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Normalization
 Sometimes even single-analyte assays are normalized.
 Measure TNF-αwith a western blot using optical 

density of the band
 Sometimes “housekeeping” proteins like β-actin or 

GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) 
are used to normalize and account for variations in the 
amount of protein loaded
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Multi-analyte Normalization
 In a western blot, we measure one or a few analytes and perhaps 

a loading control like β-actin
 In other assays we measure many analytes and there may be no 

control, or none we want to use for normalization 
 Instead, we may use some measure of the overall response of the 

sample to normalize.
 For example, we may compute the mean or median value across 

analytes for each sample (Mi) and the overall mean or median M
of the Mi across samples, and then normalize the value yij for 
analyte j from sample i to yij – Mi + M.

 For gene expression arrays, we often normalize in an intensity 
dependent way so that the averages are only for genes with 
similar spot intensities; this avoids level-dependent biases.
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Normalization methods
 Use of the mean or sum can cause trouble because this may 

be driven completely by a few large values
 Thus, total ion current for mass spec is not a good 

normalization method even though it is a good measure of 
the total throughput

 We often use the median across the sample for a small 
number of analytes as in Luminex

 We use lowess smoothing for expression arrays—this 
normalizes across regions of similar intensity.

 rma() uses quantile normalization, which makes each 
array have the same values, just in a different order
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Background correction
 If the target transcript is not present in the sample, the 

spot will still fluoresce.
 This is due to things like non-specific hybridization
 We can try to adjust for this by subtracting an estimate 

of background from the value on each spot (and then 
adding back the average background)

 This is not as important as some other adjustments.
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Data Transformations.
 In a gene expression array, and in other assays, the 

variance rises generally with the mean.
 For high level data, the log will stabilize the variance.
 For low level data, this causes problems
 Good transformations include the generalized log and 

the started log.
 Often, for Affymetrix data, the rma() method is good 

enough, though it does not stabilize the variance as 
well.
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Fitting a model to genes
 We can fit a model to the data of each gene after the 

whole arrays have been background corrected, 
transformed, and normalized, for example by rma().

 Each gene is then test for whether there is differential 
expression

 Significance levels are determined in the usual way, or 
we can “borrow strength” from other genes if the 
sample size is small.
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> dim(exprs(eset))
[1] 12625    12
> exprs(eset)[942,]
LN0A.CEL LN0B.CEL LN1A.CEL LN1B.CEL LN2A.CEL LN2B.CEL LN3A.CEL LN3B.CEL 
9.063619 9.427203 9.570667 9.234590 8.285440 7.739298 8.696541 8.876506 
LN4A.CEL LN4B.CEL LN5A.CEL LN5B.CEL 
9.425838 9.925823 9.512081 9.426103 
> group <- as.factor(c("G0","G0","G1","G1","G2","G2","G3",

"G3","G4","G4","G5","G5"))
> group
[1] G0 G0 G1 G1 G2 G2 G3 G3 G4 G4 G5 G5
Levels: G0 G1 G2 G3 G4 G5
> anova(lm(exprs(eset)[942,] ~ group))
Analysis of Variance Table

Response: exprs(eset)[942, ]
Df Sum Sq Mean Sq F value   Pr(>F)   

group      5 3.7235  0.7447  10.726 0.005945 **
Residuals  6 0.4166  0.0694                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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--------------------------------------------------
getp <- function(y){
# Conducts an ANOVA on one row of a matrix
tmp <- anova(lm(y ~ group))$P[1]
return(tmp)

}

allp <- function(array){
#Conducts ANOVAs on all rows of a matrix and gets p-values

tmp2 <- apply(array,1,getp)
return(tmp2)

}
--------------------------------------------------

> source("allgenes.r")
> allp1 <- allp(exprs(eset))
> length(allp1)
[1] 12625
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Multiplicity Adjustments
 If we test thousands of genes and pick all the ones 

which are significant at the 5% level, we will get 
hundreds of false positives.

