, ...)
as.dendrogram.hclust(object, ...)
plot(x, type=c("rectangle", "triangle"),

center=FALSE, edge.root= !is.null(attr(x,"edgetext")),
nodePar = NULL, edgePar = list(), xlab="", ylab="",
horiz = FALSE, ...)

cut(x, h, ...)
print(x, digits, ...)

Arguments

object any R object that can be made into a class "dendrogram" one.

x object of class "dendrogram".

type type of plot.

center logical; if TRUE, nodes are plotted centered with respect to the leaves in
the branch. Otherwise (default), plot them in the middle of all direct
child nodes.

edge.root logical; if true, draw an edge to the root node.

nodePar a list of plotting parameters to use for the nodes (see points) or NULL by
default which does not draw symbols at the nodes. The list may contain
components named pch, cex, col, and/or bg each of which can have
length two for specifying separate attributes for inner nodes and leaves.

dendrogram 903

edgePar a list of plotting parameters to use for the edge (see lines). The list
may contain components named col, lty and/or lwd.

horiz logical indicating if the dendrogram should be draw horizontally or not.

h height at which the tree is cut.
..., xlab, ylab

graphical parameters, or arguments for other methods.

digits integer specifiying the precision for printing, see print.default.

Details

Warning: This documentation is preliminary.

The dendrogram is directly represented as a nested list where each component corresponds
to a branch of the tree. Hence, the first branch of tree z is z[[1]], the second branch of the
corresponding subtree is z[[1]][[2]] etc.. Each node of the tree carries some information
needed for efficient plotting or cutting as attributes:

members total number of leaves in the branch

height numeric non-negative height at which the node is plotted.

midpoint numeric horizontal distance of the node from the left border of the branch. This
is needed at least for plot(*, center=FALSE).

text character; the label of the node

edgetext character; the label for the edge leading to the node

nodePar a named list of length one vectors specifying node-specific attributes for points
plotting, see the nodePar argument above.

edgePar a named list of length one vectors specifying attributes for segments plotting of
the edge leading to the node, see the edgePar argument above.

leaf logical, if TRUE, the node is a leaf of the tree.

cut.dendrogram() returns a list with components $upper and $lower, the first is a trun-
cated version of the original tree, also of class dendrogram, the latter a list with the branches
obtained from cutting the tree, each a dendrogram.

There are [[, print, and str methods for "dendrogram" objects where the first one (ex-
traction) ensures that selecting sub-branches keeps the class.

Objects of class "hclust" can be converted to class "dendrogram" using method
as.dendrogram.

isLeaf(), plotNode() and plotNodeLimit() are helper functions.

Note

When using type = "triangle", center = TRUE often looks better.

Examples

library(mva)

data(USArrests)

hc <- hclust(dist(USArrests), "ave")

(dend1 <- as.dendrogram(hc)) # "print()" method

str(dend1) # "str()" method

op <- par(mfrow= c(2,2), mar = c(3,3,1,1))

904 dist

plot(dend1)

"triangle" type and show inner nodes:

plot(dend1, nodePar=list(pch = c(1,NA),cex=0.8), type = "t", center=TRUE)

plot(dend1, edgePar=list(col = 1:2, lty = 2:3), edge.root = TRUE)

plot(dend1, nodePar=list(pch = 2:1,cex=.4*2:1, col = 2:3), horiz = TRUE)

dend2 <- cut(dend1, h=70)

plot(dend2$upper)

leafs are wrong horizontally:

plot(dend2$upper, nodePar=list(pch = c(1,7), col = 2:1))

dend2$lower is *NOT* a dendrogram, but a list of .. :

plot(dend2$lower[[3]], nodePar=list(col=4), horiz = TRUE, type = "tr")

"inner" and "leaf" edges in different type & color :

plot(dend2$lower[[2]], nodePar=list(col=1),# non empty list

edgePar = list(lty=1:2, col=2:1), edge.root=TRUE)

par(op)

dist Distance Matrix Computation

Description

This function computes and returns the distance matrix computed by using the specified
distance measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE)

print.dist(x, diag = NULL, upper = NULL, ...)
as.matrix.dist(x)
as.dist(m, diag = FALSE, upper = FALSE)

Arguments

x numeric matrix or (data frame). Distances between the rows of x will be
computed.

method the distance measure to be used. This must be one of "euclidean",
"maximum", "manhattan", "canberra" or "binary". Any unambiguous
substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should
be printed by print.dist.

upper logical value indicating whether the upper triangle of the distance matrix
should be printed by print.dist.

m A matrix of distances to be converted to a "dist" object (only the lower
triangle is used, the rest is ignored).

... further arguments, passed to the (next) print method.

dist 905

Details

Available distance measures are (written for two vectors x and y):

euclidean: Usual square distance between the two vectors (2 norm).

maximum: Maximum distance between two components of x and y (supremum norm)

manhattan: Absolute distance between the two vectors (1 norm).

canberra:
∑

i |xi− yi|/|xi + yi|. Terms with zero numerator and denominator are omitted
from the sum and treated as if the values were missing.

binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero
elements are ‘on’ and zero elements are ‘off’. The distance is the proportion of bits in
which only one is on amongst those in which at least one is on.

Missing values are allowed, and are excluded from all computations involving the rows
within which they occur. Further, when Inf values are involved, all pairs of values are
excluded when their contribution to the distance gave NaN or NA.
If some columns are excluded in calculating a Euclidean, Manhattan or Canberra distance,
the sum is scaled up proportionally to the number of columns used. If all pairs are excluded
when calculating a particular distance, the value is NA.

The functions as.matrix.dist() and as.dist() can be used for conversion between ob-
jects of class "dist" and conventional distance matrices and vice versa.

Value

An object of class "dist".

The lower triangle of the distance matrix stored by columns in a vector, say do. If n
is the number of observations, i.e., n <- attr(do, "Size"), then for i < j <= n, the
dissimilarity between (row) i and j is do[n*(i-1) - i*(i-1)/2 + j-i]. The length of the
vector is n ∗ (n− 1)/2, i.e., of order n2.

The object has the following attributes (besides "class" equal to "dist"):

Size integer, the number of observations in the dataset.

Labels optionally, contains the labels, if any, of the observations of the dataset.

Diag, Upper logicals corresponding to the arguments diag and upper above, specifying
how the object should be printed.

call optionally, the call used to create the object.

methods optionally, the distance method used; resulting form dist(), the
(match.arg()ed) method argument.

References

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. London: Aca-
demic Press.

See Also

daisy in the ‘cluster’ package with more possibilities in the case of mixed (contiuous /
categorical) variables. hclust.

906 factanal

Examples

x <- matrix(rnorm(100), nrow=5)

dist(x)

dist(x, diag = TRUE)

dist(x, upper = TRUE)

m <- as.matrix(dist(x))

d <- as.dist(m)

stopifnot(d == dist(x))

names(d) <- LETTERS[1:5]

print(d, digits = 3)

example of binary and canberra distances.

x <- c(0, 0, 1, 1, 1, 1)

y <- c(1, 0, 1, 1, 0, 1)

dist(rbind(x,y), method="binary")

answer 0.4 = 2/5

dist(rbind(x,y), method="canberra")

answer 2 * (6/5)

Examples involving "Inf" :

1)

x[6] <- Inf

(m2 <- rbind(x,y))

dist(m2, method="binary")# warning, answer 0.5 = 2/4

These all give "Inf":

stopifnot(Inf == dist(m2, method= "euclidean"),

Inf == dist(m2, method= "maximum"),

Inf == dist(m2, method= "manhattan"))

"Inf" is same as very large number:

x1 <- x; x1[6] <- 1e100

stopifnot(dist(cbind(x ,y), method="canberra") ==

print(dist(cbind(x1,y), method="canberra")))

2)

y[6] <- Inf #-> 6-th pair is excluded

dist(rbind(x,y), method="binary")# warning; 0.5

dist(rbind(x,y), method="canberra")# 3

dist(rbind(x,y), method="maximum") # 1

dist(rbind(x,y), method="manhattan")# 2.4

factanal Factor Analysis

Description

Perform maximum-likelihood factor analysis on a covariance matrix or data matrix.

Usage

factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action,
start = NULL, scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)

factanal 907

Arguments

x Either a formula or a numeric matrix or an object that can be coerced to
a numeric matrix.

factors The number of factors to be fitted.

data A data frame.

covmat A covariance matrix, or a covariance list as returned by cov.wt. Of course,
correlation matrices are covariance matrices.

n.obs The number of observations, used if covmat is a covariance matrix.

subset A specification of the cases to be used, if x is used as a matrix or formula.

na.action The na.action to be used if x is used as a formula.

start NULL or a matrix of starting values, each column giving an initial set of
uniquenesses.

scores Type of scores to produce, if any. The default is none, "regression" gives
Thompson’s scores, "Bartlett" given Bartlett’s weighted least-squares
scores. Partial matching allows these names to be abbreviated.

rotation character. "none" or the name of a function to be used to rotate the
factors: it will be called with first argument the loadings matrix, and
should return a list with component loadings giving the rotated loadings,
or just the rotated loadings.

control A list of control values,

nstart The number of starting values to be tried if start = NULL. De-
fault 1.

trace logical. Output tracing information? Default FALSE.
lower The lower bound for uniquenesses during optimization. Should be

> 0. Default 0.005.
opt A list of control values to be passed to optim’s control argument.
rotate a list of additional arguments for the rotation function.

... Components of control can also be supplied as named arguments to
factanal.

Details

The factor analysis model is
x = Λf + e

for a p–element row-vector x, a p×k matrix of loadings, a k–element vector of scores and a
p–element vector of errors. None of the components other than x is observed, but the major
restriction is that the scores be uncorrelated and of unit variance, and that the errors be
independent with variances Φ, the uniquenesses. Thus factor analysis is in essence a model
for the covariance matrix of x,

Σ = Λ′Λ + Ψ

There is still some indeterminacy in the model for it is unchanged if Λ is replaced by GΛ
for any orthogonal matrix G. Such matrices G are known as rotations (although the term
is applied also to non-orthogonal invertible matrices).

If covmat is supplied it is used. Otherwise x is used if it is a matrix, or a formula x is used
with data to construct a model matrix, and that is used to construct a covariance matrix.
(It makes no sense for the formula to have a response.) Once a covariance matrix is found

908 factanal

or calculated from x, it is converted to a correlation matrix for analysis. The correlation
matrix is returned as component correlation of the result.
The fit is done by optimizing the log likelihood assuming multivariate normality over the
uniquenesses. (The maximizing loadings for given uniquenesses can be found analytically:
Lawley & Maxwell (1971, p. 27).) All the starting values supplied in start are tried in
turn and the best fit obtained is used. If start = NULL then the first fit is started at the
value suggested by Jöreskog (1963) and given by Lawley & Maxwell (1971, p. 31), and
then control$nstart - 1 other values are tried, randomly selected as equal values of the
uniquenesses.
The uniquenesses are technically constrained to lie in [0, 1], but near-zero values are prob-
lematical, and the optimization is done with a lower bound of control$lower, default 0.005
(Lawley & Maxwell, 1971, p. 32).
Scores can only be produced if a data matrix is supplied and used. The first method is
the regression method of Thomson (1951), the second the weighted least squares method
of Bartlett (1937, 8). Both are estimates of the unobserved scores f . Thomson’s method
regresses (in the population) the unknown f on x to yield

f̂ = Λ′Σ−1x

and then substitutes the sample estimates of the quantities on the right-hand side. Bartlett’s
method minimizes the sum of squares of standardized errors over the choice of f , given (the
fitted) Λ.
If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict.

Value

An object of class "factanal" with components

loadings A matrix of loadings, one column for each factor. The factors are ordered
in decreasing order of sums of squares of loadings, and given the sign that
will make the sum of the loadings positive.

uniquenesses The uniquenesses computed.
correlation The correlation matrix used.
criteria The results of the optimization: the value of the negative log-likelihood

and information on the iterations used.
factors The argument factors.
dof The number of degrees of freedom of the factor analysis model.
method The method: always "mle".
scores If requested, a matrix of scores.
n.obs The number of observations if available, or NA.
call The matched call.
na.action If relevant.

Note

There are so many variations on factor analysis that it is hard to compare output from
different programs. Further, the optimization in maximum likelihood factor analysis is
hard, and many other examples we compared had less good fits than produced by this
function. In particular, solutions which are Heywood cases (with one or more uniquenesses
essentially zero) are much often common than most texts and some other programs would
lead one to believe.

Harman23.cor 909

Author(s)

B. D. Ripley

References

Bartlett, M. S. (1937) The statistical conception of mental factors. British Journal of
Psychology, 28, 97–104.

Bartlett, M. S. (1938) Methods of estimating mental factors. Nature, 141, 609–610.

Jöreskog, K. G. (1963) Statistical Estimation in Factor Analysis. Almqvist and Wicksell.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second
edition. Butterworths.

Thomson, G. H. (1951) The Factorial Analysis of Human Ability. London University Press.

See Also

print.loadings, varimax, princomp, ability.cov, Harman23.cor, Harman74.cor

Examples

A little demonstration, v2 is just v1 with noise,

and same for v4 vs. v3 and v6 vs. v5

Last four cases are there to add noise

and introduce a positive manifold (g factor)

v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)

v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)

v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)

v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)

v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)

v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)

m1 <- cbind(v1,v2,v3,v4,v5,v6)

cor(m1)

factanal(m1, factors=3) # varimax is the default

factanal(m1, factors=3, rotation="promax")

The following shows the g factor as PC1

prcomp(m1)

formula interface

factanal(~v1+v2+v3+v4+v5+v6, factors = 3,

scores = "Bartlett")$scores

a realistic example from Barthlomew (1987, pp. 61-65)

example(ability.cov)

Harman23.cor Harman Example 2.3

Description

A correlation matrix of eight physical measurements on 305 girls between ages seven and
seventeen.

910 Harman74.cor

Usage

data(Harman23.cor)

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of
Chicago Press, Table 2.3.

Examples

data(Harman23.cor)

(Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))

for(factors in 2:4) print(update(Harman23.FA, factors = factors))

Harman74.cor Harman Example 7.4

Description

A correlation matrix of 24 psychological tests given to 145 seventh and eight-grade children
in a Chicago suburb by Holzinger and Swineford.

Usage

data(Harman74.cor)

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of
Chicago Press, Table 7.4.

Examples

data(Harman74.cor)

(Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))

for(factors in 2:5) print(update(Harman74.FA, factors = factors))

Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,

rotation="promax")

print(Harman74.FA$loadings, sort = TRUE)

hclust 911

hclust Hierarchical Clustering

Description

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

Usage

hclust(d, method = "complete", members=NULL)

plot(x, labels = NULL, hang = 0.1,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "Cluster Dendrogram",
sub = NULL, xlab = NULL, ylab = "Height", ...)

plclust(tree, hang = 0.1, unit = FALSE, level = FALSE, hmin = 0,
square = TRUE, labels = NULL, plot. = TRUE,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "", sub = NULL, xlab = NULL, ylab = "Height")

Arguments

d a dissimilarity structure as produced by dist.

method the agglomeration method to be used. This should be (an unambigu-
ous abbreviation of) one of "ward", "single", "complete", "average",
"mcquitty", "median" or "centroid".

members NULL or a vector with length size of d.

x,tree an object of the type produced by hclust.

hang The fraction of the plot height by which labels should hang below the rest
of the plot. A negative value will cause the labels to hang down from 0.

labels A character vector of labels for the leaves of the tree. By default the row
names or row numbers of the original data are used. If labels=FALSE no
labels at all are plotted.

axes, frame.plot, ann

logical flags as in plot.default.
main, sub, xlab, ylab

character strings for title. sub and xlab have a non-NULL default when
there’s a tree$call.

... Further graphical arguments.
unit, level, hmin, square, plot.

as yet unimplemented arguments of plclust for S-plus compatibility.

Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for the
n objects being clustered. Initially, each object is assigned to its own cluster and then the
algorithm proceeds iteratively, at each stage joining the two most similar clusters, continuing
until there is just a single cluster. At each stage distances between clusters are recomputed

912 hclust

by the Lance–Williams dissimilarity update formula according to the particular clustering
method being used.

A number of different clustering methods are provided. Ward’s minimum variance method
aims at finding compact, spherical clusters. The complete linkage method finds similar
clusters. The single linkage method (which is closely related to the minimal spanning tree)
adopts a ‘friends of friends’ clustering strategy. The other methods can be regarded as
aiming for clusters with characteristics somewhere between the single and complete link
methods.

If members!=NULL, then d is taken to be a dissimilarity matrix between clusters instead
of dissimilarities between singletons and members gives the number of observations per
cluster. This way the hierarchical cluster algorithm can be “started in the middle of the
dendrogram”, e.g., in order to reconstruct the part of the tree above a cut (see examples).
Dissimilarities between clusters can be efficiently computed (i.e., without hclust itself)
only for a limited number of distance/linkage combinations, the simplest one being squared
Euclidean distance and centroid linkage. In this case the dissimilarities between the clusters
are the squared Euclidean distances between cluster means.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree
should go on the left and which on the right. Since, for n observations there are n − 1
merges, there are 2(n−1) possible orderings for the leaves in a cluster tree, or dendrogram.
The algorithm used in hclust is to order the subtree so that the tighter cluster is on the left
(the last, i.e. most recent, merge of the left subtree is at a lower value than the last merge
of the right subtree). Single observations are the tightest clusters possible, and merges
involving two observations place them in order by their observation sequence number.

Value

An object of class hclust which describes the tree produced by the clustering process. The
object is a list with components:

merge an n − 1 by 2 matrix. Row i of merge describes the merging of clusters
at step i of the clustering. If an element j in the row is negative, then
observation −j was merged at this stage. If j is positive then the merge
was with the cluster formed at the (earlier) stage j of the algorithm.
Thus negative entries in merge indicate agglomerations of singletons, and
positive entries indicate agglomerations of non-singletons.

height a set of n − 1 non-decreasing real values. The clustering height : that is,
the value of the criterion associated with the clustering method for the
particular agglomeration.

order a vector giving the permutation of the original observations suitable for
plotting, in the sense that a cluster plot using this ordering and matrix
merge will not have crossings of the branches.

labels labels for each of the objects being clustered.

call the call which produced the result.

method the cluster method that has been used.

dist.method the distance that has been used to create d (only returned if the distance
object has a "method" attribute).

There is a print and a plot method for hclust objects. The plclust() function is
basically the same as the plot method, plot.hclust, primarily for back compatibility with
S-plus. Its extra arguments are not yet implemented.

identify.hclust 913

Author(s)

The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh.

References

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975). Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.

Gordon, A. D. (1999). Classification. Second Edition. London: Chapman and Hall / CRC

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures
4. Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).

See Also

kmeans.

Examples

library(mva)

data(USArrests)

hc <- hclust(dist(USArrests), "ave")

plot(hc)

plot(hc, hang = -1)

Do the same with centroid clustering and squared Euclidean distance,

cut the tree into ten clusters and reconstruct the upper part of the

tree from the cluster centers.

hc <- hclust(dist(USArrests)^2, "cen")

memb <- cutree(hc, k = 10)

cent <- NULL

for(k in 1:10){

cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))

}

hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))

opar <- par(mfrow = c(1, 2))

plot(hc, labels = FALSE, hang = -1, main = "Original Tree")

plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")

par(opar)

identify.hclust Identify Clusters in a Dendrogram

Description

identify.hclust reads the position of the graphics pointer when the (first) mouse button
is pressed. It then cuts the tree at the vertical position of the pointer and highlights the
cluster containing the horizontal position of the pointer. Optionally a function is applied
to the index of data points contained in the cluster.

914 identify.hclust

Usage

identify(x, FUN = NULL, N = 20, MAXCLUSTER = 20,
DEV.FUN = NULL, ...)

Arguments

x an object of the type produced by hclust.

FUN (optional) function to be applied to the index numbers of the data points
in a cluster (see Details below).

N the maximum number of clusters to be identified.

MAXCLUSTER The maximum number of clusters that can be produced by a cut (limits
the effective vertical range of the pointer).

DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device
is made active before FUN is applied.

... further arguments to FUN.

Details

By default clusters can be identified using the mouse and an invisible list of indices of
the respective data points is returned.

If FUN is not NULL, then the index vector of data points is passed to this function as first
argument, see the examples below. The active graphics device for FUN can be specified using
DEV.FUN.

The identification process is terminated by pressing any mouse button other than the first,
or by clicking outside the graphics window.

Value

Either a list of data point index vectors or a list of return values of FUN.

See Also

hclust, rect.hclust

Examples

library(mva)

data(USArrests)

hca <- hclust(dist(USArrests))

plot(hca)

(x <- identify.hclust(hca))

data(iris)

hci <- hclust(dist(iris[,1:4]))

plot(hci)

identify.hclust(hci, function(k) print(table(iris[k,5])))

open a new device

dev.set(2)

plot(hci)

identify.hclust(hci, function(k) barplot(table(iris[k,5])), DEV.FUN=3)

kmeans 915

kmeans K-Means Clustering

Description

Perform k-means clustering on a data matrix.

Usage

kmeans(x, centers, iter.max = 10)

Arguments

x A numeric matrix of data, or an object that can be coerced to such a ma-
trix (such as a numeric vector or a data frame with all numeric columns).

centers Either the number of clusters or a set of initial cluster centers. If the first,
a random set of rows in x are chosen as the initial centers.

iter.max The maximum number of iterations allowed.

Details

The data given by x is clustered by the k-means algorithm. When this terminates, all cluster
centres are at the mean of their Voronoi sets (the set of data points which are nearest to
the cluster centre).

The algorithm of Hartigan and Wong (1979) is used.

Value

A list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres.

withinss The within-cluster sum of squares for each cluster.

size The number of points in each cluster.

References

Hartigan, J.A. and Wong, M.A. (1979). A K-means clustering algorithm. Applied Statistics
28, 100–108.

Examples

a 2-dimensional example

x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

cl <- kmeans(x, 2, 20)

plot(x, col = cl$cluster)

points(cl$centers, col = 1:2, pch = 8)

916 prcomp

loadings Print Loadings in Factor Analysis

Description

Extract or print loadings in factor analysis (or principal components analysis).

Usage

loadings(x)
print.loadings(x, digits = 3, cutoff = 0.1, sort = FALSE, ...)
print.factanal(x, digits = 3, ...)

Arguments

x an object of class "factanal" or "princomp" or the loadings component
of such an object.

digits number of decimal places to use in printing uniquenesses and loadings.

cutoff loadings smaller than this (in absolute value) are suppressed.

sort logical. If true, the variables are sorted by their importance on each factor.
Each variable with any loading larger than 0.5 (in modulus) is assigned
to the factor with the largest loading, and the variables are printed in the
order of the factor they are assigned to, then those unassigned.

... further arguments for other methods, such as cutoff and sort for
print.factanal.

Author(s)

B. D. Ripley

See Also

factanal, princomp

prcomp Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix and returns the results
as an object of class prcomp.

Usage

prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL)

prcomp 917

Arguments

x a matrix (or data frame) which provides the data for the principal com-
ponents analysis.

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be
zero centered. Alternately, a vector of length equal the number of columns
of x can be supplied. The value is passed to scale.

scale. a logical value indicating whether the variables should be scaled to have
unit variance before the analysis takes place. The default is FALSE for
consistency with S, but in general scaling is advisable. Alternately, a
vector of length equal the number of columns of x can be supplied. The
value is passed to scale.

tol a value indicating the magnitude below which components should be omit-
ted. (Components are omitted if their standard deviations are less than or
equal to tol times the standard deviation of the first component.) With
the default null setting, no components are omitted. Other settings for tol
could be tol = 0 or tol = sqrt(.Machine$double.eps), which would
omit essentially constant components.

Details

The calculation is done by a singular value decomposition of the (centered and scaled) data
matrix, not by using eigen on the covariance matrix. This is generally the preferred method
for numerical accuracy. The print method for the these objects prints the results in a nice
format and the plot method produces a scree plot.

Value

prcomp returns an list with class "prcomp" containing the following components:

sdev the standard deviations of the principal components (i.e., the square roots
of the eigenvalues of the covariance/correlation matrix, though the calcu-
lation is actually done with the singular values of the data matrix).

rotation the matrix of variable loadings (i.e., a matrix whose columns contain
the eigenvectors). The function princomp returns this in the element
loadings.

x if retx is true the value of the rotated data (the data multiplied by the
rotation matrix) is returned.

References

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic
Press.

Venables, W. N. and B. D. Ripley (1997, 9) Modern Applied Statistics with S-PLUS,
Springer-Verlag.

See Also

princomp, cor, cov, svd, eigen.

918 princomp

Examples

the variances of the variables in the

USArrests data vary by orders of magnitude, so scaling is appropriate

data(USArrests)

prcomp(USArrests) # inappropriate

prcomp(USArrests, scale = TRUE)

plot(prcomp(USArrests))

summary(prcomp(USArrests, scale = TRUE))

princomp Principal Components Analysis

Description

princomp performs a principal components analysis on the given data matrix and returns
the results as an object of class princomp.

Usage

princomp(x, data = NULL, subset, na.action, ...)
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,

subset = rep(TRUE, nrow(as.matrix(x))), ...)

Arguments

x a formula or matrix (or data frame) which provides the data for the prin-
cipal components analysis.

data an optional data frame containing the variables in the formula x. By
default the variables are taken from environment(x).

subset an optional vector used to select rows (observations) of the data matrix
x.

na.action a function which indicates what should happen when the data contain NAs.
The default is set by the na.action setting of options, and is na.fail
if that is unset. The “factory-fresh” default is na.omit.

cor a logical value indicating whether the calculation should use the correla-
tion matrix or the covariance matrix.

scores a logical value indicating whether the score on each principal component
should be calculated.

covmat a covariance matrix, or a covariance list as returned by cov.wt, cov.mve
or cov.mcd. If supplied, this is used rather than the covariance matrix of
x.

... arguments passed to or from other methods. If x is a formula one might
specify cor or scores.

princomp 919

Details

princomp is a generic function with "formula" and "default" methods.

The calculation is done using eigen on the correlation or covariance matrix, as determined
by cor. This is done for compatibility with the S-PLUS result. A preferred method of
calculation is to use svd on x, as is done in prcomp.

Note that the default calculation uses divisor N for the covariance matrix.

The print method for the these objects prints the results in a nice format and the plot
method produces a scree plot (screeplot). There is also a biplot method.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict.

Value

princomp returns a list with class "princomp" containing the following components:

sdev the standard deviations of the principal components.

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the
eigenvectors). This is of class "loadings": see loadings for its print
method.

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal com-
ponents.

call the matched call.

na.action If relevant.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Aca-
demic Press.

Venables, W. N. and B. D. Ripley (1997, 9). Modern Applied Statistics with S-PLUS,
Springer-Verlag.

See Also

summary.princomp, screeplot, biplot.princomp, prcomp, cor, cov, eigen.

Examples

The variances of the variables in the

USArrests data vary by orders of magnitude, so scaling is appropriate

data(USArrests)

(pc.cr <- princomp(USArrests)) # inappropriate

princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)

Similar, but different:

The standard deviations differ by a factor of sqrt(49/50)

summary(pc.cr <- princomp(USArrests, cor = TRUE))

loadings(pc.cr) ## note that blank entries are small but not zero

plot(pc.cr) # shows a screeplot.

920 rect.hclust

biplot(pc.cr)

Formula interface

princomp(~ ., data = USArrests, cor = TRUE)

NA-handling

USArrests[1, 2] <- NA

pc.cr <- princomp(~ ., data = USArrests, na.action=na.exclude, cor = TRUE)

pc.cr$scores

rect.hclust Draw Rectangles Around Hierarchical Clusters

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding
clusters. First the dendrogram is cut at a certain level, then a rectangle is drawn around
selected branches.

Usage

rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,
border = 2, cluster = NULL)

Arguments

tree an object of the type produced by hclust.

k, h Scalar. Cut the dendrogram such that either exactly k clusters are pro-
duced or by cutting at height h.

which, x A vector selecting the clusters around which a rectangle should be drawn.
which seleccts clusters by number (from left to right in the tree), x selects
clusters containing the respective horizontal coordinates. Default is which
= 1:k.

border Vector with border colors for the rectangles.

cluster Optional vector with cluster memberships as returned by
cutree(hclust.obj, k = k), can be specified for efficiency if al-
ready computed.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in
the respective cluster.

See Also

hclust, identify.hclust.

screeplot 921

Examples

library(mva)

data(USArrests)

hca <- hclust(dist(USArrests))

plot(hca)

rect.hclust(hca, k=3, border="red")

x <- rect.hclust(hca, h=50, which=c(2,7), border=3:4)

x

screeplot Screeplot of PCA Results

Description

screeplot plots the variances against the number of the principal component. This is also
the plot method for class "princomp".

Usage

screeplot(x, npcs = min(10, length(x$sdev)),
type = c("barplot", "lines"), main = deparse(substitute(x)), ...)

Arguments

x an object of class "princomp", as from princomp().

npcs the number of principal components to be plotted.

type the type of plot.

main, ... graphics parameters.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Aca-
demic Press.

Venables, W. N. and B. D. Ripley (1997, 9). Modern Applied Statistics with S-PLUS,
Springer-Verlag.

See Also

princomp.

Examples

The variances of the variables in the

USArrests data vary by orders of magnitude, so scaling is appropriate

data(USArrests)

(pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate

screeplot(pc.cr)

data(Harman74.cor)

fit <- princomp(covmat=Harman74.cor)

screeplot(fit)

screeplot(fit, npcs=24, type="lines")

922 varimax

summary.princomp Summary method for Principal Components Analysis

Description

The summary method for class "princomp".

Usage

summary(object, loadings = FALSE, cutoff = 0.1, ...)
print(x, digits = 3, loadings = x$print.loadings,

cutoff = x$cutoff, ...)

Arguments

object an object of class "princomp", as from princomp().

loadings logical. Should loadings be included?

cutoff numeric. Loadings below this cutoff in absolute value are shown as blank
in the output.

x an object of class ”summary.princomp”.

digits the number of significant digits to be used in listing loadings.

... arguments to be passed to or from other methods.

Value

object with additional components cutoff and print.loadings.

See Also

princomp

Examples

data(USArrests)

summary(pc.cr <- princomp(USArrests, cor=TRUE))

print(summary(princomp(USArrests, cor=TRUE),

loadings = TRUE, cutoff = 0.2), digits = 2)

varimax Rotation Methods for Factor Analysis

Description

These functions ‘rotate’ loading matrices in factor analysis.

Usage

varimax(x, normalize = TRUE, eps = 1e-5)
promax(x, m = 4)

varimax 923

Arguments

x A loadings matrix, with p rows and k < p columns

m The power used the target for promax. Values of 2 to 4 are recommended.

normalize logical. Should Kaiser normalization be performed? If so the rows of x
are re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular
values.

Details

These seek a ‘rotation’ of the factors x %*% T that aims to clarify the structure of the
loadings matrix. The matrix T is a rotation (possibly with reflection) for varimax, but a
general linear transformation for promax, with the variance of the factors being preserved.

Value

A list with components

loadings The ‘rotated’ loadings matrix, x %*% rotmat.

rotmat The ‘rotation matrix.

Author(s)

B. D. Ripley

References

Hendrickson, A. E. and White, P. O. (1964) Promax: a quick method for rotation to
orthogonal oblique structure. British Journal of Statistical Psychology, 17, 65–70.

Horst, P. (1965) Factor Analysis of Data Matrices. Holt, Rinehart and Winston. Chapter
10.

Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis. Psy-
chometrika 23, 187–200.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second
edition. Butterworths.

See Also

factanal, Harman74.cor.

Examples

data(swiss)

varimax with normalize = T is the default

fa <- factanal(~., 2, data = swiss)

varimax(fa$loadings, normalize = FALSE)

promax(fa$loadings)

924 varimax

Chapter 8

The nls package

asOneSidedFormula Convert to One-Sided Formula

Description

Names, expressions, numeric values, and character strings are converted to one-sided for-
mulas. If object is a formula, it must be one-sided, in which case it is returned unaltered.

Usage

asOneSidedFormula(object)

Arguments

object a one-sided formula, an expression, a numeric value, or a character string.

Value

a one-sided formula representing object

Author(s)

Jose Pinheiro and Douglas Bates

See Also

formula

Examples

asOneSidedFormula("age")

asOneSidedFormula(~ age)

925

926 ChickWeight

BOD Biochemical Oxygen Demand

Description

The BOD data frame has 6 rows and 2 columns giving the biochemical oxygen demand versus
time in an evaluation of water quality.

Usage

data(BOD)

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).
demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley, Appendix A1.4.

Originally from Marske (1967), Biochemical Oxygen Demand Data Interpretation Using
Sum of Squares Surface M.Sc. Thesis, University of Wisconsin – Madison.

Examples

data(BOD)

simplest form of fitting a first-order model to these data

fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,

start = c(A = 20, lrc = log(.35)))

coef(fm1)

print(fm1)

using the plinear algorithm

fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,

start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)

using a self-starting model

fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

summary(fm3)

ChickWeight Weight versus age of chicks on different diets

Description

The ChickWeight data frame has 578 rows and 4 columns from an experiment on the effect
of diet on early growth of chicks.

Usage

data(ChickWeight)

clearNames 927

Format

This data frame contains the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was
made.

Chick an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick.
The ordering of the levels groups chicks on the same diet together and orders them
according to their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,. . . ,4 indicating which experimental diet the chick received.

Details

The body weights of the chicks were measured at birth and every second day thereafter
until day 20. They were also measured on day 21. There were four groups on chicks on
different protein diets.

Source

Crowder, M. and Hand, D. (1990), Analysis of Repeated Measures, Chapman and Hall
(example 5.3)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and
Hall (table A.2)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

data(ChickWeight)

coplot(weight ~ Time | Chick, data = ChickWeight,

type = "b", show = FALSE)

fit a representative chick

fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal),

data = ChickWeight, subset = Chick == 1)

summary(fm1)

clearNames Remove the Names from an Object

Description

This function sets the names attribute of object to NULL and returns the object.

Usage

clearNames(object)

Arguments

object an object that may have a names attribute

928 CO2

Value

An object similar to object but without names.

Author(s)

Douglas Bates and Saikat DebRoy

See Also

setNames

Examples

data(women)

lapply(women, mean) # has a names attribute

clearNames(lapply(women, mean)) # removes the names

CO2 Carbon Dioxide uptake in grass plants

Description

The CO2 data frame has 84 rows and 5 columns of data from an experiment on the cold
tolerance of the grass species Echinochloa crus-galli.

Usage

data(CO2)

Format

This data frame contains the following columns:

Plant an ordered factor with levels Qn1 < Qn2 < Qn3 < . . . < Mc1 giving a unique identifier
for each plant.

Type a factor with levels Quebec Mississippi giving the origin of the plant

Treatment a factor with levels nonchilled chilled

conc a numeric vector of ambient carbon dioxide concentrations (mL/L).

uptake a numeric vector of carbon dioxide uptake rates (µmol/m2 sec).

Details

The CO2 uptake of six plants from Quebec and six plants from Mississippi was measured
at several levels of ambient CO2 concentration. Half the plants of each type were chilled
overnight before the experiment was conducted.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The statistical analysis of ecophysiolog-
ical response curves obtained from experiments involving repeated measures”, Ecology, 71,
1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

DNase 929

Examples

data(CO2)

coplot(uptake ~ conc | Plant, data = CO2, show = FALSE, type = "b")

fit the data for the first plant

fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == ’Qn1’)

summary(fm1)

fit each plant separately

fmlist <- list()

for (pp in levels(CO2$Plant)) {

fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == pp)

}

check the coefficients by plant

sapply(fmlist, coef)

DNase Elisa assay of DNase

Description

The DNase data frame has 176 rows and 3 columns of data obtained during development of
an ELISA assay for the recombinant protein DNase in rat serum.

Usage

data(DNase)

Format

This data frame contains the following columns:

Run an ordered factor with levels 10 < . . . < 3 indicating the assay run.

conc a numeric vector giving the known concentration of the protein.

density a numeric vector giving the measured optical density (dimensionless) in the assay.
Duplicate optical density measurements were obtained.

Source

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data,
Chapman & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

data(DNase)

coplot(density ~ conc | Run, data = DNase,

show = FALSE, type = "b")

coplot(density ~ log(conc) | Run, data = DNase,

show = FALSE, type = "b")

fit a representative run

fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase, subset = Run == 1)

930 formula.nls

compare with a four-parameter logistic

fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),

data = DNase, subset = Run == 1)

summary(fm2)

anova(fm1, fm2)

formula.nls Extract Model Formula from nls Object

Description

Returns the model used to fit object.

Usage

formula(x, ...)

Arguments

x an object inheriting from class nls, representing a nonlinear least squares
fit.

... further arguments passed to or from other methods.

Value

a formula representing the model used to obtain object.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, formula

Examples

data(Orange)

fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,

start = list(A=160, B=700, C = 350))

formula(fm1)

getInitial 931

getInitial Get Initial Parameter Estimates

Description

This function evaluates initial parameter estimates for a nonlinear regression model. If
data is a parameterized data frame or pframe object, its parameters attribute is returned.
Otherwise the object is examined to see if it contains a call to a selfStart object whose
initial attribute can be evaluated.

Usage

getInitial(object, data, ...)

Arguments

object a formula or a selfStart model that defines a nonlinear regression model

data a data frame in which the expressions in the formula or arguments to the
selfStart model can be evaluated

... optional additional arguments

Value

A named numeric vector or list of starting estimates for the parameters. The construction
of many selfStart models is such that these ”starting”estimates are, in fact, the converged
parameter estimates.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart, selfStart.default, selfStart.formula

Examples

data(Puromycin)

PurTrt <- Puromycin[Puromycin$state == "treated",]

getInitial(rate ~ SSmicmen(conc, Vm, K), PurTrt)

932 Indometh

Indometh Pharmacokinetics of Indomethicin

Description

The Indometh data frame has 66 rows and 3 columns of data on the pharmacokinetics of
indomethicin.

Usage

data(Indometh)

Format

This data frame contains the following columns:

Subject an ordered factor with containing the subject codes. The ordering is according
to increasing maximum response.

time a numeric vector of times at which blood samples were drawn (hr).

conc a numeric vector of plasma concentrations of indomethicin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indomethicin.

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976), “Kinetics of Indomethicin
absorption, elimination, and enterohepatic circulation in man”, Journal of Pharmacokinetics
and Biopharmaceutics, 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data,
Chapman & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

data(Indometh)

fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

data = Indometh, subset = Subject == 1)

summary(fm1)

Loblolly 933

Loblolly Growth of Loblolly pine trees

Description

The Loblolly data frame has 84 rows and 3 columns of records of the growth of Loblolly
pine trees.

Usage

data(Loblolly)

Format

This data frame contains the following columns:

height a numeric vector of tree heights (ft).

age a numeric vector of tree ages (yr).

Seed an ordered factor indicating the seed source for the tree. The ordering is according
to increasing maximum height.

Source

Kung, F. H. (1986), “Fitting logistic growth curve with predetermined carrying capacity”,
Proceedings of the Statistical Computing Section, American Statistical Association, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

data(Loblolly)

plot(height ~ age, data = Loblolly, subset = Seed == 329,

xlab = "Tree age (yr)", las = 1,

ylab = "Tree height (ft)",

main = "Loblolly data and fitted curve (Seed 329 only)")

fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),

data = Loblolly, subset = Seed == 329)

summary(fm1)

age <- seq(0, 30, len = 101)

lines(age, predict(fm1, list(age = age)))

nls Nonlinear Least Squares

Description

Determine the nonlinear least squares estimates of the nonlinear model parameters and
return a class nls object.

934 nls

Usage

nls(formula, data = parent.frame(), start, control = nls.control(),
algorithm = "default", trace = FALSE, subset,
weights, na.action)

Arguments

formula a nonlinear model formula including variables and parameters
data an optional data frame in which to evaluate the variables in formula

start a named list or named numeric vector of starting estimates
control an optional list of control settings. See nls.control for the names of the

settable control values and their effect.
algorithm character string specifying the algorithm to use. The default algorithm is

a Gauss-Newton algorithm. The other alternative is ”plinear”, the Golub-
Pereyra algorithm for partially linear least-squares models.

trace logical value indicating if a trace of the iteration progress should be
printed. Default is FALSE. If TRUE the residual sum-of-squares and the
parameter values are printed at the conclusion of each iteration. When
the "plinear" algorithm is used, the conditional estimates of the linear
parameters are printed after the nonlinear parameters.

subset an optional vector specifying a subset of observations to be used in the
fitting process.

weights an optional numeric vector of (fixed) weights. When present, the objective
function is weighted least squares. not yet implemented

na.action a function which indicates what should happen when the data contain
NAs.

Details

Do not use nls on artificial ”zero-residual” data.

The nls function uses a relative-offset convergence criterion that compares the numeri-
cal imprecision at the current parameter estimates to the residual sum-of-squares. This
performs well on data of the form

y = f(x, θ) + ε

(with var(eps) > 0). It fails to indicate convergence on data of the form

y = f(x, θ)

because the criterion amounts to comparing two components of the round-off error. If you
wish to test nls on artificial data please add a noise component, as shown in the example
below.

An nls object is a type of fitted model object. It has methods for the generic functions
coef, formula, resid, print, summary, AIC, fitted and vcov.

Value

A list of

m an nlsModel object incorporating the model
data the expression that was passed to nls as the data argument. The actual

data values are present in the environment of the m component.

nls 935

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988) Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nlsModel

Examples

data(DNase)

DNase1 <- DNase[DNase$Run == 1,]

using a selfStart model

fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)

summary(fm1DNase1)

using conditional linearity

fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,

start = list(xmid = 0, scal = 1),

alg = "plinear", trace = TRUE)

summary(fm2DNase1)

without conditional linearity

fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,

start = list(Asym = 3, xmid = 0, scal = 1),

trace = TRUE)

summary(fm3DNase1)

weighted nonlinear regression

data(Puromycin)

Treated <- Puromycin[Puromycin$state == "treated",]

weighted.MM <- function(resp, conc, Vm, K)

{

Purpose: exactly as white book p.451 -- RHS for nls()

Weighted version of Michaelis-Menten model

Arguments: ‘y’, ‘x’ and the two parameters (see book)

Author: Martin Maechler, Date: 23 Mar 2001, 18:48

pred <- (Vm * conc)/(K + conc)

(resp - pred) / sqrt(pred)

}

Pur.wt <- nls(~ weighted.MM(rate, conc, Vm, K), data = Treated,

start = list(Vm = 200, K = 0.1),

trace = TRUE)

936 nls.control

nls.control Control the Iterations in nls

Description

Allow the user to set some characteristics of the nls nonlinear least squares algorithm.

Usage

nls.control(maxiter=50, tol=1e-05, minFactor=1/1024)

Arguments

maxiter A positive integer specifying the maximum number of iterations allowed.

tol A positive numeric value specifying the tolerance level for the relative
offset convergence criterion.

minFactor A positive numeric value specifying the minimum step-size factor al-
lowed on any step in the iteration. The increment is calculated with a
Gauss-Newton algorithm and successively halved until the residual sum of
squares has been decreased or until the step-size factor has been reduced
below this limit.

