Matching and Conditional Likelihood

David M. Rocke

April 20, 2021

Matched Pairs

- Suppose we are studying MI = myocardial infarction and want to examine the effect of smoking on risk of MI.
- We have 100 cases, and we match each case with a control also in the hospital who has not had an MI and is matched on age, race, sex, and hospital status.
■ If we tried to use ordinary logistic regression, we would have to use 99 strata variables and one exposure variable with 200 cases. This would not end well.

Four Possible Outcomes

	SMK = 0	SMK = 1		SMK = 0	SMK = 1
No MI	1	0	No MI	1	0
MI	1	0	MI	0	1
	SMK $=0$	SMK = 1		SMK = 0	SMK = 1
No MI	0	1	No MI	0	1
MI	1	0	MI	0	1

There is always one observation per row, but $0 / 2,2 / 0$, or $1 / 1$ per column.
Upper left and lower right are indifferent to SMK $\rightarrow \mathrm{MI}$. Upper right tends to show that smoking is associated with MI. Lower left tends to show that not smoking is associated with MI.

McNemar's Test

	$S M K=0$	$S M K=1$
No MI	1	0
MI	1	0

	SMK $=0$	SMK $=1$
No MI	0	1
MI	1	0

	$S M K=0$	$S M K=1$
No MI	1	0
MI	0	1
	$\mathrm{SMK}=0$	$\mathrm{SMK}=1$
No MI	0	1
MI	0	1

Let $X_{i j}$ represent the number of pairs out of 100 in each of the four sub-tables. We have that X_{11} and X_{22} are uninformative. If smoking is a hazard, then we expect that $X_{21}>X_{12}$ and the reverse if smoking is protective. The statistic

$$
\frac{\left(X_{21}-X_{12}\right)^{2}}{X_{21}+X_{12}}
$$

Has a χ_{1}^{2} distribution asymptotically.

McNemar's Test

	SMK = 0	SMK = 1		SMK = 0	SMK = 1
No MI	1	0	No MI	1	0
MI	1	0	MI	0	1
	SMK = 0	SMK = 1		SMK = 0	SMK = 1
No MI	0	1	No MI	0	1
MI	1	0	MI	0	1

$$
\frac{\left(X_{21}-X_{12}\right)^{2}}{X_{21}+X_{12}}
$$

Has a χ_{1}^{2} distribution asymptotically. This is called McNemar's test and it is numerically identical to the Cochran-Mantel-Haenszel test. It is conditional since we fix the margins on each table of outcomes, one per matched pair.

More General Conditional Logistic

Regression

■ Conditional logistic regression is often used when the data are divided into many strata, which often happens when we have a matched design.
■ The book's MI data set has 39 MI patients, each matched on age, race, sex, and hospital status by two contol patients.

- The primary exposure of interest is SMK = current smoking status (0/1).
■ We also have systolic blood pressure, SBP in mm mercury and ECG abnormality (0/1).

mi data set

Conditional Logistic Regression in R

```
library(survival)
> summary(clogit(MI~SMK+SBP+ECG+strata(MATCH),data=mi))
Call:
coxph(formula = Surv(rep(1, 117L), MI) ~ SMK + SBP + ECG + strata(MATCH),
    data = mi, method = "exact")
    n= 117, number of events= 39
\begin{tabular}{lrrrrrr} 
& coef & \(\exp (c o e f)\) & se(coef) & \multicolumn{2}{c}{ z \(\operatorname{Pr}(>|z|)\)} & \\
SMK & 0.72906 & 2.07313 & 0.56126 & 1.299 & 0.19395 & \\
SBP & 0.04564 & 1.04670 & 0.01525 & 2.994 & 0.00276 & \(* *\) \\
ECG & 1.59926 & 4.94938 & 0.85341 & 1.874 & 0.06094 &
\end{tabular}
Signif. codes: \(0{ }^{\prime * * * '} 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Conditional Logistic Regression in R

```
library(survival)
> summary(clogit(MI~SMK+SBP+ECG+strata(MATCH),data=mi))
Call:
coxph(formula = Surv(rep(1, 117L), MI) ~ SMK + SBP + ECG + strata(MATCH),
    data = mi, method = "exact")
    n= 117, number of events= 39
    exp(coef) exp(-coef) lower . }95\mathrm{ upper . 95
SMK 2.073 0.4824 0.6901 6.228
SBP 1.047 0.9554 1.0159 1.078
ECG 4.949 0.2020 0.9292 26.362
Rsquare= 0.173 (max possible= 0.519 )
Likelihood ratio test= 22.2 on 3 df, p=5.925e-05
Wald test = 13.68 on 3 df, p=0.003382
Score (logrank) test = 19.68 on 3 df, p=0.0001979
```

```
> summary(glm(MI~SMK+SBP+ECG+strata(MATCH),binomial,data=mi))
```

Coefficients:

| Estimate | Std. Error | z value | $\operatorname{Pr}(>\|z\|)$ | |
| ---: | ---: | ---: | ---: | :--- | :--- |
| $-1.251 e+01$ | $3.704 e+00$ | -3.378 | 0.000731 | $* * *$ |
| $1.218 e+00$ | $7.175 e-01$ | 1.697 | 0.089607 | . |
| $7.330 \mathrm{e}-02$ | $1.997 \mathrm{e}-02$ | 3.671 | 0.000242 | $* * *$ |
| $2.784 \mathrm{e}+00$ | $1.140 \mathrm{e}+00$ | 2.442 | 0.014607 | * |
| $-4.062 \mathrm{e}-14$ | $3.054 \mathrm{e}+00$ | 0.000 | 1.000000 | |
| $1.325 \mathrm{e}+00$ | $2.632 \mathrm{e}+00$ | 0.503 | 0.614678 | |

```
strata(MATCH)MATCH=38 -1.150e+00 2.700e+00 -0.426 0.670136
```

strata (MATCH)MATCH=39 1.804e+00 $2.681 \mathrm{e}+00 \quad 0.673 \quad 0.500901$

Signif. codes: $0{ }^{\prime} * * * ' 0.001$ '**' $0.01{ }^{\prime *} 0.05$ '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 148.94 on 116 degrees of freedom
Residual deviance: 113.75 on 75 degrees of freedom
AIC: 197.75

Number of Fisher Scoring iterations: 5

```
    Null deviance: 148.94 on 116 degrees of freedom
Residual deviance: 113.75 on 75 degrees of freedom
> 1-pchisq(113.75,75)
[1] 0.00261007
```

This shows lack of fit by the model using ordinary logistic regression with 39 strata. The conditional logistic regression model is superior.