 Multiplicity adjustments winnow this down so that the 
number of false positives is smaller
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Types of Multiplicity Adjustments
 The Bonferroni correction aims to detect no significant 

genes at all if there are truly none, and guarantees that 
the chance that any will be detected is less than .05 
under these conditions

 Generally, this is too conservative
 Less conservative versions include methods due to 

Holm, Hochberg, and Benjamini and Hochberg (FDR)
 The following graph shows the result of applying a 

multiplicity correction to a vector (0.1, 0.01, … , 1e-15).
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> allp1.adj <- p.adjust(allp1,"fdr") #built-in function
> sum(allp1.adj<.05)
[1] 119
> featureNames(eset)[allp1adj < .05]
[1] "120_at"                    "1288_s_at"                
[3] "1423_at"                   "1439_s_at"                
[5] "1546_at"                   "1557_at"                  

.............................................. 
[101] "41058_g_at"                "411_i_at"                 
[103] "41206_r_at"                "41501_at"                 
[105] "41697_at"                  "41733_at"                 
[107] "476_s_at"                  "613_at"                   
[109] "646_s_at"                  "672_at"                   
[111] "769_s_at"                  "777_at"                   
[113] "801_at"                    "922_at"                   
[115] "952_at"                    "AFFX-BioB-M_at"           
[117] "AFFX-HUMGAPDH/M33197_3_at" "AFFX-M27830_5_at"         
[119] "AFFX-M27830_M_at"         
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> require(affy)
> require(limma)
> rrdata <- ReadAffy()
> eset <- rma(rrdata)
> group <- as.factor(c("G0","G0","G1","G1","G2","G2",

"G3","G3","G4","G4","G5","G5"))

#The code below is enough for a two-group test 
#but only can test coefficients

design <- model.matrix(~group)
fits <- lmFit(eset, design)
fits.eb <- eBayes(fits)
allp2 <- fits.eb$p.value[2,]  # Tests group 1 vs. group 0 
allp2.adj <- p.adjust(allp2,"fdr")
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> design <- model.matrix(~0 + group) #fit with no intercept
> colnames(design) <- levels(group)
> fits2 <- lmFit(eset, design)

# The contrasts statement sets up an overall F-test
# If all the contrasts are true, then all the means are equal
> contrast.matrix <- makeContrasts(G0-G1,G0-G2,G0-G3,
G0-G4,G0-G5, levels = design)

> fits2c <- contrasts.fit(fits2, contrast.matrix)
> fits2.eb <- eBayes(fits2c)
> allp2 <- fits2.eb$F.p.value
> allp2.adj <- p.adjust(allp2,"fdr")
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limma
 limma is a Bioconductor package for linear model 

analysis of gene expression data.
 It can duplicate the small program which does a 

one-way ANOVA for each gene, or any other linear 
model except that it computes the “moderated” t 
or F statistic, in which small denominators are 
made larger and large denominators are made 
smaller. 

 Install using BiocLite() in R.

April 21, 2015 SPH 247 Statistical Analysis of Laboratory Data 20



Moderated Statistics
 If we conduct a one-way ANOVA for each of 12625 

genes, then each F-statistic uses the 6df denominator 
which estimates the true MSE.

 We can do better if we assume that the true MSE varies 
from gene to gene, but not arbitrarily.
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Using Limma
 Data need to be normalized and transformed before 

using limma.
 The log transform may be ok, but check how low the 

values get and maybe add something to all the values 
first.

 The rma method in the Affy package does this both of 
these as part of the process
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Using Limma
 You need to specify a linear model. If the predictors 

are numeric or have only two categories then you can 
use model.matrix(~x1+x2+…)

 Then fit all the linear models with lmFit and then use 
eBayes to improve the denominators.

 If there are factors with more then two levels, then you 
need to fit the model without an intercept (~0+…) and 
make a set of contrasts that encompases the entire 
effect of the factor. With 6 levels, this is 6*5/2 = 15/
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Exercises
 For the sample affy data, fit the oneway ANOVA model 

to the RMA processed data using limma. Adjust the p-
values for FDR. Try googling some of the affy feature 
names for the significant genes.
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