Value

A list with exactly three components:

maxiter

tol

minFactor

Author(s)

Douglas Bates and Saikat DebRoy

References

Bates and Watts (1988), Nonlinear Regression Analysis and Its Applications, Wiley.

See Also

nls

Examples

nls.control(minFactor = 1/2048)

nlsModel 937

nlsModel Create an nlsModel Object

Description

This is the constructor for nlsModel objects, which are function closures for several func-
tions in a list. The closure includes a nonlinear model formula, data values for the formula,
as well as parameters and their values.

Usage

nlsModel(form, data, start)

Arguments

form a nonlinear model formula

data a data frame or a list in which to evaluate the variables from the model
formula

start a named list or named numeric vector of starting estimates for the pa-
rameters in the model

Details

An nlsModel object is primarily used within the nls function. It encapsulates the model,
the data, and the parameters in an environment and provides several methods to access
characteristics of the model. It forms an important component of the object returned by
the nls function.

Value

The value is a list of functions that share a common environment.

resid returns the residual vector evaluated at the current parameter values

fitted returns the fitted responses and their gradient at the current parameter
values

formula returns the model formula

deviance returns the residual sum-of-squares at the current parameter values

gradient returns the gradient of the model function at the current parameter values

conv returns the relative-offset convergence criterion evaluated at the current
parmeter values

incr returns the parameter increment calculated according to the Gauss-
Newton formula

setPars a function with one argument, pars. It sets the parameter values for the
nlsModel object and returns a logical value denoting a singular gradient
array.

getPars returns the current value of the model parameters as a numeric vector

getAllPars returns the current value of the model parameters as a numeric vector

getEnv returns the environment shared by these functions

938 NLSstAsymptotic

trace the function that is called at each iteration if tracing is enabled

Rmat the upper triangular factor of the gradient array at the current parameter
values

predict takes as argument newdata,a data.frame and returns the predicted re-
sponse for newdata.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nls

Examples

data(DNase)

DNase1 <- DNase[DNase$Run == 1,]

mod <-

nlsModel(density ~ SSlogis(log(conc), Asym, xmid, scal),

DNase1, list(Asym = 3, xmid = 0, scal = 1))

mod$getPars() # returns the parameters as a list

mod$deviance() # returns the residual sum-of-squares

mod$resid() # returns the residual vector and the gradient

mod$incr() # returns the suggested increment

mod$setPars(unlist(mod$getPars()) + mod$incr()) # set new parameter values

mod$getPars() # check the parameters have changed

mod$deviance() # see if the parameter increment was successful

mod$trace() # check the tracing

mod$Rmat() # R matrix from the QR decomposition of the gradient

NLSstAsymptotic Fit the Asymptotic Regression Model

Description

Fits the asymptotic regression model, in the form b0 + b1*(1-exp(-exp(lrc) * x) to the
xy data. This can be used as a building block in determining starting estimates for more
complicated models.

Usage

NLSstAsymptotic(xy)

Arguments

xy a sortedXyData object

NLSstClosestX 939

Value

A numeric value of length 3 with components labelled b0, b1, and lrc. b0 is the estimated
intercept on the y-axis, b1 is the estimated difference between the asymptote and the y-
intercept, and lrc is the estimated logarithm of the rate constant.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

SSasymp

Examples

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

NLSstAsymptotic(sortedXyData(expression(age), expression(height), Lob.329))

NLSstClosestX Inverse Interpolation

Description

Use inverse linear interpolation to approximate the x value at which the function represented
by xy is equal to yval.

Usage

NLSstClosestX(xy, yval)

Arguments

xy a sortedXyData object
yval a numeric value on the y scale

Value

A single numeric value on the x scale.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstLfAsymptote, NLSstRtAsymptote, selfStart

Examples

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstClosestX(DN.srt, 1.0)

940 NLSstRtAsymptote

NLSstLfAsymptote Horizontal Asymptote on the Left Side

Description

Provide an initial guess at the horizontal asymptote on the left side (i.e. small values of x)
of the graph of y versus x from the xy object. Primarily used within initial functions for
self-starting nonlinear regression models.

Usage

NLSstLfAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for small x.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side

Description

Provide an initial guess at the horizontal asymptote on the right side (i.e. large values of
x) of the graph of y versus x from the xy object. Primarily used within initial functions
for self-starting nonlinear regression models.

Usage

NLSstRtAsymptote(xy)

Arguments

xy a sortedXyData object

numericDeriv 941

Value

A single numeric value estimating the horizontal asymptote for large x.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)

NLSstRtAsymptote(DN.srt)

numericDeriv Evaluate derivatives numerically

Description

numericDeriv numerically evaluates the gradient of an expression.

Usage

numericDeriv(expr, theta, rho=parent.frame())

Arguments

expr The expression to be differentiated. The value of this expression should
be a numeric vector.

theta A character vector of names of variables used in expr

rho An environment containing all the variables needed to evaluate expr

Details

This is a front end to the C function numeric_deriv, which is described in Writing R
Extensions.

Value

The value of eval(expr, env = rho) plus a matrix attribute called gradient. The
columns of this matrix are the derivatives of the value with respect to the variables listed
in theta.

Author(s)

Saikat DebRoy 〈saikat@stat.wisc.edu〉

942 Orange

Examples

myenv <- new.env()

assign("mean", 0., env = myenv)

assign("sd", 1., env = myenv)

assign("x", seq(-3., 3., len = 31), env = myenv)

numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)

Orange Growth of orange trees

Description

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Usage

data(Orange)

Format

This data frame contains the following columns:

Tree an ordered factor indicating the tree on which the measurement is made. The ordering
is according to increasing maximum diameter.

age a numeric vector giving the age of the tree (days since 1968/12/31)

circumference a numeric vector of trunk circumferences (mm). This is probably “circum-
ference at breast height”, a standard measurement in forestry.

Source

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis (3rd ed), Wiley (exercise
24.N).

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

data(Orange)

coplot(circumference ~ age | Tree, data = Orange, show = FALSE)

fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),

data = Orange, subset = Tree == 3)

plot(circumference ~ age, data = Orange, subset = Tree == 3,

xlab = "Tree age (days since 1968/12/31)",

ylab = "Tree circumference (mm)", las = 1,

main = "Orange tree data and fitted model (Tree 3 only)")

age <- seq(0, 1600, len = 101)

lines(age, predict(fm1, list(age = age)))

plot.profile.nls 943

plot.profile.nls Plot a profile.nls Object

Description

Displays a series of plots of the profile t function and interpolated confidence intervals for
the parameters in a nonlinear regression model that has been fit with nls and profiled with
profile.nls.

Usage

plot(x, levels, conf= c(99, 95, 90, 80, 50)/100,
nseg = 50, absVal =TRUE, ...)

Arguments

x an object of class "profile.nls"

levels levels, on the scale of the absolute value of a t statistic, at which to inter-
polate intervals. Usually conf is used instead of giving levels explicitly.

conf a numeric vector of confidence levels for profile-based confidence intervals
on the parameters. Defaults to c(0.99, 0.95, 0.90, 0.80, 0.50).

nseg an integer value giving the number of segments to use in the spline inter-
polation of the profile t curves. Defaults to 50.

absVal a logical value indicating whether or not the plots should be on the scale
of the absolute value of the profile t. Defaults to TRUE.

... other arguments to the plot function can be passed here.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley (chapter 6)

See Also

nls, profile, profile.nls

Examples

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

pr1 <- profile(fm1)

opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)

plot(pr1, conf = c(95, 90, 80, 50)/100)

plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)

mtext("Confidence intervals based on the profile sum of squares",

side = 3, outer = TRUE)

944 predict.nls

mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",

side = 1, outer = TRUE)

par(opar)

predict.nls Predicting from Nonlinear Least Squares Fits

Description

predict.nls produces predicted values, obtained by evaluating the regression function in
the frame newdata. If the logical se.fit is TRUE, standard errors of the predictions are
calculated. If the numeric argument scale is set (with optional df), it is used as the residual
standard deviation in the computation of the standard errors, otherwise this is extracted
from the model fit. Setting intervals specifies computation of confidence or prediction
(tolerance) intervals at the specified level.

At present se.fit and interval are ignored.

Usage

predict(object, newdata , se.fit = FALSE, scale = NULL, df = Inf,
interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object An object that inherits from class nls.

newdata A named list or data frame with values of the input variables for the
model in object. If newdata is missing the fitted values at the original
data points are returned.

se.fit A logical value indicating if the standard errors of the predictions should
be calculated. Defaults to FALSE. At present this argument is ignored.

scale A numeric scalar. If it is set (with optional df), it is used as the residual
standard deviation in the computation of the standard errors, otherwise
this information is extracted from the model fit. At present this argument
is ignored.

df A positive numeric scalar giving the number of degrees of freedom for the
scale estimate. At present this argument is ignored.

interval A character string indicating if prediction intervals or a confidence interval
on the mean responses are to be calculated. At present this argument is
ignored.

level A numeric scalar between 0 and 1 giving the confidence level for the
intervals (if any) to be calculated. At present this argument is ignored.

... Additional optional arguments. At present no optional arguments are
used.

profile.nls 945

Value

predict.nls produces a vector of predictions or a matrix of predictions and bounds with
column names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the
following components is returned:

fit vector or matrix as above

se.fit standard error of predictions
residual.scale

residual standard deviations

df degrees of freedom for residual

See Also

The model fitting function nls, predict.

Examples

data(BOD)

fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

predict(fm) # fitted values at observed times

Form data plot and smooth line for the predictions

opar <- par(las = 1)

plot(demand ~ Time, data = BOD, col = 4,

main = "BOD data and fitted first-order curve",

xlim = c(0,7), ylim = c(0, 20))

tt <- seq(0, 8, length = 101)

lines(tt, predict(fm, list(Time = tt)))

par(opar)

profile.nls Method for Profiling nls Objects

Description

Investigates behavior of the log-likelihood function near the solution represented by fitted.

Usage

profile(fitted, which=1:npar, maxpts=100, alphamax=0.01,
delta.t=cutoff/5, ...)

Arguments

fitted the original fitted model object.

which the original model parameters which should be profiled. By default, all
parameters are profiled.

maxpts maximum number of points to be used for profiling each parameter.

alphamax maximum significance level allowed for the profile t-statistics.

delta.t suggested change on the scale of the profile t-statistics. Default value
chosen to allow profiling at about 10 parameter values.

... further arguments passed to or from other methods.

946 profiler

Details

The profile t-statistics is defined as the square root of change in sum-of-squares divided by
residual standard error with an appropriate sign.

Value

A list with an element for each parameter being profiled. The elements are data-frames
with two variables

par.vals a matrix of parameter values for each fitted model.

tau The profile t-statistics.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley (chapter 6)

See Also

nls, profile, profiler.nls, plot.profile.nls

Examples

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

pr1 <- profile(fm1)

profiled values for the two parameters

pr1$A

pr1$lrc

profiler Constructor for Profiler Objects for Nonlinear Models

Description

Create a profiler object for the model object fitted.

Usage

profiler(fitted, ...)

Arguments

fitted the original fitted model object.

... Additional parameters. See documentation on individual methods.

profiler.nls 947

Value

An object of class "profiler" which is a list with function elements

getFittedPars()

the parameters in fitted

setDefault(varying, params)

this is used for changing the default settings for profiling. In absence of
both parameters, the default is set to the original fitted parameters with
all parameters varying. The arguments are
varying: a logical, integer or character vector giving parameters to be
varied. params: the default value at which profiling is to take place.

getProfile(varying, params)

this can be used in conjunction with setDefault without any arguments.
Alternatively, the parameters to be varied and the values for fixed param-
eters can be specified using the arguments. The arguments are
varying: a logical vector giving parameters to be varied. This can be
omitted if params is a named list or numeric vector.
params: values for parameters to be held fixed.
It returns a list with elements
parameters: the parameter values for the profiled optimum.
fstat: a profile statistics. See individual methods for details.
varying: a logical vector indicating parameters which were varied.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

profiler.nls, profile

Examples

see documentation on individual methods

profiler.nls Constructor for Profiler Objects from nls Objects

Description

Create a profiler object for the model object fitted of class nls.

Usage

profiler(fitted, ...)

Arguments

fitted the original fitted model object of class nls.

... Additional parameters. None are used.

948 profiler.nls

Value

An object of class profiler.nls which is a list with function elements

getFittedModel()

the nlsModel object corresponding to fitted

getFittedPars()

See documentation for profiler
setDefault(varying, params)

See documentation for profiler
getProfile(varying, params)

In the returned list, fstat is the ratio of change in sum-of-squares and
the residual standard error.
For other details, see documentation for profiler

WARNING

When using setDefault and getProfile together, the internal state of the fitted model may
get changed. So after completing the profiling for a parameter, the internal states should
be restored by a call to setDefault without any arguments. For example see below or the
source for profile.nls.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley

See Also

nls, nlsModel, profiler, profile.nls

Examples

data(BOD)

obtain the fitted object

fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)

get the profile for the fitted model

prof1 <- profiler(fm1)

profile with A fixed at 16.0

prof1$getProfile(c(FALSE, TRUE), 16.0)

vary lrc

prof1$setDefault(varying = c(FALSE, TRUE))

fix A at 14.0 and starting estimate of lrc at -0.2

prof1$setDefault(params = c(14.0, -0.2))

and get the profile

prof1$getProfile()

finally, set defaults back to original estimates

prof1$setDefault()

Puromycin 949

Puromycin Reaction velocity of an enzymatic reaction

Description

The Puromycin data frame has 23 rows and 3 columns of the reaction velocity versus
substrate concentration in an enzymatic reaction involving untreated cells or cells treated
with Puromycin.

Usage

data(Puromycin)

Format

This data frame contains the following columns:

conc a numeric vector of substrate concentrations (ppm)

rate a numeric vector of instantaneous reaction rates (counts/min/min)

state a factor with levels treated untreated

Details

Data on the “velocity” of an enzymatic reaction were obtained by Treloar (1974). The
number of counts per minute of radioactive product from the reaction was measured as a
function of substrate concentration in parts per million (ppm) and from these counts the
initial rate, or “velocity,” of the reaction was calculated (counts/min/min). The experiment
was conducted once with the enzyme treated with Puromycin, and once with the enzyme
untreated.

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications,
Wiley, Appendix A1.3.

Treloar, M. A. (1974), Effects of Puromycin on Galactosyltransferase in Golgi Membranes,
M.Sc. Thesis, U. of Toronto.

Examples

data(Puromycin)

plot(rate ~ conc, data = Puromycin, las = 1,

xlab = "Substrate concentration (ppm)",

ylab = "Reaction velocity (counts/min/min)",

pch = as.integer(Puromycin$state),

col = as.integer(Puromycin$state),

main = "Puromycin data and fitted Michaelis-Menten curves")

simplest form of fitting the Michaelis-Menten model to these data

fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",

start = c(Vm = 200, K = 0.05), trace = TRUE)

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "untreated",

start = c(Vm = 160, K = 0.05), trace = TRUE)

950 selfStart

summary(fm1)

summary(fm2)

using partial linearity

fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),

algorithm = "plinear", trace = TRUE)

using a self-starting model

fm4 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")

summary(fm4)

add fitted lines to the plot

conc <- seq(0, 1.2, len = 101)

lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)

lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)

legend(0.8, 120, levels(Puromycin$state),

col = 1:2, lty = 1:2, pch = 1:2)

selfStart Construct Self-starting Nonlinear Models

Description

This function is generic; methods functions can be written to handle specific classes of
objects. Available methods include selfStart.default and selfStart.formula. See the
documentation on the appropriate method function.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model.

initial a function object, taking three arguments: mCall, data, and LHS, repre-
senting, respectively, a matched call to the function model, a data frame
in which to interpret the variables in mCall, and the expression from the
left-hand side of the model formula in the call to nls. This function
should return initial values for the parameters in model.

parameters, template

arguments used by some methods..

Value

a function object of the selfStart class.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.default, selfStart.formula

selfStart.default 951

Examples

see documentation for the methods

selfStart.default Construct Self-starting Nonlinear Models

Description

A method for the generic function ‘selfStart’ for formula objects.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model.

initial a function object, taking three arguments: mCall, data, and LHS, repre-
senting, respectively, a matched call to the function model, a data frame
in which to interpret the variables in mCall, and the expression from the
left-hand side of the model formula in the call to nls. This function
should return initial values for the parameters in model.

parameters, template

these arguments are included for consistency with the generic function,
but are not used in the default method. See the documentation on
selfStart.formula.

Value

a function object of class selfStart, corresponding to a self-starting nonlinear model func-
tion. An initial attribute (defined by the initial argument) is added to the function to
calculate starting estimates for the parameters in the model automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.formula

Examples

‘first.order.log.model’ is a function object defining a first order

compartment model

‘first.order.log.initial’ is a function object which calculates initial

values for the parameters in ‘first.order.log.model’

self-starting first order compartment model

SSfol <- selfStart(first.order.log.model, first.order.log.initial)

952 selfStart.formula

selfStart.formula Construct Self-starting Nonlinear Models

Description

A method for the generic function ‘selfStart’ for formula objects.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a nonlinear formula object of the form ~expression.

initial a function object, taking three arguments: mCall, data, and LHS, repre-
senting, respectively, a matched call to the function model, a data frame
in which to interpret the variables in mCall, and the expression from the
left-hand side of the model formula in the call to nls. This function
should return initial values for the parameters in model.

parameters a character vector specifying the terms on the right hand side of model
for which initial estimates should be calculated. Passed as the namevec
argument to the deriv function.

template an optional prototype for the calling sequence of the returned object,
passed as the function.arg argument to the deriv function. By default,
a template is generated with the covariates in model coming first and the
parameters in model coming last in the calling sequence.

Value

a function object of class selfStart, obtained by applying deriv to the right hand side of
the model formula. An initial attribute (defined by the initial argument) is added to
the function to calculate starting estimates for the parameters in the model automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart.default, deriv

Examples

self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),

function(mCall, data, LHS)

{

xy <- sortedXyData(mCall[["x"]], LHS, data)

if(nrow(xy) < 4) {

stop("Too few distinct x values to fit a logistic")

}

setNames 953

z <- xy[["y"]]

if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes

z <- z/(1.05 * max(z)) # scale to within unit height

xy[["z"]] <- log(z/(1 - z)) # logit transformation

aux <- coef(lm(x ~ z, xy))

parameters(xy) <- list(xmid = aux[1], scal = aux[2])

pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))

value <- c(pars[3], pars[1], pars[2])

names(value) <- mCall[c("Asym", "xmid", "scal")]

value

}, c("Asym", "xmid", "scal"))

setNames Set the Names in an Object

Description

This is a convenience function that sets the names on an object and returns the object.
It is most useful at the end of a function definition where one is creating the object to be
returned and would prefer not to store it under a name just so the names can be assigned.

Usage

setNames(object, nm)

Arguments

object an object for which a names attribute will be meaningful

nm a character vector of names to assign to the object

Value

An object of the same sort as object with the new names assigned.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

clearNames

Examples

setNames(1:3, c("foo", "bar", "baz"))

this is just a short form of

tmp <- 1:3

names(tmp) <- c("foo", "bar", "baz")

tmp

954 sortedXyData

sortedXyData Create a sortedXyData object

Description

This is a constructor function for the class of sortedXyData objects. These objects are
mostly used in the initial function for a self-starting nonlinear regression model, which
will be of the selfStart class.

Usage

sortedXyData(x, y, data)

Arguments

x a numeric vector or an expression that will evaluate in data to a numeric
vector

y a numeric vector or an expression that will evaluate in data to a numeric
vector

data an optional data frame in which to evaluate expressions for x and y, if
they are given as expressions

Value

A sortedXyData object. This is a data frame with exactly two numeric columns, named x
and y. The rows are sorted so the x column is in increasing order. Duplicate x values are
eliminated by averaging the corresponding y values.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart, NLSstClosestX, NLSstLfAsymptote, NLSstRtAsymptote

Examples

data(DNase)

DNase.2 <- DNase[DNase$Run == "2",]

sortedXyData(expression(log(conc)), expression(density), DNase.2)

SSasymp 955

SSasymp Asymptotic Regression Model

Description

This selfStart model evaluates the asymptotic regression function and its gradient. It has
an initial attribute that will evaluate initial estimates of the parameters Asym, R0, and
lrc for a given set of data.

Usage

SSasymp(input, Asym, R0, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

R0 a numeric parameter representing the response when input is zero.

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym+(R0-
Asym)*exp(-exp(lrc)*input). If all of the arguments Asym, R0, and lrc are names of
objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only

Asym <- 100

resp0 <- -8.5

lrc <- -3.2

SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient

getInitial(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)

Initial values are in fact the converged values

fm1 <- nls(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)

summary(fm1)

956 SSasympOff

SSasympOff Asymptotic Regression Model with an Offset

Description

This selfStart model evaluates an alternative parameterization of the asymptotic regres-
sion function and the gradient with respect to those parameters. It has an initial attribute
that creates initial estimates of the parameters Asym, lrc, and c0.

Usage

SSasympOff(input, Asym, lrc, c0)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

c0 a numeric parameter representing the input for which the response is
zero.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*(input - c0))). If all of the arguments Asym, lrc, and c0 are names of
objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(CO2)

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]

SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only

Asym <- 32; lrc <- -4; c0 <- 43

SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient

getInitial(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)

Initial values are in fact the converged values

fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0), data = CO2.Qn1)

summary(fm1)

SSasympOrig 957

SSasympOrig Asymptotic Regression Model through the Origin

Description

This selfStart model evaluates the asymptotic regression function through the origin
and its gradient. It has an initial attribute that will evaluate initial estimates of the
parameters Asym and lrc for a given set of data.

Usage

SSasympOrig(input, Asym, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote.

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*input)). If all of the arguments Asym and lrc are names of objects, the
gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(Loblolly)

Lob.329 <- Loblolly[Loblolly$Seed == "329",]

SSasympOrig(Lob.329$age, 100, -3.2) # response only

Asym <- 100; lrc <- -3.2

SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient

getInitial(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)

Initial values are in fact the converged values

fm1 <- nls(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)

summary(fm1)

958 SSbiexp

SSbiexp Biexponential model

Description

This selfStart model evaluates the biexponential model function and its gradient. It has
an initial attribute that creates initial estimates of the parameters A1, lrc1, A2, and
lrc2.

Usage

SSbiexp(input, A1, lrc1, A2, lrc2)

Arguments

input a numeric vector of values at which to evaluate the model.

A1 a numeric parameter representing the multiplier of the first exponential.

lrc1 a numeric parameter representing the natural logarithm of the rate con-
stant of the first exponential.

A2 a numeric parameter representing the multiplier of the second exponential.

lrc2 a numeric parameter representing the natural logarithm of the rate con-
stant of the second exponential.

Value

a numeric vector of the same length as input. It is the value of the expression A1*exp(-
exp(lrc1)*input)+A2*exp(-exp(lrc2)*input). If all of the arguments A1, lrc1, A2, and
lrc2 are names of objects, the gradient matrix with respect to these names is attached as
an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(Indometh)

Indo.1 <- Indometh[Indometh$Subject == 1,]

SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only

A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3

SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient

getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)

Initial values are in fact the converged values

fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)

summary(fm1)

SSfol 959

SSfol First-order Compartment Model

Description

This selfStart model evaluates the first-order compartment function and its gradient. It
has an initial attribute that creates initial estimates of the parameters lKe, lKa, and lCl.

Usage

SSfol(Dose, input, lKe, lKa, lCl)

Arguments

Dose a numeric value representing the initial dose.

input a numeric vector at which to evaluate the model.

lKe a numeric parameter representing the natural logarithm of the elimination
rate constant.

lKa a numeric parameter representing the natural logarithm of the absorption
rate constant.

lCl a numeric parameter representing the natural logarithm of the clearance.

Value

a numeric vector of the same length as input, which is the value of the expres-
sion Dose * exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input)-exp(-exp(lKa)*input)) /
(exp(lKa)-exp(lKe)).

If all of the arguments lKe, lKa, and lCl are names of objects, the gradient matrix with
respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(Theoph)

Theoph.1 <- Theoph[Theoph$Subject == 1,]

SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only

lKe <- -2.5; lKa <- 0.5; lCl <- -3

SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient

getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)

Initial values are in fact the converged values

fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)

summary(fm1)

960 SSfpl

SSfpl Four-parameter Logistic Model

Description

This selfStart model evaluates the four-parameter logistic function and its gradient. It
has an initial attribute that will evaluate initial estimates of the parameters A, B, xmid,
and scal for a given set of data.

Usage

SSfpl(input, A, B, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

A a numeric parameter representing the horizontal asymptote on the left
side (very small values of input).

B a numeric parameter representing the horizontal asymptote on the right
side (very large values of input).

xmid a numeric parameter representing the input value at the inflection point
of the curve. The value of SSfpl will be midway between A and B at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression A+(B-
A)/(1+exp((xmid-input)/scal)). If all of the arguments A, B, xmid, and scal are names
of objects, the gradient matrix with respect to these names is attached as an attribute
named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(ChickWeight)

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]

SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only

A <- 13; B <- 368; xmid <- 14; scal <- 6

SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient

getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)

Initial values are in fact the converged values

fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)

summary(fm1)

SSgompertz 961

SSgompertz Gompertz Growth Model

Description

This selfStart model evaluates the Gompertz growth model and its gradient. It has an
initial attribute that creates initial estimates of the parameters Asym, b2, and b3.

Usage

SSgompertz(x, Asym, b2, b3)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

b2 a numeric parameter related to the value of the function at x = 0

b3 a numeric parameter related to the scale the x axis.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*exp(-
b2*b3^x). If all of the arguments Asym, b2, and b3 are names of objects the gradient matrix
with respect to these names is attached as an attribute named gradient.

Author(s)

Douglas Bates

See Also

nls, selfStart

Examples

data(DNase)

DNase.1 <- subset(DNase, Run == 1)

SSlogis(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only

Asym <- 4.5; b2 <- 2.3; b3 <- 0.7

SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response and gradient

getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)

Initial values are in fact the converged values

fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)

summary(fm1)

962 SSlogis

SSlogis Logistic Model

Description

This selfStart model evaluates the logistic function and its gradient. It has an initial
attribute that creates initial estimates of the parameters Asym, xmid, and scal.

Usage

SSlogis(input, Asym, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

xmid a numeric parameter representing the x value at the inflection point of
the curve. The value of SSlogis will be Asym/2 at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym/(1+exp((xmid-input)/scal)). If all of the arguments Asym, xmid, and scal are
names of objects the gradient matrix with respect to these names is attached as an at-
tribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(ChickWeight)

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]

SSlogis(Chick.1$Time, 368, 14, 6) # response only

Asym <- 368; xmid <- 14; scal <- 6

SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient

getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)

Initial values are in fact the converged values

fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)

summary(fm1)

SSmicmen 963

SSmicmen Michaelis-Menten Model

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters Vm and K

Usage

SSmicmen(input, Vm, K)

Arguments

input a numeric vector of values at which to evaluate the model.

Vm a numeric parameter representing the maximum value of the response.

K a numeric parameter representing the input value at which half the max-
imum response is attained. In the field of enzyme kinetics this is called
the Michaelis parameter.

Value

a numeric vector of the same length as input. It is the value of the expression
Vm*input/(K+input). If both the arguments Vm and K are names of objects, the gradi-
ent matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

data(Puromycin)

PurTrt <- Puromycin[Puromycin$state == "treated",]

SSmicmen(PurTrt$conc, 200, 0.05) # response only

Vm <- 200; K <- 0.05

SSmicmen(PurTrt$conc, Vm, K) # response and gradient

getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)

Initial values are in fact the converged values

fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)

summary(fm1)

Alternative call using the subset argument

fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")

summary(fm2)

964 SSweibull

SSweibull Weibull growth curve model

Description

This selfStart model evaluates the Weibull model for growth curve data and its gradient.
It has an initial attribute that will evaluate initial estimates of the parameters Asym,
Drop, lrc, and pwr for a given set of data.

Usage

SSweibull(x, Asym, Drop, lrc, pwr)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right
side (very small values of x).

Drop a numeric parameter representing the change from Asym to the y intercept.

lrc a numeric parameter representing the natural logarithm of the rate con-
stant.

pwr a numeric parameter representing the power to which x is raised.

Details

This model is a generalization of the SSasymp model in that it reduces to SSasymp when
pwr is unity.

Value

a numeric vector of the same length as x. It is the value of the expression Asym-Drop*exp(-
exp(lrc)*x^pwr). If all of the arguments Asym, Drop, lrc, and pwr are names of objects,
the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Douglas Bates

References

Ratkowsky, David A. (1983), Nonlinear Regression Modeling, Dekker. (section 4.4.5)

See Also

nls, selfStart, SSasymp

Theoph 965

Examples

data(ChickWeight)

Chick.6 <- subset(ChickWeight, (Chick == 6) & (Time > 0))

SSweibull(Chick.6$Time, 160, 115, -5.5, 2.5) # response only

Asym <- 160; Drop <- 115; lrc <- -5.5; pwr <- 2.5

SSweibull(Chick.6$Time, Asym, Drop, lrc, pwr) # response and gradient

getInitial(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)

Initial values are in fact the converged values

fm1 <- nls(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)

summary(fm1)

Theoph Pharmacokinetics of theophylline

Description

The Theoph data frame has 132 rows and 5 columns of data from an experiment on the
pharmacokinetics of theophylline.

Usage

data(Theoph)

Format

This data frame contains the following columns:

Subject an ordered factor with levels 1, . . . , 12 identifying the subject on whom the obser-
vation was made. The ordering is by increasing maximum concentration of theophylline
observed.

Wt weight of the subject (kg).

Dose dose of theophylline administered orally to the subject (mg/kg).

Time time since drug administration when the sample was drawn (hr).

conc theophylline concentration in the sample (mg/L).

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the
kinetics of the anti-asthmatic drug theophylline. Twelve subjects were given oral doses of
theophylline then serum concentrations were measured at 11 time points over the next 25
hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000)
using a two-compartment open pharmacokinetic model, for which a self-starting model
function, SSfol, is available.

966 Theoph

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users Guide: Part V,
NONMEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data,
Chapman & Hall (section 5.5, p. 145 and section 6.6, p. 176)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer
(Appendix A.29)

See Also

SSfol

Examples

data(Theoph)

coplot(conc ~ Time | Subject, data = Theoph, show = FALSE)

Theoph.4 <- subset(Theoph, Subject == 4)

fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),

data = Theoph.4)

summary(fm1)

plot(conc ~ Time, data = Theoph.4,

xlab = "Time since drug administration (hr)",

ylab = "Theophylline concentration (mg/L)",

main = "Observed concentrations and fitted model",

sub = "Theophylline data - Subject 4 only",

las = 1, col = 4)

xvals <- seq(0, par("usr")[2], len = 55)

lines(xvals, predict(fm1, newdata = list(Time = xvals)),

col = 4)

Chapter 9

The splines package

asVector Coerce an Object to a Vector

Description

This is a generic function. Methods for this function coerce objects of given classes to
vectors.

Usage

asVector(object)

Arguments

object An object.

Details

Methods for vector coercion in new classes must be created for the asVector generic instead
of as.vector. The as.vector function is internal and not easily extended. Currently the
only class with an asVector method is the xyVector class.

Value

a vector

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector

967

968 backSpline

Examples

data(women)

ispl <- interpSpline(weight ~ height, women)

pred <- predict(ispl)

class(pred)

str(pred)

asVector(pred)

backSpline Monotone Inverse Spline

Description

Create a monotone inverse of a monotone natural spline.

Usage

backSpline(object)

Arguments

object an object that inherits from class nbSpline or npolySpline. That is, the
object must represent a natural interpolation spline but it can be either in
the B-spline representation or the piecewise polynomial one. The spline
is checked to see if it represents a monotone function.

Value

An object of class polySpline that contains the piecewise polynomial representation of
a function that has the appropriate values and derivatives at the knot positions to be an
inverse of the spline represented by object. Technically this object is not a spline because
the second derivative is not constrained to be continuous at the knot positions. However,
it is often a much better approximation to the inverse than fitting an interpolation spline
to the y/x pairs.

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline

Examples

data(women)

ispl <- interpSpline(women$height, women$weight)

bspl <- backSpline(ispl)

plot(bspl) # plots over the range of the knots

points(women$weight, women$height)

bs 969

bs Generate a Basis for Polynomial Splines

Description

Generate the B-spline basis matrix for a polynomial spline.

Usage

bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE,
Boundary.knots = range(x))

Arguments

x the predictor variable.

df degrees of freedom; one can specify df rather than knots; bs() then
chooses df-degree-1 knots at suitable quantiles of x.

knots the internal breakpoints that define the spline. The default is NULL, which
results in a basis for ordinary polynomial regression. Typical values are
the mean or median for one knot, quantiles for more knots. See also
Boundary.knots.

degree degree of the piecewise polynomial—default is 3 for cubic splines.

intercept if TRUE, an intercept is included in the basis; default is FALSE.

Boundary.knots

boundary points at which to anchor the B-spline basis (default the range of
the data). If both knots and Boundary.knots are supplied, the basis pa-
rameters do not depend on x. Data can extend beyond Boundary.knots.

Value

A matrix of dimension length(x) * df, where either df was supplied or if knots were sup-
plied, df = length(knots) + 3 + intercept. Attributes are returned that correspond
to the arguments to bs, and explicitly give the knots, Boundary.knots etc for use by
predict.bs().

bs() is based on the function spline.des() written by Douglas Bates. It generates a basis
matrix for representing the family of piecewise polynomials with the specified interior knots
and degree, evaluated at the values of x. A primary use is in modeling formulas to directly
specify a piecewise polynomial term in a model.

Beware of making predictions with new x values when df is used as an argument. Either
use safe.predict.gam(), or else specify knots and Boundary.knots.

See Also

ns, poly, smooth.spline, predict.bs, SafePrediction

970 interpSpline

Examples

data(women)

bs(women$height, df = 5)

summary(fm1 <- lm(weight ~ bs(height, df = 5), data = women))

example of safe prediction

plot(women, xlab = "Height (in)", ylab = "Weight (lb)")

ht <- seq(57, 73, len = 200)

lines(ht, predict(fm1, data.frame(height=ht)))

Consistency:

x <- c(1:3,5:6)

stopifnot(identical(bs(x), bs(x, df = 3)),

!is.null(kk <- attr(bs(x), "knots")),# not true till 1.5.1

length(kk) == 0)

interpSpline Create an Interpolation Spline

Description

Create an interpolation spline, either from x and y vectors, or from a formula/data.frame
combination.

Usage

interpSpline(obj1, obj2, bSpline = FALSE, period = NULL,
na.action = na.fail)

Arguments

obj1 Either a numeric vector of x values or a formula.

obj2 If obj1 is numeric this should be a numeric vector of the same length. If
obj1 is a formula this can be an optional data frame in which to evaluate
the names in the formula.

bSpline If TRUE the b-spline representation is returned, otherwise the piecewise
polynomial representation is returned. Defaults to FALSE.

period An optional positive numeric value giving a period for a periodic interpo-
lation spline.

na.action a optional function which indicates what should happen when the data
contain NAs. The default action (na.omit) is to omit any incomplete ob-
servations. The alternative action na.fail causes interpSpline to print
an error message and terminate if there are any incomplete observations.

Value

An object that inherits from class spline. The object can be in the B-spline representation,
in which case it will be of class nbSpline for natural B-spline, or in the piecewise polynomial
representation, in which case it will be of class npolySpline.

ns 971

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, splineOrder, periodicSpline

Examples

data(women)

ispl <- interpSpline(women$height, women$weight)

ispl2 <- interpSpline(weight ~ height, women)

ispl and ispl2 should be the same

plot(predict(ispl, seq(55, 75, len = 51)), type = "l")

points(women$height, women$weight)

plot(ispl) # plots over the range of the knots

points(women$height, women$weight)

splineKnots(ispl)

ns Generate a Basis Matrix for Natural Cubic Splines

Description

Generate the B-spline basis matrix for a natural cubic spline.

Usage

ns(x, df = NULL, knots = NULL, intercept = FALSE,
Boundary.knots = range(x))

Arguments

x the predictor variable.

df degrees of freedom. One can supply df rather than knots; ns() then
chooses df - 1 - intercept knots at suitably chosen quantiles of x.

knots breakpoints that define the spline. The default is no knots; together with
the natural boundary conditions this results in a basis for linear regression
on x. Typical values are the mean or median for one knot, quantiles for
more knots. See also Boundary.knots.

intercept if TRUE, an intercept is included in the basis; default is FALSE.
Boundary.knots

boundary points at which to impose the natural boundary conditions and
anchor the B-spline basis (default the range of the data). If both knots
and Boundary.knots are supplied, the basis parameters do not depend
on x. Data can extend beyond Boundary.knots

972 periodicSpline

Value

A matrix of dimension length(x) * df where either df was supplied or if knots were sup-
plied, df = length(knots) + 1 + intercept. Attributes are returned that correspond
to the arguments to ns, and explicitly give the knots, Boundary.knots etc for use by
predict.ns().

ns() is based on the function spline.des(). It generates a basis matrix for representing
the family of piecewise-cubic splines with the specified sequence of interior knots, and the
natural boundary conditions. These enforce the constraint that the function is linear beyond
the boundary knots, which can either be supplied, else default to the extremes of the data.
A primary use is in modeling formula to directly specify a natural spline term in a model.

Beware of making predictions with new x values when df is used as an argument. Either
use safe.predict.gam(), or else specify knots and Boundary.knots.

See Also

bs, poly, predict.ns, SafePrediction

Examples

data(women)

ns(women$height, df = 5)

summary(fm1 <- lm(weight ~ ns(height, df = 5), data = women))

example of safe prediction

plot(women, xlab = "Height (in)", ylab = "Weight (lb)")

ht <- seq(57, 73, len = 200)

lines(ht, predict(fm1, data.frame(height=ht)))

periodicSpline Create a Periodic Interpolation Spline

Description

Create a periodic interpolation spline, either from x and y vectors, or from a for-
mula/data.frame combination.

Usage

periodicSpline(obj1, obj2, knots, period = 2*pi, ord = 4)

Arguments

obj1 either a numeric vector of x values or a formula.

obj2 if obj1 is numeric this should be a numeric vector of the same length. If
obj1 is a formula this can be an optional data frame in which to evaluate
the names in the formula.

knots optional numeric vector of knot positions.

period positive numeric value giving the period for the periodic spline. Defaults
to 2 * pi.

polySpline 973

ord integer giving the order of the spline, at least 2. Defaults to 4. See
splineOrder for a definition of the order of a spline.

Value

An object that inherits from class spline. The object can be in the B-spline representation,
in which case it will be a pbSpline object, or in the piecewise polynomial representation
(a ppolySpline object).

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline

Examples

xx <- seq(-pi, pi, len = 16)[-1]

yy <- sin(xx)

frm <- data.frame(xx, yy)

(pispl <- periodicSpline(xx, yy, period = 2 * pi))

pispl2 <- periodicSpline(yy ~ xx, frm, period = 2 * pi)

stopifnot(all.equal(pispl, pispl2))# pispl and pispl2 are the same

plot(pispl) # displays over one period

points(yy ~ xx, col = "brown")

plot(predict(pispl, seq(-3*pi, 3*pi, len = 101)), type = "l")

polySpline Piecewise Polynomial Spline Representation

Description

Create the piecewise polynomial representation of a spline object.

Usage

polySpline(object, ...)
as.polySpline(object, ...)

Arguments

object An object that inherits from class spline.
... Optional additional arguments. At present no additional arguments are

used.

Value

An object that inherits from class polySpline. This is the piecewise polynomial represen-
tation of a univariate spline function. It is defined by a set of distinct numeric values called
knots. The spline function is a polynomial function between each successive pair of knots.
At each interior knot the polynomial segments on each side are constrained to have the
same value of the function and some of its derivatives.

974 predict.bs

Author(s)

Douglas Bates and Bill Venables

See Also

interpSpline, periodicSpline, splineKnots, splineOrder

Examples

data(women)

ispl <- polySpline(interpSpline(weight ~ height, women, bSpline = TRUE))

print(ispl) # print the piecewise polynomial representation

plot(ispl) # plots over the range of the knots

points(women$height, women$weight)

predict.bs Evaluate a Spline Basis

Description

Evaluate a predefined spline basis at given values.

Usage

predict(object, newx, ...)

Arguments

object the result of a call to bs or ns having attributes describing knots, degree,
etc.

newx the x values at which evaluations are required.
... Optional additional arguments. Presently no additional arguments are

used.

Value

An object just like object, except evaluated at the new values of x.

These are methods for the generic function predict for objects inheriting from classes "bs"
or "ns". See predict for the general behavior of this function.

See Also

bs, ns, poly.

Examples

data(women)

basis <- ns(women$height, df = 5)

newX <- seq(58, 72, len = 51)

evaluate the basis at the new data

predict(basis, newX)

predict.bSpline 975

predict.bSpline Evaluate a spline at new values of x

Description

The predict methods for the classes that inherit from the virtual classes bSpline and
polySpline are used to evaluate the spline or its derivatives. The plot method for a
spline object first evaluates predict with the x argument missing, then plots the resulting
xyVector with type = "l".

Usage

predict(object, x, nseg=50, deriv=0, ...)
plot.spline(x, ...)

Arguments

object An object that inherits from the bSpline or the polySpline class. For
plot.spline this argument is called x.

x A numeric vector of x values at which to evaluate the spline. If this
argument is missing a suitable set of x values is generated as a sequence
of nseq segments spanning the range of the knots. For plot.spline the
x argument is as described under object above.

nseg A positive integer giving the number of segments in a set of equally-spaced
x values spanning the range of the knots in object. This value is only
used if x is missing.

deriv An integer between 0 and splineOrder(object) - 1 specifying the
derivative to evaluate.

... predict: further arguments passed to or from other methods.
plot: additional graphical parameters (see link{par}).

Value

an xyVector with components

x the supplied or inferred numeric vector of x values

y the value of the spline (or its deriv’th derivative) at the x vector

Author(s)

Douglas Bates and Bill Venables

See Also

xyVector, interpSpline, periodicSpline

976 splineDesign

Examples

data(women)

ispl <- interpSpline(weight ~ height, women)

opar <- par(mfrow = c(2, 2), las = 1)

plot(predict(ispl, nseg = 201), # plots over the range of the knots

main = "Original data with interpolating spline", type = "l",

xlab = "height", ylab = "weight")

points(women$height, women$weight, col = 4)

plot(predict(ispl, nseg = 201, deriv = 1),

main = "First derivative of interpolating spline", type = "l",

xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 201, deriv = 2),

main = "Second derivative of interpolating spline", type = "l",

xlab = "height", ylab = "weight")

plot(predict(ispl, nseg = 401, deriv = 3),

main = "Third derivative of interpolating spline", type = "l",

xlab = "height", ylab = "weight")

par(opar)

splineDesign Design Matrix for B-splines

Description

Evaluate the design matrix for the B-splines defined by knots at the values in x.

