Matching and Conditional Likelihood

David M. Rocke

April 20, 2021

Matched Pairs

- Suppose we are studying MI = myocardial infarction and want to examine the effect of smoking on risk of MI.
- We have 100 cases, and we match each case with a control also in the hospital who has not had an MI and is matched on age, race, sex, and hospital status.
- If we tried to use ordinary logistic regression, we would have to use 99 strata variables and one exposure variable with 200 cases. This would not end well.

Four Possible Outcomes

	SMK = 0	SMK=1		SMK = 0	SMK = 1
No MI	1	0	No MI	1	0
MI	1	0	MI	0	1
	SMK = 0	SMK = 1		SMK = 0	SMK = 1
	_			_	
No MI	0	$\mid \qquad 1 \mid$	No MI	0	$\mid \qquad \mid 1 \mid$

There is always one observation per row, but 0/2, 2/0, or 1/1 per column.

Upper left and lower right are indifferent to SMK \rightarrow MI.

Upper right tends to show that smoking is associated with MI.

Lower left tends to show that not smoking is associated with MI.

McNemar's Test

	SMK = 0	SMK = 1		SMK = 0	SMK=1
No MI	1	0	No MI	1	0
MI	1	0	MI	0	1
	SMK = 0	SMK=1		SMK = 0	SMK=1
No MI	0	1	No MI	0	1
MI	1	0	MI	0	1

Let X_{ij} represent the number of pairs out of 100 in each of the four sub-tables. We have that X_{11} and X_{22} are uninformative. If smoking is a hazard, then we expect that $X_{21} > X_{12}$ and the reverse if smoking is protective. The statistic

$$\frac{(X_{21}-X_{12})^2}{X_{21}+X_{12}}$$

Has a χ_1^2 distribution asymptotically.

McNemar's Test

	SMK = 0	SMK=1		SMK = 0	SMK = 1
No MI	1	0	No MI	1	0
MI	1	0	MI	0	1
	SMK = 0	SMK=1		SMK = 0	SMK = 1
No MI	0	1	No MI	0	1
			MI		-

$$\frac{(X_{21}-X_{12})^2}{X_{21}+X_{12}}$$

Has a χ_1^2 distribution asymptotically. This is called McNemar's test and it is numerically identical to the Cochran-Mantel-Haenszel test. It is conditional since we fix the margins on each table of outcomes, one per matched pair.

More General Conditional Logistic Regression

- Conditional logistic regression is often used when the data are divided into many strata, which often happens when we have a matched design.
- The book's MI data set has 39 MI patients, each matched on age, race, sex, and hospital status by two contol patients.
- The primary exposure of interest is SMK = current smoking status (0/1).
- We also have systolic blood pressure, SBP in mm mercury and ECG abnormality (0/1).

mi data set

> summary(mi)

```
MATCH
                 PERSON
                                 MΤ
Min.
             Min.
                      1
                           Min.
                                   :0.0000
1st Qu.:10
           1st Qu.: 30
                         1st Qu.:0.0000
Median:20
            Median: 59
                           Median :0.0000
Mean
       :20
            Mean
                    : 59
                           Mean
                                   :0.3333
3rd Qu.:30
            3rd Qu.: 88
                           3rd Qu.:1.0000
       :39
             Max.
                    :117
                           Max.
                                  :1.0000
Max.
     SMK
                      SBP
                                      ECG
       :0.0000
                        :120.0
                                         :0.0000
Min.
                 Min.
                                 Min.
1st Qu.:0.0000
                1st Qu.:120.0
                                1st Qu.:0.0000
Median :0.0000
                Median :140.0
                                 Median: 0.0000
       :0.2821
                        :136.4
                                 Mean
                                        :0.2051
Mean
                 Mean
3rd Qu.:1.0000
                 3rd Qu.:140.0
                                 3rd Qu.:0.0000
       :1.0000
                 Max. :160.0
                                 Max. :1.0000
Max.
```

Conditional Logistic Regression in R

```
library(survival)
> summary(clogit(MI~SMK+SBP+ECG+strata(MATCH),data=mi))
Call:
coxph(formula = Surv(rep(1, 117L), MI) ~ SMK + SBP + ECG + strata(MATCH),
    data = mi, method = "exact")

n= 117, number of events= 39

    coef exp(coef) se(coef) z Pr(>|z|)
SMK 0.72906    2.07313    0.56126    1.299    0.19395
SBP 0.04564    1.04670    0.01525    2.994    0.00276 **
ECG 1.59926    4.94938    0.85341    1.874    0.06094    .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Conditional Logistic Regression in R

```
library(survival)
> summary(clogit(MI~SMK+SBP+ECG+strata(MATCH),data=mi))
Call:
coxph(formula = Surv(rep(1, 117L), MI) ~ SMK + SBP + ECG + strata(MATCH),
   data = mi. method = "exact")
 n= 117, number of events= 39
   exp(coef) exp(-coef) lower .95 upper .95
SMK
       2.073
                0.4824
                         0.6901
                                   6.228
SBP 1.047 0.9554 1.0159 1.078
ECG
       4.949 0.2020 0.9292 26.362
Rsquare= 0.173 (max possible= 0.519)
Likelihood ratio test= 22.2 on 3 df,
                                    p=5.925e-05
                   = 13.68 on 3 df. p=0.003382
Wald test
Score (logrank) test = 19.68 on 3 df, p=0.0001979
```

```
> summary(glm(MI~SMK+SBP+ECG+strata(MATCH).binomial.data=mi))
Coefficients:
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                    -1.251e+01 3.704e+00 -3.378 0.000731 ***
SMK
                     1.218e+00 7.175e-01 1.697 0.089607 .
SBP
                     7.330e-02 1.997e-02 3.671 0.000242 ***
ECG
                    2.784e+00 1.140e+00 2.442 0.014607 *
strata(MATCH)MATCH=2 -4.062e-14 3.054e+00 0.000 1.000000
strata(MATCH)MATCH=3 1.325e+00 2.632e+00 0.503 0.614678
strata(MATCH)MATCH=38 -1.150e+00 2.700e+00 -0.426 0.670136
strata(MATCH)MATCH=39 1.804e+00 2.681e+00 0.673 0.500901
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 148.94 on 116 degrees of freedom
Residual deviance: 113.75 on 75 degrees of freedom
AIC: 197.75
Number of Fisher Scoring iterations: 5
```

```
Null deviance: 148.94 on 116 degrees of freedom Residual deviance: 113.75 on 75 degrees of freedom > 1-pchisq(113.75,75)
[1] 0.00261007
```

This shows lack of fit by the model using ordinary logistic regression with 39 strata. The conditional logistic regression model is superior.