Usage

splineDesign(knots, x, ord = 4, derivs)
spline.des(knots, x, ord = 4, derivs)

Arguments

knots a numeric vector of knot positions with non-decreasing values.

x a numeric vector of values at which to evaluate the B-spline functions or
derivatives. The values in x must be between knots[ord] and knots[
length(knots) + 1 - ord].

ord a positive integer giving the order of the spline function. This is the
number of coefficients in each piecewise polynomial segment, thus a cubic
spline has order 4. Defaults to 4.

derivs an integer vector of the same length as x and with values between 0 and
ord - 1. The derivative of the given order is evaluated at the x positions.
Defaults to a vector of zeroes of the same length as x.

Value

A matrix with length(x) rows and length(knots) - ord columns. The i’th row of
the matrix contains the coefficients of the B-splines (or the indicated derivative of the B-
splines) defined by the knot vector and evaluated at the i’th value of x. Each B-spline is
defined by a set of ord successive knots so the total number of B-splines is length(knots)-
ord.

splineKnots 977

Note

The older spline.des function takes the same arguments but returns a list with several
components including knots, ord, derivs, and design. The design component is the same
as the value of the splineDesign function.

Author(s)

Douglas Bates and Bill Venables

Examples

splineDesign(knots = 1:10, x = 4:7)

splineKnots Knot Vector from a Spline

Description

Return the knot vector corresponding to a spline object.

Usage

splineKnots(object)

Arguments

object an object that inherits from class "spline".

Value

A non-decreasing numeric vector of knot positions.

Author(s)

Douglas Bates and Bill Venables

Examples

data(women)

ispl <- interpSpline(weight ~ height, women)

splineKnots(ispl)

978 xyVector

splineOrder Determine the Order of a Spline

Description

Return the order of a spline object.

Usage

splineOrder(object)

Arguments

object An object that inherits from class "spline".

Details

The order of a spline is the number of coefficients in each piece of the piecewise polynomial
representation. Thus a cubic spline has order 4.

Value

A positive integer.

Author(s)

Douglas Bates and Bill Venables

See Also

splineKnots, interpSpline, periodicSpline

Examples

data(women)

splineOrder(interpSpline(weight ~ height, women))

xyVector Construct an xyVector Object

Description

Create an object to represent a set of x-y pairs. The resulting object can be treated as a
matrix or as a data frame or as a vector. When treated as a vector it reduces to the y
component only.

The result of functions such as predict.spline is returned as an xyVector object so the
x-values used to generate the y-positions are retained, say for purposes of generating plots.

Usage

xyVector(x, y)

xyVector 979

Arguments

x a numeric vector

y a numeric vector of the same length as x

Value

An object of class xyVector with components

x a numeric vector

y a numeric vector of the same length as x

Author(s)

Douglas Bates and Bill Venables

Examples

data(women)

ispl <- interpSpline(weight ~ height, women)

weights <- predict(ispl, seq(55, 75, len = 51))

class(weights)

plot(weights, type = "l", xlab = "height", ylab = "weight")

points(women$height, women$weight)

weights

980 xyVector

Chapter 10

The stepfun package

ecdf Empirical Cumulative Distribution Function

Description

Compute or plot an empirical cumulative distribution function.

Usage

ecdf(x)

plot(..., verticals = FALSE, col.01line = "gray70")
print(x, digits= getOption("digits") - 2, ...)
summary(object, ...)

Arguments

x numeric vector of “observations” in ecdf; for the methods x is as object
below.

... arguments to be passed to plot.stepfun, the first of which should be an
R object of class "ecdf".

verticals see plot.stepfun.

col.01line numeric or character specifying the color of the horizontal lines at y=0
and 1, see colors.

object (or x:) object of class "ecdf", typically.

digits number of significant digits to use, see print.

Details

The e.c.d.f. (empirical cumulative distribution function) Fn is a step function with jump
1/n at each observation (possibly with multiple jumps at one place if there are ties).

For observations x= (x1, x2, . . .xn), Fn is the fraction of observations less or equal to t, i.e.,

Fn(t) = #{xi ≤ t} /n =
1
n

n∑
i=1

1[xi≤t].

981

982 ecdf

The function plot.ecdf which implements the plot method for ecdf objects, is imple-
mented via a call to plot.stepfun; see its documentation.

Value

For ecdf, a function of class "ecdf", inheriting from the "stepfun" class.

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉.

See Also

stepfun, the more general class of step functions, approxfun and splinefun.

Examples

##-- Simple didactical ecdf example:

Fn <- ecdf(rnorm(12))

Fn; summary(Fn)

12*Fn(knots(Fn)) == 1:12 ## == 1:12 if and only if there are no ties !

y <- round(rnorm(12),1); y[3] <- y[1]

Fn12 <- ecdf(y)

Fn12

print(knots(Fn12), dig=2)

12*Fn12(knots(Fn12)) ## ~= 1:12 if there where no ties

summary(Fn12)

summary.stepfun(Fn12)

print(ls.Fn12 <- ls(env= environment(Fn12)))

##[1] "f" "method" "n" "ties" "x" "y" "yleft" "yright"

12 * Fn12((-20:20)/10)

###----------------- Plotting --------------------------

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))

summary(F10)

plot(F10)

plot(F10, verticals= TRUE, do.p = FALSE)

plot(Fn12)# , lwd=2) dis-regarded

xx <- unique(sort(c(seq(-3,2, length=201), knots(Fn12))))

lines(xx, Fn12(xx), col=’blue’)

abline(v=knots(Fn12),lty=2,col=’gray70’)

plot(xx, Fn12(xx), type=’b’, cex=.1)#- plot.default

plot(Fn12, col.h=’red’, add= TRUE) #- plot method

abline(v=knots(Fn12),lty=2,col=’gray70’)

plot(Fn12, verticals=TRUE, col.p=’blue’, col.h=’red’,col.v=’bisque’)

par(op)

##-- this works too (automatic call to ecdf(.)):

plot.stepfun 983

plot.ecdf(rnorm(24))

plot.stepfun Plot Step Functions

Description

Method of the generic plot for stepfun objects and utility for plotting piecewise constant
functions.

Usage

plot(x, xval, xlim, xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = TRUE,
pch = par("pch"), col.points=par("col"), cex.points=par("cex"),
col.hor = par("col"), col.vert= par("col"),
lty = par("lty"), lwd = par("lwd"), ...)

Arguments

x an R object inheriting from "stepfun".

xval numeric vector of abscissa values at which to evaluate x. Defaults to
knots(x) restricted to xlim.

xlim numeric(2); range of x values to use.

xlab,ylab labels of x and y axis.

main main title.

add logical; if TRUE only add to an existing plot.

verticals logical; if TRUE, draw vertical lines at steps.

do.points logical; if true, also draw points at the (xlim restricted) knot locations.

pch character; point character if do.points.

col.points character or integer code; color of points if do.points.

cex.points numeric; character expansion factor if do.points.

col.hor color of horizontal lines.

col.vert color of vertical lines.

lty, lwd line type and thickness for all lines.

... further arguments of plot(.), or if(add) segments(.).

Value

A list with two components

t abscissa (x) values, including the two outermost ones.

y y values ‘in between’ the t[].

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉, 1990, 1993; ported to R, 1997.

984 stepfun

See Also

ecdf for empirical distribution functions as special step functions, approxfun and
splinefun.

Examples

y0 <- c(1,2,4,3)

sfun0 <- stepfun(1:3, y0, f = 0)

sfun.2 <- stepfun(1:3, y0, f = .2)

sfun1 <- stepfun(1:3, y0, f = 1)

tt <- seq(0,3, by=0.1)

op <- par(mfrow=c(2,2))

plot(sfun0); plot(sfun0, xval=tt, add=TRUE, col.h="bisque")

plot(sfun.2);plot(sfun.2,xval=tt, add=TRUE, col.h="orange")

plot(sfun1); plot(sfun1, xval=tt, add=TRUE, col.h="coral")

##-- This is revealing :

plot(sfun0, verticals= FALSE,

main = "stepfun(x, y0, f=f) for f = 0, .2, 1")

for(i in 1:3)

plot(list(sfun0,sfun.2,sfun1)[[i]], add=TRUE, col.h=i, col.v=i)

legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.inter=1); par(op)

##-- this works too (automatic call to ecdf(.)):

plot.stepfun(rt(50, df=3), col.vert = "gray20")

stepfun Step Functions

Description

Given the vectors (x1, . . . , xn) and (y0, y1, . . . , yn) (one value more!), stepfun(x,y,...)
returns an interpolating “step” function, say fn. I.e., fn(t) = ci (constant) for t ∈ (xi, xi+1)
and fn(xi) = yi for i = 1, . . . , n.

The value of the constant ci above depends on the “continuity” parameter f. For the
default, f = 0, fn is a “cadlag” function, i.e. continuous at right, limit (“the point”) at left.
In general, ci is interpolated in between the neighbouring y values, ci = (1− f)yi + f · yi+1.
Therefore, for non-0 values of f, fn may no longer be a proper step function, since it can
be discontinuous from both sides.

Usage

stepfun(x, y, f = 0, ties = "ordered")

is.stepfun(x)
knots(Fn, ...)

print(x, digits= getOption("digits") - 2, ...)
summary(object, ...)

stepfun 985

Arguments

x numeric vector giving the knots or jump locations of the step function for
stepfun(). For the other functions, x is as object below.

y numeric vector one longer than x, giving the heights of the function values
between the x values.

f a number between 0 and 1, indicating how interpolation outside the given
x values should happen. See approxfun.

ties Handling of tied x values. Either a function or the string "ordered". See
approxfun.

Fn, object an R object inheriting from "stepfun".

digits number of significant digits to use, see print.

... potentially further arguments (require by the generic).

Value

A function of class "stepfun", say fn. There are methods available for summarizing
("summary(.)"), representing ("print(.)") and plotting ("plot(.)", see plot.stepfun)
"stepfun" objects.

The environment of fn contains all the information needed;

"x","y" the original arguments

"n" number of knots (x values)

"f" continuity parameter
"yleft", "yright"

the function values outside the knots;

"method" (always == "constant", from approxfun(.)).

normal-bracket97bracket-normal The knots are also available by knots(fn).

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉 with some basic code from Thomas Lumley.

See Also

ecdf for empirical distribution functions as special step functions and plot.stepfun for
plotting step functions.

approxfun and splinefun.

Examples

y0 <- c(1,2,4,3)

sfun0 <- stepfun(1:3, y0, f = 0)

sfun.2 <- stepfun(1:3, y0, f = .2)

sfun1 <- stepfun(1:3, y0, f = 1)

sfun0

summary(sfun0)

summary(sfun.2)

look at the internal structure:

print.default(sfun0)

986 stepfun

ls.str(envir = environment(sfun0))

x0 <- seq(0.5,3.5, by = 0.25)

rbind(x=x0, f.f0 = sfun0(x0), f.f02= sfun.2(x0), f.f1 = sfun1(x0))

Chapter 11

The tcltk package

TclInterface Low-level Tcl/Tk Interface

Description

These functions and variables provide the basic glue between R and the Tcl interpreter
and Tk GUI toolkit. Tk windows may be represented via R objects. Tcl variables can be
accessed via objects of class tclVar and the C level interface to Tcl objects is accessed via
objects of class tclObj.

Usage

.Tcl(...)

.Tcl.args(...)

.Tcl.callback(...)

.Tk.ID(win)

.Tk.newwin(ID)

.Tk.subwin(parent)

.TkWin

.TkRoot

tkdestroy(win)
is.tkwin(x)

tclVar(init="")
as.character(x) # x of class "tclVar" or "tclObj"

tclvalue(x) # x of class "tclVar" or "tclObj"
tclvalue(x) <- value

tclObj(x) # x of class "tclVar"
tclObj(x) <- value

as.tclObj(x)
is.tclObj(x)

987

988 TclInterface

as.integer(x) # x of class "tclObj"
as.double(x) # x of class "tclObj"

addTclPath(path = ".")
tclRequire(package, warn = TRUE)

Arguments

win a window structure

x an object

ID a window ID

parent a window which becomes the parent of the resulting window

path path to a directory containing Tcl packages

package a Tcl package name

warn logical. Warn if not found?

... Additional arguments. See below.

init initialization value

Details

Many of these functions are not intended for general use but are used internally by the
commands that create and manipulate Tk widgets and Tcl objects. At the lowest level
.Tcl sends a command as a text string to the Tcl interpreter and returns the result as an
object of class tclObj (see below).

.Tcl.args converts an R argument list of tag=value pairs to the Tcl -option value
style, thus enabling a simple translation between the two languages. To send a value with
no preceding option flag to Tcl, just use an untagged argument. In the rare case one needs
an option with no subsequent value tag=NULL can be used. Most values are just converted
to character mode and inserted in the command string, but window objects are passed
using their ID string, and callbacks are passed via the result of .Tcl.callback. Tags are
converted to option flags simply by prepending a -

Callbacks can be either atomic callbacks handled by .Tcl.callback or expressions. An
expression is treated as a list of atomic callbacks, with the following exceptions: if an
element is a name, it is first evaluated in the callers frame, and likewise if it is an ex-
plicit function definition; the break expression is translated directly to the Tcl counterpart.
.Tcl.callback converts R functions and unevaluated calls to Tcl command strings. The
argument must be either a function closure or an object of mode "call" followed by an
environment. The return value in the first case is of the form R_call 0x408b94d4 in which
the hexadecimal number is the memory address of the function. In the second case it will
be of the form R_call_lang 0x8a95904 0x819bfd0. For expressions, a sequence of similar
items is generated, separated by semicolons. .Tcl.args takes special precautions to en-
sure that functions or calls will continue to exist at the specified address by assigning the
callback into the relevant window environment (see below).

Tk windows are represented as objects of class tkwin which are lists containing a ID field
and an env field which is an R environments, enclosed in the global environment. The value
of the ID field is identical to the Tk window name. The env environment contains a parent
variable and a num.subwin variable. If the window obtains subwindows and callbacks,
they are added as variables to the environment. .TkRoot is the top window with ID ”.”;
this window is not displayed in order to avoid ill effects of closing it via window manager
controls. The parent variable is undefined for .TkRoot.

TclInterface 989

.Tk.ID extracts the ID of a window, .Tk.newwin creates a new window environment with
a given ID and .Tk.subwin creates a new window which is a subwindow of a given parent
window.

tkdestroy destroys a window and also removes the reference to a window from its parent.

is.tkwin can be used to test whether a given object is a window environment.

tclVar creates a new Tcl variable and initializes it to init. An R object of class tclVar is
created to represent it. Using as.character on the object returns the Tcl variable name.
Accessing the Tcl variable from R is done using the tclvalue function, which can also
occur on the left sie of assignments. If tclvalue is passed an argument which is not a
tclVar object, then it will assume that it is a character string explicitly naming global Tcl
variable. Tcl variables created by tclVar are uniquely named and automatically unset by
the garbage collector when the representing object is no longer in use.

It is possible to access Tcl’s ‘dual-ported’ objects directly, thus avoiding parsing and de-
parsing of their string representation. This works by using objects of class tclObj. The
string representation of such objects can be extracted (but not set) using tclvalue and
conversion to vectors of mode "character", "double", or "integer". Conversely, such
vectors can be converted using as.tclObj. The object behind a tclVar object is extracted
using tclObj(x) which also allows an assignment form, in which the right hand side of
the assignment is automatically converted using as.tclObj. There is a print method for
tclObj objects; it prints <Tcl> followed by the string representation of the object.

Tcl packages can be loaded with tclRequire; it may be necessary to add the directory
where they are found to the Tcl search path with addTclPath.

Note

Strings containing unbalanced braces are currently not handled well in many circumstances.

See Also

TkWidgets, TkCommands, TkWidgetcmds.

capabilities("tcltk")

Examples

These cannot be run by example() but should be OK when pasted

into an interactive R session with the tcltk package loaded

.Tcl("format \"%s\n\" \"Hello, World!\"")

f <- function()"HI!"

.Tcl.callback(f)

.Tcl.args(text="Push!", command=f) # NB: Different address

xyzzy <- tclVar(7913)

tclvalue(xyzzy)

tclvalue(xyzzy) <- "foo"

as.character(xyzzy)

tkcmd("set", as.character(xyzzy))

top <- tktoplevel() # a Tk widget, see Tk-widgets

ls(envir=top$env, all=TRUE)

ls(envir=.TkRoot$env, all=TRUE)# .Tcl.args put a callback ref in here

990 TkCommands

TkCommands Tk non-widget commands

Description

These functions interface to Tk non-widget commands, such as the window manager inter-
face commands and the geometry managers.

Usage

tkcmd(...)
tktitle(x)

tktitle(x) <- value

tkbell(...)
tkbind(...)
tkbindtags(...)
tkfocus(...)
tklower(...)
tkraise(...)

tkclipboard.append(...)
tkclipboard.clear(...)

tkevent.add(...)
tkevent.delete(...)
tkevent.generate(...)
tkevent.info(...)

tkfont.actual(...)
tkfont.configure(...)
tkfont.create(...)
tkfont.delete(...)
tkfont.families(...)
tkfont.measure(...)
tkfont.metrics(...)
tkfont.names(...)

tkgrab(...)
tkgrab.current(...)
tkgrab.release(...)
tkgrab.set(...)
tkgrab.status(...)

NB: some widgets also have a selection.clear command, hence the "X".

tkXselection.clear(...)
tkXselection.get(...)
tkXselection.handle(...)
tkXselection.own(...)

TkCommands 991

tkwait.variable(...)
tkwait.visibility(...)
tkwait.window(...)

winfo actually has a large number of subcommands, but it’s rarely
used, so use tkwinfo("atom", ...) etc. instead.

tkwinfo(...)

Window manager interface

tkwm.aspect(...)
tkwm.client(...)
tkwm.colormapwindows(...)
tkwm.command(...)
tkwm.deiconify(...)
tkwm.focusmodel(...)
tkwm.frame(...)
tkwm.geometry(...)
tkwm.grid(...)
tkwm.group(...)
tkwm.iconbitmap(...)
tkwm.iconify(...)
tkwm.iconmask(...)
tkwm.iconname(...)
tkwm.iconposition(...)
tkwm.iconwindow(...)
tkwm.maxsize(...)
tkwm.minsize(...)
tkwm.overrideredirect(...)
tkwm.positionfrom(...)
tkwm.protocol(...)
tkwm.resizable(...)
tkwm.sizefrom(...)
tkwm.state(...)
tkwm.title(...)
tkwm.transient(...)
tkwm.withdraw(...)

Geometry managers

tkgrid(...)
tkgrid.bbox(...)
tkgrid.columnconfigure(...)
tkgrid.configure(...)
tkgrid.forget(...)
tkgrid.info(...)
tkgrid.location(...)
tkgrid.propagate(...)
tkgrid.rowconfigure(...)
tkgrid.remove(...)

992 TkCommands

tkgrid.size(...)
tkgrid.slaves(...)

tkpack(...)
tkpack.configure(...)
tkpack.forget(...)
tkpack.info(...)
tkpack.propagate(...)
tkpack.slaves(...)

tkplace(...)
tkplace.configure(...)
tkplace.forget(...)
tkplace.info(...)
tkplace.slaves(...)

Standard dialogs
tkgetOpenFile(...)
tkgetSaveFile(...)
tkmessageBox(...)

File handling functions
tkfile.tail(...)
tkfile.dir(...)
tkopen(...)
tkclose(...)
tkputs(...)

Arguments

x A window object

... Handled via .Tcl.args

Details

tkcmd provides a generic interface to calling any Tk or Tcl command by simply running
.Tcl.args on the arguments and passing the result to .Tcl. Most of the other commands
simply call tkcmd with a particular first argument and sometimes also a second argument
giving the subcommand.

tktitle and its assignment form provides an alternate interface to Tk’s wm title

There are far too many of these commands to describe them and their arguments in full.
Please refer to the Tcl/Tk documentation for details. Except for a few exceptions, the
pattern is that Tcl subcommands like pack configure are converted to function names
like tkpack.configure.

See Also

TclInterface, TkWidgets, TkWidgetcmds

Examples

These cannot be run by examples() but should be OK when pasted

tkpager 993

into an interactive R session with the tcltk package loaded

tt <- tktoplevel()

tkpack(l1<-tklabel(tt,text="Heave"),l2<-tklabel(tt,text="Ho"))

tkpack.configure(l1,side="left")

Try stretching the window and then

tkdestroy(tt)

tkpager Page file using Tk text widget

Description

This plugs into file.show, showing files in separate windows.

Usage

tkpager(file, header, title, delete.file)

Arguments

file character vector containing the names of the files to be displayed

header headers to use at the beginning of each file

title title to use for the window

delete.file logical. Should file(s) be deleted after display

Note

The "
b_" string used for underlining is currently quietly removed. The font and background
colour are currently hardcoded to Courier and gray90.

See Also

file.show

Examples

994 TkWidgetcmds

TkWidgetcmds Tk widget commands

Description

These functions interface to Tk widget commands.

Usage

tkactivate(widget, ...)
tkadd(widget, ...)
tkaddtag(widget, ...)
tkbbox(widget, ...)
tkcanvasx(widget, ...)
tkcanvasy(widget, ...)
tkcget(widget, ...)
tkcompare(widget, ...)
tkconfigure(widget, ...)
tkcoords(widget, ...)
tkcreate(widget, ...)
tkcurselection(widget,...)
tkdchars(widget, ...)
tkdebug(widget, ...)
tkdelete(widget, ...)
tkdelta(widget, ...)
tkdeselect(widget, ...)
tkdlineinfo(widget, ...)
tkdump(widget, ...)
tkentrycget(widget, ...)
tkentryconfigure(widget, ...)
tkfind(widget, ...)
tkflash(widget, ...)
tkfraction(widget, ...)
tkget(widget, ...)
tkgettags(widget, ...)
tkicursor(widget, ...)
tkidentify(widget, ...)
tkimage.cget(widget, ...)
tkimage.configure(widget, ...)
tkimage.create(widget, ...)
tkimage.names(widget, ...)
tkindex(widget, ...)
tkinsert(widget, ...)
tkinvoke(widget, ...)
tkitembind(widget, ...)
tkitemcget(widget, ...)
tkitemconfigure(widget, ...)
tkitemfocus(widget, ...)
tkitemlower(widget, ...)
tkitemraise(widget, ...)
tkitemscale(widget, ...)

TkWidgetcmds 995

tkmark.gravity(widget, ...)
tkmark.names(widget, ...)
tkmark.next(widget, ...)
tkmark.previous(widget, ...)
tkmark.set(widget, ...)
tkmark.unset(widget, ...)
tkmove(widget, ...)
tknearest(widget, ...)
tkpost(widget, ...)
tkpostcascade(widget, ...)
tkpostscript(widget, ...)
tkscan.mark(widget, ...)
tkscan.dragto(widget, ...)
tksearch(widget, ...)
tksee(widget, ...)
tkselect(widget, ...)
tkselection.adjust(widget, ...)
tkselection.anchor(widget, ...)
tkselection.clear(widget, ...)
tkselection.from(widget, ...)
tkselection.includes(widget, ...)
tkselection.present(widget, ...)
tkselection.range(widget, ...)
tkselection.set(widget, ...)
tkselection.to(widget,...)
tkset(widget, ...)
tksize(widget, ...)
tktoggle(widget, ...)
tktag.add(widget, ...)
tktag.bind(widget, ...)
tktag.cget(widget, ...)
tktag.configure(widget, ...)
tktag.delete(widget, ...)
tktag.lower(widget, ...)
tktag.names(widget, ...)
tktag.nextrange(widget, ...)
tktag.prevrange(widget, ...)
tktag.raise(widget, ...)
tktag.ranges(widget, ...)
tktag.remove(widget, ...)
tktype(widget, ...)
tkunpost(widget, ...)
tkwindow.cget(widget, ...)
tkwindow.configure(widget, ...)
tkwindow.create(widget, ...)
tkwindow.names(widget, ...)
tkxview(widget, ...)
tkxview.moveto(widget, ...)
tkxview.scroll(widget, ...)
tkyposition(widget, ...)
tkyview(widget, ...)
tkyview.moveto(widget, ...)

996 TkWidgets

tkyview.scroll(widget, ...)

Arguments

widget The widget this applies to

... Handled via .Tcl.args

Details

There are far too many of these commands to describe them and their arguments in full.
Please refer to the Tcl/Tk documentation for details. Except for a few exceptions, the
pattern is that Tcl widget commands possibly with subcommands like .a.b selection
clear are converted to function names like tkselection.clear and the widget is given as
the first argument.

See Also

TclInterface, TkWidgets, TkCommands

Examples

These cannot be run by examples() but should be OK when pasted

into an interactive R session with the tcltk package loaded

tt <- tktoplevel()

tkpack(txt.w <- tktext(tt))

tkinsert(txt.w, "0.0", "plot(1:10)")

callback function

eval.txt <- function()

eval(parse(text=tkget(txt.w, "0.0", "end")))

tkpack(but.w <- tkbutton(tt,text="Submit", command=eval.txt))

Try pressing the button, edit the text and when finished:

tkdestroy(tt)

TkWidgets Tk widgets

Description

Create Tk widgets and associated R objects.

Usage

tkwidget(parent, type, ...)
tkbutton(parent, ...)
tkcanvas(parent, ...)
tkcheckbutton(parent, ...)

TkWidgets 997

tkentry(parent, ...)
tkframe(parent, ...)
tklabel(parent, ...)
tklistbox(parent, ...)
tkmenu(parent, ...)
tkmenubutton(parent, ...)
tkmessage(parent, ...)
tkradiobutton(parent, ...)
tkscale(parent, ...)
tkscrollbar(parent, ...)
tktext(parent, ...)
tktoplevel(parent=.TkRoot, ...)

Arguments

parent Parent of widget window

type string describing the type of widget desired

... handled via .Tcl.args

Details

These functions create Tk widgets. tkwidget creates a widget of a given type, the others
simply call tkwidget with the respective type argument.

It is not possible to describe the widgets and their arguments in full. Please refer to the
Tcl/Tk documentation.

See Also

TclInterface, TkCommands, TkWidgetcmds

Examples

These cannot be run by examples() but should be OK when pasted

into an interactive R session with the tcltk package loaded

tt <- tktoplevel()

label.widget <- tklabel(tt, text="Hello, World!")

button.widget <- tkbutton(tt, text="Push",

command=function()cat("OW!\n"))

tkpack(label.widget, button.widget) # geometry manager

see Tk-commands

Push the button and then...

tkdestroy(tt)

998 TkWidgets

Chapter 12

The tools package

checkFF Check Foreign Function Calls

Description

Performs checks on calls to compiled code from R code. Currently only whether the interface
functions such as .C and .Fortran are called with argument PACKAGE specified, which is
highly recommended to avoid name clashes in foreign function calls.

Usage

checkFF(package, dir, file, lib.loc = NULL,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package. If given, the installed R
code of the package is checked.

dir a character string specifying the path to a package’s root source directory.
This should contain the subdirectory R (for R code). Only used if package
is not given.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

verbose a logical. If TRUE, additional diagnostics are printed (and the result is
returned invisibly).

Value

An object of class "checkFF", which currently is a list of the (parsed) foreign function calls
with no PACKAGE argument.

There is a print method for nicely displaying the information contained in such objects.

999

1000 checkTnF

Warning

This function is still experimental. Both name and interface might change in future versions.

See Also

.C, .Fortran; Foreign.

Examples

checkFF(package = "ts", verbose = TRUE)

checkTnF Check R Packages or Code for T/F

Description

Checks the specified R package or code file for occurrences of T or F, and gathers the
expression containing these. This is useful as in R T and F are just variables which are set
to the logicals TRUE and FALSE by default, but are not reserved words and hence can be
overwritten by the user. Hence, one should always use TRUE and FALSE for the logicals.

Usage

checkTnF(package, dir, file, lib.loc = NULL)

Arguments

package a character string naming an installed package. If given, the installed
R code and the examples in the documentation files of the package are
checked. R code installed as an image file cannot be checked.

dir a character string specifying the path to a package’s root source directory.
This must contain the subdirectory ‘R’ (for R code), and should also
contain ‘man’ (for documentation). Only used if package is not given.
If used, the R code files and the examples in the documentation files are
checked.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Value

An object of class "checkTnF" which is a list containing, for each file where occurences of
T or F were found, a list with the expressions containing these occurrences. The names of
the list are the corresponding file names.

There is a print method for nicely displaying the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

checkVignettes 1001

checkVignettes Check Package Vignettes

Description

Check all Sweave files of a package by running Sweave and/or Stangle on them. All R
source code files found after the tangling step are sourceed to check whether all code can
be executed without errors.

Usage

checkVignettes(package, dir, lib.loc = NULL, tangle = TRUE,
weave = TRUE, workdir = c("tmp", "src", "cur"),
keepfiles = FALSE)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory doc.

dir a character string specifying the path to a package’s root source directory.
This subdirectory inst/doc is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

tangle Perform a tangle and source the extraced code?

weave Perform a weave?

workdir Directory used as working directory while checking the vignettes. If "tmp"
then a temporary directory is created, this is the default. If "src" then
the directory containing the vignettes itself is used, if "cur" then the
current working directory of R is used.

keepfiles Delete file in temporary directory? This option is ignored when
workdir!="tmp".

Value

An object of class "checkVignettes" which is a list with the error messages found during
the tangle and weave steps. There is a print method for nicely displaying the information
contained in such objects.

codoc Check Code/Documentation Consistency

Description

Find inconsistencies between actual and documented usage of R function objects in a pack-
age, by comparing names and optionally also corresponding positions and default values of
the arguments of the functions.

1002 codoc

Usage

codoc(package, dir, lib.loc = NULL,
use.values = FALSE, use.positions = TRUE,
ignore.generic.functions = FALSE,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory.
This must contain the subdirectories ‘man’ with R documentation sources
(in Rd format) and ‘R’ with R code. Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

use.positions a logical indicating whether to use the positions of function arguments
when comparing.

use.values a logical indicating whether to use function default values when comparing
code and docs.

ignore.generic.functions

if TRUE, functions the body of which contains "UseMethod" are ignored.

verbose a logical. If TRUE, additional diagnostics are printed.

Details

The purpose of this function is to check whether the documented usage of function objects
agrees with their formal arguments as defined in the R code. This is not always straightfor-
ward, in particular as the usage information for methods to generic functions often employs
the name of the generic rather than the method.

The following algorithm is used. If an installed package is used, it is loaded (unless it is the
base package), after possibly detaching an already loaded version of the package. Otherwise,
if the sources are used, the R code files of the package are collected and sourced in a new
environment. Then, the usage sections of the Rd files are extracted and manipulated in
order to give function stubs corresponding to the indicated usage, which are then sourced in
another new environment. For interpreted functions in both the code and docs environment,
the formals are compared according to the values of the arguments use.positions and
use.values.

Currently, synopsis sections are used, but multiple usage examples (such as in abline)
are not combined when building the stubs. Occurences of synopsis sections are reported if
verbose is true.

Value

An object of class "codoc" which is a list the names of which are the names of the functions
where an inconsistency was found. The elements of the list are lists of length 2 with elements
code and docs, giving the corresponding arguments obtained from the function’s code and
documented usage.

There is a print method for nicely displaying the information contained in such objects.

QA 1003

See Also

undoc

QA QA Checks for R Code and/or Documentation

Description

Functions for performing various quality checks.

Usage

checkAssignFuns(package, dir, lib.loc = NULL)
checkDocArgs(package, dir, lib.loc = NULL)
checkDocStyle(package, dir, lib.loc = NULL)
checkMethods(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory.
This should contain the subdirectories R (for R code) and ‘man’ with R
documentation sources (in Rd format). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Details

checkAssignFuns checks whether assignment functions in the package R code have their
final argument named value.

checkDocArgs checks, for all Rd files in a package, whether all arguments shown in the usage
sections of the Rd file are documented in its arguments section. It also reports duplicated
entries in the arguments section.

checkDocStyle investigates how (S3) methods are shown in the usages of the Rd files in a
package. It reports if methods are shown along with their generic, which typically causes
problems for the documentation of the primary argument of the generic. It also finds the
methods shown by their full name (rather than that of the generic using the Rd \method
markup).

checkMethods checks whether all methods defined in the package R code have all arguments
of the corresponding generic, with positional arguments of the generics in the same positions
for the method. The generics are sought first in the given package and then in the base
package. The rules when ... is involved are subtle: see the source code.

If using an installed package, the checks needing access to all R objects of the package will
load the package (unless it is the base package), after possibly detaching an already loaded
version of the package.

1004 Rtangle

Value

The functions return objects of class the same as the respective function names containing
the information about problems detected. There is a print method for nicely displaying
the information contained in such objects.

Warning

These functions are still experimental. Both names, interfaces and values might change in
future versions.

Rtangle R Driver for Stangle

Description

A driver for Stangle that extracts R code chunks.

Usage

Rtangle()
RtangleSetup(file, syntax, output=NULL, annotate=TRUE, split=FALSE,

prefix=TRUE, quiet=FALSE)

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’
and to add extension ‘.R’. Any directory names in file are also removed
such that the output is created in the current working directory.

annotate By default, code chunks are seperated by comment lines specifying the
names and numbers of the code chunks. If FALSE, only the code chunks
without any decorating comments are extracted.

split Split output in single files per code chunk?

prefix If split=TRUE, prefix the chunk labels by the basename of the input file
to get output file names?

quiet If TRUE all progress messages are suppressed.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, RweaveLatex

http://www.ci.tuwien.ac.at/~leisch/Sweave

RweaveLatex 1005

RweaveLatex R/LaTeX Driver for Sweave

Description

A driver for Sweave that translates R code chunks in LaTeX files.

Usage

RweaveLatex()
RweaveLatexSetup(file, syntax, output=NULL, quiet=FALSE, debug=FALSE,

echo=TRUE, eval = TRUE, split=FALSE, stylepath=TRUE,
pdf=TRUE, eps=TRUE)

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’
and to add extension ‘.tex’. Any directory names in file are also removed
such that the output is created in the current working directory.

quiet If TRUE all progress messages are suppressed.

debug If TRUE, input and output of all code chunks is copied to the console.

stylepath If TRUE, a hard path to the file ‘Sweave.sty’ installed with this package
is set, if FALSE, only \usepackage{Sweave} is written. The hard path
makes the TeX file less portable, but avoids the problem of installing the
current version of ‘Sweave.sty’ to some place in your TeX input path. The
argument is ignored if a \usepackage{Sweave} is already present in the
Sweave source file.

echo set default for option echo, see details below.

eval set default for option eval, see details below.

split set default for option split, see details below.

pdf set default for option pdf, see details below.

eps set default for option eps, see details below.

Supported Options

RweaveLatex supports the following options for code chunks (the values in parentheses show
the default values):

echo: logical (TRUE). Include S code in the output file?

eval: logical (TRUE). If FALSE, the code chunk is not evaluated, and hence no text or
graphical output produced.

results: character string (verbatim). If verbatim, the output of S commands is included
in the verbatim-like Soutput environment. If tex, the output is taken to be already
proper latex markup and included as is. If hide then all output is completely sup-
pressed (but the code executed during the weave).

1006 Sweave

print: logical (FALSE) If TRUE, each expression in the code chunk is wrapped into a print()
statement before evaluation, such that the values of all expressions become visible.

term: logical (TRUE). If TRUE, visibility of values emulates an interactive R session: values
of assignments are not printed, values of single objects are printed. If FALSE, output
comes only from explicit print or cat statements.

split: logical (FALSE). If TRUE, text output is written to separate files for each code chunk.
strip.white: logical (TRUE). If TRUE, blank lines at the beginning and end of output are

removed.
prefix: logical (TRUE). If TRUE generated filenames of figures and output have a common

prefix.
prefix.string: a character string, default is the name of the ‘.Snw’ source file.
include: logical (TRUE), indicating whether input statements for text output and include-

graphics statements for figures should be auto-generated. Use include=FALSE if the
output should appear in a different place than the code chunk (by placing the input
line manually).

fig: logical (FALSE), indicating whether the code chunk produces graphical output. Note
that only one figure per code chunk can be processed this way.

eps: logical (TRUE), indicating whether EPS figures shall be generated. Ignored if
fig=FALSE.

pdf: logical (TRUE), indicating whether PDF figures shall be generated. Ignored if
fig=FALSE.

width: numeric (6), width of figures in inch.
height: numeric (6), height of figures in inch.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

See Also

Sweave, Rtangle

Sweave Automatic Generation of Reports

Description

Sweave provides a flexible framework for mixing text and S code for automatic report
generation. The basic idea is to replace the S code with its output, such that the final
document only contains the text and the output of the statistical anlysis.

Usage

Sweave(file, driver=RWeaveLatex(), syntax=getOption("SweaveSyntax"), ...)
Stangle(file, driver=RTangle(), syntax=getOption("SweaveSyntax"), ...)

http://www.ci.tuwien.ac.at/~leisch/Sweave

Sweave 1007

Arguments

file Name of Sweave source file.

driver The actual workhorse, see details below.

syntax An object of class SweaveSyntax or a character string with its
name. The default installation provides SweaveSyntaxNoweb and
SweaveSyntaxLatex.

... Further arguments passed to the driver’s setup function.

Details

Automatic generation of reports by mixing word processing markup (like latex) and S code.
The S code gets replaced by its output (text or graphs) in the final markup file. This allows
to re-generate a report if the input data change and documents the code to reproduce the
analysis in the same file that also produces the report.

Sweave combines the documentation and code chunks together (or their output) into a
single document. Stangle extracts only the code from the Sweave file creating a valid S
source file (that can be run using source). Code inside \Sexpr{} statements is ignored by
Stangle.

Stangle is just a frontend to Sweave using a simple driver by default, which discards the
documentation and concatenates all code chunks the current S engine understands.

Hook Functions

Before each code chunk is evaluated, a number of hook functions can be executed. If
getOption("SweaveHooks") is set, it is taken to be a collection of hook functions. For
each logical option of a code chunk (echo, print, . . .) a hook can be specified, which is
executed if and only if the respective option is TRUE. Hooks must be named elements of
the list returned by getOption("SweaveHooks") and be functions taking no arguments.
E.g., if option "SweaveHooks" is defined as list(fig = foo), and foo is a function, then
it would be executed before the code in each figure chunk. This is especially useful to set
defaults for the graphical parameters in a series of figure chunks.

Note that the user is free to define new Sweave options and associate arbitrary hooks with
them. E.g., one could define a hook function for option clean that removes all objects in
the global environment. Then all code chunks with clean=TRUE would start operating on
an empty workspace.

Syntax Definition

Sweave allows a very flexible syntax framework for marking documentation and text chunks.
The default is a noweb-style syntax, as alternative a latex-style syntax can be used. See
the user manual for details.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

http://www.ci.tuwien.ac.at/~leisch/Sweave

1008 SweaveSyntConv

Friedrich Leisch: Dynamic generation of statistical reports using literate data analysis. In
W. Härdle and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics,
pages 575-580. Physika Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-1517-9.

See Also

RweaveLatex, Rtangle

Examples

testfile <- file.path(.path.package("tools"),

"Sweave", "Sweave-test-1.Rnw")

create a LaTeX file

Sweave(testfile)

create an S source file from the code chunks

Stangle(testfile)

which can be simply sourced

source("Sweave-test-1.R")

SweaveSyntConv Convert Sweave Syntax

Description

This function converts the syntax of files in Sweave format to another Sweave syntax defi-
nition.

Usage

SweaveSyntConv(file, syntax, output=NULL)

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax or a character string with its name giving
the target syntax to which the file is converted.

output Name of output file, default is to remove the extension from the input
file and to add the default extension of the target syntax. Any directory
names in file are also removed such that the output is created in the
current working directory.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2002
http://www.ci.tuwien.ac.at/~leisch/Sweave

http://www.ci.tuwien.ac.at/~leisch/Sweave

tools-internal 1009

See Also

RweaveLatex, Rtangle

Examples

testfile <- file.path(.path.package("tools"),

"Sweave", "Sweave-test-1.Rnw")

convert the file to latex syntax

SweaveSyntConv(testfile, SweaveSyntaxLatex)

and run it through Sweave

Sweave("Sweave-test-1.Stex")

tools-internal Internal tools functions

Description

Internal tools functions.

Usage

sQuote(s)
.convertFilePathToAbsolute(path)
.listFilesWithExts(dir, exts, path = TRUE)
.loadPackageQuietly(package, lib.loc)
.makeS3MethodsStopList(package)
.sourceAssignments(file, envir)

Details

These are not to be called by the user.

undoc Find Undocumented Objects

Description

Finds the objects in a package which are undocumented, in the sense that they are visible
to the user (or data objects or S4 classes provided by the package), but no documentation
entry exists.

Usage

undoc(package, dir, lib.loc = NULL)

1010 undoc

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory.
This must contain the subdirectory ‘man’ with R documentation sources
(in Rd format), and at least one of the ‘R’ or ‘data’ subdirectories with R
code or data objects, respectively.

lib.loc a character vector of directory names of R libraries, or NULL. The default
value of NULL corresponds to all libraries currently known. The specified
library trees are used to to search for package.

Details

This function is useful for package maintainers mostly. In principle, all user level R objects
should be documented; note however that the precise rules for documenting methods of
generic functions are still under discussion.

Value

An object of class "undoc" which is a list of character vectors containing the names of the
undocumented objects split according to documentation type. This representation is still
experimental, and might change in future versions.

There is a print method for nicely displaying the information contained in such objects.

Examples

undoc("eda") # Undocumented objects in ’eda’

Chapter 13

The ts package

acf Auto- and Cross- Covariance and -Correlation Function Estima-
tion

Description

The function acf computes (and by default plots) estimates of the autocovariance or au-
tocorrelation function. Function pacf is the function used for the partial autocorrelations.
Function ccf computes the cross-correlation or cross-covariance of two univariate series.

Usage

acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max = NULL, plot = TRUE, na.action = na.fail, ...)
ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),

plot = TRUE, na.action = na.fail, ...)

Arguments

x, y a univariate or multivariate (not ccf) time series object or a numeric
vector or matrix.

lag.max maximum number of lags at which to calculate the acf. Default is
10 log10(N) where N is the number of observations.

type character string giving the type of acf to be computed. Allowed values
are "correlation" (the default), "covariance" or "partial".

plot logical. If TRUE the acf is plotted.

na.action function to be called to handle missing values. na.pass can be used.

demean logical. Should the covariances be about the sample means?

... further arguments to be passed to plot.acf.

1011

1012 acf

Details

For type = "correlation" and "covariance", the estimates are based on the sample
covariance.
By default, no missing values are allowed. If the na.action function passes through missing
values (as na.pass does), the covariances are computed from the complete cases. This
means that the estimate computed may well not be a valid autocorrelation sequence, and
may contain missing values. Missing values are not allowed when computing the PACF of
a multivariate time series.
The partial correlation coefficient is estimated by fitting autoregressive models of succes-
sively higher orders up to lag.max.
The generic function plot has a method for objects of class "acf".
The lag is returned and plotted in units of time, and not numbers of observations.

Value

An object of class "acf", which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is esti-
mated.

acf An array with the same dimensions as lag containing the estimated acf.
type The type of correlation (same as the type argument).
n.used The number of observations in the time series.
series The name of the series x.
snames The series names for a multivariate time series.

The result is returned invisibly if plot is TRUE.

Author(s)

Original: Paul Gilbert, Martyn Plummer. Extensive modifications and univariate case of
pacf by B.D. Ripley.

See Also

plot.acf

Examples

Examples from Venables & Ripley

data(lh)

acf(lh)

acf(lh, type = "covariance")

pacf(lh)

data(UKLungDeaths)

acf(ldeaths)

acf(ldeaths, ci.type = "ma")

acf(ts.union(mdeaths, fdeaths))

ccf(mdeaths, fdeaths) # just the cross-correlations.

data(presidents) # contains missing values

acf(presidents, na.action = na.pass)

pacf(presidents, na.action = na.pass)

acf2AR 1013

acf2AR Compute an AR Process Exactly Fitting an ACF

Description

Compute an AR process exactly fitting an autocorrelation function.

Usage

acf2AR(acf)

Arguments

acf An autocorrelation or autocovariance sequence.

Value

A matrix, with one row for the computed AR(p) coefficients for 1 <= p <= length(acf).

Author(s)

B. D. Ripley

See Also

ARMAacf, ar.yw which does this from an empirical ACF.

Examples

(Acf <- ARMAacf(c(0.6, 0.3, -0.2)))

acf2AR(Acf)

AirPassengers Monthly Airline Passenger Numbers 1949-1960

Description

The classic Box & Jenkins airline data. Monthly totals of international airline passengers,
1949 to 1960.

Usage

data(AirPassengers)

Format

A monthly time series, in thousands.

Source

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting
and Control. Third Edition. Holden-Day. Series G.

1014 ar

Examples

These are quite slow and so not run by example(AirPassengers)

data(AirPassengers)

The classic ‘airline model’, by full ML

(fit <- arima(log10(AirPassengers), c(0, 1, 1),

seasonal = list(order=c(0, 1 ,1), period=12)))

update(fit, method = "CSS")

update(fit, x=window(log10(AirPassengers), start = 1954))

pred <- predict(fit, n.ahead = 24)

tl <- pred$pred - 1.96 * pred$se

tu <- pred$pred + 1.96 * pred$se

ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1,2,2))

full ML fit is the same if the series is reversed, CSS fit is not

ap0 <- rev(log10(AirPassengers))

attributes(ap0) <- attributes(AirPassengers)

arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12))

arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12),

method = "CSS")

Structural Time Series

ap <- log10(AirPassengers) - 2

(fit <- StructTS(ap, type= "BSM"))

par(mfrow=c(1,2))

plot(cbind(ap, fitted(fit)), plot.type = "single")

plot(cbind(ap, tsSmooth(fit)), plot.type = "single")

ar Fit Autoregressive Models to Time Series

Description

Fit an autoregressive time series model to the data, by default selecting the complexity by
AIC.

Usage

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"), na.action,
series, ...)

ar.burg(x, aic = TRUE, order.max = NULL,
na.action = na.fail, demean = TRUE, series, var.method = 1, ...)

ar.yw(x, aic = TRUE, order.max = NULL,
na.action = na.fail, demean = TRUE, series, ...)

ar.mle(x, aic = TRUE, order.max = NULL, na.action = na.fail, demean = TRUE,
series, ...)

predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)

ar 1015

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of
order order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where
N is the number of observations except for method="mle" where it is the
minimum of this quantity and 12.

method Character string giving the method used to fit the model. Must be one of
the strings in the default argument (the first few characters are sufficient).
Defaults to "yule-walker".

na.action function to be called to handle missing values.

demean should a mean be estimated during fitting?

series names for the series. Defaults to deparse(substitute(x)).

var.method the method to estimate the innovations variance (see Details).

... additional arguments for specific methods.

object a fit from ar.

newdata data to which to apply the prediction.

n.ahead number of steps ahead at which to predict.

se.fit logical: return estimated standard errors of the prediction error?

Details

For definiteness, note that the AR coefficients have the sign in

xt − µ = a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

ar is just a wrapper for the functions ar.yw, ar.burg, ar.ols and ar.mle.

Order selection is done by AIC if aic is true. This is problematic, as of the methods here
only ar.mle performs true maximum likelihood estimation. The AIC is computed as if the
variance estimate were the MLE, omitting the determinant term from the likelihood. Note
that this is not the same as the Gaussian likelihood evaluated at the estimated parame-
ter values. In ar.yw the variance matrix of the innovations is computed from the fitted
coefficients and the autocovariance of x.

ar.burg allows two methods to estimate the innovations variance and hence AIC. Method
1 is to use the update given by the Levinson-Durbin recursion (Brockwell and Davis, 1991,
(8.2.6) on page 242), and follows S-PLUS. Method 2 is the mean of the sum of squares of
the forward and backward prediction errors (as in Brockwell and Davis, 1996, page 145).
Percival and Walden (1998) discuss both. In the multivariate case the estimated coefficients
will depend (slightly) on the variance estimation method.

Remember that ar includes by default a constant in the model, by removing the overall
mean of x before fitting the AR model, or (ar.mle) estimating a constant to subtract.

1016 ar

Value

For ar and its methods a list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.
var.pred The prediction variance: an estimate of the portion of the variance of the

time series that is not explained by the autoregressive model.
x.mean The estimated mean of the series used in fitting and for use in prediction.
x.intercept (ar.ols only.) The intercept in the model for x - x.mean.
aic The value of the aic argument.
n.used The number of observations in the time series.
order.max The value of the order.max argument.
partialacf The estimate of the partial autocorrelation function up to lag order.max.
resid residuals from the fitted model, conditioning on the first order observa-

tions. The first order residuals are set to NA. If x is a time series, so is
resid.

method The value of the method argument.
series The name(s) of the time series.
asy.var.coef (univariate case.) The asymptotic-theory variance matrix of the coeffi-

cient estimates.

For predict.ar, a time series of predictions, or if se.fit = TRUE, a list with components
pred, the predictions, and se, the estimated standard errors. Both components are time
series.

Note

Only the univariate case of ar.mle is implemented.

Fitting by method="mle" to long series can be very slow.

Author(s)

Martyn Plummer. Univariate case of ar.yw, ar.mle and C code for univariate case of
ar.burg by B. D. Ripley.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second
edition. Springer, New York. Section 11.4.

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting.
Springer, New York. Sections 5.1 and 7.6.

Percival, D. P. and Walden, A. T. (1998) Spectral Analysis for Physical Applications. Cam-
bridge University Press.

Whittle, P. (1963) On the fitting of multivariate autoregressions and the approximate canon-
ical factorization of a spectral density matrix. Biometrika 40, 129–134.

See Also

ar.ols, arima0 for ARMA models.

ar.ols 1017

Examples

data(lh)

ar(lh)

ar(lh, method="burg")

ar(lh, method="ols")

ar(lh, FALSE, 4) # fit ar(4)

data(sunspot)

(sunspot.ar <- ar(sunspot.year))

predict(sunspot.ar, n.ahead=25)

try the other methods too

data(BJsales)

ar(ts.union(BJsales, BJsales.lead))

Burg is quite different here, as is OLS (see ar.ols)

ar(ts.union(BJsales, BJsales.lead), method="burg")

ar.ols Fit Autoregressive Models to Time Series by OLS

Description

Fit an autoregressive time series model to the data by ordinary least squares, by default
selecting the complexity by AIC.

Usage

ar.ols(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, intercept = demean, series, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of
order order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where
N is the number of observations.

na.action function to be called to handle missing values.

demean should the AR model be for x minus its mean?

intercept should a separate intercept term be fitted?

series names for the series. Defaults to deparse(substitute(x)).

... further arguments to be passed to or from methods.

1018 ar.ols

Details

ar.ols fits the general AR model to a possibly non-stationary and/or multivariate system
of series x. The resulting unconstrained least squares estimates are consistent, even if some
of the series are non-stationary and/or co-integrated. For definiteness, note that the AR
coefficients have the sign in

xt − µ = a0 + a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

where a0 is zero unless intercept is true, and µ is the sample mean if demean is true, zero
otherwise.

Order selection is done by AIC if aic is true. This is problematic, as ar.ols does not
perform true maximum likelihood estimation. The AIC is computed as if the variance
estimate (computed from the variance matrix of the residuals) were the MLE, omitting
the determinant term from the likelihood. Note that this is not the same as the Gaussian
likelihood evaluated at the estimated parameter values.

Some care is needed if intercept is true and demean is false. Only use this is the series are
roughly centred on zero. Otherwise the computations may be inaccurate or fail entirely.

Value

A list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the
time series that is not explained by the autoregressive model.

x.mean The estimated mean (or zero if demean is false) of the series used in fitting
and for use in prediction.

x.intercept The intercept in the model for x - x.mean, or zero if intercept is false.

aic The value of the aic argument.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf NULL. For compatibility with ar.

resid residuals from the fitted model, conditioning on the first order observa-
tions. The first order residuals are set to NA. If x is a time series, so is
resid.

method The character string "Unconstrained LS".

series The name(s) of the time series.

asy.se.coef The asymptotic-theory standard errors of the coefficient estimates.

Author(s)

Adrian Trapletti, Brian Ripley.

References

Luetkepohl, H. (1991): Introduction to Multiple Time Series Analysis. Springer Verlag,
NY, pp. 368–370.

arima 1019

See Also

ar

Examples

data(lh)

ar(lh, method="burg")

ar.ols(lh)

ar.ols(lh, FALSE, 4) # fit ar(4)

data(BJsales)

ar.ols(ts.union(BJsales, BJsales.lead))

data(EuStockMarkets)

x <- diff(log(EuStockMarkets))

ar.ols(x, order.max=6, demean=FALSE, intercept=TRUE)

arima ARIMA Modelling of Time Series

Description

Fit an ARIMA model to a univariate time series.

Usage

arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, transform.pars = TRUE,
fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.control = list(), kappa = 1e6)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three
components (p, d, q) are the AR order, the degree of differencing, and the
MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period
(which defaults to frequency(x)). This should be a list with components
order and period, but a specification of just a numeric vector of length
3 will be turned into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the
same number of rows as x.

include.mean Should the ARIMA model include a mean term? The default is TRUE for
undifferenced series, FALSE for differenced ones (where a mean would not
affect the fit nor predictions).

transform.pars

Logical. If true, the AR parameters are transformed to ensure that they
remain in the region of stationarity. Not used for method = "CSS".

1020 arima

fixed optional numeric vector of the same length as the total number of pa-
rameters. If supplied, only non-NA entries in fixed will be varied.
transform.pars = TRUE will be overridden if any AR parameters are
fixed.

init optional numeric vector of initial parameter values. Missing values will
be filled in, by zeroes except for regression coefficients.

method Fitting method: maximum likelihood or minimize conditional sum-of-
squares. The default (unless there are missing values) is to use conditional-
sum-of-squares to find starting values, then maximum likelihood.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial
observations to ignore. It will be ignored if less than the maximum lag of
an AR term.

optim.control List of control parameters for optim.
kappa the prior variance (as a multiple of the innovations variance) for the past

observations in a differenced model. Do not reduce this.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coeffi-
cients. The definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is
true, this formula applies to X −m rather than X. For ARIMA models with differencing,
the differenced series follows a zero-mean ARMA model.
The variance matrix of the estimates is found from the Hessian of the log-likelihood, and
so may only be a rough guide.
Optimization is done by optim. It will work best if the columns in xreg are roughly scaled
to zero mean and unit variance, but does attempt to estimate suitable scalings.

Value

A list of class "Arima" with components:

coef a vector of AR, MA and regression coefficients,
sigma2 the MLE of the innovations variance.
var.coef the estimated variance matrix of the coefficients coef.
loglik the maximized log-likelihood (of the differenced data), or the approxima-

tion to it used.
arma A compact form of the specification, as a vector giving the number of AR,

MA, seasonal AR and seasonal MA coefficients, plus the period and the
number of non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for method
= "ML" fits.

residuals the standardized residuals.
call the matched call.
series the name of the series x.
convergence the value returned by optim.
n.cond the number of initial observations not used in the fitting.
model A list representing the Kalman Filter used in the fitting. See KalmanLike.

arima 1021

Fitting methods

The exact likelihood is computed via a state-space representation of the ARIMA process,
and the innovations and their variance found by a Kalman filter. The initialization of the
differenced ARMA process uses stationarity and is based on Gardner et al. (1980). For
a differenced process the non-stationary components are given a diffuse prior (controlled
by kappa). Observations which are still controlled by the diffuse prior (determined by
having a Kalman gain of at least 1e4) are excluded from the likelihood calculations. (This
gives comparable results to arima0 in the absence of missing values, when the observations
excluded are precisely those dropped by the differencing.)

Missing values are allowed, and are handled exactly in method "ML".

If transform.pars is true, the optimization is done using an alternative parametrization
which is a variation on that suggested by Jones (1980) and ensures that the model is
stationary. For an AR(p) model the parametrization is via the inverse tanh of the partial
autocorrelations: the same procedure is applied (separately) to the AR and seasonal AR
terms. The MA terms are not constrained to be invertible during optimization, but they
will be converted to invertible form after optimization if transform.pars is true.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes
the sum of squares of the fitted innovations from observation n.cond on, (where n.cond
is at least the maximum lag of an AR term), treating all earlier innovations to be zero.
Argument n.cond can be used to allow comparability between different fits. The “part
log-likelihood” is the first term, half the log of the estimated mean square. Missing values
are allowed, but will cause many of the innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the
coefficients is fixed. It can be helpful to roughly scale the regressors to zero mean and unit
variance.

Note

The results are likely to be different from S-PLUS’s arima.mle, which computes a condi-
tional likelihood and does not include a mean in the model. Further, the convention used
by arima.mle reverses the signs of the MA coefficients.

arima is very similar to arima0 for ARMA models or for differenced models without missing
values, but handles differenced models with missing values exactly. It is somewhat slower
than arima0, particularly for seasonally differenced models.

Author(s)

B. D. Ripley

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting.
Springer, New York. Sections 3.3 and 8.3.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm
for exact maximum likelihood estimation of autoregressive-moving average models by means
of Kalman filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3
and 4.4.

1022 arima.sim

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

See Also

predict.Arima, tsdiag, arima0, ar

Examples

data(lh)

arima(lh, order = c(1,0,0))

arima(lh, order = c(3,0,0))

arima(lh, order = c(1,0,1))

arima(lh, order = c(3,0,0), method = "CSS")

data(USAccDeaths)

arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)))

arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)),

method = "CSS") # drops first 13 observations.

for a model with as few years as this, we want full ML

data(LakeHuron)

arima(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)

data(presidents) # contains NAs

graphs in example(acf) suggest order 1 or 3

(fit1 <- arima(presidents, c(1, 0, 0)))

tsdiag(fit1)

(fit3 <- arima(presidents, c(3, 0, 0))) # smaller AIC

tsdiag(fit3)

arima.sim Simulate from an ARIMA Model

Description

Simulate from an ARIMA model.

Usage

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = NA, ...)

Arguments

model A list with component ar and/or ma giving the AR and MA coeffcients
respectively. Optionally a component order can be used.

n length of output series.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided, rand.gen is used.

arima0 1023

n.start length of “burn-in” period. If NA, the default, a reasonable value is com-
puted.

... additional arguments for rand.gen. Most usefully, the standard deviation
of the innovations generated by rnorm can be specified by sd.

Details

The ARMA model is checked for stationarity.

ARIMA models are specified via the order component of model, in the same way as for
arima. Other aspects of the order component are ignored.

Value

A time-series object of class "ts".

See Also

arima.sim

Examples

arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),

sd = sqrt(0.1796))

mildly long-tailed

arima.sim(n = 63, list(ar=c(0.8897, -0.4858), ma=c(-0.2279, 0.2488)),

rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))

An ARIMA simulation

ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)

ts.plot(ts.sim)

arima0 ARIMA Modelling of Time Series – Preliminary Version

Description

Fit an ARIMA model to a univariate time series, and forecast from the fitted model.

Usage

arima0(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, delta = 0.01,
transform.pars = TRUE, fixed = NULL, init = NULL,
method = c("ML", "CSS"), n.cond, optim.control = list())

predict(object, n.ahead = 1, newxreg, se.fit = TRUE, ...)

1024 arima0

Arguments

x a univariate time series
order A specification of the non-seasonal part of the ARIMA model: the three

components (p, d, q) are the AR order, the degree of differencing, and the
MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period
(which defaults to frequency(x)). This should be a list with components
order and period, but a specification of just a numeric vector of length
3 will be turned into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the
same number of rows as x.

include.mean Should the ARIMA model include a mean term? The default is TRUE for
undifferenced series, FALSE for differenced ones (where a mean would not
affect the fit nor predictions).

delta A value to indicate at which point ‘fast recursions’ should be used. See
the Details section.

transform.pars

Logical. If true, the AR parameters are transformed to ensure that they
remain in the region of stationarity. Not used for method = "CSS".

fixed optional numeric vector of the same length as the total number of pa-
rameters. If supplied, only non-NA entries in fixed will be varied.
transform.pars = TRUE will be overridden if any ARMA parameters are
fixed.

init optional numeric vector of initial parameter values. Missing values will
be filled in, by zeroes except for regression coefficients.

method Fitting method: maximum likelihood or minimize conditional sum-of-
squares.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial
observations to ignore. It will be ignored if less than the maximum lag of
an AR term.

optim.control List of control parameters for optim.
object, fit The result of an arima0 fit.
newxreg New values of xreg to be used for prediction. Must have at least n.ahead

rows.
n.ahead The number of steps ahead for which prediction is required.
se.fit Logical: should standard errors of prediction be returned?
gof.lag Number of lags to be used in goodness-of-fit test.
... arguments passed to or from other methods.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coeffi-
cients. The definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is
true, this formula applies to X −m rather than X. For ARIMA models with differencing,
the differenced series follows a zero-mean ARMA model.

arima0 1025

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and
so may only be a rough guide, especially for fits close to the boundary of invertibility.

Optimization is done by optim. It will work best if the columns in xreg are roughly scaled
to zero mean and unit variance, but does attempt to estimate suitable scalings.

Finite-history prediction is used. This is only statistically efficient if the MA part of the fit
is invertible, so predict.arima0 will give a warning for non-invertible MA models.

Value

For arima0, a list of class "arima0" with components:

coef a vector of AR, MA and regression coefficients,

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef.

loglik the maximized log-likelihood (of the differenced data), or the approxima-
tion to it used.

arma A compact form of the specification, as a vector giving the number of AR,
MA, seasonal AR and seasonal MA coefficients, plus the period and the
number of non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for method
= "ML" fits. Prior to R 1.5.0 this omitted 2 for the estimation of the
innovations variance.

residuals the standardized residuals. (Was resid prior to R 1.5.0.)

call the matched call.

series the name of the series x.

convergence the value returned by optim.

n.cond the number of initial observations not used in the fitting.

For predict.arima0, a time series of predictions, or if se.fit = TRUE, a list with compo-
nents pred, the predictions, and se, the estimated standard errors. Both components are
time series.

Fitting methods

The exact likelihood is computed via a state-space representation of the ARMA process,
and the innovations and their variance found by a Kalman filter based on Gardner et al.
(1980). This has the option to switch to ‘fast recursions’ (assume an effectively infinite past)
if the innovations variance is close enough to its asymptotic bound. The argument delta
sets the tolerance: at its default value the approximation is normally negligible and the
speed-up considerable. Exact computations can be ensured by setting delta to a negative
value.

If transform.pars is true, the optimization is done using an alternative parametrization
which is a variation on that suggested by Jones (1980) and ensures that the model is
stationary. For an AR(p) model the parametrization is via the inverse tanh of the partial
autocorrelations: the same procedure is applied (separately) to the AR and seasonal AR
terms. The MA terms are also constrained to be invertible during optimization by the
same transformation if transform.pars is true. Note that the MLE for MA terms does
sometimes occur for MA polynomials with unit roots: such models can be fitted by using
transform.pars = FALSE and specifying a good set of initial values (often obtainable from
a fit with transform.pars = TRUE).

1026 arima0

As from R 1.5.0 missing values are allowed, but any missing values will force delta to be ig-
nored and full recursions used. Note that missing values will be propogated by differencing,
so the procedure used in this function is not fully efficient in that case.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes
the sum of squares of the fitted innovations from observation n.cond on, (where n.cond
is at least the maximum lag of an AR term), treating all earlier innovations to be zero.
Argument n.cond can be used to allow comparability between different fits. The “part
log-likelihood” is the first term, half the log of the estimated mean square. Missing values
are allowed, but will cause many of the innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the
coefficients is fixed. It can be helpful to roughly scale the regressors to zero mean and unit
variance.

Note

This is a preliminary version, and will be replaced by arima.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA
model and the regression coefficients.

The results are likely to be different from S-PLUS’s arima.mle, which computes a condi-
tional likelihood and does not include a mean in the model. Further, the convention used
by arima.mle reverses the signs of the MA coefficients.

Author(s)

B. D. Ripley

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting.
Springer, New York. Sections 3.3 and 8.3.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm
for exact maximum likelihood estimation of autoregressive-moving average models by means
of Kalman filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3
and 4.4.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

See Also

arima, ar, tsdiag

Examples

data(lh)

arima0(lh, order = c(1,0,0))

arima0(lh, order = c(3,0,0))

arima0(lh, order = c(1,0,1))

predict(arima0(lh, order = c(3,0,0)), n.ahead = 12)

ARMAacf 1027

arima0(lh, order = c(3,0,0), method = "CSS")

data(USAccDeaths)

for a model with as few years as this, we want full ML

(fit <- arima0(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)), delta = -1))

predict(fit, n.ahead = 6)

data(LakeHuron)

arima0(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)

data(presidents) # contains NAs

graphs in example(acf) suggest order 1 or 3

(fit1 <- arima0(presidents, c(1, 0, 0), delta = -1)) # avoid warning

tsdiag(fit1)

(fit3 <- arima0(presidents, c(3, 0, 0), delta = -1)) # smaller AIC

tsdiag(fit3)

ARMAacf Compute Theoretical ACF for an ARMA Process

Description

Compute the theoretical autocorrelation function or partial autocorrelation function for an
ARMA process.

Usage

ARMAacf(ar = numeric(0), ma = numeric(0), lag.max = r, pacf = FALSE)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max integer. Maximum lage required. Defaults to max(p, q+1), where p, q
are the numbers of AR and MA terms respectively.

pacf logical. Should the partial autocorrelations be returned?

Details

The methods used follow Brockwell & Davis (1991, section 3.3). Their equations (3.3.8) are
solved for the autocovariances at lags 0, . . . ,max(p, q + 1), and the remaining autocorrela-
tions are given by a recursive filter.

Value

A vector of (partial) autocorrelations, named by the lags.

Author(s)

B. D. Ripley

1028 ARMAtoMA

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima, ARMAtoMA, filter.

Examples

ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)

Example from Brockwell & Davis (1991, pp.92-4)

answer 2^(-n) * (32/3 + 8 * n) /(32/3)

n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3)

ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE)

ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE)

ARMAtoMA Convert ARMA Process to Infinite MA Process

Description

Convert ARMA process to infinite MA process.

Usage

ARMAtoMA(ar = numeric(0), ma = numeric(0), lag.max)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max Largest MA(Inf) coefficient required.

Value

A vector of coefficients.

Author(s)

B. D. Ripley

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima, ARMAacf.

austres 1029

Examples

ARMAtoMA(c(1.0, -0.25), 1.0, 10)

Example from Brockwell & Davis (1991, p.92)

answer (1 + 3*n)*2^(-n)

n <- 1:10; (1 + 3*n)*2^(-n)

austres Quarterly Time Series of the Number of Australian Residents

Description

Numbers (in thousands) of Australian residents measured quarterly from March 1971 to
March 1994. The object is of class "ts".

Usage

data(austres)

Source

P. J. Brockwell and R. A. Davis (1996) Introduction to Time Series and Forecasting.
Springer

beavers Body Temperature Series of Two Beavers

Description

Reynolds (1994) describes a small part of a study of the long-term temperature dynamics
of beaver Castor canadensis in north-central Wisconsin. Body temperature was measured
by telemetry every 10 minutes for four females, but data from a one period of less than a
day for each of two animals is used there.

Usage

data(beavers)

Format

The beaver1 data frame has 114 rows and 4 columns on body temperature measurements
at 10 minute intervals.

The beaver2 data frame has 100 rows and 4 columns on body temperature measurements
at 10 minute intervals.

The variables are as follows:

day Day of observation (in days since the beginning of 1990), December 12–13 (beaver1)
and November 3–4 (beaver2).

time Time of observation, in the form 0330 for 3:30am

temp Measured body temperature in degrees Celsius.

activ Indicator of activity outside the retreat.

1030 BJsales

Note

The observation at 22:20 is missing in beaver1.

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11 of
Lange, N., Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994)
Case Studies in Biometry. New York: John Wiley and Sons.

Examples

data(beavers)

(yl <- range(beaver1$temp, beaver2$temp))

beaver.plot <- function(bdat, ...) {

nam <- deparse(substitute(bdat))

attach(bdat)

Hours since start of day:

hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60

plot (hours, temp, type = "l", ...,

main = paste(nam, "body temperature"))

abline(h = 37.5, col = "gray", lty = 2)

is.act <- activ == 1

points(hours[is.act], temp[is.act], col = 2, cex = .8)

}

op <- par(mfrow = c(2,1), mar = c(3,3,4,2), mgp = .9* 2:0)

beaver.plot(beaver1, ylim = yl)

beaver.plot(beaver2, ylim = yl)

par(op)

BJsales Sales Data with Leading Indicator.

Description

The sales time series BJsales and leading indicator BJsales.lead each contain 150 obser-
vations. The objects are of class "ts".

Usage

data(BJsales)

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data Library
at http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

References

G. E. P. Box and G. M. Jenkins (1976): Time Series Analysis, Forecasting and Control,
Holden-Day, San Francisco, p. 537.
P. J. Brockwell and R. A. Davis (1991): Time Series: Theory and Methods, Second edition,
Springer Verlag, NY, pp. 414.

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

Box.test 1031

Box.test Box–Pierce and Ljung–Box Tests

Description

Compute the Box–Pierce or Ljung–Box test statistic for examining the null hypothesis of
independence in the time series x is computed.

Usage

Box.test (x, lag = 1, type=c("Box-Pierce", "Ljung-Box"))

Arguments

x a numeric vector or univariate time series.
lag the statistic will be based on lag autocorrelation coefficients.
type test to be performed: partial matching is used.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the

test statistic.
p.value the p-value of the test.
method a character string indicating which type of test was performed.
data.name a character string giving the name of the data.

Note

Missing values are not handled.

Author(s)

A. Trapletti

References

Box, G. E. P. and Pierce, D. A. (1970) Distribution of residual correlations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Associ-
ation 65, 1509–1526.

Ljung, G. M. and Box, G. E. P. (1978) On a measure of lack of fit in time series models.
Biometrika 65, 553–564.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, NY, pp. 44,
45.

Examples

x <- rnorm (100)

Box.test (x, lag = 1)

Box.test (x, lag = 1, type="Ljung")

1032 cpgram

cpgram Plot Cumulative Periodogram

Description

Plots a cumulative periodogram.

Usage

cpgram(ts, taper=0.1, main=
paste("Series: ", deparse(substitute(ts))), ci.col="blue")

Arguments

ts a univariate time series

taper proportion tapered in forming the periodogram

main main title

ci.col colour for confidence band.

Value

None.

Side Effects

Plots the cumulative periodogram in a square plot.

Note

From package ‘MASS’.

Author(s)

B.D. Ripley

Examples

par(pty = "s", mfrow = c(1,2))

data(lh)

cpgram(lh)

lh.ar <- ar(lh, order.max = 9)

cpgram(lh.ar$resid, main = "AR(3) fit to lh")

data(UKLungDeaths)

cpgram(ldeaths)

decompose 1033

decompose Classical Seasonal Decomposition by Moving Averages

Description

Decompose a time series into seasonal, trend and irregular components using moving aver-
ages. Deals with additive or multiplicative seasonal component.

Usage

decompose(x, type = c("additive", "multiplicative"))

Arguments

x A time series.
type The type of seasonal component.

Details

The additive model used is:

Y[t] = T[t] + S[t] + e[t]

The multiplicative model used is:

Y[t] = T[t] * S[t] + e[t]

Value

An object of class "decomposed.ts" with following components:

seasonal The seasonal component (i.e., the repeated seasonal figure)
figure The estimated seasonal figure only
trend The trend component
random The remainder part
type The value of type

Note

The function stl provides a much more sophisticated decomposition.

Author(s)

David Meyer 〈david.meyer@ci.tuwien.ac.at〉

See Also

stl

Examples

data(co2)

m <- decompose(co2)

m$figure

plot(m)

1034 diffinv

diffinv Discrete Integrals: Inverse of Differencing

Description

Computes the inverse function of the lagged differences function diff.

Usage

diffinv(x, lag = 1, differences = 1,
xi = rep(0.0, lag*differences*NCOL(x)), ...)

Arguments

x a numeric vector, matrix, or time series.

lag a scalar lag parameter.

differences an integer representing the order of the difference.

xi a numeric vector, matrix, or time series containing the initial values for
the integrals.

... arguments passed to or from other methods.

Details

diffinv is a generic function with methods for class "ts" and default for vectors and
matrices.

Missing values are not handled.

Value

A numeric vector, matrix, or time series representing the discrete integral of x.

Author(s)

A. Trapletti

See Also

diff

Examples

s <- 1:10

d <- diff(s)

diffinv(d, xi = 1)

embed 1035

embed Embedding a Time Series

Description

Embeds the time series x into a low-dimensional Euclidean space.

Usage

embed (x, dimension = 1)

Arguments

x a numeric vector, matrix, or time series.

dimension a scalar representing the embedding dimension.

Details

Each row of the resulting matrix consists of sequences x[t], x[t-1], . . . , x[t-
dimension+1], where t is the original index of x. If x is a matrix, i.e., x contains more
than one variable, then x[t] consists of the tth observation on each variable.

Value

A matrix containing the embedded time series x.

Author(s)

A. Trapletti, B.D. Ripley

Examples

x <- 1:10

embed (x, 3)

EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991-
1998.

Description

Contains the daily closing prices of major European stock indices: Germany DAX (Ibis),
Switzerland SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e.,
weekends and holidays are omitted.

Usage

data(EuStockMarkets)

1036 filter

Format

A multivariate time series with 1860 observations on 4 variables. The object is of class
"mts".

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate
time series.

Usage

filter(x, filter, method = c("convolution", "recursive"),
sides = 2, circular = FALSE, init)

Arguments

x a univariate or multivariate time series.

filter a vector of filter coefficients in reverse time order (as for AR or MA
coefficients).

method Either "convolution" or "recursive" (and can be abbreviated). If
"convolution" a moving average is used: if "recursive" an autore-
gression is used.

sides for convolution filters only. If sides=1 the filter coefficients are for past
values only; if sides=2 they are centred around lag 0. In this case the
length of the filter should be odd, but if it is even, more of the filter is
forward in time than backward.

circular for convolution filters only. If TRUE, wrap the filter around the ends of
the series, otherwise assume external values are missing (NA).

init for recursive filters only. Specifies the initial values of the time series just
prior to the start value, in reverse time order. The default is a set of zeros.

Details

Missing values are allowed in x but not in filter (where they would lead to missing values
everywhere in the output).

Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

yi = xi + f1yi−1 + · · ·+ fpyi−p

No check is made to see if recursive filter is invertible: the output may diverge if it is not.

The convolution filter is
yi = f1xi+o + · · ·+ fpxi+o−p−1

where o is the offset: see sides for how it is determined.

HoltWinters 1037

Value

A time series object.

Note

convolve(, type="filter") uses the FFT for computations and so may be faster for long
filters on univariate series, but it does not return a time series (and so the time alignment
is unclear), nor does it handle missing values. filter is faster for a filter of length 100 on
a series of length 1000, for example.

Author(s)

B.D. Ripley

See Also

convolve, arima.sim

Examples

x <- 1:100

filter(x, rep(1, 3))

filter(x, rep(1, 3), sides = 1)

filter(x, rep(1, 3), sides = 1, circular = TRUE)

data(presidents)

filter(presidents, rep(1,3))

HoltWinters Holt-Winters Filtering

Description

Computes Holt-Winters Filtering of a given time series. Unknown parameters are deter-
mined by minimizing the squared prediction error.

Usage

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = "additive", start.periods = 3,
l.start = NULL, b.start = NULL, s.start = NULL)

Arguments

x An object of class ts

alpha alpha parameter of Holt-Winters Filter

beta beta parameter of Holt-Winters Filter. If set to 0, the function will do
exponential smoothing.

gamma gamma parameter used for the seasonal component. If set to 0, an non-
seasonal model is fitted.

seasonal Selects an "additive" or "multiplicative" seasonal model. (Only takes
effect if gamma is non-zero).

1038 HoltWinters

start.periods Start periods used in the autodetection of start values. Must be at least
3.

l.start Start value for level (a[0]).

b.start Start value for trend (b[0]).

s.start Vector of start values for the seasonal component (s1[0]...sp[0])

Details

The additive Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = a[t] + hb[t] + s[t+ 1 + (h− 1) mod p],

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

The multiplicative Holt-Winters prediction function (for time series with period length p)
is

Ŷ [t+ h] = (a[t] + hb[t])× s[t+ 1 + (h− 1) mod p].

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]/s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]/a[t]) + (1− γ)s[t− p]

The function tries to find the optimal values of α and/or β and/or γ by minimizing the
squared one-step prediction error if they are omitted.

For seasonal models, start values for a, b and s are detected by performing a simple decom-
position in trend and seasonal component using moving averages (see function decompose)
on the start.periods first periods (a simple linear regression on the trend component is
used for starting level and trend.). For level/trend-models (no seasonal component), start
values for a and b are x[2] and x[2] - x[1], respectively. For level-only models (ordinary
exponential smoothing), the start value for a is x[1].

Value

An object of class "HoltWinters", a list with components:

fitted The filtered time series

x The original series

alpha alpha used for filtering

beta beta used for filtering

coefficients A vector with named components a, b, s1, ..., sp containing the es-
timated values for the level, trend and seasonal components

seasonal The specified seasonal-parameter

SSE The final sum of squared errors achieved in optimizing

call The call used

JohnsonJohnson 1039

Author(s)

David Meyer 〈david.meyer@ci.tuwien.ac.at〉

References

C.C Holt (1957) Forecasting seasonals and trends by exponentially weighted moving aver-
ages, ONR Research Memorandum, Carnigie Institute 52.

P.R Winters (1960) Forecasting sales by exponentially weighted moving averages, Manage-
ment Science 6, 324–342.

See Also

predict.HoltWinters

Examples

library(ts)

data(co2)

(m <- HoltWinters(co2))

plot(m)

data(AirPassengers)

(m <- HoltWinters(AirPassengers, seasonal = "mult"))

plot(m)

data(uspop)

x <- uspop + rnorm(uspop, sd = 5)

m <- HoltWinters(x, gamma = 0)

plot(m)

m2 <- HoltWinters(x, gamma = 0, beta = 0)

lines(fitted(m2), col = 3)

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

Description

Quarterly earnings (dollars) per Johnson & Johnson share 1960–80.

Usage

data(JohnsonJohnson)

Format

A quarterly time series

Source

Shumway, R. H. and Stoffer, D. S. (2000) Time Series Analysis and its Applications. Second
Edition. Springer. Example 1.1.

1040 KalmanLike

Examples

data(JohnsonJohnson)

JJ <- log10(JohnsonJohnson)

plot(JJ)

(fit <- StructTS(JJ, type="BSM"))

tsdiag(fit)

sm <- tsSmooth(fit)

plot(cbind(JJ, sm[, 1], sm[, 3]-0.5), plot.type = "single",

col = c("black", "green", "blue"))

abline(h = -0.5, col = "grey60")

monthplot(fit)

KalmanLike Kalman Filtering

Description

Use Kalman Filtering to find the (Gaussian) log-likelihood, or for forecasting or smoothing.

Usage

KalmanLike(y, mod, nit = 0)
KalmanRun(y, mod, nit = 0)
KalmanSmooth(y, mod, nit = 0)
KalmanForecast(n.ahead = 10, mod)
makeARIMA(phi, theta, Delta, kappa = 1e6)

Arguments

y a univariate time series.

mod A list describing the state-space model: see Details.

nit The time at which the initialization is computed. nit = 0 implies that
the initialization is for a one-step prediction, so Pn should not be computed
at the first step.

n.ahead The number of steps ahead for which prediction is required.

phi, theta numeric vectors of length ≥ 0 giving AR and MA parameters.

Delta vector of differencing coefficients, so an ARMA model is fitted to y[t] -
Delta[1]*y[t-1] -

kappa the prior variance (as a multiple of the innovations variance) for the past
observations in a differenced model.

Details

These functions work with a general univariate state-space model with state vector a, transi-
tions a <- T a + e, e N(0, κQ) and observation equation y = Z’a + R eta, eta N(0, κh).
The likelihood is a profile likelihood after estimation of κ.

The model is specified as a list with at least components

T the transition matrix

KalmanLike 1041

Z the observation coeficients

h the observation variance

V RQR’

a the current state estimate

P the current estimate of the state uncertainty matrix

Pn the estimate at time t− 1 of the state uncertainty matrix

KalmanSmooth is the workhorse function for tsSmooth.

makeARIMA constructs the state-space model for an ARIMA model.

Value

For KalmanLike, a list with components Lik (the log-likelihood less some constants) and
s2, the estimate of of κ.

For KalmanRun, a list with components values, a vector of length 2 giving the output of
KalmanLike, resid (the residuals) and states, the contemporaneous state estimates, a
matrix with one row for each time.

For KalmanSmooth, a list with two components. Component smooth is a n by p matrix
of state estimates based on all the observations, with one row for each time. Component
smooth is a n by p by p array of variance matrices.

For KalmanForecast, a list with components pred, the predictions, and var, the unscaled
variances of the prediction errors (to be muliplied by s2).

For makeARIMA, a model list including components for its arguments.

Warning

These functions are designed to be called from other functions which check the validity of
the arguments passed, so very little checking is done.

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press.

See Also

arima, StructTS. tsSmooth.

1042 kernel

kernapply Apply Smoothing Kernel

Description

kernapply computes the convolution between an input sequence and a specific kernel.

Usage

kernapply(x, k, circular = FALSE, ...)
kernapply(k1, k2)

Arguments

k, k1, k2 smoothing "tskernel" objects.

x an input vector, matrix, or time series to be smoothed.

circular a logical indicating whether the input sequence to be smoothed is treated
as circular, i.e., periodic.

... arguments passed to or from other methods.

Value

A smoothed version of the input sequence.

Author(s)

A. Trapletti

See Also

kernel, convolve, filter, spectrum

Examples

see ‘kernel’ for examples

kernel Smoothing Kernel Objects

Description

The "tskernel" class is designed to represent discrete symmetric normalized smoothing
kernels. These kernels can be used to smooth vectors, matrices, or time series objects.

kernel 1043

Usage

kernel(coef, m, r, name)

df.kernel(k)
bandwidth.kernel(k)
is.tskernel(k)

print(x, digits = max(3,getOption("digits")-3), ...)
plot(x, ...)

Arguments

coef the upper half of the smoothing kernel coefficients (inclusive of coeffi-
cient zero) or the name of a kernel (currently "daniell", "dirichlet",
"fejer" or "modified.daniell".

m the kernel dimension. The number of kernel coefficients is 2*m+1.

name the name of the kernel.

r the kernel order for a Fejer kernel.

digits the number of digits to format real numbers.

k, x a "tskernel" object.

... arguments passed to or from other methods.

Details

kernel is used to construct a general kernel or named specific kernels. The modified Daniell
kernel halves the end coefficients (as used by S-PLUS).

df.kernel returns the “equivalent degrees of freedom” of a smoothing kernel as defined
in Brockwell and Davies (1991), page 362, and bandwidth.kernel returns the equivalent
bandwidth as defined in Bloomfield (1991), p. 201, with a continuity correction.

Value

kernel returns a list with class "tskernel", and components the coefficients coef and the
kernel dimension m. An additional attribute is "name".

Author(s)

A. Trapletti; modifications by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition.
Springer, pp. 350–365.

See Also

kernapply

1044 lag

Examples

data(EuStockMarkets) # Demonstrate a simple trading strategy for the

x <- EuStockMarkets[,1] # financial time series German stock index DAX.

k1 <- kernel("daniell", 50) # a long moving average

k2 <- kernel("daniell", 10) # and a short one

plot(k1)

plot(k2)

x1 <- kernapply(x, k1)

x2 <- kernapply(x, k2)

plot(x)

lines(x1, col = "red") # go long if the short crosses the long upwards

lines(x2, col = "green") # and go short otherwise

data(sunspot) # Reproduce example 10.4.3 from Brockwell and Davies (1991)

spectrum(sunspot.year, kernel=kernel("daniell", c(11,7,3)), log="no")

lag Lag a Time Series

Description

Computed a lagged version of a time series, shifting the time base back by a given number
of observations.

Usage

lag(x, k = 1, ...)

Arguments

x A vector or matrix or univariate or multivariate time series

k The number of lags (in units of observations).

... further arguments to be passed to or from methods.

Details

Vector or matrix arguments x are coerced to time series.

lag is a generic function; this page documents its default method.

Value

A time series object.

Note

Note the sign of k: a series lagged by a positive k starts earlier.

Author(s)

B.D. Ripley

lag.plot 1045

See Also

diff, deltat

Examples

data(UKLungDeaths)

lag(ldeaths, 12) # starts one year earlier

lag.plot Time Series Lag Plots

Description

Plot time series against lagged versions of themselves. Helps visualizing “auto-dependence”
even when auto-correlations vanish.

Usage

lag.plot(x, lags = 1, layout = NULL, set.lags = 1:lags,
main = NULL, asp = 1,
font.main=par("font.main"), cex.main=par("cex.main"),
diag = TRUE, diag.col="gray", type="p", oma =NULL, ask =NULL,
do.lines = n <= 150, labels = do.lines, ...)

Arguments

x time-series (univariate or multivariate)

lags number of lag plots desired, see arg set.lags.

layout the layout of multiple plots, basically the mfrow par() argument. The
default uses about a square layout (see n2mfrow such that all plots are on
one page.

set.lags positive integer vector allowing to specify the set of lags used; defaults to
1:lags.

main character with a main header title to be done on the top of each page.

asp Aspect ratio to be fixed, see plot.default.
font.main, cex.main

attributes for the title, see par().

diag logical indicating if the x=y diagonal should be drawn.

diag.col color to be used for the diagonal if(diag).

type plot type to be used, but see plot.ts about its restricted meaning.

oma outer margins, see par.

ask logical; if true, the user is asked before a new page is started.

do.lines logical indicating if lines should be drawn.

labels logical indicating if labels should be used.

... Further arguments to plot.ts.

1046 LakeHuron

Note

It is more flexible and has different default behaviour than the S version. We use main =
instead of head = for internal consistency.

Author(s)

Martin Maechler

See Also

plot.ts which is the basic work horse.

Examples

data(nhtemp)

lag.plot(nhtemp, 8, diag.col = "forest green")

lag.plot(nhtemp, 5, main="Average Temperatures in New Haven")

ask defaults to TRUE when we have more than one page:

lag.plot(nhtemp, 6, layout = c(2,1), asp = NA,

main = "New Haven Temperatures", col.main = "blue")

Multivariate (but non-stationary! ...)

data(freeny)

lag.plot(freeny.x, lag = 3)

data(sunspots) # no lines for long series :

lag.plot(sqrt(sunspots), set = c(1:4, 9:12), pch = ".", col = "gold")

LakeHuron Level of Lake Huron 1875–1972

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Usage

data(LakeHuron)

Format

A time series of length 98.

Source

Brockwell, P. J. & Davis, R. A. (1991). Time Series and Forecasting Methods. Second
edition. Springer, New York. Series A, page 555.

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting.
Springer, New York. Sections 5.1 and 7.6.

lh 1047

lh Luteinizing Hormone in Blood Samples

Description

A regular time series giving the luteinizing hormone in blood samples at 10 mins intervals
from a human female, 48 samples.

Usage

data(lh)

Source

P.J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.1, series 3

lynx Annual Canadian Lynx trappings 1821–1934

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis
(1991), this appears to be the series considered by Campbell & Walker (1977).

Usage

data(lynx)

Source

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second
edition. Springer. Series G (page 557).

References

Campbell, M. J.and A. M. Walker (1977). A Survey of statistical work on the Mackenzie
River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis.
Journal of the Royal Statistical Society series A, 140, 411–431.

1048 monthplot

monthplot Plot a Seasonal or other Subseries

Description

These functions plot seasonal (or other) subseries of a time series. For each season (or other
category), a time series is plotted.

Usage

monthplot(x, labels = NULL, times, phase, base, choice, ...)

Arguments

x Time series or related object.

labels Labels to use for each “season”.

times Time of each observation.

phase Indicator for each “season”.

base Function to use for reference line for subseries.

choice Which series of an stl or StructTS object?

... Graphical parameters.

Details

These functions extract subseries from a time series and plot them all in one frame. The
ts, stl, and StructTS methods use the internally recorded frequency and start and finish
times to set the scale and the seasons. The default method assumes observations come in
groups of 12 (though this can be changed).

If the labels are not given but the phase is given, then the labels default to the unique
values of the phase. If both are given, then the phase values are assumed to be indices into
the labels array, i.e. they should be in the range from 1 to length(labels).

Value

These functions are executed for their side effect of drawing a seasonal subseries plot on the
current graphical window.

Author(s)

Duncan Murdoch

See Also

ts, stl, StructTS

na.contiguous 1049

Examples

The CO2 data

data(co2)

fit <- stl(log(co2), s.window = 20, t.window = 20)

plot(fit)

op <- par(mfrow = c(2,2))

monthplot(co2, ylab = "data", cex.axis = 0.8)

monthplot(fit, choice = "seasonal", cex.axis = 0.8)

monthplot(fit, choice = "trend", cex.axis = 0.8)

monthplot(fit, choice = "remainder", type = "h", cex.axis = 0.8)

par(op)

The CO2 data, grouped quarterly

quarter <- (cycle(co2) - 1) %/% 3

monthplot(co2, phase = quarter)

see also JohnsonJohnson

na.contiguous NA Handling Routines for Time Series

Description

Find the longest consecutive stretch of non-missing values in a time series object. (In the
event of a tie, the first such stretch.)

Usage

na.contiguous(frame)

Arguments

frame a univariate or multivariate time series.

Value

A time series without missing values. The class of frame will be preserved.

Author(s)

B. D. Ripley

See Also

na.omit and na.omit.ts; na.fail

Examples

data(presidents)

na.contiguous(presidents)

1050 Nile

Nile Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Ashwan 1871–1970.

Usage

data(Nile)

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press. http://www.ssfpack.com/dkbook/

References

Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business and Economic
Statistics 11, 81–92.

Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point prob-
lem. Biometrika 65, 243–51.

Examples

data(Nile)

par(mfrow = c(2,2))

plot(Nile)

acf(Nile)

pacf(Nile)

ar(Nile) # selects order 2

cpgram(ar(Nile)$resid)

par(mfrow = c(1,1))

arima(Nile, c(2, 0, 0))

Now consider missing values, following Durbin & Koopman

NileNA <- Nile

NileNA[c(21:40, 61:80)] <- NA

arima(NileNA, c(2, 0, 0))

plot(NileNA)

pred <- predict(arima(window(NileNA, 1871, 1890), c(2, 0, 0)), n.ahead = 20)

lines(pred$pred, lty = 3, col = "red")

lines(pred$pred + 2*pred$se, lty=2, col="blue")

lines(pred$pred - 2*pred$se, lty=2, col="blue")

pred <- predict(arima(window(NileNA, 1871, 1930), c(2, 0, 0)), n.ahead = 20)

lines(pred$pred, lty = 3, col = "red")

lines(pred$pred + 2*pred$se, lty=2, col="blue")

lines(pred$pred - 2*pred$se, lty=2, col="blue")

Structural time series models

http://www.ssfpack.com/dkbook/

nottem 1051

data(Nile, package = "ts")

par(mfrow = c(3, 1))

plot(Nile)

local level model

(fit <- StructTS(Nile, type = "level"))

lines(fitted(fit), lty = 2) # contempareneous smoothing

lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing

plot(residuals(fit)); abline(h = 0, lty = 3)

local trend model

(fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted

pred <- predict(fit, n.ahead = 30)

with 50% confidence interval

ts.plot(Nile, pred$pred, pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)

Now consider missing values

plot(NileNA)

(fit3 <- StructTS(NileNA, type = "level"))

lines(fitted(fit3), lty = 2)

lines(tsSmooth(fit3), lty = 3)

plot(residuals(fit3)); abline(h = 0, lty = 3)

nottem Average Monthly Temperatures at Nottingham, 1920–1939

Description

A time series object containing average air temperatures at Nottingham Castle in degrees
Fahrenheit for 20 years.

Usage

data(nottem)

Source

Anderson, O. D. (1976) Time Series Analysis and Forecasting: The Box-Jenkins approach.
Butterworths. Series R.

Examples

data(nottem)

nott <- window(nottem, end=c(1936,12))

fit <- arima(nott,order=c(1,0,0), list(order=c(2,1,0), period=12))

nott.fore <- predict(fit, n.ahead=36)

ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,

nott.fore$pred-2*nott.fore$se, gpars=list(col=c(1,1,4,4)))

1052 plot.acf

plot.acf Plotting Autocovariance and Autocorrelation Functions

Description

Plotting method for objects of class "acf".

Usage

plot(x, ci = 0.95, type = "h", xlab = "Lag", ylab = NULL,
ylim = NULL, main = NULL, ci.col="blue",
ci.type = c("white", "ma"),
max.mfrow = 6,
ask = Npgs > 1 && dev.interactive(),
mar = if(nser > 2) c(3,2,2,0.8) else par("mar"),
oma = if(nser > 2) c(1,1.2,1,1) else par("oma"),
mgp = if(nser > 2) c(1.5,0.6,0) else par("mgp"),
xpd = par("xpd"),
cex.main = if(nser > 2) 1 else par("cex.main"),
verbose = getOption("verbose"),
...)

Arguments

x an object of class "acf".

ci coverage probability for confidence interval. Plotting of the confidence
interval is suppressed if ci is zero or negative.

type the type of plot to be drawn, default to histogram like vertical lines.

xlab the x label of the plot.

ylab the y label of the plot.

ylim numeric of length 2 giving the y limits for the plot.

main overall title for the plot.

ci.col colour to plot the confidence interval lines.

ci.type should the confidence limits assume a white noise input or for lag k an
MA(k − 1) input?

max.mfrow positive integer; for multivariate x indicating how many rows and columns
of plots should be put on one page, using par(mfrow = c(m,m)).

ask logical; if TRUE, the user is asked before a new page is started.
mar, oma, mgp, xpd, cex.main

graphics parameters as in par(*), by default adjusted to use smaller than
default margins for multivariate x only. xpd = NA used to be the default
for R version <= 1.4.0.

verbose logical. Should R report extra information on progress?

... graphics parameters to be passed to the plotting routines.

plot.HoltWinters 1053

Note

The confidence interval plotted in plot.acf is based on an uncorrelated series and should
be treated with appropriate caution. Using ci.type = "ma" may be less potentially mis-
leading.

See Also

acf which calls plot.acf by default.

Examples

z4 <- ts(matrix(rnorm(400), 100, 4), start=c(1961, 1), frequency=12)

z7 <- ts(matrix(rnorm(700), 100, 7), start=c(1961, 1), frequency=12)

acf(z4)

acf(z7, max.mfrow = 7)# squeeze on 1 page

acf(z7) # multi-page

plot.HoltWinters Plot function for HoltWinters objects

Description

Produces a chart of the original time series along with the fitted values. Optionally, pre-
dicted values (and their confidence bounds) can also be plotted.

Usage

plot(x, predicted.values = NA, intervals = TRUE,
separator = TRUE, col = 1, col.predicted = 2,
col.intervals = 4, col.separator = 1, lty = 1,
lty.predicted = 1, lty.intervals = 1, lty.separator = 3,
ylab = "Observed / Fitted",
main = "Holt-Winters filtering", ...)

Arguments

x Object of class "HoltWinters"
predicted.values

Predicted values as returned by predict.HoltWinters

intervals If TRUE, the prediction intervals are plotted (default).

separator If TRUE, a separating line between fitted and predicted values is plotted
(default).

col, lty Color/line type of original data (default: black solid).
col.predicted, lty.predicted

Color/line type of fitted and predicted values (default: red solid).
col.intervals, lty.intervals

Color/line type of prediction intervals (default: blue solid).
col.separator, lty.separator

Color/line type of observed/predicted values separator (default: black
dashed).

1054 plot.spec

ylab Label of the y-axis.

main Main title.

... Other graphics parametes.

Author(s)

David Meyer 〈david.meyer@ci.tuwien.ac.at〉

References

C.C Holt (1957) Forecasting seasonals and trends by exponentially weighted moving aver-
ages, ONR Research Memorandum, Carnigie Institute 52.

P.R Winters (1960) Forecasting sales by exponentially weighted moving averages, Manage-
ment Science 6, 324–342.

See Also

HoltWinters, predict.HoltWinters

plot.spec Plotting Spectral Densities

Description

Plotting method for objects of class "spec". For multivariate time series it plots the
marginal spectra of the series or pairs plots of the coherency and phase of the cross-spectra.

Usage

plot(x, add = FALSE, ci = 0.95, log = c("yes", "dB", "no"),
xlab = "frequency", ylab = NULL, type = "l", ci.col = "blue",
main = NULL, sub = NULL,
plot.type = c("marginal", "coherency", "phase"),
ci.lty = 3, ...)

Arguments

x an object of class "spec".

add logical. If TRUE, add to already existing plot.

ci Coverage probability for confidence interval. Plotting of the confidence
bar is omitted unless ci is strictly positive.

log If "dB", plot on log10 (decibel) scale (as S-PLUS), otherwise use conven-
tional log scale or linear scale. Logical values are also accepted. The de-
fault is "yes" unless options(ts.S.compat = TRUE) has been set, when
it is "dB".

xlab the x label of the plot.

ylab the y label of the plot.

type the type of plot to be drawn, defaults to lines.

PP.test 1055

ci.col Colour for plotting confidence bar or confidence intervals for coherency
and phase.

main overall title for the plot.

sub a sub title for the plot.

plot.type For multivariate time series, the type of plot required. Only the first
character is needed.

ci.lty line type for confidence intervals for coherency and phase.

... Further graphical parameters.

See Also

spectrum

PP.test Phillips-Perron Unit Root Test

Description

Computes the Phillips-Perron test for the null hypothesis that x has a unit root against a
stationary alternative.

Usage

PP.test(x, lshort = TRUE)

Arguments

x a numeric vector or univariate time series.

lshort a logical indicating whether the short or long version of the truncation
lag parameter is used.

Details

The general regression equation which incorporates a constant and a linear trend is used and
the corrected t-statistic for a first order autoregressive coefficient equals one is computed. To
estimate sigma^2 the Newey-West estimator is used. If lshort is TRUE, then the truncation
lag parameter is set to trunc(4*(n/100)^0.25), otherwise trunc(12*(n/100)^0.25) is
used. The p-values are interpolated from Table 4.2, page 103 of Banerjee et al. (1993).

Missing values are not handled.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

1056 predict.Arima

Author(s)

A. Trapletti

References

A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993) Cointegration, Error
Correction, and the Econometric Analysis of Non-Stationary Data, Oxford University Press,
Oxford.

P. Perron (1988) Trends and random walks in macroeconomic time series. Journal of
Economic Dynamics and Control 12, 297–332.

Examples

x <- rnorm(1000)

PP.test(x)

y <- cumsum(x) # has unit root

PP.test(y)

predict.Arima Forecast from ARIMA fits

Description

Forecast from models fitted by arima.

Usage

predict(object, n.ahead = 1, newxreg = NULL,
se.fit = TRUE, ...)

Arguments

object The result of an arima fit.

n.ahead The number of steps ahead for which prediction is required.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead
rows.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

Details

Finite-history prediction is used, via KalmanForecast. This is only statistically efficient if
the MA part of the fit is invertible, so predict.Arima will give a warning for non-invertible
MA models.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA
model and the regression coefficients. According to Harvey (1993, pp. 58–9) the effect is
small.

predict.HoltWinters 1057

Value

A time series of predictions, or if se.fit = TRUE, a list with components pred, the predic-
tions, and se, the estimated standard errors. Both components are time series.

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3
and 4.4.

See Also

arima

Examples

data(lh, package="ts")

predict(arima(lh, order = c(3,0,0)), n.ahead = 12)

data(USAccDeaths, package="ts")

(fit <- arima(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1))))

predict(fit, n.ahead = 6)

predict.HoltWinters prediction function for fitted Holt-Winters models

Description

Computes predictions and prediction intervals for models fitted by the Holt-Winters
method.

Usage

predict(object, n.ahead=1, prediction.interval = FALSE,
quantile = qnorm(0.975), ...)

Arguments

object An object of class HoltWinters

n.ahead Number of future periods to predict
prediction.interval

logical. If TRUE, the lower and upper bounds of the corresponding predic-
tion intervals are computed

1058 spec.ar

quantile Quantile used for each one-sided prediction interval (default: the 0.975
quantile to give a two-sided 0.95 interval)

... arguments passed to or from other methods.

Value

A time series of the predicted values. If prediction intervals are requested, a multiple time
series is returned with columns fit, lwr and upr for the predicted values and the lower
and upper bounds respectively.

Author(s)

David Meyer 〈david.meyer@ci.tuwien.ac.at〉

References

C.C Holt (1957) Forecasting seasonals and trends by exponentially weighted moving aver-
ages, ONR Research Memorandum, Carnigie Institute 52.

P.R Winters (1960) Forecasting sales by exponentially weighted moving averages, Manage-
ment Science 6, 324–342.

See Also

HoltWinters

Examples

data(co2)

m <- HoltWinters(co2)

p <- predict(m, 50, prediction.interval = TRUE)

plot(m, p)

spec.ar Estimate Spectral Density of a Time Series from AR Fit

Description

Fits an AR model to x (or uses the existing fit) and computes (and by default plots) the
spectral density of the fitted model.

Usage

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action = na.fail,
method = "yule-walker", ...)

spec.ar 1059

Arguments

x A univariate (not yet:or multivariate) time series or the result of a fit by
ar.

n.freq The number of points at which to plot.

order The order of the AR model to be fitted. If omitted, the order is chosen
by AIC.

plot Plot the periodogram?

na.action NA action function.

method method for ar fit.

... Graphical arguments passed to plot.spec.

Value

An object of class "spec". The result is returned invisibly if plot is true.

Warning

Some authors, for example Thomson (1990), warn strongly that AR spectra can be mis-
leading.

Note

The multivariate case is not yet implemented.

Author(s)

B.D. Ripley

References

Thompson, D.J. (1990) Time series analysis of Holocene climate data. Phil. Trans. Roy.
Soc. A 330, 601–616.

Venables, W.N. and Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially page 448.)

See Also

ar, spectrum.

Examples

data(lh)

spec.ar(lh)

data(UKLungDeaths)

spec.ar(ldeaths)

spec.ar(ldeaths, method="burg")

1060 spec.pgram

spec.pgram Estimate Spectral Density of a Time Series from Smoothed Pe-
riodogram

Description

spec.pgram calculates the periodogram using a fast Fourier transform, and optionally
smooths the result with a series of modified Daniell smoothers (moving averages giving
half weight to the end values).

Usage

spec.pgram(x, spans = NULL, kernel, taper = 0.1,
pad = 0, fast = TRUE, demean = FALSE, detrend =TRUE,
plot = FALSE, na.action = na.fail, ...)

Arguments

x univariate or multivariate time series.

spans vector of odd integers giving the widths of modified Daniell smoothers to
be used to smooth the periodogram.

kernel alternatively, a kernel smoother of class "tskernel".

taper proportion of data to taper. A split cosine bell taper is applied to this
proportion of the data at the beginning and end of the series.

pad proportion of data to pad. Zeros are added to the end of the series to
increase its length by the proportion pad.

fast logical; if TRUE, pad the series to a highly composite length.

demean logical. If TRUE, subtract the mean of the series.

detrend logical. If TRUE, remove a linear trend from the series. This will also
remove the mean.

plot plot the periodogram?

na.action NA action function.

... graphical arguments passed to plot.spec.

Details

The raw periodogram is not a consistent estimator of the spectral density, but adjacent
values are asymptotically independent. Hence a consistent estimator can be derived by
smoothing the raw periodogram, assuming that the spectral density is smooth.

The series will be automatically padded with zeros until the series length is a highly com-
posite number in order to help the Fast Fourier Transform. This is controlled by the fast
and not the pad argument.

The periodogram at zero is in theory zero as the mean of the series is removed (but this
may be affected by tapering): it is replaced by an interpolation of adjacent values during
smoothing, and no value is returned for that frequency.

spec.pgram 1061

Value

A list object of class "spec" (see spectrum) with the following additional components:

kernel The kernel argument, or the kernel constructed from spans.

df The distribution of the spectral density estimate can be approximated by
a chi square distribution with df degrees of freedom.

bandwidth The equivalent bandwidth of the kernel smoother as defined by Bloomfield
(1976, page 201).

taper The value of the taper argument.

pad The value of the pad argument.

detrend The value of the detrend argument.

demean The value of the demean argument.

The result is returned invisibly if plot is true.

Author(s)

Originally Martyn Plummer; kernel smoothing by Adrian Trapletti, synthesis by B.D. Rip-
ley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W.N. and Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially pp. 437–442.)

See Also

spectrum, spec.taper, plot.spec, fft

Examples

Examples from Venables & Ripley

data(UKLungDeaths)

spectrum(ldeaths)

spectrum(ldeaths, spans = c(3,5))

spectrum(ldeaths, spans = c(5,7))

spectrum(mdeaths, spans = c(3,3))

spectrum(fdeaths, spans = c(3,3))

bivariate example

mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))

plots marginal spectra: now plot coherency and phase

plot(mfdeaths.spc, plot.type = "coherency")

plot(mfdeaths.spc, plot.type = "phase")

now impose a lack of alignment

mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),

spans = c(3,3), plot = FALSE)

plot(mfdeaths.spc, plot.type = "coherency")

plot(mfdeaths.spc, plot.type = "phase")

1062 spec.taper

data(EuStockMarkets)

stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),

plot = FALSE)

plot(stocks.spc, plot.type = "marginal") # the default type

plot(stocks.spc, plot.type = "coherency")

plot(stocks.spc, plot.type = "phase")

data(BJsales)

sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),

kernel("modified.daniell", c(5,7)))

plot(sales.spc, plot.type = "coherency")

plot(sales.spc, plot.type = "phase")

spec.taper Taper a Time Series

Description

Apply a cosine-bell taper to a time series.

Usage

spec.taper(x, p=0.1)

Arguments

x A univariate or multivariate time series

p The total proportion to be tapered, either a scalar or a vector of the length
of the number of series.

Details

The cosine-bell taper is applied to the first and last p[i]/2 observations of time series x[,
i].

Value

A new time series object.

Note

From package ‘MASS’.

Author(s)

Kurt Hornik, B.D. Ripley

See Also

spec.pgram, cpgram

spectrum 1063

spectrum Spectral Density Estimation

Description

The spectrum function estimates the spectral density of a time series.

Usage

spectrum(x, method = c("pgram", "ar"), plot = TRUE, na.action = na.fail,
...)

Arguments

x A univariate or multivariate time series.

method String specifying the method used to estimate the spectral density. Al-
lowed methods are "pgram" (the default) and "ar".

plot logical. If TRUE then the spectral density is plotted.

na.action NA action function.

... Further arguments to specific spec methods or plot.spec.

Details

spectrum is a wrapper function which calls the methods spec.pgram and spec.ar.

The spectrum here is defined with scaling 1/frequency(x), following S-PLUS. This makes
the spectral density a density over the range (-frequency(x)/2, +frequency(x)/2],
whereas a more common scaling is 2π and range (−0.5, 0.5] (e.g., Bloomfield) or 1 and
range (−π, π].

If available, a confidence interval will be plotted by plot.spec: this is asymmetric, and the
width of the centre mark indicates the equivalent bandwidth.

Value

An object of class "spec", which is a list containing at least the following components:

freq vector of frequencies at which the spectral density is estimated. (Possibly
approximate Fourier frequencies.) The units are the reciprocal of cycles
per unit time (and not per observation spacing): see Details below.

spec Vector (for univariate series) or matrix (for multivariate series) of esti-
mates of the spectral density at frequencies corresponding to freq.

coh NULL for univariate series. For multivariate time series, a matrix contain-
ing the squared coherency between different series. Column i + (j − 1) ∗
(j − 2)/2 of coh contains the squared coherency between columns i and
j of x, where i < j.

phase NULL for univariate series. For multivariate time series a matrix containing
the cross-spectrum phase between different series. The format is the same
as coh.

series The name of the time series.

snames For multivariate input, the names of the component series.

1064 spectrum

method The method used to calculate the spectrum.

The result is returned invisibly if plot is true.

Note

The default plot for objects of class "spec" is quite complex, including an error bar and
default title, subtitle and axis labels. The defaults can all be overridden by supplying the
appropriate graphical parameters.

Author(s)

Martyn Plummer, B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W. N. and Ripley, B. D. (1997) Modern Applied Statistics with S-PLUS. Second
edition. Springer. (Especially pages 437–442.)

See Also

spec.ar, spec.pgram; plot.spec.

Examples

Examples from Venables & Ripley

spec.pgram

par(mfrow=c(2,2))

data(lh)

spectrum(lh)

spectrum(lh, spans=3)

spectrum(lh, spans=c(3,3))

spectrum(lh, spans=c(3,5))

data(UKLungDeaths)

spectrum(ldeaths)

spectrum(ldeaths, spans=c(3,3))

spectrum(ldeaths, spans=c(3,5))

spectrum(ldeaths, spans=c(5,7))

spectrum(ldeaths, spans=c(5,7), log="dB", ci=0.8)

for multivariate examples see the help for spec.pgram

spec.ar

spectrum(lh, method="ar")

spectrum(ldeaths, method="ar")

stl 1065

stl Seasonal Decomposition of Time Series by Loess

Description

Decompose a time series into seasonal, trend and irregular components using loess,
acronym STL.

Usage

stl(x, s.window, s.degree = 0,
t.window = NULL, t.degree = 1,
l.window = nextodd(period), l.degree = t.degree,
s.jump = ceiling(s.window/10),
t.jump = ceiling(t.window/10),
l.jump = ceiling(l.window/10),
robust = FALSE,
inner = if(robust) 1 else 2,
outer = if(robust) 15 else 0,
na.action = na.fail)

Arguments

x univariate time series to be decomposed. This should be an object of class
"ts" with a frequency greater than one.

s.window either the character string "periodic" or the span (in lags) of the loess
window for seasonal extraction, which should be odd. This has no default.

s.degree degree of locally-fitted polynomial in seasonal extraction. Should be zero
or one.

t.window the span (in lags) of the loess window for trend extraction, which should
be odd. If NULL, the default, nextodd(ceiling((1.5*period) / (1-
(1.5/s.window)))), is taken.

t.degree degree of locally-fitted polynomial in trend extraction. Should be zero or
one.

l.window the span (in lags) of the loess window of the low-pass filter used for each
subseries. Defaults to the smallest odd integer greater than or equal
to frequency(x) which is recommended since it prevents competition
between the trend and seasonal components. If not an odd integer its
given value is increased to the next odd one.

l.degree degree of locally-fitted polynomial for the subseries low-pass filter. Must
be 0 or 1.

s.jump, t.jump, l.jump

integers at least one to increase speed of the respective smoother. Linear
interpolation happens between every *.jumpth value.

robust logical indicating if robust fitting be used in the loess procedure.
inner integer; the number of ‘inner’ (backfitting) iterations; usually very few (2)

iterations suffice.
outer integer; the number of ‘outer’ robustness iterations.
na.action action on missing values.

1066 stl

Details

The seasonal component is found by loess smoothing the seasonal sub-series (the series of
all January values, . . .); if s.window = "periodic" smoothing is effectively replaced by
taking the mean. The seasonal values are removed, and the remainder smoothed to find
the trend. The overall level is removed from the seasonal component and added to the
trend component. This process is iterated a few times. The remainder component is the
residuals from the seasonal plus trend fit.

Several methods for the resulting class "stl" objects, see, plot.stl.

Value

stl returns an object of class "stl" with components

time.series a multiple time series with columns seasonal, trend and remainder.

weights the final robust weights (all one if fitting is not done robustly).

call the matched call.

win integer (length 3 vector) with the spans used for the "s", "t", and "l"
smoothers.

deg integer (length 3) vector with the polynomial degrees for these smoothers.

jump integer (length 3) vector with the“jumps”(skips) used for these smoothers.

ni number of inner iterations

no number of outer robustness iterations

Note

This is similar to but not identical to the stl function in S-PLUS. The remainder compo-
nent given by S-PLUS is the sum of the trend and remainder series from this function.

Author(s)

B.D. Ripley; Fortran code by Cleveland et al. (1990) from ‘netlib’.

References

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990) STL: A Seasonal-
Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3–73.

See Also

plot.stl for stl methods; loess in package ‘modreg’ (which is not actually used in stl).

Examples

data(nottem)

plot(stl(nottem, "per"))

plot(stl(nottem, s.win = 4, t.win = 50, t.jump = 1))

data(co2)

plot(stllc <- stl(log(co2), s.window=21))

summary(stllc)

linear trend, strict period.

plot(stl(log(co2), s.window="per", t.window=1000))

stlmethods 1067

Two STL plotted side by side :

data(UKLungDeaths)

stmd <- stl(mdeaths, s.w = "per") # un-robust

summary(stmR <- stl(mdeaths, s.w = "per", robust = TRUE))

op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 2))

plot(stmd, set.pars=NULL, labels = NULL,

main = "stl(mdeaths, s.w = \"per\", robust = FALSE / TRUE)")

plot(stmR, set.pars=NULL)

mark the ‘outliers’ :

(iO <- which(stmR $ weights < 1e-8)) # 10 were considered outliers

sts <- stmR$time.series

points(time(sts)[iO], .8* sts[,"remainder"][iO], pch = 4, col = "red")

par(op)# reset

stlmethods Methods for STL Objects

Description

Methods for objects of class stl, typically the result of stl. The plot method does a
multiple figure plot with some flexibility.

Usage

plot(x, labels = colnames(X),
set.pars = list(mar = c(0, 6, 0, 6), oma = c(6, 0, 4, 0),

tck = -0.01, mfrow = c(nplot, 1)),
main = NULL, range.bars = TRUE, ...)

print(x, ...)
summary(object, digits = getOption("digits"), ...)

Arguments

x, object stl object.

labels character of length 4 giving the names of the component time-series.

set.pars settings for par(.) when setting up the plot.

main plot main title.

range.bars logical indicating if each plot should have a bar at its right side which are
of equal heights in user coordinates.

digits significant figures used in printing.

... further arguments passed to or from other methods.

See Also

plot.ts and stl, particularly for examples.

1068 StructTS

StructTS Fit Structural Time Series

Description

Fit a structural model for a time series by maximum likelihood.

Usage

StructTS(x, type = c("level", "trend", "BSM"), init = NULL,
fixed = NULL, optim.control = NULL)

Arguments

x a univariate time series. Missing values are allowed.

type the class of structural model. If omitted, a BSM is used for a time series
with frequency(x) > 1, and a local trend model otherwise.

init initial values of the variance parameters.

fixed optional numeric vector of the same length as the total number of param-
eters. If supplied, only non-NA entries in fixed will be varied. Probably
most useful for setting variances to zero.

optim.control List of control parameters for optim. Method "L-BFGS-B" is used.

Details

Structural time series models are (linear Gaussian) state-space models for (univariate) time
series based on a decomposition of the series into a number of components. They are
specified by a set of error variances, some of which may be zero.

The simplest model is the local level model specified by type = "level". This has an
underlying level µt which evolves by

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ)

The observations are
xt = µt + εt, εt ∼ N(0, σ2

ε)

There are two parameters, σ2
ξ and σ2

ε . It is an ARIMA(0,1,1) model, but with restrictions
on the parameter set.

The local linear trend model, type = "trend", has the same measurement equation, but
with a time-varying slope in the dynamics for µt, given by

µt+1 = µt + νt + ξt, ξt ∼ N(0, σ2
ξ)

νt+1 = νt + ζt, ζt ∼ N(0, σ2
ζ)

with three variance parameters. It is not uncommon to find σ2
ζ = 0 (which reduces to

the local level model) or σ2
ξ = 0, which ensures a smooth trend. This is a restricted

ARIMA(0,2,2) model.

The basic structural model, type = "BSM", is a local trend model with an additional seasonal
component. Thus the measurement equation is

xt = µt + γt + εt, εt ∼ N(0, σ2
ε)

StructTS 1069

where γt is a seasonal component with dynamics

γt+1 = −γt + · · ·+ γt−s+2 + ωt, ωt ∼ N(0, σ2
ω)

The boundary case σ2
ω = 0 corresponds to a deterministic (but arbitrary) seasonal pattern.

(This is sometimes known as the ‘dummy variable’ version of the BSM.)

Value

A list of class "StructTS" with components:

coef the estimated variances of the components.
loglik the maximized log-likelihood. Note that as all these models are non-

stationary this includes a diffuse prior for some observations and hence is
not comparable with arima nor different types of structural models.

data the time series x.
residuals the standardized residuals.
fitted a multiple time series with one component for the level, slope and seasonal

components, estimated contemporaneously (that is at time t and not at
the end of the series.

call the matched call.
series the name of the series x.
convergence the value returned by optim.
model, model0 Lists representing the Kalman Filter used in the fitting. See KalmanLike.

model0 is the initial state of the filter, model its final state.
xtsp the tsp attributes of x.

Note

Optimization of structural models is a lot harder than many of the references admit. For
example, the AirPassengers data are considered in Brockwell & Davis (1996): their so-
lution appears to be a local maximum, but nowhere near as good a fit as that produced
by StructTS. It is quite common to find fits with one or more variances zero, and this can
include σ2

ε .

Author(s)

B. D. Ripley

References

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting.
Springer, New York. Sections 8.2 and 8.5.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press.

Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press.

Harvey, A. C. (1993) Time Series Models. 2nd Edition, Harvester Wheatsheaf.

See Also

KalmanLike, tsSmooth

1070 sunspot

Examples

see also JohnsonJohnson, Nile and AirPassengers

data(treering)

trees <- window(treering, start=0)

(fit <- StructTS(trees, type = "level"))

plot(trees)

lines(fitted(fit), col = "green")

tsdiag(fit)

data(UKgas)

(fit <- StructTS(log10(UKgas), type = "BSM"))

par(mfrow = c(4, 1))

plot(log10(UKgas))

plot(cbind(fitted(fit), resids=resid(fit)), main = "UK gas consumption")

sunspot Yearly Sunspot Data, 1700–1988. Monthly Sunspot Data, 1749–
1997.

Description

Monthly and yearly number of sunspots.

Usage

data(sunspot)

Format

The univariate time series sunspot.year and sunspot.month contain 289 and 2988 obser-
vations, respectively. The objects are of class "ts".

Source

Monthly data: Sunspot Index Data Center, World Data Center-C1 For Sunspot Index
Royal Observatory of Belgium, Av. Circulaire, 3, B-1180 BRUSSELS http://www.oma.
be/KSB-ORB/SIDC/sidc_txt.html

Yearly data: H. Tong (1996) Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

See Also

sunspot.month is a longer version of sunspots in base R, that runs until 1988.

Examples

Compare the monthly series from ’base’ and ’ts’:

data(sunspots, package = base)

data(sunspot, package = ts)

plot (sunspot.month, main = "sunspot.month [ts]", col = 2)

lines(sunspots)# ‘‘very barely’’ see something

Now look at the difference :

http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html
http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

toeplitz 1071

all(tsp(sunspots) [c(1,3)] ==

tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same

n1 <- length(sunspots)

table(eq <- sunspots == sunspot.month[1:n1]) #> 132 are different !

i <- which(!eq)

rug(time(eq)[i])

s1 <- sunspots[i] ; s2 <- sunspot.month[i]

cbind(i = i, sunspots = s1, ss.month = s2,

perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))

toeplitz Form Symmetric Toeplitz Matrix

Description

Forms a symmetric Toeplitz matrix given its first row.

Usage

toeplitz (x)

Arguments

x the first row to form the Toeplitz matrix.

Value

The Toeplitz matrix.

Author(s)

A. Trapletti

Examples

x <- 1:5

toeplitz (x)

treering Yearly Treering Data, -6000–1979.

Description

Contains normalized tree-ring widths in dimensionless units. Each tree ring corresponds to
one year. Tree: Methuselah Walk, Pilo; Location: California, Gt Basin B C pine 2805M,
3726-11810; Author: Donald A. Graybill, 1980.

Usage

data(treering)

1072 ts.plot

Format

A univariate time series with 7981 observations. The object is of class "ts".

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/~hyndman/
TSDL/

ts.plot Plot Multiple Time Series

Description

Plot several time series on a common plot. Unlike plot.ts the series can have a different
time bases, but they should have the same frequency.

Usage

ts.plot(..., gpars = list())

Arguments

... one or more univariate or multivariate time series.

gpars list of named graphics parameters to be passed to the plotting functions.
Those commonly used can be supplied directly in

Value

None.

Note

Although this can be used for a single time series, plot is easier to use and is preferred.

Author(s)

B.D. Ripley

See Also

plot.ts

Examples

data(UKLungDeaths)

ts.plot(ldeaths, mdeaths, fdeaths,

gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

ts.union 1073

ts.union Bind Two or More Time Series

Description

Bind time series which have a common frequency. ts.union pads with NAs to the total
time coverage, ts.intersect restricts to the time covered by all the series.

Usage

ts.intersect(..., dframe = FALSE)
ts.union(..., dframe = FALSE)

Arguments

... two or more univariate or multivariate time series, or objects which can
coerced to time series.

dframe logical; if TRUE return the result as a data frame.

Details

As a special case, ... can contain vectors or matrices of the same length as the combined
time series of the time series present, as well as those of a single row.

Value

A time series object if dframe is FALSE, otherwise a data frame.

Author(s)

B. D. Ripley

See Also

cbind.

Examples

data(UKLungDeaths)

ts.union(mdeaths, fdeaths)

cbind(mdeaths, fdeaths) # same as the previous line

ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))

data(BJsales)

sales1 <- ts.union(BJsales, lead = BJsales.lead)

ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))

1074 tsdiag

tsdiag Diagnostic Plots for Time-Series Fits

Description

A generic function to plot time-series diagnostics.

Usage

tsdiag(object, gof.lag, ...)

Arguments

object a fitted time-series model

gof.lag the maximum number of lags for a Portmanteau goodness-of-fit test

... further arguments to be passed to particular methods

Details

This is a generic function. It will generally plot the residuals, often standadized, the auto-
correlation function of the residuals, and the p-values of a Portmanteau test for all lags up
to gof.lag.

The methods for arima and StructTS objects plots residuals scaled by the estimate of their
(individual) variance, and use the Ljung–Box version of the portmanteau test.

Value

None. Diagnostics are plotted.

Note

arima0.diag was an earlier version using the Box–Pierce test which is now deprecated.

Author(s)

B. D. Ripley

See Also

arima, StructTS, Box.test

Examples

data(lh)

fit <- arima(lh, c(1,0,0))

tsdiag(fit)

see also examples(arima)

data(JohnsonJohnson)

(fit <- StructTS(log10(JohnsonJohnson), type="BSM"))

tsdiag(fit)

tsSmooth 1075

tsSmooth Use Fixed-Interval Smoothing on Time Series

Description

Performs fixed-interval smoothing on a univariate time series via a state-space model. Fixed-
interval smoothing gives the best estimate of the state at each time point based on the whole
observed series.

Usage

tsSmooth(object, ...)

Arguments

object a time-series fit. Currently only class "StructTS" is supported

... possible arguments for future methods.

Value

A time series, with as many dimensions as the state space and results at each time point of
the original series. (For seasonal models, only the current seasonal component is returned.)

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press.

See Also

KalmanSmooth, StructTS.

For examples consult AirPassengers, JohnsonJohnson and Nile.

UKDriverDeaths Road Casualties in Great Britain 1969–84

Description

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great Britain
killed or seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was
introduced on 31 Jan 1983.

Seatbelts is more information on the same problem.

Usage

data(UKDriverDeaths)
data(Seatbelts)

1076 UKDriverDeaths

Format

Seatbelts is a multiple time series, with columns

DriversKilled car drivers killed.

drivers same as UKDriverDeaths.

front front-seat passengers killed or seriously injured.

rear rear-seat passengers killed or seriously injured.

kms distance driven.

PetrolPrice petrol price.

VanKilled number of van (‘light goods vehicle’) drivers.

law 0/1: was the law in effect that month?

Source

Harvey, A.C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter.
Cambridge University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press. http://www.ssfpack.com/dkbook/

References

Harvey, A. C. and Durbin, J. (1986) The effects of seat belt legislation on British road
casualties: A case study in structural time series modelling. Journal of the Royal Statistical
Society series B, 149, 187–227.

Examples

data(UKDriverDeaths)

work with pre-seatbelt period to identify a model, use logs

work <- window(log10(UKDriverDeaths), end = 1982+11/12)

par(mfrow = c(3,1))

plot(work); acf(work); pacf(work)

par(mfrow = c(1,1))

(fit <- arima(work, c(1,0,0), seasonal = list(order= c(1,0,0))))

z <- predict(fit, n.ahead = 24)

ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*zse, zpred-2*z$se,

lty = c(1,3,2,2), col = c("black", "red", "blue", "blue"))

now see the effect of the explanatory variables

data(Seatbelts)

X <- Seatbelts[, c("kms", "PetrolPrice", "law")]

X[, 1] <- log10(X[, 1]) - 4

arima(log10(Seatbelts[, "drivers"]), c(1,0,0),

seasonal = list(order= c(1,0,0)), xreg = X)

http://www.ssfpack.com/dkbook/

UKgas 1077

UKgas UK Quarterly Gas Consumption

Description

Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of therms.

Usage

data(UKgas)

Format

A quarterly time series of length 108.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press. http://www.ssfpack.com/dkbook/

Examples

data(UKgas)

maybe str(UKgas) ; plot(UKgas) ...

UKLungDeaths Monthly Deaths from Lung Diseases in the UK

Description

Three time series giving the monthly deaths from bronchitis, emphysema and asthma in
the UK, 1974–1979, both sexes (ldeaths), males (mdeaths) and females (fdeaths).

Usage

data(UKLungDeaths)

Source

P. J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.3

Examples

data(UKLungDeaths)

plot(ldeaths)

plot(mdeaths, fdeaths)

Better labels:

yr <- floor(tt <- time(mdeaths))

plot(mdeaths, fdeaths,

xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep="’"))

http://www.ssfpack.com/dkbook/

1078 WWWusage

USAccDeaths Accidental Deaths in the US 1973–1978

Description

A time series giving the monthly totals of accidental deaths in the USA. The values for the
first six months of 1979 are 7798 7406 8363 8460 9217 9316.

Usage

data(USAccDeaths)

Source

P. J. Brockwell and R. A. Davis (1991) Time Series: Theory and Methods. Springer, New
York.

WWWusage Internet Usage per Minute

Description

A time series of the numbers of users connected to the Internet through a server every
minute.

Usage

data(WWWusage)

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford
University Press. http://www.ssfpack.com/dkbook/

References

Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998) Forecasting: Methods and
Applications. Wiley.

http://www.ssfpack.com/dkbook/

WWWusage 1079

Examples

data(WWWusage)

work <- diff(WWWusage)

par(mfrow = c(2,1)); plot(WWWusage); plot(work)

aics <- matrix(, 6, 6, dimnames=list(p=0:5, q=0:5))

for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0,1,q),

optim.control = list(maxit = 500))$aic

for(p in 1:5)

for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p,1,q),

optim.control = list(maxit = 500))$aic

round(aics - min(aics, na.rm=TRUE), 2)

1080 WWWusage

Index

! (Logic), 360
!= (Comparison), 108
∗Topic NA

complete.cases, 110
factor, 207
NA, 414
na.action, 415
na.fail, 416
naprint, 419
naresid, 420

∗Topic algebra
backsolve, 52
chol, 95
chol2inv, 97
colSums, 106
crossprod, 131
eigen, 189
matrix, 391
qr, 532
QR.Auxiliaries, 534
solve, 608
svd, 651

∗Topic aplot
abline, 5
arrows, 35
axis, 49
box, 66
bxp, 77
contour, 118
coplot, 125
filled.contour, 221
frame, 240
grid, 264
Hershey, 271
image, 290
Japanese, 313
legend, 333
lines, 344
matplot, 389
mtext, 412
persp, 468
plot.window, 487
plot.xy, 488

plotmath, 489
points, 498
polygon, 502
rect, 563
rect.hclust, 920
rug, 583
screen, 591
segments, 597
symbols, 656
text, 685
title, 690

∗Topic arith
all.equal, 17
approxfun, 29
Arithmetic, 33
cumsum, 132
diff, 169
Extremes, 206
findInterval, 223
gl, 254
matmult, 388
ppoints, 510
prod, 525
range, 546
Round, 578
sign, 603
sort, 609
sum, 645
tabulate, 672

∗Topic array
aggregate, 9
aperm, 26
apply, 28
array, 34
backsolve, 52
cbind, 87
chol, 95
chol2inv, 97
col, 103
colSums, 106
contrast, 120
cor, 128
crossprod, 131

1081

1082 INDEX

data.matrix, 140
det, 159
diag, 168
dim, 171
dimnames, 171
drop, 178
eigen, 189
Extract, 203
kronecker, 328
lm.fit, 350
lower.tri, 370
margin.table, 383
mat.or.vec, 383
matmult, 388
matplot, 389
matrix, 391
max.col, 392
merge, 397
nrow, 431
outer, 447
prop.table, 529
qr, 532
QR.Auxiliaries, 534
row, 580
row/colnames, 580
scale, 587
svd, 651
sweep, 653
t, 670

∗Topic attribute
attr, 45
attributes, 46
call, 81
comment, 108
length, 336
mode, 402
name, 417
names, 418
NULL, 433
numeric, 433
structure, 638
typeof, 706
which, 730

∗Topic category
aggregate, 9
by, 78
codes, 101
cut, 134
factor, 207
ftable, 241
ftable.formula, 243
gl, 254

interaction, 300
levels, 337
levels.factor, 338
loglin, 366
nlevels, 426
plot.table, 485
read.ftable, 549
split, 615
table, 670
tapply, 672
xtabs, 742

∗Topic character
abbreviate, 4
agrep, 10
char.expand, 88
character, 89
charmatch, 90
chartr, 91
format, 231
format.info, 233
formatC, 234
grep, 262
make.names, 378
nchar, 421
paste, 466
pmatch, 495
sprintf, 616
strsplit, 637
strwidth, 639
strwrap, 640
substr, 644
symnum, 658

∗Topic chron
as.POSIX*, 37
axis.POSIXct, 50
cut.POSIXt, 135
DateTimeClasses, 143
difftime, 170
hist.POSIXt, 283
round.POSIXt, 579
seq.POSIXt, 599
strptime, 635
Sys.time, 666
weekdays, 726

∗Topic classes
as, 801
BasicClasses, 805
callNextMethod, 807
character, 89
class, 99, 809
Classes, 810
classRepresentation-class, 811

INDEX 1083

codes, 101
data.class, 137
data.frame, 138
double, 175
EmptyMethodsList-class, 812
environment-class, 813
genericFunction-class, 814
GenericFunctions, 815
getClass, 818
getMethod, 819
integer, 298
is, 824
is.object, 310
is.recursive, 311
is.single, 312
language-class, 825
LinearMethodsList-class, 827
logical, 361
makeClassRepresentation, 828
MethodDefinition-class, 829
Methods, 830
MethodsList-class, 834
MethodWithNext-class, 837
new, 838
numeric, 433
ObjectsWithPackage-class, 840
promptClass, 840
real, 560
representation, 847
SClassExtension-class, 852
setClass, 854
setMethod, 861
signature-class, 868
slot, 868
StructureClasses, 870
TraceClasses, 871
validObject, 872
vector, 722

∗Topic cluster
as.hclust, 894
cophenetic, 900
cutree, 901
dist, 904
hclust, 911
identify.hclust, 913
kmeans, 915
rect.hclust, 920

∗Topic color
col2rgb, 103
colors, 105
gray, 262
hsv, 284

palette, 456
Palettes, 457
rgb, 575

∗Topic complex
complex, 111

∗Topic connection
cat, 85
connections, 113
dput, 177
dump, 180
parse, 465
pushBack, 530
read.00Index, 548
read.fwf, 551
read.table, 553
readBin, 556
readLines, 559
scan, 588
seek, 596
showConnections, 602
sink, 605
source, 611
textConnection, 686
write, 736
writeLines, 739

∗Topic datasets
ability.cov, 893
airmiles, 14
AirPassengers, 1013
airquality, 14
anscombe, 23
attenu, 43
attitude, 44
austres, 1029
beavers, 1029
BJsales, 1030
BOD, 926
cars, 83
ChickWeight, 926
chickwts, 93
CO2, 928
co2, 100
data, 136
discoveries, 172
DNase, 929
esoph, 193
euro, 194
eurodist, 195
EuStockMarkets, 1035
faithful, 210
Formaldehyde, 229
freeny, 241

1084 INDEX

HairEyeColor, 266
Harman23.cor, 909
Harman74.cor, 910
Indometh, 932
infert, 293
InsectSprays, 295
iris, 305
islands, 312
JohnsonJohnson, 1039
LakeHuron, 1046
lh, 1047
LifeCycleSavings, 343
Loblolly, 933
longley, 369
lynx, 1047
morley, 408
mtcars, 411
nhtemp, 425
Nile, 1050
nottem, 1051
Orange, 942
OrchardSprays, 445
phones, 471
PlantGrowth, 475
precip, 510
presidents, 515
pressure, 516
Puromycin, 949
quakes, 535
randu, 545
rivers, 576
rock, 886
sleep, 607
stackloss, 619
state, 627
sunspot, 1070
sunspots, 651
swiss, 654
Theoph, 965
Titanic, 689
ToothGrowth, 691
treering, 1071
trees, 697
UCBAdmissions, 707
UKDriverDeaths, 1075
UKgas, 1077
UKLungDeaths, 1077
USAccDeaths, 1078
USArrests, 718
USJudgeRatings, 719
USPersonalExpenditure, 720
uspop, 720

VADeaths, 721
volcano, 723
warpbreaks, 725
women, 736
WWWusage, 1078

∗Topic data
apropos, 30
as.environment, 36
assign, 39
assignOps, 40
attach, 42
autoload, 47
delay, 150
deparse, 156
detach, 160
environment, 191
eval, 195
exists, 198
get, 249
library, 339
library.dynam, 342
search, 595
substitute, 642
sys.parent, 662
with, 734

∗Topic debugging
recover, 562
trace, 693

∗Topic design
contrast, 120
contrasts, 121
TukeyHSD, 704

∗Topic device
dev.xxx, 161
dev2, 162
Devices, 166
Gnome, 261
gtk, 265
pdf, 467
pictex, 472
png, 496
postscript, 505
quartz, 537
screen, 591
x11, 739
xfig, 740

∗Topic distribution
bandwidth, 53
Beta, 60
Binomial, 63
birthday, 64
Cauchy, 86

INDEX 1085

chisq.test, 752
Chisquare, 94
density, 153
Exponential, 201
FDist, 213
fivenum, 225
GammaDist, 245
Geometric, 248
hist, 281
Hypergeometric, 286
IQR, 304
Logistic, 361
Lognormal, 367
NegBinomial, 423
Normal, 429
Poisson, 499
ppoints, 510
qqnorm, 531
Random, 540
Random.user, 543
sample, 584
SignRank, 604
stem, 628
TDist, 678
Tukey, 703
Uniform, 708
Weibull, 727
Wilcoxon, 732

∗Topic documentation
apropos, 30
args, 32
checkTnF, 1000
checkVignettes, 1001
codoc, 1001
data, 136
Defunct, 148
demo, 152
Deprecated, 157
example, 197
help, 267
help.search, 269
help.start, 271
NotYet, 431
prompt, 528
QA, 1003
str, 632
Syntax, 659
undoc, 1009

∗Topic dplot
approxfun, 29
axTicks, 51
boxplot.stats, 70

col2rgb, 103
colors, 105
convolve, 124
ecdf, 981
expression, 202
fft, 214
hist, 281
hist.POSIXt, 283
hsv, 284
jitter, 326
layout, 331
n2mfrow, 414
Palettes, 457
panel.smooth, 458
par, 459
plot.density, 479
ppoints, 510
pretty, 516
screen, 591
splinefun, 613
stepfun, 984
strwidth, 639
units, 711
xy.coords, 743
xyz.coords, 744

∗Topic environment
apropos, 30
as.environment, 36
browser, 72
commandArgs, 107
debug, 146
gc, 246
gctorture, 247
interactive, 302
is.R, 310
layout, 331
ls, 371
Memory, 394
options, 441
par, 459
quit, 538
R.Version, 539
remove, 567
Startup, 624
stop, 630
stopifnot, 631
Sys.getenv, 660
Sys.putenv, 664
taskCallback, 674
taskCallbackManager, 676
taskCallbackNames, 677

∗Topic error

1086 INDEX

bug.report, 74
debugger, 147
options, 441
stop, 630
stopifnot, 631
warning, 724
warnings, 725

∗Topic file
.Platform, 3
browseURL, 73
cat, 85
connections, 113
count.fields, 129
dataentry, 140
dcf, 145
dput, 177
dump, 180
file.access, 215
file.choose, 216
file.info, 217
file.path, 218
file.show, 218
files, 220
list.files, 347
load, 355
package.skeleton, 451
parse, 465
read.00Index, 548
read.fwf, 551
read.table, 553
readBin, 556
readLines, 559
save, 585
scan, 588
seek, 596
sink, 605
source, 611
sys.source, 666
system, 667
system.file, 668
tempfile, 680
textConnection, 686
unlink, 712
url.show, 718
write, 736
write.table, 737
writeLines, 739
zip.file.extract, 746

∗Topic hplot
assocplot, 41
barplot, 55
biplot, 895

biplot.princomp, 896
boxplot, 66
boxplot.formula, 69
chull, 98
contour, 118
coplot, 125
cpgram, 1032
curve, 132
dendrogram, 902
dotchart, 173
ecdf, 981
filled.contour, 221
fourfoldplot, 238
hist, 281
hist.POSIXt, 283
image, 290
interaction.plot, 301
lag.plot, 1045
matplot, 389
monthplot, 1048
mosaicplot, 409
pairs, 453
pairs.formula, 455
panel.smooth, 458
persp, 468
pie, 473
plot, 476
plot.acf, 1052
plot.default, 477
plot.factor, 480
plot.formula, 481
plot.histogram, 482
plot.lm, 483
plot.ppr, 879
plot.spec, 1054
plot.stepfun, 983
plot.table, 485
plot.ts, 486
qqnorm, 531
stars, 621
stripchart, 634
sunflowerplot, 649
symbols, 656
termplot, 681

∗Topic htest
ansari.test, 747
bartlett.test, 749
binom.test, 750
chisq.test, 752
cor.test, 753
fisher.test, 756
fligner.test, 758

INDEX 1087

friedman.test, 759
kruskal.test, 761
ks.test, 763
mantelhaen.test, 764
mcnemar.test, 767
mood.test, 768
oneway.test, 769
p.adjust, 448
pairwise.prop.test, 770
pairwise.t.test, 771
pairwise.table, 772
pairwise.wilcox.test, 773
power.prop.test, 773
power.t.test, 774
print.pairwise.htest, 775
print.power.htest, 776
prop.test, 777
prop.trend.test, 779
quade.test, 780
shapiro.test, 781
t.test, 782
var.test, 784
wilcox.test, 785

∗Topic interface
.Script, 4
browseEnv, 71
dyn.load, 182
getNativeSymbolInfo, 250
getNumCConverters, 252
Internal, 303
Primitive, 518
system, 667

∗Topic internal
BasicFunctions, 806
bindenv, 61
Defunct, 148
EmptyMethodsList-class, 812
languageEl, 826
make.tables, 380
MethodsList, 832
MethodSupport, 835
methodUtilities, 836
modreg-internal, 879
RClassUtils, 842
RMethodUtils, 848
se.aov, 593
Session, 853
standardGeneric, 620
substituteDirect, 870
tools-internal, 1009
zcbind, 745

∗Topic iplot

dev.xxx, 161
frame, 240
identify, 288
identify.hclust, 913
layout, 331
locator, 358
par, 459
plot.histogram, 482
recordPlot, 561

∗Topic iteration
apply, 28
by, 78
Control, 123
identical, 287
lapply, 330
sweep, 653
tapply, 672

∗Topic list
clearNames, 927
Extract, 203
lapply, 330
list, 346
NULL, 433
setNames, 953
unlist, 713

∗Topic loess
loess, 876
loess.control, 878

∗Topic logic
all, 17
all.equal, 17
any, 24
Comparison, 108
complete.cases, 110
Control, 123
duplicated, 181
identical, 287
ifelse, 289
Logic, 360
logical, 361
match, 384
NA, 414
unique, 709
which, 730

∗Topic manip
append, 27
c, 80
cbind, 87
cut.POSIXt, 135
deparse, 156
dimnames, 171
duplicated, 181

1088 INDEX

expand.model.frame, 200
getInitial, 931
list, 346
match, 384
merge, 397
model.extract, 403
NA, 414
NLSstAsymptotic, 938
NLSstClosestX, 939
NLSstLfAsymptote, 940
NLSstRtAsymptote, 940
NULL, 433
order, 446
rep, 568
replace, 569
reshape, 571
rev, 575
rle, 577
row/colnames, 580
rowsum, 581
seq, 598
seq.POSIXt, 599
sequence, 600
slotOp, 607
sort, 609
sortedXyData, 954
stack, 618
structure, 638
subset, 641
transform, 696
type.convert, 705
unique, 709
unlist, 713

∗Topic math
.Machine, 1
abs, 6
Bessel, 58
convolve, 124
deriv, 157
fft, 214
Hyperbolic, 285
integrate, 298
is.finite, 306
kappa, 327
log, 359
nextn, 424
poly, 501
polyroot, 504
Special, 612
splinefun, 613
Trig, 698

∗Topic methods

.BasicFunsList, 801
as, 801
callNextMethod, 807
class, 99
Classes, 810
data.class, 137
data.frame, 138
GenericFunctions, 815
getMethod, 819
is, 824
is.object, 310
Methods, 398, 830
methods, 400
MethodsList-class, 834
na.action, 415
noquote, 428
predict, 511
promptMethods, 841
setClass, 854
setGeneric, 857
setMethod, 861
setOldClass, 863
showMethods, 866
summary, 645

∗Topic misc
close.socket, 100
contributors, 122
copyright, 127
license, 343
make.socket, 379
read.socket, 552
sets, 601
TclInterface, 987
TkCommands, 990
tkpager, 993
TkWidgetcmds, 994
TkWidgets, 996
url.show, 718

∗Topic models
add1, 7
AIC, 12
AIC.logLik, 13
alias, 15
anova, 19
anova.glm, 20
anova.lm, 21
aov, 25
AsIs, 38
asOneSidedFormula, 925
asVector, 967
backSpline, 968
C, 79

INDEX 1089

case/variable.names, 84
coefficients, 102
deviance, 165
df.residual, 167
dummy.coef, 179
eff.aovlist, 187
effects, 188
expand.grid, 200
extractAIC, 204
factor.scope, 209
family, 211
fitted.values, 225
formula, 237
formula.nls, 930
getInitial, 931
glm, 255
glm.control, 258
glm.summaries, 259
glm.summary, 260
interpSpline, 970
is.empty.model, 306
labels, 329
lm.summaries, 353
lm.summary, 354
logLik, 363
logLik.glm, 364
logLik.lm, 365
loglin, 366
lqs, 797
make.link, 377
makepredictcall, 381
manova, 382
model.extract, 403
model.frame, 405
model.matrix, 406
model.tables, 407
naprint, 419
naresid, 420
nls, 933
nls.control, 936
nlsModel, 937
numericDeriv, 941
offset, 435
periodicSpline, 972
plot.profile.nls, 943
polySpline, 973
power, 509
predict.bSpline, 975
predict.glm, 512
predict.lqs, 799
predict.nls, 944
preplot, 515

profile, 526
profile.nls, 945
profiler, 946
profiler.nls, 947
proj, 526
relevel, 565
replications, 570
residuals, 573
se.contrast, 594
selfStart, 950
selfStart.default, 951
selfStart.formula, 952
splineDesign, 976
splineKnots, 977
splineOrder, 978
SSasymp, 955
SSasympOff, 956
SSasympOrig, 957
SSbiexp, 958
SSfol, 959
SSfpl, 960
SSgompertz, 961
SSlogis, 962
SSmicmen, 963
SSweibull, 964
stat.anova, 626
step, 628
summary.manova, 646
terms, 682
terms.formula, 683
terms.object, 684
TukeyHSD, 704
update, 714
update.formula, 715
vcov, 722
xyVector, 978

∗Topic multivariate
as.hclust, 894
biplot, 895
biplot.princomp, 896
cancor, 897
cmdscale, 898
cophenetic, 900
cor, 128
cov.rob, 795
cov.wt, 130
cutree, 901
dendrogram, 902
dist, 904
factanal, 906
hclust, 911
kmeans, 915

1090 INDEX

loadings, 916
mahalanobis, 376
prcomp, 916
princomp, 918
screeplot, 921
stars, 621
summary.princomp, 922
symbols, 656
varimax, 922

∗Topic nonlinear
CO2, 928
deriv, 157
getInitial, 931
nlm, 426
nls, 933
nls.control, 936
nlsModel, 937
optim, 436
plot.profile.nls, 943
predict.nls, 944
profile.nls, 945
profiler, 946
profiler.nls, 947
vcov, 722

∗Topic nonparametric
sunflowerplot, 649

∗Topic optimize
glm.control, 258
nlm, 426
optim, 436
optimize, 440
uniroot, 710

∗Topic print
cat, 85
dcf, 145
format, 231
format.info, 233
formatC, 234
formatDL, 236
labels, 329
loadings, 916
noquote, 428
octmode, 435
options, 441
print, 518
print.coefmat, 519
print.data.frame, 521
print.default, 522
print.matrix, 523
sprintf, 616
str, 632
write.table, 737

∗Topic programming
.BasicFunsList, 801
.Machine, 1
all.names, 19
as, 801
as.function, 36
autoload, 47
body, 65
browser, 72
call, 81
callNextMethod, 807
check.options, 92
checkFF, 999
class, 809
Classes, 810
commandArgs, 107
Control, 123
debug, 146
delay, 150
delete.response, 151
deparse, 156
do.call, 173
dput, 177
environment, 191
eval, 195
expression, 202
Foreign, 227
formals, 230
format.info, 233
function, 244
GenericFunctions, 815
getClass, 818
getMethod, 819
getNumCConverters, 252
getPackageName, 822
hasArg, 823
identical, 287
ifelse, 289
interactive, 302
invisible, 303
is, 824
is.finite, 306
is.function, 309
is.language, 309
is.recursive, 311
Last.value, 331
makeClassRepresentation, 828
match.arg, 385
match.call, 386
match.fun, 387
menu, 396
Methods, 830

INDEX 1091

missing, 402
model.extract, 403
name, 417
namespace, 419
nargs, 420
new, 838
on.exit, 436
Paren, 465
parse, 465
promptClass, 840
promptMethods, 841
R.Version, 539
Recall, 561
recover, 562
reg.finalizer, 565
representation, 847
restart-deprecated, 574
setClass, 854
setGeneric, 857
setMethod, 861
setOldClass, 863
show, 864
slot, 868
source, 611
standardGeneric, 620
stop, 630
stopifnot, 631
substitute, 642
switch, 655
sys.parent, 662
trace, 693
traceback, 695
try, 699
validObject, 872
warning, 724
warnings, 725
with, 734

∗Topic regression
anova, 19
anova.glm, 20
anova.lm, 21
aov, 25
case/variable.names, 84
coefficients, 102
contrast, 120
contrasts, 121
df.residual, 167
effects, 188
expand.model.frame, 200
fitted.values, 225
glm, 255
glm.summaries, 259

glm.summary, 260
influence.measures, 294
line, 789
lm, 348
lm.fit, 350
lm.influence, 352
lm.summaries, 353
lm.summary, 354
ls.diag, 372
ls.print, 374
lsfit, 374
nls, 933
nls.control, 936
plot.lm, 483
plot.profile.nls, 943
ppr, 880
predict.glm, 512
predict.lm, 513
predict.nls, 944
profile.nls, 945
profiler.nls, 947
qr, 532
residuals, 573
stat.anova, 626
termplot, 681
weighted.residuals, 729

∗Topic robust
cov.rob, 795
fivenum, 225
IQR, 304
line, 789
lqs, 797
mad, 375
median, 394
medpolish, 790
smooth, 791

∗Topic smooth
bandwidth, 53
bs, 969
density, 153
ksmooth, 875
loess, 876
loess.control, 878
lowess, 370
ns, 971
predict.bs, 974
predict.loess, 883
predict.smooth.spline, 884
scatter.smooth, 886
smooth, 791
smooth.spline, 887
sunflowerplot, 649

1092 INDEX

supsmu, 890
∗Topic sysdata

.Machine, 1
colors, 105
commandArgs, 107
Constants, 117
NULL, 433
palette, 456
R.Version, 539
Random, 540
Random.user, 543

∗Topic ts
acf, 1011
acf2AR, 1013
ar, 1014
ar.ols, 1017
arima, 1019
arima.sim, 1022
arima0, 1023
ARMAacf, 1027
ARMAtoMA, 1028
Box.test, 1031
cpgram, 1032
decompose, 1033
diff, 169
diffinv, 1034
embed, 1035
filter, 1036
HoltWinters, 1037
KalmanLike, 1040
kernapply, 1042
kernel, 1042
lag, 1044
lag.plot, 1045
monthplot, 1048
na.contiguous, 1049
plot.acf, 1052
plot.HoltWinters, 1053
plot.spec, 1054
plot.ts, 486
PP.test, 1055
predict.Arima, 1056
predict.HoltWinters, 1057
print.ts, 524
spec.ar, 1058
spec.pgram, 1060
spec.taper, 1062
spectrum, 1063
start, 623
stl, 1065
stlmethods, 1067
StructTS, 1068

time, 688
toeplitz, 1071
ts, 700
ts-methods, 702
ts.plot, 1072
ts.union, 1073
tsdiag, 1074
tsp, 702
tsSmooth, 1075
window, 733

∗Topic univar
ave, 48
cor, 128
Extremes, 206
fivenum, 225
IQR, 304
mad, 375
mean, 393
median, 394
nclass, 422
order, 446
quantile, 536
range, 546
rank, 547
sd, 593
sort, 609
stem, 628
weighted.mean, 728

∗Topic utilities
.Platform, 3
all.equal, 17
as.POSIX*, 37
axis.POSIXct, 50
BATCH, 57
bug.report, 74
builtins, 76
capabilities, 82
check.options, 92
checkFF, 999
checkTnF, 1000
checkVignettes, 1001
COMPILE, 109
conflicts, 112
dataentry, 140
date, 142
DateTimeClasses, 143
debugger, 147
Defunct, 148
demo, 152
Deprecated, 157
dev2bitmap, 164
difftime, 170

INDEX 1093

download.file, 176
edit, 184
edit.data.frame, 185
example, 197
findInterval, 223
fix, 226
gc.time, 247
getwd, 253
grep, 262
index.search, 292
INSTALL, 296
integrate, 298
is.R, 310
jitter, 326
LINK, 345
localeconv, 356
locales, 357
max.col, 392
memory.profile, 396
menu, 396
n2mfrow, 414
noquote, 428
NotYet, 431
nsl, 432
object.size, 434
package.contents, 450
package.dependencies, 451
package.skeleton, 451
packageStatus, 452
page, 453
PkgUtils, 475
pos.to.env, 505
proc.time, 524
QA, 1003
R.home, 539
RdUtils, 547
readline, 558
relevel, 565
REMOVE, 566
remove.packages, 568
RHOME, 576
Rprof, 582
Rtangle, 1004
RweaveLatex, 1005
savehistory, 587
SHLIB, 602
Signals, 604
str, 632
strptime, 635
summaryRprof, 648
Sweave, 1006
SweaveSyntConv, 1008

symnum, 658
Sys.getenv, 660
Sys.info, 661
Sys.putenv, 664
Sys.sleep, 665
sys.source, 666
Sys.time, 666
system, 667
system.file, 668
system.time, 669
toString, 692
unname, 714
update.packages, 716
which.min, 731

* (Arithmetic), 33
+ (Arithmetic), 33
+.POSIXt (DateTimeClasses), 143
- (Arithmetic), 33
-.POSIXct (DateTimeClasses), 143
-.POSIXlt (DateTimeClasses), 143
-.POSIXt (DateTimeClasses), 143
-> (assignOps), 40
->> (assignOps), 40
.Alias (Defunct), 148
.AutoloadEnv (autoload), 47
.Autoloaded (library), 339
.BaseNamespaceEnv (environment), 191
.BasicClasses (RClassUtils), 842
.BasicFunsList, 801
.BasicVectorClasses (RClassUtils), 842
.C, 175, 182, 184, 250–253, 303, 1000
.C (Foreign), 227
.Call, 182, 184, 250, 251
.Call (Foreign), 227
.Class (Methods), 398
.Defunct (Defunct), 148
.Deprecated (Deprecated), 157
.Device (dev.xxx), 161
.Devices (dev.xxx), 161
.Dyn.libs (Defunct), 148
.EmptyPrimitiveSkeletons

(RMethodUtils), 848
.External, 182, 184, 250, 251
.External (Foreign), 227
.First, 303, 538
.First (Startup), 624
.First.lib, 184, 342, 343
.First.lib (library), 339
.Fortran, 175, 182, 184, 250, 251, 303,

1000
.Fortran (Foreign), 227
.Generic (Methods), 398

1094 INDEX

.GlobalEnv, 595, 643, 662

.GlobalEnv (environment), 191

.Group (Methods), 398

.InitBasicClasses (RClassUtils), 842

.InitMethodsListClass (RClassUtils),
842

.InitTraceFunctions (TraceClasses),
871

.Internal, 76, 399, 518

.Internal (Internal), 303

.Last, 587, 604, 625

.Last (quit), 538

.Last.lib (library), 339

.Last.value (Last.value), 331

.Library (library), 339

.Machine, 1, 3, 157, 557

.Method (Methods), 398

.NotYetImplemented (NotYet), 431

.NotYetUsed (NotYet), 431

.OldClassesList (setOldClass), 863

.Options (options), 441

.Pars (par), 459

.Platform, 2, 3, 82, 157, 540, 662, 667

.PostScript.Options (postscript), 505

.Primitive, 303, 399, 465

.Primitive (Primitive), 518

.Provided (Defunct), 148

.Random.seed, 430, 708

.Random.seed (Random), 540

.Renviron (Startup), 624

.Rprofile (Startup), 624

.Script, 4

.ShortPrimitiveSkeletons
(RMethodUtils), 848

.Tcl (TclInterface), 987

.Tk.ID (TclInterface), 987

.Tk.newwin (TclInterface), 987

.Tk.subwin (TclInterface), 987

.TkRoot (TclInterface), 987

.TkWin (TclInterface), 987

.Traceback (traceback), 695

.cbind.ts (zcbind), 745

.conflicts.OK (MethodSupport), 835

.convertFilePathToAbsolute
(tools-internal), 1009

.doTracePrint (TraceClasses), 871

.dynLibs, 150

.dynLibs (library.dynam), 342

.find.package (library), 339

.isMethodsDispatchOn (methods), 400

.leap.seconds (DateTimeClasses), 143

.lib.loc (Defunct), 148

.libPaths, 150, 343

.libPaths (library), 339

.listFilesWithExts (tools-internal),
1009

.loadPackageQuietly (tools-internal),
1009

.makeBasicFunsList (BasicFunctions),
806

.makeS3MethodsStopList
(tools-internal), 1009

.makeTracedFunction (TraceClasses),
871

.packages, 343, 717

.packages (library), 339

.path.package (library), 339

.primTrace (trace), 693

.primUntrace (trace), 693

.ps.prolog (postscript), 505

.saveImage (RMethodUtils), 848

.setCoerceGeneric (RClassUtils), 842

.sourceAssignments (tools-internal),
1009

.subset (Extract), 203

.subset2 (Extract), 203

.untracedFunction (TraceClasses), 871

.valueClassTest (RMethodUtils), 848
/ (Arithmetic), 33
: (seq), 598
:: (namespace), 419
< (Comparison), 108
<-, 40
<- (assignOps), 40
<-class (language-class), 825
<= (Comparison), 108
<<- (assignOps), 40
= (assignOps), 40
==, 18
== (Comparison), 108
> (Comparison), 108
>= (Comparison), 108
? (help), 267
[, 178, 400, 642
[(Extract), 203
[.AsIs (AsIs), 38
[.POSIXct (DateTimeClasses), 143
[.POSIXlt (DateTimeClasses), 143
[.tskernel (kernel), 1042
[<- (Extract), 203
[<-.POSIXct (DateTimeClasses), 143
[<-.POSIXlt (DateTimeClasses), 143
[[, 400, 903
[[(Extract), 203

INDEX 1095

[[.POSIXct (DateTimeClasses), 143
[[.dendrogram (dendrogram), 902
[[<- (Extract), 203
$ (Extract), 203
$.tclvar (TclInterface), 987
$<- (Extract), 203
$<-.tclvar (TclInterface), 987
%*%, 131, 329, 448
%*% (matmult), 388
%/% (Arithmetic), 33
%% (Arithmetic), 33
%in%, 601
%in% (match), 384
%o%, 131
%o% (outer), 447
%x% (kronecker), 328
& (Logic), 360
&& (Logic), 360
__ClassMetaData (Classes), 810
__MethodMetaData (RMethodUtils), 848
^ (Arithmetic), 33
~ (formula), 237
| (Logic), 360

abbreviate, 4
ability.cov, 893, 909
abline, 5, 264, 265, 503, 1002
abs, 6, 604
acf, 1011, 1053
acf2AR, 1013
acos, 285
acos (Trig), 698
acosh (Hyperbolic), 285
adapt, 300
add.scope (factor.scope), 209
add1, 7, 205, 206, 209, 629, 630
addTaskCallback, 674, 676–678
addTaskCallback (taskCallback), 674
addTclPath (TclInterface), 987
aggregate, 9, 28, 582, 673
agnes, 894, 900
agrep, 10, 263, 270
AIC, 12, 13, 934
AIC.logLik, 12, 13
AIC.nls (nls), 933
airmiles, 14
AirPassengers, 1013, 1069, 1075
airquality, 14
alias, 15
alist, 37, 65, 230
alist (list), 346
all, 17, 18, 24, 631
all.equal, 17, 109, 288

all.equal.POSIXct (DateTimeClasses),
143

all.names, 19
all.vars, 238
all.vars (all.names), 19
allGenerics (GenericFunctions), 815
allNames (methodUtilities), 836
anova, 19, 21, 256, 258, 349, 373, 626, 646,

762
anova-class (setOldClass), 863
anova.glm, 20, 256, 258, 260, 626
anova.glm-class (setOldClass), 863
anova.glm.null-class (setOldClass),

863
anova.glmlist (anova.glm), 20
anova.lm, 21, 350, 353, 626
anova.lmlist (anova.lm), 21
anova.loess (loess), 876
anova.nls (nls), 933
anovalist.lm (anova.lm), 21
anovalist.nls (nls), 933
ansari.test, 747, 750, 759, 769, 785
anscombe, 23
any, 17, 24
ANY-class (BasicClasses), 805
aov, 7, 8, 25, 25, 121, 122, 179, 187, 188,

205, 209, 348, 350, 382, 408, 442,
526, 527, 628, 647, 684, 704, 705,
791

aperm, 26, 34, 572, 670
append, 27
apply, 10, 28, 106, 181, 330, 387, 653, 673
approx, 224, 614
approx (approxfun), 29
approxfun, 29, 614, 982, 984, 985
apropos, 30, 263, 270, 372
ar, 1014, 1019, 1022, 1026, 1059
ar.burg (ar), 1014
ar.mle (ar), 1014
ar.ols, 1015, 1016, 1017
ar.yw, 1013
ar.yw (ar), 1014
Arg (complex), 111
args, 32, 65, 230, 244, 421, 632, 633
arima, 1019, 1023, 1026, 1028, 1041, 1056,

1057, 1069, 1074
arima.sim, 1022, 1023, 1037
arima0, 1016, 1021, 1022, 1023
arima0.diag, 1074
arima0.diag (tsdiag), 1074
Arith (BasicFunctions), 806
Arithmetic, 7, 33, 307, 359, 388, 612, 660

1096 INDEX

ARMAacf, 1013, 1027, 1028
ARMAtoMA, 1028, 1028
array, 34, 172, 178, 204, 432, 673, 730
array-class (StructureClasses), 870
arrows, 35, 597
as, 801, 809, 811, 852, 853
as.array (array), 34
as.call (call), 81
as.character, 232, 421, 467, 659
as.character (character), 89
as.character.octmode (octmode), 435
as.character.POSIXt (strptime), 635
as.character.tclObj (TclInterface),

987
as.character.tclVar (TclInterface),

987
as.complex (complex), 111
as.data.frame, 38, 363
as.data.frame (data.frame), 138
as.data.frame.logLik (logLik), 363
as.data.frame.POSIXct

(DateTimeClasses), 143
as.data.frame.POSIXlt

(DateTimeClasses), 143
as.data.frame.table, 742
as.data.frame.table (table), 670
as.data.frame.xyVector (xyVector), 978
as.dendrogram (dendrogram), 902
as.dist (dist), 904
as.double (double), 175
as.double.tclObj (TclInterface), 987
as.environment, 36, 813
as.expression (expression), 202
as.factor (factor), 207
as.formula (formula), 237
as.function, 36
as.hclust, 894, 900
as.integer, 101, 578
as.integer (integer), 298
as.integer.tclObj (TclInterface), 987
as.list, 713
as.list (list), 346
as.logical (logical), 361
as.matrix, 140, 670
as.matrix (matrix), 391
as.matrix.dist (dist), 904
as.matrix.noquote (noquote), 428
as.matrix.POSIXlt (DateTimeClasses),

143
as.name (name), 417
as.null (NULL), 433
as.numeric, 101

as.numeric (numeric), 433
as.ordered (factor), 207
as.pairlist (list), 346
as.polySpline (polySpline), 973
as.POSIX*, 37
as.POSIXct, 144, 635
as.POSIXct (as.POSIX*), 37
as.POSIXlt, 144, 357, 727
as.POSIXlt (as.POSIX*), 37
as.qr (qr), 532
as.real (real), 560
as.single, 228
as.single (double), 175
as.symbol (name), 417
as.table (table), 670
as.table.ftable (read.ftable), 549
as.tclObj (TclInterface), 987
as.ts (ts), 700
as.vector, 80, 400
as.vector (vector), 722
as<- (as), 801
asin, 285
asin (Trig), 698
asinh (Hyperbolic), 285
AsIs, 38
asMethodDefinition (RMethodUtils), 848
asOneSidedFormula, 925
assign, 39, 41, 92
assignClassDef (RClassUtils), 842
assignMethodsMetaData (RMethodUtils),

848
assignOps, 40
assignToClassMetaData (RClassUtils),

842
assignToMethodMetaData

(RMethodUtils), 848
assocplot, 41, 411
asVector, 967
atan, 285
atan (Trig), 698
atan2 (Trig), 698
atanh (Hyperbolic), 285
attach, 42, 160, 341, 595
attenu, 43
attitude, 44
attr, 45, 46, 108, 442
attr.all.equal (all.equal), 17
attr<- (attr), 45
attributes, 18, 46, 46, 92, 108, 172, 206,

403
attributes<- (attributes), 46
austres, 1029

INDEX 1097

autoload, 47, 341
autoloader (autoload), 47
ave, 48
axis, 49, 50–52, 56, 232, 272, 459, 489,

491, 583
axis.POSIXct, 50, 284
axTicks, 51, 462

backsolve, 52, 96, 608
backSpline, 968
balanceMethodsList (RMethodUtils), 848
bandwidth, 53
bandwidth.kernel (kernel), 1042
bandwith.nrd, 54
barplot, 55, 335, 480, 564
bartlett.test, 748, 749, 759, 769, 785
basename (files), 220
BasicClasses, 805
BasicFunctions, 806
BATCH, 57, 107
bcv, 54
beaver1 (beavers), 1029
beaver2 (beavers), 1029
beavers, 1029
Bessel, 58, 612
bessel (Bessel), 58
besselI (Bessel), 58
besselJ (Bessel), 58
besselK (Bessel), 58
besselY (Bessel), 58
Beta, 60
beta, 59, 61
beta (Special), 612
bindenv, 61
bindingIsActive (bindenv), 61
bindingIsLocked (bindenv), 61
binom.test, 750, 778
Binomial, 63
binomial, 257
binomial (family), 211
biplot, 895, 897, 919
biplot.default, 896
biplot.princomp, 895, 896, 896, 919
birthday, 64
bitmap, 166, 497
bitmap (dev2bitmap), 164
BJsales, 1030
BOD, 926
body, 65, 230, 244
body<- (body), 65
box, 66, 77, 485, 503, 564, 622
Box.test, 1031, 1074
boxplot, 66, 69, 70, 77, 480, 634

boxplot.default, 69
boxplot.formula, 67, 68, 69
boxplot.stats, 68, 70, 226, 536
break (Control), 123
browseAll (Session), 853
browseEnv, 71
browser, 72, 146, 562, 563, 693–695
browseURL, 73, 267, 271
bs, 381, 969, 972, 974
bug.report, 74, 442
build (PkgUtils), 475
buildVignettes (tools-internal), 1009
builtins, 76
bw.bcv (bandwidth), 53
bw.nrd, 153, 155
bw.nrd (bandwidth), 53
bw.nrd0 (bandwidth), 53
bw.SJ (bandwidth), 53
bw.ucv (bandwidth), 53
bxp, 68, 70, 77
by, 78, 398
bzfile, 82
bzfile (connections), 113

C, 79, 121, 122, 208
c, 80, 88, 144, 346, 400, 713, 723
c.POSIXct (DateTimeClasses), 143
c.POSIXlt (DateTimeClasses), 143
cacheGenericsMetaData (RMethodUtils),

848
cacheMetaData (RMethodUtils), 848
cacheMethod (MethodSupport), 835
call, 36, 81, 157, 158, 173, 203, 203, 309,

386, 403, 417, 561, 905
call-class (language-class), 825
callGeneric (GenericFunctions), 815
callNextMethod, 807, 829, 837
cancor, 897
capabilities, 82, 116, 167, 190, 497, 652,

989
cars, 83, 381
case.names, 581
case.names (case/variable.names), 84
case/variable.names, 84
casefold (chartr), 91
cat, 85, 259, 467, 725, 739, 1006
category (Defunct), 148
Cauchy, 86
cbind, 87, 398, 1073
cbind.ts (ts), 700
ccf (acf), 1011
ceiling (Round), 578
char.expand, 88

1098 INDEX

character, 89, 208, 379, 429, 498, 521,
522, 539, 633, 667, 685, 690

character-class (BasicClasses), 805
charmatch, 89, 90, 263, 384, 495, 496
chartr, 89, 91, 263
check (PkgUtils), 475
check.options, 92, 506, 508
checkAssignFuns (QA), 1003
checkDocArgs (QA), 1003
checkDocStyle (QA), 1003
checkFF, 999
checkMethods (QA), 1003
checkSlotAssignment (RClassUtils), 842
checkTnF, 1000
checkVignettes, 1001
ChickWeight, 926
chickwts, 93
chisq.test, 42, 266, 671, 742, 752, 757
Chisquare, 94, 213
chol, 53, 95, 97, 190
chol2inv, 96, 97
choose (Special), 612
chron, 37
chull, 98
class, 16, 99, 138, 281, 310, 349, 372, 399,

401, 428, 429, 481, 511, 518, 645,
809

class<- (class), 99, 809
Classes, 810, 812, 819, 839, 869
classMetaName (RClassUtils), 842
classPrototypeDef-class

(RClassUtils), 842
classRepresentation-class, 828, 853
classRepresentation-class, 811
clearNames, 927, 953
close (connections), 113
close.screen (screen), 591
close.socket, 100, 380, 552
closeAllConnections

(showConnections), 602
cm (units), 711
cm.colors (Palettes), 457
cmdscale, 898
co.intervals (coplot), 125
CO2, 928
co2, 100
codes, 101, 140, 208, 361
codes<- (codes), 101
codoc, 1001
coef, 188, 934
coef (coefficients), 102
coef.nls (nls), 933

coef.tukeyline (line), 789
coefficients, 20, 102, 225, 256, 260, 350,

353, 574
coefficients.glm (glm.summaries), 259
coefficients.lm (lm.summaries), 353
coerce (as), 801
coerce<- (as), 801
col, 103, 580, 598
col2rgb, 103, 105, 456, 457, 576
colMeans (colSums), 106
colnames, 172
colnames (row/colnames), 580
colnames<- (row/colnames), 580
colors, 103, 104, 105, 456, 457, 463, 464,

488, 981
colours (colors), 105
colSums, 106
commandArgs, 107
comment, 108
comment<- (comment), 108
Compare (BasicFunctions), 806
compareVersion (packageStatus), 452
Comparison, 108, 288, 609, 660
COMPILE, 109, 602
complete.cases, 110, 415
completeClassDefinition

(RClassUtils), 842
completeExtends (RClassUtils), 842
completeSubclasses (RClassUtils), 842
Complex (BasicFunctions), 806
complex, 111, 504
complex-class (BasicClasses), 805
conflicts, 112, 339
conformMethod (RMethodUtils), 848
Conj (complex), 111
connection, 129, 548, 551, 553, 589, 840
connection (connections), 113
connections, 113, 443, 530, 557, 560, 596,

603, 687, 739
Constants, 117
contour, 118, 223, 272, 274, 291, 313, 470
contr.helmert, 122
contr.helmert (contrast), 120
contr.poly, 122, 502
contr.poly (contrast), 120
contr.sum, 79, 122
contr.sum (contrast), 120
contr.treatment, 122, 566
contr.treatment (contrast), 120
contrast, 120
contrasts, 79, 121, 121, 406, 442, 594
contrasts<- (contrasts), 121

INDEX 1099

contrib.url (update.packages), 716
contributors, 122, 127
Control, 123, 660
convolve, 124, 215, 425, 1037, 1042
cooks.distance, 352, 484
cooks.distance (influence.measures),

294
cophenetic, 900
coplot, 125, 238, 458
copyright, 127
copyrights (copyright), 127
cor, 128, 917, 919
cor.test, 753
cos, 285
cos (Trig), 698
cosh (Hyperbolic), 285
count.fields, 129, 555
cov, 131, 377, 917, 919
cov (cor), 128
cov.mcd, 918
cov.mcd (cov.rob), 795
cov.mve, 918
cov.mve (cov.rob), 795
cov.rob, 795
cov.wt, 129, 130, 907, 918
covratio, 352
covratio (influence.measures), 294
coxph, 682
cpgram, 1032, 1062
CRAN.packages, 176, 177, 451
CRAN.packages (update.packages), 716
crossprod, 131
cummax (cumsum), 132
cummin (cumsum), 132
cumprod, 525
cumprod (cumsum), 132
cumsum, 132, 525
curve, 132
cut, 134, 135, 136, 291, 615
cut.dendrogram (dendrogram), 902
cut.POSIXt, 135, 144
cutree, 901
cycle (time), 688

D (deriv), 157
daisy, 905
data, 118, 136, 268, 341, 586
data.class, 137
data.entry, 185, 186
data.entry (dataentry), 140
data.frame, 38, 39, 88, 108, 138, 140, 160,

171, 172, 204, 379, 391, 398, 405,

477, 521, 551, 555, 595, 670, 697,
714

data.frame-class (setOldClass), 863
data.matrix, 140, 391
dataClass (standardGeneric), 620
dataentry, 140, 443
date, 37, 142, 357, 667, 688
DateTimeClasses, 38, 51, 143, 170, 218,

579, 600, 637, 666, 727
dbeta, 246
dbeta (Beta), 60
dbinom, 424, 500
dbinom (Binomial), 63
dcauchy (Cauchy), 86
dcf, 145
dchisq, 214, 246
dchisq (Chisquare), 94
de (dataentry), 140
debug, 73, 146, 244
debugger, 147
decompose, 1033
defaultDumpName (RMethodUtils), 848
defaultPrototype (RClassUtils), 842
Defunct, 148, 157, 431
delay, 47, 150, 643
delete.response, 151
deltat, 1045
deltat (time), 688
demo, 152, 198, 611
dendrogram, 902
density, 53, 54, 153, 283, 477, 480, 483,

650
density-class (setOldClass), 863
deparse, 89, 156, 178, 421, 466, 643, 657
Deprecated, 150, 157, 431
deriv, 157, 426, 428, 952
deriv3 (deriv), 157
det, 159, 190, 533
detach, 43, 160, 341, 595
dev.control (dev2), 162
dev.copy (dev2), 162
dev.copy2eps (dev2), 162
dev.cur, 163, 167
dev.cur (dev.xxx), 161
dev.interactive (Devices), 166
dev.list (dev.xxx), 161
dev.next (dev.xxx), 161
dev.off (dev.xxx), 161
dev.prev (dev.xxx), 161
dev.print, 167, 497
dev.print (dev2), 162
dev.set (dev.xxx), 161

1100 INDEX

dev.xxx, 161
dev2, 162
dev2bitmap, 164, 167
deviance, 165, 167, 205, 206, 260, 353
deviance.nls (nls), 933
device (Devices), 166
Devices, 162, 166, 261, 266, 468, 472, 497,

508, 537, 592, 740, 741
dexp, 728
dexp (Exponential), 201
df, 679
df (FDist), 213
df.kernel (kernel), 1042
df.residual, 165, 167, 260, 353
df.residual.nls (nls), 933
dfbetas, 352
dfbetas (influence.measures), 294
dffits, 352
dffits (influence.measures), 294
dgamma, 61, 95, 202
dgamma (GammaDist), 245
dgeom, 424
dgeom (Geometric), 248
dget, 180
dget (dput), 177
dhyper (Hypergeometric), 286
diag, 168, 370, 388
diag<- (diag), 168
diana, 894
diff, 169, 702, 1034, 1045
diff.ts, 169
diff.ts (ts-methods), 702
diffinv, 1034
difftime, 144, 170, 599
digamma (Special), 612
dim, 34, 46, 171, 206, 391, 400, 432, 673,

730
dim<-, 400
dim<- (dim), 171
dimnames, 34, 46, 171, 171, 391, 400, 485,

523, 580, 581, 714
dimnames<-, 400
dimnames<- (dimnames), 171
dir (list.files), 347
dir.create (files), 220
dirname (files), 220
discoveries, 172
dist, 900, 901, 904, 905
dlnorm, 430
dlnorm (Lognormal), 367
dlogis (Logistic), 361
DNase, 929

dnbinom, 64, 249, 500
dnbinom (NegBinomial), 423
dnchisq (Defunct), 148
dnorm, 368
dnorm (Normal), 429
do.call, 81, 173, 561
doPrimitiveMethod (RMethodUtils), 848
dotchart, 57, 149, 173, 474
dotplot (Defunct), 148
double, 175, 206, 745
double-class (BasicClasses), 805
download.file, 82, 114, 150, 176, 443,

717, 718
download.packages, 177
download.packages (update.packages),

716
dpois, 64, 424
dpois (Poisson), 499
dput, 177, 180, 453, 586, 632
drop, 178, 388
drop.scope (factor.scope), 209
drop.terms (delete.response), 151
drop1, 178, 205, 209, 629, 630
drop1 (add1), 7
dsignrank, 733
dsignrank (SignRank), 604
dt, 87, 214
dt (TDist), 678
dummy.coef, 179
dump, 178, 180, 586
dump.frames, 443, 562, 563
dump.frames (debugger), 147
dump.frames-class (setOldClass), 863
dumpMethod (GenericFunctions), 815
dumpMethods (GenericFunctions), 815
dunif (Uniform), 708
duplicated, 181, 709
dweibull, 202
dweibull (Weibull), 727
dwilcox, 605
dwilcox (Wilcoxon), 732
dyn.load, 110, 182, 227, 229, 251, 342,

343, 602
dyn.unload (dyn.load), 182

ecdf, 224, 536, 981, 984, 985
edit, 142, 184, 186, 226, 442, 453
edit.data.frame, 185, 185, 226
edit.matrix (edit.data.frame), 185
eff.aovlist, 187
effects, 20, 188, 258, 260, 349, 350, 353
eigen, 159, 160, 189, 533, 652, 917, 919
el (methodUtilities), 836

INDEX 1101

el<- (methodUtilities), 836
elNamed (methodUtilities), 836
elNamed<- (methodUtilities), 836
else (Control), 123
emacs (edit), 184
embed, 1035
empty.dump (RClassUtils), 842
emptyMethodsList (MethodsList), 832
EmptyMethodsList-class, 812
end, 701
end (start), 623
environment, 36, 39–41, 43, 71, 92, 147,

191, 195, 196, 199, 249, 372, 567,
662, 985

environment-class, 813
environment<- (environment), 191
environmentIsLocked (bindenv), 61
erase.screen (screen), 591
esoph, 193, 258
euro, 194
eurodist, 195
EuStockMarkets, 1035
eval, 192, 195, 203, 331, 466, 611, 643,

663
evalq, 735
evalq (eval), 195
example, 197, 292
exists, 40, 198, 250, 633
existsFunction (GenericFunctions), 815
existsMethod (getMethod), 819
exp, 202
exp (log), 359
expand.grid, 200
expand.model.frame, 200, 405
expm1 (log), 359
Exponential, 201
expression, 81, 156–158, 195, 196, 202,

309, 334, 639, 643, 685, 690
expression-class (BasicClasses), 805
extends (is), 824
extendsMetaName (RClassUtils), 842
externalptr-class (BasicClasses), 805
Extract, 203, 608, 660
extractAIC, 8, 165, 204, 629
extractAIC.glm, 629
Extremes, 206

F (logical), 361
factanal, 906, 916, 923
factanal.fit.mle (factanal), 906
factor, 102, 126, 134, 149, 207, 254, 256,

301, 337, 338, 361, 406, 426, 480,
566, 646, 672

factor-class (setOldClass), 863
factor.scope, 209
faithful, 210
FALSE (logical), 361
family, 211, 255, 257, 364, 377, 378, 509
family.glm (glm.summaries), 259
family.lm (lm.summaries), 353
fdeaths (UKLungDeaths), 1077
FDist, 213
fft, 124, 154, 214, 425, 1061
fifo (connections), 113
file, 556, 559, 739
file (connections), 113
file.access, 215, 218, 221, 348
file.append (files), 220
file.choose, 216
file.copy (files), 220
file.create (files), 220
file.exists (files), 220
file.info, 216, 217, 221, 348, 435
file.path, 218, 221
file.remove, 712
file.remove (files), 220
file.rename (files), 220
file.show, 218, 221, 267, 453, 718, 993
files, 218, 219, 220, 348
filled.contour, 119, 221, 724
filter, 124, 1028, 1036, 1042
finalDefaultMethod (MethodsList), 832
find, 372, 816
find (apropos), 30
findClass (setClass), 854
findFunction (GenericFunctions), 815
findInterval, 223
findMethod (getMethod), 819
findNextMethod (RMethodUtils), 848
findUnique (RMethodUtils), 848
fisher.test, 756
fitted, 934
fitted (fitted.values), 225
fitted.nls (nls), 933
fitted.tukeyline (line), 789
fitted.values, 20, 102, 225, 258, 260,

350, 353, 574
fitted.values.glm (glm.summaries), 259
fitted.values.lm (lm.summaries), 353
fivenum, 70, 225, 304, 536
fix, 185, 226, 453
fligner.test, 748, 750, 758, 769
floor (Round), 578
for, 528
for (Control), 123

1102 INDEX

for-class (language-class), 825
Foreign, 227, 1000
formalArgs (methodUtilities), 836
Formaldehyde, 229
formals, 32, 230, 346, 421
formals<- (formals), 230
format, 85, 231, 233, 235, 391, 520, 646,

692
format.char (formatC), 234
format.dist (dist), 904
format.info, 232, 233
format.octmode (octmode), 435
format.POSIXct, 38
format.POSIXct (strptime), 635
format.POSIXlt, 38
format.POSIXlt (strptime), 635
format.pval, 520
formatC, 232, 233, 234, 617
formatDL, 236, 549
formula, 39, 158, 191, 237, 405, 481, 683,

684, 925, 930, 934
formula-class (setOldClass), 863
formula.lm (lm.summaries), 353
formula.nls, 930
forwardsolve (backsolve), 52
fourfoldplot, 238
frame, 240
freeny, 241
frequency, 701
frequency (time), 688
friedman.test, 759, 781
ftable, 241, 243, 244, 550
ftable.default, 243, 244
ftable.formula, 242, 243
function, 37, 65, 81, 126, 191, 203, 230,

244, 303, 477
function-class (BasicClasses), 805
functionBody (methodUtilities), 836
functionBody<- (methodUtilities), 836
functionPackageName (getPackageName),

822
functionWithTrace-class

(TraceClasses), 871

Gamma, 364
Gamma (family), 211
gamma, 59, 246
gamma (Special), 612
gammaCody (Bessel), 58
GammaDist, 245
gaussian, 364
gaussian (family), 211
gc, 246, 247, 395, 396

gc.time, 247, 525
gcinfo, 395
gcinfo (gc), 246
gctorture, 246, 247
generic.skeleton (RMethodUtils), 848
genericFunction-class, 814, 850
GenericFunctions, 815, 867
genericFunctionWithTrace-class

(TraceClasses), 871
Geometric, 248
get, 40, 92, 199, 249, 387, 505, 633
getAccess (RClassUtils), 842
getAllConnections (showConnections),

602
getAllMethods, 834
getAllMethods (RMethodUtils), 848
getAllSuperClasses (RClassUtils), 842
getCConverterDescriptions

(getNumCConverters), 252
getCConverterStatus

(getNumCConverters), 252
getClass, 811, 818, 855, 869
getClassDef, 811, 855
getClassDef (getClass), 818
getClasses (setClass), 854
getClassName (RClassUtils), 842
getClassPackage (RClassUtils), 842
getConnection (showConnections), 602
getDataPart (RClassUtils), 842
getenv (Defunct), 148
geterrmessage, 147, 699
geterrmessage (stop), 630
getExtends (RClassUtils), 842
getFromClassMetaData (RClassUtils),

842
getFromMethodMetaData (RMethodUtils),

848
getFunction (methodUtilities), 836
getGeneric, 816
getGeneric (RMethodUtils), 848
getGenerics, 840, 841
getGenerics (GenericFunctions), 815
getGroup (RMethodUtils), 848
getInitial, 931
getMethod, 819
getMethods (getMethod), 819
getMethodsForDispatch

(MethodSupport), 835
getMethodsMetaData (RMethodUtils), 848
getNativeSymbolInfo, 250
getNumCConverters, 252
getOption (options), 441

INDEX 1103

getPackageName, 822, 828
getProperties (RClassUtils), 842
getPrototype (RClassUtils), 842
getSlots (RClassUtils), 842
getSubclasses (RClassUtils), 842
getTaskCallbackNames, 674, 675, 677
getTaskCallbackNames

(taskCallbackNames), 677
getValidity, 872
getValidity (validObject), 872
getVirtual (RClassUtils), 842
getwd, 253, 553, 589, 661
gl, 208, 254, 600
glm, 7, 8, 20, 21, 102, 121, 122, 165, 167,

205, 211, 212, 225, 237, 238, 255,
258–261, 306, 350, 353, 364, 377,
378, 416, 435, 483, 512, 574, 628,
629, 646, 682, 683, 722, 729

glm-class (setOldClass), 863
glm.control, 256, 258
glm.fit, 258, 259
glm.fit.null (glm), 255
glm.null-class (setOldClass), 863
glm.summaries, 259
glm.summary, 260
globalenv (environment), 191
GNOME, 166
GNOME (Gnome), 261
Gnome, 261
gnome (Gnome), 261
graphics.off, 167
graphics.off (dev.xxx), 161
gray, 105, 262, 285, 456, 457, 464, 576
grep, 11, 82, 89, 90, 262, 270, 372, 496,

638
grey (gray), 262
grid, 264
groupGenericFunction-class

(genericFunction-class), 814
groupGenericFunctionWithTrace-class

(TraceClasses), 871
gsub, 91
gsub (grep), 262
GTK, 166
GTK (gtk), 265
gtk, 265
gzfile, 82
gzfile (connections), 113

HairEyeColor, 266
Harman23.cor, 909, 909
Harman74.cor, 909, 910, 923
hasArg, 823

hasMethod (getMethod), 819
hasTsp (tsp), 702
hat, 352, 373, 484
hat (influence.measures), 294
hclust, 894, 900, 901, 905, 911, 914, 920
heat.colors, 105, 290, 291
heat.colors (Palettes), 457
help, 32, 137, 197, 219, 267, 270, 271, 292,

528
help.search, 31, 268, 269
help.start, 267, 268, 270, 271, 442
Hershey, 119, 271, 313, 686
hist, 57, 155, 281, 283, 284, 422, 423,

482, 483, 487, 564
hist.POSIXt, 283
history (savehistory), 587
HoltWinters, 1037, 1054, 1058
hsearch-class (setOldClass), 863
hsv, 105, 262, 284, 291, 456, 457, 461, 576
httpclient (Defunct), 148
Hyperbolic, 285
Hypergeometric, 286

I, 139, 237, 238
I (AsIs), 38
identical, 17, 109, 287
identify, 288, 358
identify.hclust, 913, 920
if, 290, 360, 465
if (Control), 123
if-class (language-class), 825
ifelse, 123, 289
Im (complex), 111
image, 119, 167, 223, 290, 470, 487
index.search, 292
Indometh, 932
Inf, 33, 225, 227
Inf (is.finite), 306
infert, 258, 293
influence.measures, 294, 352
inheritedSubMethodLists

(MethodsList), 832
inherits (class), 99
initialize, 871
initialize (new), 838
initMethodDispatch (methodUtilities),

836
InsectSprays, 295
insertMethod (MethodsList), 832
insertMethodInEmptyList

(MethodsList), 832
INSTALL, 296, 341, 566, 717, 822
install.packages, 341, 452, 568

1104 INDEX

install.packages (update.packages),
716

installed.packages (update.packages),
716

integer, 138, 171, 175, 206, 233, 298, 337,
432, 541, 731

integer-class (BasicClasses), 805
integrate, 298
integrate-class (setOldClass), 863
interaction, 300
interaction.plot, 301
interactive, 302, 442
Internal, 303
interpSpline, 614, 968, 970, 973–975,

978
intersect (sets), 601
inverse.gaussian, 364
inverse.gaussian (family), 211
inverse.rle (rle), 577
invisible, 244, 303, 335, 343, 456, 518,

841, 914
IQR, 226, 304, 376
iris, 305
iris3 (iris), 305
is, 811, 824, 853
is.array (array), 34
is.atomic (is.recursive), 311
is.call (call), 81
is.character (character), 89
is.complex (complex), 111
is.data.frame (data.frame), 138
is.double (double), 175
is.element, 384
is.element (sets), 601
is.empty.model, 306
is.environment (environment), 191
is.expression (expression), 202
is.factor (factor), 207
is.finite, 306
is.function, 309
is.infinite (is.finite), 306
is.integer (integer), 298
is.language, 81, 309, 311, 417
is.list, 311, 723
is.list (list), 346
is.loaded, 250, 251
is.loaded (dyn.load), 182
is.logical (logical), 361
is.matrix (matrix), 391
is.mts (ts), 700
is.na, 110, 208, 400
is.na (NA), 414

is.na.POSIXlt (DateTimeClasses), 143
is.na<- (NA), 414
is.na<-.factor (factor), 207
is.name (name), 417
is.nan, 400, 415
is.nan (is.finite), 306
is.null (NULL), 433
is.numeric, 723
is.numeric (numeric), 433
is.object, 310
is.ordered (factor), 207
is.pairlist (list), 346
is.primitive (RMethodUtils), 848
is.qr (qr), 532
is.R, 310
is.real (real), 560
is.recursive, 311
is.single, 312
is.stepfun (stepfun), 984
is.symbol (name), 417
is.table (table), 670
is.tclObj (TclInterface), 987
is.tkwin (TclInterface), 987
is.ts (ts), 700
is.tskernel (kernel), 1042
is.unsorted (sort), 609
is.vector (vector), 722
isClass, 819
isClass (setClass), 854
isClassDef (RClassUtils), 842
isGeneric (GenericFunctions), 815
isGrammarSymbol (languageEl), 826
isGroup (GenericFunctions), 815
isIncomplete, 687
isIncomplete (connections), 113
islands, 312
isLeaf (dendrogram), 902
ISOdate (strptime), 635
ISOdatetime (strptime), 635
ISOLatin1 (connections), 113
isoMDS, 900
isOpen (connections), 113
isSeekable (seek), 596
isVirtualClass (RClassUtils), 842

Japanese, 274, 313
jitter, 326, 584, 650
JohnsonJohnson, 1039, 1075
jpeg, 58, 82, 165–167
jpeg (png), 496
julian (weekdays), 726

KalmanForecast, 1056

INDEX 1105

KalmanForecast (KalmanLike), 1040
KalmanLike, 1020, 1040, 1069
KalmanRun (KalmanLike), 1040
KalmanSmooth, 1075
KalmanSmooth (KalmanLike), 1040
kappa, 327
kernapply, 1042, 1043
kernel, 1042, 1042
kmeans, 913, 915
knots, 983, 985
knots (stepfun), 984
kronecker, 328, 448
kruskal.test, 761, 770, 786
ks.test, 763
ksmooth, 875

La.chol (chol), 95
La.chol2inv (chol2inv), 97
La.eigen (eigen), 189
La.svd (svd), 651
labels, 329
lag, 1044
lag.plot, 1045
LakeHuron, 1046
language-class, 825
languageEl, 826
languageEl<- (languageEl), 826
lapply, 10, 28, 330, 387, 673
Last.value, 331
layout, 162, 331, 414, 461, 464, 592
lbeta (Special), 612
lchoose (Special), 612
lcm (layout), 331
ldeaths (UKLungDeaths), 1077
legend, 203, 333, 564
length, 336
length<- (length), 336
LETTERS (Constants), 117
letters (Constants), 117
levels, 102, 208, 337, 338, 361, 426
levels.factor, 338
levels<-, 338
levels<- (levels), 337
levels<-.factor, 337
levels<-.factor (levels.factor), 338
lgamma (Special), 612
lh, 1047
library, 43, 47, 160, 268, 339, 343, 442,

595, 666, 717, 822
library.dynam, 184, 340, 341, 342, 602
libraryIQR-class (setOldClass), 863
licence (license), 343
license, 127, 343

LifeCycleSavings, 343
limitedLabels (recover), 562
line, 789
linearizeMlist, 827, 828, 830
linearizeMlist (MethodsList), 832
LinearMethodsList-class, 827
lines, 6, 133, 265, 344, 389, 390, 458,

459, 470, 477, 482, 486, 488, 499,
503, 597, 681, 903

lines.formula (plot.formula), 481
lines.histogram (plot.histogram), 482
lines.ts (plot.ts), 486
LINK, 345
list, 160, 204, 346, 415, 443, 532, 539,

673, 697
list-class (BasicClasses), 805
list.files, 218, 219, 221, 347, 668
listFromMlist, 830, 834
listFromMlist (MethodsList), 832
lm, 7, 8, 22, 84, 102, 121, 122, 165, 167,

188, 205, 209, 225, 237, 238, 258,
294, 306, 348, 350–355, 365, 374,
375, 416, 442, 483, 511, 514, 527,
574, 619, 628, 646, 682, 683, 713,
729, 762, 789

lm-class (setOldClass), 863
lm.fit, 349, 350, 350
lm.influence, 294, 295, 350, 352, 353,

373, 374, 484, 729, 730
lm.summaries, 353
lm.summary, 354
lm.wfit, 350
lm.wfit (lm.fit), 350
lmsreg (lqs), 797
load, 136, 355, 586
loadhistory (savehistory), 587
loadings, 916, 919
loadMethod (MethodsList), 832
Loblolly, 933
local (eval), 195
localeconv, 356, 357
locales, 109, 356, 357, 637
locator, 289, 333, 358
lockBinding (bindenv), 61
lockEnvironment (bindenv), 61
loess, 371, 792, 876, 879, 884, 887, 1066
loess.control, 877, 878
loess.smooth (scatter.smooth), 886
log, 7, 359
log10 (log), 359
log1p (log), 359
log2 (log), 359

1106 INDEX

logb (log), 359
Logic, 360, 660, 730
logical, 360, 361, 631, 730
logical-class (BasicClasses), 805
Logistic, 361
logLik, 12, 13, 363
logLik-class (setOldClass), 863
logLik.glm, 364
logLik.gls, 363
logLik.lm, 363, 364, 365
logLik.lme, 363
logLik.nls, 363
logLik.nls (nls), 933
loglin, 266, 366, 410, 411
Lognormal, 367
longley, 369
lower.tri, 370
lowess, 370, 458, 743, 792, 877
lqs, 796, 797, 800
ls, 71, 72, 371, 505, 567, 632, 633
ls.diag, 372, 374, 375
ls.print, 373, 374, 375
ls.str, 632
ls.str (str), 632
lsf.str, 632
lsf.str (str), 632
lsfit, 373, 374, 374, 533, 534
ltsreg (lqs), 797
lynx, 1047

Machine (Deprecated), 157
machine (Deprecated), 157
MacRoman (connections), 113
mad, 304, 375, 593
mahalanobis, 376
make.link, 377, 509
make.names, 139, 204, 378, 554
make.socket, 82, 100, 379, 552
make.tables, 380
makeActiveBinding (bindenv), 61
makeARIMA (KalmanLike), 1040
makeClassRepresentation, 828, 856
makeExtends (RClassUtils), 842
makeGeneric (RMethodUtils), 848
makeMethodsList (MethodsList), 832
makepredictcall, 381
makepredictcall.bs (bs), 969
makepredictcall.ns (ns), 971
makepredictcall.poly (poly), 501
makePrototypeFromClassDef

(RClassUtils), 842
makeStandardGeneric (RMethodUtils),

848

manova, 382
mantelhaen.test, 764
margin.table, 383, 529
mat.or.vec, 383
match, 90, 263, 384, 496
match.arg, 384, 385, 386, 387, 496, 905
match.call, 385, 386, 496
match.fun, 385, 386, 387, 496
matchSignature (RMethodUtils), 848
Math (BasicFunctions), 806
Math (Methods), 398
Math.data.frame, 139
Math.POSIXlt (DateTimeClasses), 143
Math.POSIXt (DateTimeClasses), 143
Math2 (BasicFunctions), 806
matlines (matplot), 389
matmult, 388
matplot, 305, 389
matpoints (matplot), 389
matrix, 34, 127, 140, 168, 172, 204, 370,

388, 390, 391, 432
matrix-class (StructureClasses), 870
max, 30, 546, 731
max (Extremes), 206
max.col, 392, 731
mcnemar.test, 767
mdeaths (UKLungDeaths), 1077
mean, 30, 48, 393, 679, 729
mean.POSIXct, 393
mean.POSIXct (DateTimeClasses), 143
mean.POSIXlt (DateTimeClasses), 143
median, 48, 226, 376, 394, 791, 792
medpolish, 790
mem.limits (Memory), 394
Memory, 246, 394
memory.profile, 395, 396
menu, 396
merge, 397
mergeMethods (MethodsList), 832
message (methodUtilities), 836
metaNameUndo (RClassUtils), 842
MethodAddCoerce (RMethodUtils), 848
MethodDefinition-class, 821, 837, 868
MethodDefinition-class, 829
MethodDefinitionWithTrace-class

(TraceClasses), 871
Methods, 398, 546, 808, 811, 821, 830, 856,

860, 862, 869
methods, 18, 259, 260, 268, 310, 353, 372,

400, 400, 429, 519, 645
MethodsList, 830, 832, 861, 862
MethodsList-class, 813, 828, 829

INDEX 1107

MethodsList-class, 834
MethodsListSelect, 813, 831, 852
MethodsListSelect (getMethod), 819
methodsPackageMetaName (RClassUtils),

842
MethodSupport, 835
methodUtilities, 836
MethodWithNext-class, 829
MethodWithNext-class, 837
MethodWithNextWithTrace-class

(TraceClasses), 871
min, 30, 546, 731
min (Extremes), 206
missing, 402, 643, 823, 851
missing-class (BasicClasses), 805
missingArg (RMethodUtils), 848
mlistMetaName (RMethodUtils), 848
mlm-class (setOldClass), 863
Mod, 18
Mod (complex), 111
mode, 18, 31, 402, 601, 633, 643, 706
mode<- (mode), 402
model.extract, 403, 406
model.frame, 201, 238, 381, 403, 404, 405,

406, 435
model.frame.default, 381
model.matrix, 139, 405, 406, 683, 716
model.matrix.default, 797
model.matrix.glm.null (model.matrix),

406
model.matrix.lm (model.matrix), 406
model.offset, 435
model.offset (model.extract), 403
model.response (model.extract), 403
model.tables, 25, 179, 380, 407, 527, 571,

593, 594, 705
model.tables.aovlist, 187
model.weights (model.extract), 403
modreg-internal, 879
month.abb (Constants), 117
month.name (Constants), 117
monthplot, 1048
months (weekdays), 726
mood.test, 748, 750, 759, 768, 785
morley, 408
mosaicplot, 42, 239, 266, 409, 485
mosaicplot.default, 410
mosaicplot.formula, 410
mostattributes<- (attributes), 46
mtable-class (setOldClass), 863
mtcars, 411
mtext, 272, 412, 459, 489, 491, 686, 690

mts-class (setOldClass), 863
mvfft (fft), 214

n2mfrow, 414, 1045
NA, 33, 67, 70, 104, 128, 169, 208, 225,

227, 264, 307, 337, 360, 402, 414,
415, 416, 442, 520, 522, 536, 546,
554, 564, 589, 658, 706, 730, 744,
745, 881

na.action, 415, 415, 416
na.contiguous, 702, 1049
na.exclude, 352, 797
na.exclude (na.fail), 416
na.fail, 110, 201, 255, 348, 405, 415, 416,

416, 702, 918, 1049
na.omit, 110, 201, 255, 348, 405, 415, 416,

702, 797, 881, 918, 1049
na.omit (na.fail), 416
na.omit.ts, 1049
na.omit.ts (ts-methods), 702
na.pass (na.fail), 416
name, 309, 339, 417
name-class (language-class), 825
names, 34, 46, 168, 172, 206, 330, 379, 418,

536, 714
names.dist (dist), 904
names<- (names), 418
names<-.dist (dist), 904
namespace, 419
NaN, 33, 70, 225, 227, 414, 415, 536
NaN (is.finite), 306
napredict, 225, 416, 908, 919
napredict (naresid), 420
naprint, 419
naresid, 416, 420, 573
nargs, 420
native.enc (connections), 113
nchar, 421, 467, 638, 639, 644
nclass, 422
nclass.Sturges, 282, 283
NCOL, 581
NCOL (nrow), 431
ncol, 171
ncol (nrow), 431
NegBinomial, 423
new, 811, 812, 838, 855
new.env, 813
new.env (environment), 191
newBasic (RClassUtils), 842
newClassRepresentation (RClassUtils),

842
newEmptyObject (RClassUtils), 842
newestVersion (packageStatus), 452

1108 INDEX

next (Control), 123
NextMethod, 99
NextMethod (methods), 400
nextn, 124, 215, 424
nhtemp, 425
Nile, 1050, 1075
nlevels, 102, 208, 337, 338, 426
nlm, 158, 426, 439, 441, 711
nls, 158, 251, 428, 930, 931, 933, 936, 938,

943, 945–948, 955–964
nls.control, 936
nlsModel, 935, 937, 948
NLSstAsymptotic, 938
NLSstClosestX, 939, 940, 941, 954
NLSstLfAsymptote, 939, 940, 954
NLSstRtAsymptote, 939, 940, 940, 941,

954
nonstandardGeneric-class

(RMethodUtils), 848
nonstandardGenericFunction-class

(RMethodUtils), 848
nonstandardGroupGenericFunction-class

(RMethodUtils), 848
noquote, 428, 519, 522, 658
Normal, 429
nottem, 1051
NotYet, 431
NotYetImplemented (NotYet), 431
NotYetUsed (NotYet), 431
NROW, 581
NROW (nrow), 431
nrow, 171, 431
ns, 381, 969, 971, 974
nsl, 432
NULL, 171, 432, 433, 631
NULL-class (BasicClasses), 805
numeric, 160, 231, 433, 546
numeric-class (BasicClasses), 805
numericDeriv, 941

object.size, 434
objects, 31, 43, 160, 341, 567, 595
objects (ls), 371
ObjectsWithPackage-class, 840, 846
objWithClass (standardGeneric), 620
octmode, 435
offset, 349, 404, 435, 684
old.packages (update.packages), 716
oldClass-class (setOldClass), 863
OldEvalSelectedMethod

(MethodSupport), 835
on.exit, 379, 436, 604, 663
oneway.test, 769

open (connections), 113
Ops (BasicFunctions), 806
Ops (Methods), 398
Ops.POSIXct (DateTimeClasses), 143
Ops.POSIXlt (DateTimeClasses), 143
Ops.POSIXt (DateTimeClasses), 143
Ops.ts (ts), 700
optim, 158, 428, 436, 907, 1020, 1024,

1025, 1068, 1069
optimise (optimize), 440
optimize, 428, 439, 440, 711
OptionalFunction-class

(RMethodUtils), 848
options, 74, 122, 148, 163, 166, 176, 177,

183, 226, 233, 255, 259, 339, 348,
405, 416, 441, 464, 519, 520, 522,
563, 574, 611, 631, 633, 666, 699,
724, 918

Orange, 942
OrchardSprays, 445
order, 446, 547, 610
ordered, 519
ordered (factor), 207
ordered-class (setOldClass), 863
outer, 329, 387, 447

p.adjust, 448, 771, 773
pacf (acf), 1011
package.contents, 450
package.dependencies, 451
package.description

(package.contents), 450
package.skeleton, 451
packageInfo-class (setOldClass), 863
packageIQR-class (setOldClass), 863
packageStatus, 452
page, 453
pairlist (list), 346
pairs, 127, 453, 455, 458
pairs.default, 455
pairs.formula, 455
pairwise.prop.test, 770
pairwise.t.test, 449, 771, 772, 776
pairwise.table, 772
pairwise.wilcox.test, 773
palette, 104, 105, 223, 456, 457, 463, 488
Palettes, 457
panel.smooth, 127, 458, 483
par, 6, 35, 49, 51, 52, 56, 66, 69, 119, 262,

291, 332, 344, 345, 389, 390, 413,
414, 455, 458, 459, 469, 476–478,
480, 481, 483, 486, 487, 498, 502,
503, 564, 575, 592, 597, 622, 649,

INDEX 1109

681, 685, 686, 690, 711, 880,
1045, 1052, 1067

Paren, 123, 465, 660
parent.env (environment), 191
parent.env<- (environment), 191
parent.frame, 196
parent.frame (sys.parent), 662
parse, 156, 465, 611
parse.dcf (Defunct), 148
paste, 85, 89, 232, 421, 466, 617, 638, 644
path.expand (files), 220
pbeta (Beta), 60
pbinom (Binomial), 63
pbirthday (birthday), 64
pcauchy (Cauchy), 86
pchisq, 679, 703
pchisq (Chisquare), 94
pdf, 165, 166, 467
pentagamma (Special), 612
periodicSpline, 614, 971, 972, 974, 975,

978
persp, 468
pexp (Exponential), 201
pf (FDist), 213
pgamma, 423
pgamma (GammaDist), 245
pgeom (Geometric), 248
phones, 471
phyper (Hypergeometric), 286
pi (Constants), 117
pico (edit), 184
pictex, 166, 472
pie, 473
piechart (Defunct), 148
pipe (connections), 113
PkgUtils, 475
pkgVignettes (tools-internal), 1009
PlantGrowth, 475
Platform (Deprecated), 157
plclust (hclust), 911
plnorm (Lognormal), 367
plogis (Logistic), 361
plot, 57, 265, 291, 335, 344, 345, 389,

390, 413, 459, 476, 478, 480,
485–488, 498, 499, 649, 744, 790,
912, 919, 982, 983

plot.acf, 1012, 1052
plot.data.frame (data.frame), 138
plot.decomposed.ts (decompose), 1033
plot.default, 77, 119, 240, 389, 462–464,

477, 477, 480, 481, 485–488, 622,
649, 743, 911, 1045

plot.dendrogram (dendrogram), 902
plot.density, 155, 479
plot.ecdf (ecdf), 981
plot.factor, 480, 481, 485
plot.formula, 477, 480, 481
plot.function (curve), 132
plot.gam (termplot), 681
plot.hclust (hclust), 911
plot.histogram, 281, 282, 482
plot.HoltWinters, 1053
plot.lm, 483, 682
plot.medpolish (medpolish), 790
plot.mlm (plot.lm), 483
plot.mts (plot.ts), 486
plot.new, 462, 487
plot.new (frame), 240
plot.POSIXct (axis.POSIXct), 50
plot.POSIXlt (axis.POSIXct), 50
plot.ppr, 879, 882
plot.prcomp (prcomp), 916
plot.princomp (princomp), 918
plot.profile.nls, 943, 946
plot.spec, 1054, 1059, 1061, 1064
plot.spline (predict.bSpline), 975
plot.stepfun, 981, 982, 983, 985
plot.stl, 1066
plot.stl (stlmethods), 1067
plot.table, 485
plot.ts, 486, 701, 1045, 1046, 1067, 1072
plot.tskernel (kernel), 1042
plot.TukeyHSD (TukeyHSD), 704
plot.window, 56, 174, 222, 240, 478, 487
plot.xy, 345, 488, 488, 498, 499
plot.xyVector (xyVector), 978
plotmath, 272, 334, 413, 472, 489, 686,

690
plotNode (dendrogram), 902
plotNodeLimit (dendrogram), 902
pmatch, 89, 90, 263, 384–386, 495
pmax (Extremes), 206
pmin (Extremes), 206
pnbinom (NegBinomial), 423
pnchisq (Defunct), 148
png, 58, 82, 165–167, 496
pnorm, 704
pnorm (Normal), 429
points, 127, 265, 334, 345, 389, 390, 458,

459, 470, 477, 478, 483, 488, 498,
681, 902, 903

points.default, 488
points.formula (plot.formula), 481
pointwise (modreg-internal), 879

1110 INDEX

Poisson, 499
poisson (family), 211
poly, 381, 501, 969, 972, 974
polygon, 98, 474, 502, 564, 597
polym (poly), 501
polyroot, 504, 711
polySpline, 973
pos.to.env, 505
POSIXct (DateTimeClasses), 143
POSIXct-class (setOldClass), 863
POSIXlt (DateTimeClasses), 143
POSIXt-class (setOldClass), 863
possibleExtends (RClassUtils), 842
PossibleMethod-class (RMethodUtils),

848
postscript, 162–166, 442, 464, 467, 468,

472, 505
power, 211, 212, 509
power.prop.test, 773, 776
power.t.test, 774, 776
PP.test, 1055
ppoints, 510, 531
ppois (Poisson), 499
ppr, 880, 880, 891
prcomp, 916, 919
precip, 510
predict, 201, 350, 420, 511, 514, 945, 974
predict.ar (ar), 1014
predict.Arima, 1022, 1056
predict.arima0 (arima0), 1023
predict.bs, 969, 974
predict.bSpline, 975
predict.glm, 258, 512, 682
predict.HoltWinters, 1039, 1054, 1057
predict.lm, 350, 511, 513
predict.loess, 877, 883
predict.lqs, 799, 799
predict.mlm (predict.lm), 513
predict.nbSpline (predict.bSpline),

975
predict.nls, 944
predict.npolySpline

(predict.bSpline), 975
predict.ns, 972
predict.ns (predict.bs), 974
predict.pbSpline (predict.bSpline),

975
predict.poly (poly), 501
predict.polySpline (polySpline), 973
predict.ppolySpline

(predict.bSpline), 975
predict.ppr (ppr), 880

predict.princomp (princomp), 918
predict.smooth.spline, 884, 889, 890
predict.StructTS (StructTS), 1068
predLoess (modreg-internal), 879
preplot, 515
presidents, 515
pressure, 516
pretty, 516
prettyNum, 234
prettyNum (format), 231
Primitive, 518
princomp, 896, 897, 909, 916, 917, 918,

921, 922
print, 16, 85, 108, 232, 429, 518, 519–524,

632, 789, 790, 903, 912, 919, 934,
981, 985, 1006

print.anova, 519
print.anova (anova), 19
print.anova.glm (Defunct), 148
print.anova.lm (Defunct), 148
print.ar (ar), 1014
print.Arima (arima), 1019
print.arima0 (arima0), 1023
print.AsIs (AsIs), 38
print.atomic (print.default), 522
print.bSpline (interpSpline), 970
print.by (by), 78
print.checkAssignFuns (QA), 1003
print.checkDocArgs (QA), 1003
print.checkDocStyle (QA), 1003
print.checkFF (checkFF), 999
print.checkMethods (QA), 1003
print.checkTnF (checkTnF), 1000
print.checkVignettes

(checkVignettes), 1001
print.classRepresentation

(RClassUtils), 842
print.codoc (codoc), 1001
print.coefmat, 442, 519
print.connection (connections), 113
print.data.frame, 139, 521
print.default, 108, 442, 519, 522, 523,

903
print.default (RMethodUtils), 848
print.dendrogram (dendrogram), 902
print.density (density), 153
print.difftime (difftime), 170
print.dist (dist), 904
print.dummy.coef (dummy.coef), 179
print.ecdf (ecdf), 981
print.factanal (loadings), 916
print.family (family), 211

INDEX 1111

print.formula (formula), 237
print.ftable (ftable), 241
print.glm (glm.summaries), 259
print.hclust (hclust), 911
print.HoltWinters (HoltWinters), 1037
print.hsearch (help.search), 269
print.infl (influence.measures), 294
print.integrate (integrate), 298
print.libraryIQR (library), 339
print.lm (lm), 348
print.loadings, 909
print.loadings (loadings), 916
print.loess (loess), 876
print.logLik (logLik), 363
print.lqs (lqs), 797
print.matrix, 521, 523
print.medpolish (medpolish), 790
print.MethodsList (MethodsList), 832
print.mtable (alias), 15
print.nls (nls), 933
print.noquote (noquote), 428
print.octmode (octmode), 435
print.ordered (Defunct), 148
print.packageInfo (library), 339
print.packageIQR (data), 136
print.packageStatus (packageStatus),

452
print.pairwise.htest, 775
print.plot (Defunct), 148
print.polySpline (polySpline), 973
print.POSIXct (DateTimeClasses), 143
print.POSIXlt (DateTimeClasses), 143
print.power.htest, 776
print.ppolySpline (interpSpline), 970
print.ppr (ppr), 880
print.prcomp (prcomp), 916
print.princomp (princomp), 918
print.recordedplot (recordPlot), 561
print.rle (rle), 577
print.simple.list (print), 518
print.smooth.spline (smooth.spline),

887
print.socket (make.socket), 379
print.stepfun (stepfun), 984
print.stl (stlmethods), 1067
print.StructTS (StructTS), 1068
print.summary.aov (aov), 25
print.summary.aovlist (aov), 25
print.summary.glm, 519
print.summary.glm (glm.summary), 260
print.summary.lm, 232, 519, 520
print.summary.lm (lm.summary), 354

print.summary.loess (loess), 876
print.summary.manova

(summary.manova), 646
print.summary.nls (nls), 933
print.summary.ppr (ppr), 880
print.summary.prcomp (prcomp), 916
print.summary.princomp

(summary.princomp), 922
print.summary.table (table), 670
print.table (print), 518
print.tables.aov (model.tables), 407
print.tabular (Defunct), 148
print.tclObj (TclInterface), 987
print.terms (terms), 682
print.ts, 524, 701
print.tskernel (kernel), 1042
print.TukeyHSD (TukeyHSD), 704
print.tukeyline (line), 789
print.tukeysmooth (smooth), 791
print.undoc (undoc), 1009
print.xtabs (xtabs), 742
printNoClass (RMethodUtils), 848
prmatrix (print.matrix), 523
proc.time, 247, 524, 669
prod, 525
profile, 526, 943, 946, 947
profile.glm, 526
profile.nls, 526, 943, 945, 948
profiler, 946, 948
profiler.nls, 946, 947, 947
proj, 408, 526
promax (varimax), 922
prompt, 268, 528, 841, 842
promptClass, 840, 842, 846
promptMethods, 841, 841
prop.table, 529
prop.test, 751, 771, 774, 777, 779, 783
prop.trend.test, 779
prototype, 828
prototype (representation), 847
provide (Defunct), 148
ps.options, 92
ps.options (postscript), 505
psignrank (SignRank), 604
pt (TDist), 678
ptukey (Tukey), 703
punif (Uniform), 708
Puromycin, 949
pushBack, 115, 116, 530, 687
pushBackLength (pushBack), 530
pweibull (Weibull), 727
pwilcox (Wilcoxon), 732

1112 INDEX

q, 585, 630
q (quit), 538
QA, 1003
qbeta (Beta), 60
qbinom (Binomial), 63
qbirthday (birthday), 64
qcauchy (Cauchy), 86
qchisq (Chisquare), 94
qexp (Exponential), 201
qf (FDist), 213
qgamma (GammaDist), 245
qgeom (Geometric), 248
qhyper (Hypergeometric), 286
qlnorm (Lognormal), 367
qlogis (Logistic), 361
qnbinom (NegBinomial), 423
qnchisq (Defunct), 148
qnorm, 541, 704
qnorm (Normal), 429
qpois (Poisson), 499
qqline (qqnorm), 531
qqnorm, 510, 531, 782
qqplot, 510
qqplot (qqnorm), 531
qr, 53, 96, 159, 160, 190, 327, 328, 351,

532, 534, 652, 898
QR.Auxiliaries, 534
qr.Q, 533
qr.Q (QR.Auxiliaries), 534
qr.qy, 534
qr.R, 533
qr.R (QR.Auxiliaries), 534
qr.solve, 608
qr.X, 533
qr.X (QR.Auxiliaries), 534
qsignrank (SignRank), 604
qt (TDist), 678
qtukey, 705
qtukey (Tukey), 703
quade.test, 760, 780
quakes, 535
quantile, 70, 226, 304, 394, 536
quarters (weekdays), 726
quartz, 537
quasi (family), 211
quasibinomial (family), 211
quasipoisson (family), 211
quit, 538
qunif (Uniform), 708
Quote (methodUtilities), 836
quote, 694, 695, 825
quote (substitute), 642

qweibull (Weibull), 727
qwilcox (Wilcoxon), 732

R CMD BATCH, 166
R.home, 539
R.Version, 539
R.version, 3, 311, 661, 662
R.version (R.Version), 539
R_HOME (RHOME), 576
R_LIBS (library), 339
rainbow, 105, 262, 285, 291, 456, 464, 576
rainbow (Palettes), 457
Random, 540
Random.user, 541, 543
randu, 545
range, 127, 206, 226, 304, 546
range.default, 546
rank, 446, 547, 610
rbeta (Beta), 60
rbind (cbind), 87
rbinom (Binomial), 63
rcauchy (Cauchy), 86
rchisq (Chisquare), 94
RClassUtils, 842
Rd2dvi (RdUtils), 547
Rd2txt (RdUtils), 547
Rdconv, 841
Rdconv (RdUtils), 547
Rdindex (RdUtils), 547
RdUtils, 547
Re (complex), 111
read.00Index, 548
read.csv (read.table), 553
read.csv2 (read.table), 553
read.dcf, 450, 717
read.dcf (dcf), 145
read.delim (read.table), 553
read.delim2 (read.table), 553
read.ftable, 242, 549
read.fwf, 551, 555
read.socket, 100, 380, 552
read.table, 130, 136, 139, 395, 551, 553,

590, 706, 738
read.table.url, 555
read.table.url (Defunct), 148
readBin, 556
readChar (readBin), 556
readline, 558
readLines, 115, 116, 530, 557, 559, 590,

739
real, 560
Recall, 81, 561

INDEX 1113

reconcilePropertiesAndPrototype
(RClassUtils), 842

recordedplot-class (setOldClass), 863
recordPlot, 561
recover, 146, 148, 562, 693–695
rect, 66, 482, 503, 563
rect.hclust, 914, 920
reformulate (delete.response), 151
reg.finalizer, 565
regexpr, 90
regexpr (grep), 262
relevel, 565
rematchDefinition (RMethodUtils), 848
REMOVE, 297, 341, 566, 568, 717
remove, 567
remove.packages, 568
removeCConverter (getNumCConverters),

252
removeClass (setClass), 854
removeFromClassMetaData

(RClassUtils), 842
removeFromMethodMetaData

(RMethodUtils), 848
removeGeneric, 859
removeGeneric (GenericFunctions), 815
removeMethod (setMethod), 861
removeMethods (GenericFunctions), 815
removeMethodsObject (RMethodUtils),

848
removeTaskCallback, 677, 678
removeTaskCallback (taskCallback), 674
Renviron.site (Startup), 624
rep, 568, 598, 600, 744, 745
repeat (Control), 123
repeat-class (language-class), 825
replace, 569
replayPlot (recordPlot), 561
replications, 408, 570
representation, 847, 854
require, 442, 625
require (library), 339
requireMethods (RClassUtils), 842
resetClass (setClass), 854
resetGeneric (MethodSupport), 835
reshape, 150, 571, 619
reshapeLong (Defunct), 148
reshapeWide (Defunct), 148
resid, 420, 934
resid (residuals), 573
residuals, 20, 102, 188, 225, 257, 258,

260, 350, 353, 573, 682, 730
residuals.glm, 353

residuals.glm (glm.summaries), 259
residuals.HoltWinters (HoltWinters),

1037
residuals.lm (lm.summaries), 353
residuals.nls (nls), 933
residuals.tukeyline (line), 789
restart, 699
restart (Deprecated), 157
restart-deprecated, 574
return, 303, 465
return (function), 244
rev, 575
rexp (Exponential), 201
rf (FDist), 213
rgamma (GammaDist), 245
rgb, 104, 105, 262, 285, 457, 464, 575
rgeom (Geometric), 248
RHOME, 576
rhyper (Hypergeometric), 286
rivers, 576
rle, 577
rle-class (setOldClass), 863
rlnorm (Lognormal), 367
rlogis (Logistic), 361
rm (remove), 567
RMethodUtils, 848
rnbinom (NegBinomial), 423
rnchisq (Defunct), 148
RNG (Random), 540
RNGkind, 543, 795
RNGkind (Random), 540
rnorm, 542, 708
rnorm (Normal), 429
rock, 886
Round, 578
round, 170
round (Round), 578
round.difftime (difftime), 170
round.POSIXt, 144, 579
row, 103, 580, 598
row.names (data.frame), 138
row.names<- (data.frame), 138
row/colnames, 580
rowMeans (colSums), 106
rownames, 139, 172
rownames (row/colnames), 580
rownames<- (row/colnames), 580
rowsum, 106, 581
rowSums, 582
rowSums (colSums), 106
rpois (Poisson), 499
Rprof, 582, 648

1114 INDEX

Rprofile (Startup), 624
rsignrank (SignRank), 604
rstandard (influence.measures), 294
rstudent (influence.measures), 294
rt (TDist), 678
Rtangle, 1004, 1006, 1008, 1009
RtangleFinish (tools-internal), 1009
RtangleRuncode (tools-internal), 1009
RtangleSetup (Rtangle), 1004
RtangleWritedoc (tools-internal), 1009
rug, 327, 583, 681
runif, 430, 542
runif (Uniform), 708
RweaveChunkPrefix (tools-internal),

1009
RweaveEvalWithOpt (tools-internal),

1009
RweaveLatex, 1004, 1005, 1008, 1009
RweaveLatexFinish (tools-internal),

1009
RweaveLatexOptions (tools-internal),

1009
RweaveLatexRuncode (tools-internal),

1009
RweaveLatexSetup (RweaveLatex), 1005
RweaveLatexWritedoc (tools-internal),

1009
rweibull (Weibull), 727
rwilcox (Wilcoxon), 732

SafePrediction, 512, 514, 969, 972
SafePrediction (makepredictcall), 381
sammon, 900
sample, 584
sapply, 673
sapply (lapply), 330
save, 43, 137, 147, 180, 355, 585, 737
save.image, 825
save.plot (Defunct), 148
savehistory, 587
scale, 381, 587, 653
scan, 130, 395, 466, 530, 551, 554, 555,

560, 588, 611, 737
scan.url (Defunct), 148
scatter.smooth, 886
SClassExtension-class, 812, 846, 852
screen, 591
screeplot, 919, 921
sd, 129, 593, 679
Sd2Rd (RdUtils), 547
se.aov, 593
se.aovlist (se.aov), 593
se.contrast, 408, 594

se.contrast.aovlist, 187
search, 31, 36, 39, 43, 92, 112, 160, 199,

249, 341, 372, 567, 595, 633, 822
searchpaths (search), 595
Seatbelts (UKDriverDeaths), 1075
seek, 116, 596
segments, 6, 35, 503, 564, 597, 903, 983
selectMethod, 808, 852
selectMethod (getMethod), 819
selfStart, 931, 939–941, 950, 954–964
selfStart.default, 931, 950, 951, 952
selfStart.formula, 931, 950, 951, 952
seq, 569, 575, 598, 599, 600
seq.POSIXt, 136, 144, 284, 599
sequence, 569, 598, 600
Session, 853
SessionClassMetaData (RClassUtils),

842
sessionData (Session), 853
set.seed (Random), 540
setAllMethodsSlot (RMethodUtils), 848
setAs, 802, 825
setAs (as), 801
setCConverterStatus

(getNumCConverters), 252
setClass, 297, 803, 810–812, 818, 819,

828, 832, 847, 848, 854, 864, 873
setDataPart (RClassUtils), 842
setdiff (sets), 601
setequal (sets), 601
setExtendsMetaData (RClassUtils), 842
setGeneric, 814, 818, 832, 857
setGroupGeneric, 814
setGroupGeneric (setGeneric), 857
setIs, 803, 810, 811, 819, 852
setIs (is), 824
setMethod, 297, 694, 801, 814, 829, 832,

852, 855, 861, 864, 867
setNames, 928, 953
setOldClass, 863
setPackageName (getPackageName), 822
setPrimitiveMethods (RMethodUtils),

848
setReplaceMethod (GenericFunctions),

815
sets, 601
setSubclassMetaData (RClassUtils), 842
setValidity (validObject), 872
setwd, 664
setwd (getwd), 253
shapiro.test, 764, 781
SHLIB, 110, 184, 343, 602

INDEX 1115

show, 864, 867
showClass, 865
showClass (RClassUtils), 842
showConnections, 116, 602, 687
showDefault (methodUtilities), 836
showExtends (RClassUtils), 842
showMethods, 818, 830, 865, 866
showMlist, 865
showMlist (MethodsList), 832
sign, 603
Signals, 604
signature (GenericFunctions), 815
signature-class, 868
SignatureMethod (MethodsList), 832
signif, 646
signif (Round), 578
SignRank, 604
sigToEnv (RMethodUtils), 848
simpleLoess (modreg-internal), 879
sin, 7, 285
sin (Trig), 698
single, 228
single (double), 175
single-class (BasicClasses), 805
sinh (Hyperbolic), 285
sink, 85, 603, 605
sleep, 607
slot, 608, 811, 868
slot<- (slot), 868
slotNames (slot), 868
slotOp, 607
smooth, 791
smooth.spline, 614, 792, 882, 885, 887,

969
socket-class (setOldClass), 863
socketConnection (connections), 113
solve, 53, 97, 377, 608
solve.qr, 533
sort, 357, 446, 547, 575, 609
sort.list (order), 446
sortedXyData, 939–941, 954
source, 136, 153, 180, 303, 466, 611, 666,

1001, 1007
source.url (Defunct), 148
spec (spectrum), 1063
spec.ar, 1058, 1063, 1064
spec.pgram, 1060, 1062–1064
spec.taper, 1061, 1062
Special, 7, 33, 612
spectrum, 1042, 1055, 1059, 1061, 1063
spline, 30
spline (splinefun), 613

spline.des, 969
spline.des (splineDesign), 976
splineDesign, 976
splinefun, 30, 133, 613, 982, 984, 985
splineKnots, 971, 973, 974, 977, 978
splineOrder, 971, 973, 974, 978
split, 134, 615
split.data.frame<- (split), 615
split.default (split), 615
split.screen, 461, 464
split.screen (screen), 591
split<- (split), 615
sprintf, 235, 467, 616
sqrt, 33, 359, 612
sqrt (abs), 6
sQuote (tools-internal), 1009
SSasymp, 939, 955, 964
SSasympOff, 956
SSasympOrig, 957
SSbiexp, 958
SSfol, 959, 966
SSfpl, 960
SSgompertz, 961
SSlogis, 962
SSmicmen, 963
SSweibull, 964
stack, 572, 618
stack.loss (stackloss), 619
stack.x (stackloss), 619
stackloss, 619
standardGeneric, 620, 814
standardGeneric (GenericFunctions),

815
Stangle, 1001, 1004
Stangle (Sweave), 1006
stars, 621, 657
start, 623, 688, 701, 703
Startup, 624
stat.anova, 20, 260, 626
state, 627, 719
stderr (showConnections), 602
stdin, 530
stdin (showConnections), 602
stdout (showConnections), 602
stem, 283, 483, 628
step, 8, 205, 206, 628
stepAIC, 630
stepfun, 982, 983, 984
stl, 1033, 1048, 1065, 1067
stlmethods, 1067
stop, 442, 443, 630, 631, 724
stopifnot, 17, 631, 631

1116 INDEX

storage.mode, 706
storage.mode (mode), 402
storage.mode<- (mode), 402
str, 72, 632, 903
str.dendrogram (dendrogram), 902
str.logLik (logLik), 363
str.POSIXt (DateTimeClasses), 143
strftime (strptime), 635
strheight (strwidth), 639
stripchart, 68, 149, 634
stripplot (Defunct), 148
strptime, 37, 38, 50, 144, 284, 357, 635
strsplit, 89, 421, 467, 637, 644
StructTS, 1041, 1048, 1068, 1074, 1075
structure, 638
structure-class (StructureClasses),

870
StructureClasses, 870
strwidth, 334, 421, 460, 639
strwrap, 640
sub, 89, 91, 638
sub (grep), 262
subclassesMetaName (RClassUtils), 842
Subscript (Extract), 203
subset, 641, 697
substitute, 156, 402, 642, 694, 695, 870
substituteDirect, 870
substituteFunctionArgs

(RMethodUtils), 848
substr, 5, 89, 421, 467, 638, 644
substr<- (substr), 644
substring (substr), 644
substring<- (substr), 644
sum, 525, 645
Summary (BasicFunctions), 806
Summary (Methods), 398
summary, 20, 25, 256, 258, 261, 352, 355,

632, 633, 645, 922, 934
summary.aov (aov), 25
summary.aovlist (aov), 25
summary.connection (connections), 113
summary.ecdf (ecdf), 981
summary.glm, 256, 258, 260, 646
summary.glm (glm.summary), 260
summary.infl (influence.measures), 294
summary.lm, 350, 352, 353, 373, 646
summary.lm (lm.summary), 354
summary.loess (loess), 876
summary.manova, 382, 646
summary.mlm (lm.summary), 354
summary.nls (nls), 933

summary.packageStatus
(packageStatus), 452

Summary.POSIXct (DateTimeClasses), 143
summary.POSIXct (DateTimeClasses), 143
Summary.POSIXlt (DateTimeClasses), 143
summary.POSIXlt (DateTimeClasses), 143
summary.ppr (ppr), 880
summary.prcomp (prcomp), 916
summary.princomp, 919, 922
summary.stepfun (stepfun), 984
summary.stl (stlmethods), 1067
summary.table (table), 670
summary.table-class (setOldClass), 863
summary.tukeysmooth (smooth), 791
summaryRprof, 582, 583, 648
sunflowerplot, 649, 657
sunspot, 1070
sunspot.month, 651
sunspots, 651, 1070
superClassDepth (RClassUtils), 842
supsmu, 792, 882, 890
survreg, 682
svd, 96, 160, 190, 328, 533, 651, 898, 917
Sweave, 1001, 1004, 1005, 1006, 1006,

1008
SweaveGetSyntax (tools-internal), 1009
SweaveHooks (tools-internal), 1009
SweaveParseOptions (tools-internal),

1009
SweaveSyntaxLatex (Sweave), 1006
SweaveSyntaxNoweb (Sweave), 1006
SweaveSyntConv, 1008
sweep, 28, 387, 588, 653
swiss, 654
switch, 123, 655
symbol.C (dyn.load), 182
symbol.For (dyn.load), 182
symbols, 656
symnum, 260, 354, 658
Syntax, 33, 109, 123, 204, 360, 465, 659
sys.call, 421
sys.call (sys.parent), 662
sys.calls (sys.parent), 662
sys.frame, 39, 196, 199, 249, 372, 567
sys.frame (sys.parent), 662
sys.frames (sys.parent), 662
sys.function (sys.parent), 662
Sys.getenv, 150, 660, 664
Sys.getlocale (locales), 357
Sys.info, 3, 661
sys.load.image (save), 585
Sys.localeconv (localeconv), 356

INDEX 1117

sys.nframe (sys.parent), 662
sys.on.exit, 436
sys.on.exit (sys.parent), 662
sys.parent, 147, 662
sys.parents (sys.parent), 662
Sys.putenv, 661, 664
sys.save.image (save), 585
Sys.setlocale (locales), 357
Sys.sleep, 665
sys.source, 666
sys.status (sys.parent), 662
Sys.time, 144, 666
Sys.timezone (Sys.time), 666
system, 3, 4, 311, 667
system.file, 668
system.test (Defunct), 148
system.time, 524, 525, 669, 688

T (logical), 361
t, 27, 670
t.test, 762, 770, 771, 775, 782, 786
table, 134, 242, 244, 367, 485, 670, 672,

742
table-class (setOldClass), 863
tabulate, 134, 672
tan, 285
tan (Trig), 698
tanh (Hyperbolic), 285
tapply, 10, 28, 78, 79, 330, 582, 672
taskCallback, 674
taskCallbackManager, 674, 675, 676, 678
taskCallbackNames, 677
TclInterface, 987, 992, 996, 997
tclObj (TclInterface), 987
tclObj<- (TclInterface), 987
tclRequire (TclInterface), 987
tclvalue (TclInterface), 987
tclvalue<- (TclInterface), 987
tclVar (TclInterface), 987
tclvar (TclInterface), 987
TDist, 678
tempdir (tempfile), 680
tempfile, 680
termplot, 484, 681
terms, 151, 238, 257, 349, 406, 682, 683,

684, 716
terms.default, 683, 684
terms.formula, 682, 683, 683, 684
terms.object, 683, 684
terrain.colors, 290, 291, 456
terrain.colors (Palettes), 457
testVirtual (RClassUtils), 842
tetragamma (Special), 612

text, 119, 203, 272, 274, 313, 335, 413,
459, 460, 486, 489, 491, 507, 639,
685, 690

textConnection, 116, 686
Theoph, 965
time, 624, 669, 688, 701, 703, 734
Titanic, 689
title, 56, 119, 174, 272, 389, 413, 459,

469, 483, 491, 686, 690, 911
tkactivate (TkWidgetcmds), 994
tkadd (TkWidgetcmds), 994
tkaddtag (TkWidgetcmds), 994
tkbbox (TkWidgetcmds), 994
tkbell (TkCommands), 990
tkbind (TkCommands), 990
tkbindtags (TkCommands), 990
tkbutton (TkWidgets), 996
tkcanvas (TkWidgets), 996
tkcanvasx (TkWidgetcmds), 994
tkcanvasy (TkWidgetcmds), 994
tkcget (TkWidgetcmds), 994
tkcheckbutton (TkWidgets), 996
tkchooseDirectory (TkCommands), 990
tkclipboard.append (TkCommands), 990
tkclipboard.clear (TkCommands), 990
tkclose (TkCommands), 990
tkcmd (TkCommands), 990
TkCommands, 989, 990, 996, 997
tkcompare (TkWidgetcmds), 994
tkconfigure (TkWidgetcmds), 994
tkcoords (TkWidgetcmds), 994
tkcreate (TkWidgetcmds), 994
tkcurselection (TkWidgetcmds), 994
tkdchars (TkWidgetcmds), 994
tkdebug (TkWidgetcmds), 994
tkdelete (TkWidgetcmds), 994
tkdelta (TkWidgetcmds), 994
tkdeselect (TkWidgetcmds), 994
tkdestroy (TclInterface), 987
tkdialog (TkCommands), 990
tkdlineinfo (TkWidgetcmds), 994
tkdtag (TkWidgetcmds), 994
tkdump (TkWidgetcmds), 994
tkentry (TkWidgets), 996
tkentrycget (TkWidgetcmds), 994
tkentryconfigure (TkWidgetcmds), 994
tkevent.add (TkCommands), 990
tkevent.delete (TkCommands), 990
tkevent.generate (TkCommands), 990
tkevent.info (TkCommands), 990
tkfile.dir (TkCommands), 990
tkfile.tail (TkCommands), 990

1118 INDEX

tkfind (TkWidgetcmds), 994
tkflash (TkWidgetcmds), 994
tkfocus (TkCommands), 990
tkfont.actual (TkCommands), 990
tkfont.configure (TkCommands), 990
tkfont.create (TkCommands), 990
tkfont.delete (TkCommands), 990
tkfont.families (TkCommands), 990
tkfont.measure (TkCommands), 990
tkfont.metrics (TkCommands), 990
tkfont.names (TkCommands), 990
tkfraction (TkWidgetcmds), 994
tkframe (TkWidgets), 996
tkget (TkWidgetcmds), 994
tkgetOpenFile (TkCommands), 990
tkgetSaveFile (TkCommands), 990
tkgettags (TkWidgetcmds), 994
tkgrab (TkCommands), 990
tkgrid (TkCommands), 990
tkicursor (TkWidgetcmds), 994
tkidentify (TkWidgetcmds), 994
tkimage.cget (TkWidgetcmds), 994
tkimage.configure (TkWidgetcmds), 994
tkimage.create (TkWidgetcmds), 994
tkimage.names (TkWidgetcmds), 994
tkindex (TkWidgetcmds), 994
tkinsert (TkWidgetcmds), 994
tkinvoke (TkWidgetcmds), 994
tkitembind (TkWidgetcmds), 994
tkitemcget (TkWidgetcmds), 994
tkitemconfigure (TkWidgetcmds), 994
tkitemfocus (TkWidgetcmds), 994
tkitemlower (TkWidgetcmds), 994
tkitemraise (TkWidgetcmds), 994
tkitemscale (TkWidgetcmds), 994
tklabel (TkWidgets), 996
tklistbox (TkWidgets), 996
tklower (TkCommands), 990
tkmark.gravity (TkWidgetcmds), 994
tkmark.names (TkWidgetcmds), 994
tkmark.next (TkWidgetcmds), 994
tkmark.previous (TkWidgetcmds), 994
tkmark.set (TkWidgetcmds), 994
tkmark.unset (TkWidgetcmds), 994
tkmenu (TkWidgets), 996
tkmenubutton (TkWidgets), 996
tkmessage (TkWidgets), 996
tkmessageBox (TkCommands), 990
tkmove (TkWidgetcmds), 994
tknearest (TkWidgetcmds), 994
tkopen (TkCommands), 990
tkpack (TkCommands), 990

tkpager, 993
tkplace (TkCommands), 990
tkpopup (TkCommands), 990
tkpost (TkWidgetcmds), 994
tkpostcascade (TkWidgetcmds), 994
tkpostscript (TkWidgetcmds), 994
tkputs (TkCommands), 990
tkradiobutton (TkWidgets), 996
tkraise (TkCommands), 990
tkread (TkCommands), 990
tkscale (TkWidgets), 996
tkscan.dragto (TkWidgetcmds), 994
tkscan.mark (TkWidgetcmds), 994
tkscrollbar (TkWidgets), 996
tksearch (TkWidgetcmds), 994
tksee (TkWidgetcmds), 994
tkselect (TkWidgetcmds), 994
tkselection.adjust (TkWidgetcmds), 994
tkselection.anchor (TkWidgetcmds), 994
tkselection.clear (TkWidgetcmds), 994
tkselection.from (TkWidgetcmds), 994
tkselection.includes (TkWidgetcmds),

994
tkselection.present (TkWidgetcmds),

994
tkselection.range (TkWidgetcmds), 994
tkselection.set (TkWidgetcmds), 994
tkselection.to (TkWidgetcmds), 994
tkset (TkWidgetcmds), 994
tksize (TkWidgetcmds), 994
tktag.add (TkWidgetcmds), 994
tktag.bind (TkWidgetcmds), 994
tktag.cget (TkWidgetcmds), 994
tktag.configure (TkWidgetcmds), 994
tktag.delete (TkWidgetcmds), 994
tktag.lower (TkWidgetcmds), 994
tktag.names (TkWidgetcmds), 994
tktag.nextrange (TkWidgetcmds), 994
tktag.prevrange (TkWidgetcmds), 994
tktag.raise (TkWidgetcmds), 994
tktag.ranges (TkWidgetcmds), 994
tktag.remove (TkWidgetcmds), 994
tktext (TkWidgets), 996
tktitle (TkCommands), 990
tktitle<- (TkCommands), 990
tktoggle (TkWidgetcmds), 994
tktoplevel (TkWidgets), 996
tktype (TkWidgetcmds), 994
tkunpost (TkWidgetcmds), 994
tkwait.variable (TkCommands), 990
tkwait.visibility (TkCommands), 990
tkwait.window (TkCommands), 990

INDEX 1119

tkwidget (TkWidgets), 996
TkWidgetcmds, 989, 992, 994, 997
TkWidgets, 989, 992, 996, 996
tkwindow.cget (TkWidgetcmds), 994
tkwindow.configure (TkWidgetcmds), 994
tkwindow.create (TkWidgetcmds), 994
tkwindow.names (TkWidgetcmds), 994
tkwinfo (TkCommands), 990
tkwm.aspect (TkCommands), 990
tkwm.client (TkCommands), 990
tkwm.colormapwindows (TkCommands), 990
tkwm.command (TkCommands), 990
tkwm.deiconify (TkCommands), 990
tkwm.focusmodel (TkCommands), 990
tkwm.frame (TkCommands), 990
tkwm.geometry (TkCommands), 990
tkwm.grid (TkCommands), 990
tkwm.group (TkCommands), 990
tkwm.iconbitmap (TkCommands), 990
tkwm.iconify (TkCommands), 990
tkwm.iconmask (TkCommands), 990
tkwm.iconname (TkCommands), 990
tkwm.iconposition (TkCommands), 990
tkwm.iconwindow (TkCommands), 990
tkwm.maxsize (TkCommands), 990
tkwm.minsize (TkCommands), 990
tkwm.overrideredirect (TkCommands),

990
tkwm.positionfrom (TkCommands), 990
tkwm.protocol (TkCommands), 990
tkwm.resizable (TkCommands), 990
tkwm.sizefrom (TkCommands), 990
tkwm.state (TkCommands), 990
tkwm.title (TkCommands), 990
tkwm.transient (TkCommands), 990
tkwm.withdraw (TkCommands), 990
tkXselection.clear (TkCommands), 990
tkXselection.get (TkCommands), 990
tkXselection.handle (TkCommands), 990
tkXselection.own (TkCommands), 990
tkxview (TkWidgetcmds), 994
tkyposition (TkWidgetcmds), 994
tkyview (TkWidgetcmds), 994
toeplitz, 1071
tolower, 263
tolower (chartr), 91
tools-internal, 1009
ToothGrowth, 691
topicName (standardGeneric), 620
topo.colors, 105, 290, 291
topo.colors (Palettes), 457
toString, 692

toupper, 263
toupper (chartr), 91
trace, 693, 853, 871
traceable-class (TraceClasses), 871
traceback, 73, 146, 695
TraceClasses, 871
traceOff (Session), 853
traceOn (Session), 853
tracingState (trace), 693
transform, 642, 696
treering, 1071
trees, 697
Trig, 359, 698
trigamma (Special), 612
TRUE, 360, 486, 631
TRUE (logical), 361
trunc (Round), 578
trunc.POSIXt, 144
trunc.POSIXt (round.POSIXt), 579
truncate (seek), 596
try, 340, 443, 574, 631, 699
tryNew (RClassUtils), 842
trySilent (RClassUtils), 842
ts, 169, 442, 486, 524, 624, 688, 700, 702,

703, 734, 1048
ts-class (StructureClasses), 870
ts-methods, 702
ts.intersect (ts.union), 1073
ts.plot, 1072
ts.union, 1073
tsdiag, 1022, 1026, 1074
tsp, 624, 688, 701, 702, 734
tsp<- (tsp), 702
tsSmooth, 1041, 1069, 1075
Tukey, 703
TukeyHSD, 25, 408, 704
type.convert, 554, 555, 705
typeof, 33, 403, 417, 706

UCBAdmissions, 707
ucv, 54
UKDriverDeaths, 1075
UKgas, 1077
UKLungDeaths, 1077
unclass, 101
unclass (class), 99
undebug (debug), 146
undoc, 1003, 1009
Uniform, 708
union (sets), 601
unique, 181, 709
uniroot, 428, 441, 504, 710, 774, 775
units, 711

1120 INDEX

unix (system), 667
unix.time (system.time), 669
unlink, 221, 680, 712
unlist, 80, 400, 713
unname, 714
unRematchDefinition (RMethodUtils),

848
unsplit (split), 615
unstack (stack), 618
untrace, 853, 871
untrace (trace), 693
unz (connections), 113
update, 714
update.formula, 629, 715, 715
update.packages, 297, 443, 451, 452, 716
update.packageStatus (packageStatus),

452
upgrade (packageStatus), 452
upper.tri (lower.tri), 370
url, 82, 150, 177, 718
url (connections), 113
url.show, 177, 718
USAccDeaths, 1078
USArrests, 718
UseMethod, 88, 99, 415
UseMethod (methods), 400
USJudgeRatings, 719
USPersonalExpenditure, 720
uspop, 720

VADeaths, 721
validObject, 812, 828, 872
validSlotNames (RClassUtils), 842
var, 131, 376, 377, 593
var (cor), 128
var.test, 748, 750, 759, 769, 784
variable.names, 581
variable.names (case/variable.names),

84
varimax, 909, 922
vcov, 722, 934
vcov.nls (nls), 933
vector, 233, 346, 722
vector-class (BasicClasses), 805
Version (Defunct), 148
version (R.Version), 539
vi, 142
vi (edit), 184
VIRTUAL-class (BasicClasses), 805
volcano, 723

warning, 33, 87, 443, 631, 724, 725
warnings, 443, 724, 725

warpbreaks, 725
weekdays, 726
weekdays.POSIXt, 144
Weibull, 727
weighted.mean, 393, 728
weighted.residuals, 353, 729
weights, 729
weights (lm.summaries), 353
weights.glm (glm), 255
weights.nls (nls), 933
which, 730, 731
which.max, 392
which.max (which.min), 731
which.min, 206, 730, 731
while (Control), 123
while-class (language-class), 825
width.SJ, 54
wilcox.test, 762, 773, 785
Wilcoxon, 732
WinAnsi (connections), 113
window, 688, 701, 733
with, 734
women, 736
write, 178, 180, 590, 736, 738
write.dcf (dcf), 145
write.ftable (read.ftable), 549
write.matrix, 738
write.socket (read.socket), 552
write.table, 146, 555, 737, 737
writeBin (readBin), 556
writeChar, 739
writeChar (readBin), 556
writeLines, 557, 560, 739
wsbrowser (browseEnv), 71
WWWusage, 1078

X11, 166, 167, 443, 496, 497
X11 (x11), 739
x11, 58, 261, 265, 266, 464, 739
xedit (edit), 184
xemacs (edit), 184
xfig, 166, 740
xinch (units), 711
xor (Logic), 360
xpdrows.data.frame (data.frame), 138
xtabs, 242, 550, 671, 726, 742
xy.coords, 29, 98, 345, 477, 478, 488,

498, 503, 613, 649, 685, 743, 745
xyinch (units), 711
xyVector, 967, 975, 978
xyz.coords, 744

yinch (units), 711

INDEX 1121

zapsmall, 520
zapsmall (Round), 578
zcbind, 745
zip.file.extract, 746

	Contents
	The base package
	.Machine
	.Platform
	.Script
	abbreviate
	abline
	abs
	add1
	aggregate
	agrep
	AIC
	AIC.logLik
	airmiles
	airquality
	alias
	all
	all.equal
	all.names
	anova
	anova.glm
	anova.lm
	anscombe
	any
	aov
	aperm
	append
	apply
	approxfun
	apropos
	args
	Arithmetic
	array
	arrows
	as.environment
	as.function
	as.POSIX*
	AsIs
	assign
	assignOps
	assocplot
	attach
	attenu
	attitude
	attr
	attributes
	autoload
	ave
	axis
	axis.POSIXct
	axTicks
	backsolve
	bandwidth
	barplot
	BATCH
	Bessel
	Beta
	bindenv
	Binomial
	birthday
	body
	box
	boxplot
	boxplot.formula
	boxplot.stats
	browseEnv
	browser
	browseURL
	bug.report
	builtins
	bxp
	by
	C
	c
	call
	capabilities
	cars
	case/variable.names
	cat
	Cauchy
	cbind
	char.expand
	character
	charmatch
	chartr
	check.options
	chickwts
	Chisquare
	chol
	chol2inv
	chull
	class
	close.socket
	co2
	codes
	coefficients
	col
	col2rgb
	colors
	colSums
	commandArgs
	comment
	Comparison
	COMPILE
	complete.cases
	complex
	conflicts
	connections
	Constants
	contour
	contrast
	contrasts
	contributors
	Control
	convolve
	coplot
	copyright
	cor
	count.fields
	cov.wt
	crossprod
	cumsum
	curve
	cut
	cut.POSIXt
	data
	data.class
	data.frame
	data.matrix
	dataentry
	date
	DateTimeClasses
	dcf
	debug
	debugger
	Defunct
	delay
	delete.response
	demo
	density
	deparse
	Deprecated
	deriv
	det
	detach
	dev.xxx
	dev2
	dev2bitmap
	deviance
	Devices
	df.residual
	diag
	diff
	difftime
	dim
	dimnames
	discoveries
	do.call
	dotchart
	double
	download.file
	dput
	drop
	dummy.coef
	dump
	duplicated
	dyn.load
	edit
	edit.data.frame
	eff.aovlist
	effects
	eigen
	environment
	esoph
	euro
	eurodist
	eval
	example
	exists
	expand.grid
	expand.model.frame
	Exponential
	expression
	Extract
	extractAIC
	Extremes
	factor
	factor.scope
	faithful
	family
	FDist
	fft
	file.access
	file.choose
	file.info
	file.path
	file.show
	files
	filled.contour
	findInterval
	fitted.values
	fivenum
	fix
	Foreign
	Formaldehyde
	formals
	format
	format.info
	formatC
	formatDL
	formula
	fourfoldplot
	frame
	freeny
	ftable
	ftable.formula
	function
	GammaDist
	gc
	gc.time
	gctorture
	Geometric
	get
	getNativeSymbolInfo
	getNumCConverters
	getwd
	gl
	glm
	glm.control
	glm.summaries
	glm.summary
	Gnome
	gray
	grep
	grid
	gtk
	HairEyeColor
	help
	help.search
	help.start
	Hershey
	hist
	hist.POSIXt
	hsv
	Hyperbolic
	Hypergeometric
	identical
	identify
	ifelse
	image
	index.search
	infert
	influence.measures
	InsectSprays
	INSTALL
	integer
	integrate
	interaction
	interaction.plot
	interactive
	Internal
	invisible
	IQR
	iris
	is.empty.model
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	islands
	Japanese
	jitter
	kappa
	kronecker
	labels
	lapply
	Last.value
	layout
	legend
	length
	levels
	levels.factor
	library
	library.dynam
	license
	LifeCycleSavings
	lines
	LINK
	list
	list.files
	lm
	lm.fit
	lm.influence
	lm.summaries
	lm.summary
	load
	localeconv
	locales
	locator
	log
	Logic
	logical
	Logistic
	logLik
	logLik.glm
	logLik.lm
	loglin
	Lognormal
	longley
	lower.tri
	lowess
	ls
	ls.diag
	ls.print
	lsfit
	mad
	mahalanobis
	make.link
	make.names
	make.socket
	make.tables
	makepredictcall
	manova
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	matmult
	matplot
	matrix
	max.col
	mean
	median
	Memory
	memory.profile
	menu
	merge
	Methods
	methods
	missing
	mode
	model.extract
	model.frame
	model.matrix
	model.tables
	morley
	mosaicplot
	mtcars
	mtext
	n2mfrow
	NA
	na.action
	na.fail
	name
	names
	namespace
	naprint
	naresid
	nargs
	nchar
	nclass
	NegBinomial
	nextn
	nhtemp
	nlevels
	nlm
	noquote
	Normal
	NotYet
	nrow
	nsl
	NULL
	numeric
	object.size
	octmode
	offset
	on.exit
	optim
	optimize
	options
	OrchardSprays
	order
	outer
	p.adjust
	package.contents
	package.dependencies
	package.skeleton
	packageStatus
	page
	pairs
	pairs.formula
	palette
	Palettes
	panel.smooth
	par
	Paren
	parse
	paste
	pdf
	persp
	phones
	pictex
	pie
	PkgUtils
	PlantGrowth
	plot
	plot.default
	plot.density
	plot.factor
	plot.formula
	plot.histogram
	plot.lm
	plot.table
	plot.ts
	plot.window
	plot.xy
	plotmath
	pmatch
	png
	points
	Poisson
	poly
	polygon
	polyroot
	pos.to.env
	postscript
	power
	ppoints
	precip
	predict
	predict.glm
	predict.lm
	preplot
	presidents
	pressure
	pretty
	Primitive
	print
	print.coefmat
	print.data.frame
	print.default
	print.matrix
	print.ts
	proc.time
	prod
	profile
	proj
	prompt
	prop.table
	pushBack
	qqnorm
	qr
	QR.Auxiliaries
	quakes
	quantile
	quartz
	quit
	R.home
	R.Version
	Random
	Random.user
	randu
	range
	rank
	RdUtils
	read.00Index
	read.ftable
	read.fwf
	read.socket
	read.table
	readBin
	readline
	readLines
	real
	Recall
	recordPlot
	recover
	rect
	reg.finalizer
	relevel
	REMOVE
	remove
	remove.packages
	rep
	replace
	replications
	reshape
	residuals
	restart-deprecated
	rev
	rgb
	RHOME
	rivers
	rle
	Round
	round.POSIXt
	row
	row/colnames
	rowsum
	Rprof
	rug
	sample
	save
	savehistory
	scale
	scan
	screen
	sd
	se.aov
	se.contrast
	search
	seek
	segments
	seq
	seq.POSIXt
	sequence
	sets
	SHLIB
	showConnections
	sign
	Signals
	SignRank
	sink
	sleep
	slotOp
	solve
	sort
	source
	Special
	splinefun
	split
	sprintf
	stack
	stackloss
	standardGeneric
	stars
	start
	Startup
	stat.anova
	state
	stem
	step
	stop
	stopifnot
	str
	stripchart
	strptime
	strsplit
	structure
	strwidth
	strwrap
	subset
	substitute
	substr
	sum
	summary
	summary.manova
	summaryRprof
	sunflowerplot
	sunspots
	svd
	sweep
	swiss
	switch
	symbols
	symnum
	Syntax
	Sys.getenv
	Sys.info
	sys.parent
	Sys.putenv
	Sys.sleep
	sys.source
	Sys.time
	system
	system.file
	system.time
	t
	table
	tabulate
	tapply
	taskCallback
	taskCallbackManager
	taskCallbackNames
	TDist
	tempfile
	termplot
	terms
	terms.formula
	terms.object
	text
	textConnection
	time
	Titanic
	title
	ToothGrowth
	toString
	trace
	traceback
	transform
	trees
	Trig
	try
	ts
	ts-methods
	tsp
	Tukey
	TukeyHSD
	type.convert
	typeof
	UCBAdmissions
	Uniform
	unique
	uniroot
	units
	unlink
	unlist
	unname
	update
	update.formula
	update.packages
	url.show
	USArrests
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	vcov
	vector
	volcano
	warning
	warnings
	warpbreaks
	weekdays
	Weibull
	weighted.mean
	weighted.residuals
	which
	which.min
	Wilcoxon
	window
	with
	women
	write
	write.table
	writeLines
	x11
	xfig
	xtabs
	xy.coords
	xyz.coords
	zcbind
	zip.file.extract

	The ctest package
	ansari.test
	bartlett.test
	binom.test
	chisq.test
	cor.test
	fisher.test
	fligner.test
	friedman.test
	kruskal.test
	ks.test
	mantelhaen.test
	mcnemar.test
	mood.test
	oneway.test
	pairwise.prop.test
	pairwise.t.test
	pairwise.table
	pairwise.wilcox.test
	power.prop.test
	power.t.test
	print.pairwise.htest
	print.power.htest
	prop.test
	prop.trend.test
	quade.test
	shapiro.test
	t.test
	var.test
	wilcox.test

	The eda package
	line
	medpolish
	smooth

	The lqs package
	cov.rob
	lqs
	predict.lqs

	The methods package
	.BasicFunsList
	as
	BasicClasses
	BasicFunctions
	callNextMethod
	class
	Classes
	classRepresentation-class
	EmptyMethodsList-class
	environment-class
	genericFunction-class
	GenericFunctions
	getClass
	getMethod
	getPackageName
	hasArg
	is
	language-class
	languageEl
	LinearMethodsList-class
	makeClassRepresentation
	MethodDefinition-class
	Methods
	MethodsList
	MethodsList-class
	MethodSupport
	methodUtilities
	MethodWithNext-class
	new
	ObjectsWithPackage-class
	promptClass
	promptMethods
	RClassUtils
	representation
	RMethodUtils
	SClassExtension-class
	Session
	setClass
	setGeneric
	setMethod
	setOldClass
	show
	showMethods
	signature-class
	slot
	StructureClasses
	substituteDirect
	TraceClasses
	validObject

	The modreg package
	ksmooth
	loess
	loess.control
	modreg-internal
	plot.ppr
	ppr
	predict.loess
	predict.smooth.spline
	rock
	scatter.smooth
	smooth.spline
	supsmu

	The mva package
	ability.cov
	as.hclust
	biplot
	biplot.princomp
	cancor
	cmdscale
	cophenetic
	cutree
	dendrogram
	dist
	factanal
	Harman23.cor
	Harman74.cor
	hclust
	identify.hclust
	kmeans
	loadings
	prcomp
	princomp
	rect.hclust
	screeplot
	summary.princomp
	varimax

	The nls package
	asOneSidedFormula
	BOD
	ChickWeight
	clearNames
	CO2
	DNase
	formula.nls
	getInitial
	Indometh
	Loblolly
	nls
	nls.control
	nlsModel
	NLSstAsymptotic
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	numericDeriv
	Orange
	plot.profile.nls
	predict.nls
	profile.nls
	profiler
	profiler.nls
	Puromycin
	selfStart
	selfStart.default
	selfStart.formula
	setNames
	sortedXyData
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSfol
	SSfpl
	SSgompertz
	SSlogis
	SSmicmen
	SSweibull
	Theoph

	The splines package
	asVector
	backSpline
	bs
	interpSpline
	ns
	periodicSpline
	polySpline
	predict.bs
	predict.bSpline
	splineDesign
	splineKnots
	splineOrder
	xyVector

	The stepfun package
	ecdf
	plot.stepfun
	stepfun

	The tcltk package
	TclInterface
	TkCommands
	tkpager
	TkWidgetcmds
	TkWidgets

	The tools package
	checkFF
	checkTnF
	checkVignettes
	codoc
	QA
	Rtangle
	RweaveLatex
	Sweave
	SweaveSyntConv
	tools-internal
	undoc

	The ts package
	acf
	acf2AR
	AirPassengers
	ar
	ar.ols
	arima
	arima.sim
	arima0
	ARMAacf
	ARMAtoMA
	austres
	beavers
	BJsales
	Box.test
	cpgram
	decompose
	diffinv
	embed
	EuStockMarkets
	filter
	HoltWinters
	JohnsonJohnson
	KalmanLike
	kernapply
	kernel
	lag
	lag.plot
	LakeHuron
	lh
	lynx
	monthplot
	na.contiguous
	Nile
	nottem
	plot.acf
	plot.HoltWinters
	plot.spec
	PP.test
	predict.Arima
	predict.HoltWinters
	spec.ar
	spec.pgram
	spec.taper
	spectrum
	stl
	stlmethods
	StructTS
	sunspot
	toeplitz
	treering
	ts.plot
	ts.union
	tsdiag
	tsSmooth
	UKDriverDeaths
	UKgas
	UKLungDeaths
	USAccDeaths
	WWWusage

	Index

