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Abstract
Motivation: Whole genome microarrays are increasingly becoming the method of choice to study responses in model organisms to 
disease, stressors or other stimuli. However, whole genome sequences are available for only some model organisms, and there are still 
many species whose genome sequences are not yet available. Cross-species studies, where arrays developed for one species are used to 
study gene expression in a closely related species, have been used to address this gap, with some promising results. Current analytical 
methods have included filtration of some probes or genes that showed low hybridization activities. But consensus filtration schemes are 
still not available.
Results: A novel masking procedure is proposed based on currently available target species sequences to filter out probes and study a 
cross-species data set using this masking procedure and gene-set analysis. Gene-set analysis evaluates the association of some priori 
defined gene groups with a phenotype of interest. Two methods, Gene Set Enrichment Analysis (GSEA) and Test of Test Statistics 
(ToTS) were investigated. The results showed that masking procedure together with ToTS method worked well in our data set. The 
results from an alternative way to study cross-species hybridization experiments without masking are also presented. We hypothesize 
that the multi-probes structure of Affymetrix microarrays makes it possible to aggregate the effects of both well-hybridized and poorly-
hybridized probes to study a group of genes. The principles of gene-set analysis were applied to the probe-level data instead of gene-
level data. The results showed that ToTS can give valuable information and thus can be used as a powerful technique for analyzing 
cross-species hybridization experiments.
Availability: Software in the form of R code is available at http://anson.ucdavis.edu/~ychen/cross-species.html
Supplementary Data: Supplementary data are available at http://anson.ucdavis.edu/~ychen/cross-species.html
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�. Introduction
Microarrays have become standard tools in biomedical 
and genomic research nowadays. Modulation of the 
expressions of thousands of genes simultaneously 
provides important insights into the molecular mech-
anisms of biological processes. However, in spite of 
the exponential growth in available whole genome 
sequences, there are still many organisms of interest, 
whose genomes have not been sequenced and there-
fore whose gene sequences are not all known. To 
study the gene expressions of these organisms, there 
are mainly two ways. The first way is to use cross-
species hybridization, which is to hybridize the RNA 
samples of one species to the microarrays designed 
for a closely related species. The second way is to 
make customer-designed microarrays based on the 
currently available sequences of the organism being 
studied. Presently many biotech companies such as 
Affymetrix can provide such customer-designed ser-
vices to fulfill the needs of genomic study. But this 
way may not be practical when the budget for the 
project is tight or the time is short or the sequences 
available are insufficient to be representative of the 
whole organism. In such cases, researchers often turn 
to the first way to solve the practical problem. Cross-
species hybridization experiments usually cost less 
than making customer-designed arrays.

The cross-species approach has been employed in 
several studies in nonhuman primates, using human 
microarrays to analyze closely related species, such 
as chimpanzees, rhesus macaques and orangutans,1,2 
as well as more distantly related species, such as cat-
tle, dogs, pigs or canines.3,4 These studies assume that 
nucleotide sequence conservation within mammals is 
high enough to generate detectable signals. Despite 
the potential usefulness of cross-species hybrid-
ization studies, the quality of the gene expression 
measures obtained in this way is in question. Two 
important aspects of measurement quality of cross-
species hybridizations have been examined: accuracy 
and reproducibility. Several studies have reported that 
the cross-species results are reproducible.5,6 However, 
reproducibility does not assure that cross-species 
results can provide valid biological information. The 
accuracy aspect is more important.

Since the RNA samples of one species are hybrid-
ized to the arrays designed for another species, the 

sequence dissimilarity between the two species will 
cause the hybridization signals to be low compared to 
same-species hybridization.3,6 The question has been 
raised whether cross-species hybridization studies 
are able to generate valid biological results similar to 
those obtained by same-species hybridization studies. 
It has been shown that cross-species hybridization 
can be used to detect within-species expression dif-
ferences without discernible loss of information, as 
long as the two species are not too highly diverged.7 
This provides an evidence of the validity of cross-
species hybridization studies. However, it is gener-
ally agreed that the array sensitivity in cross-species 
studies decreases compared to that of same-species 
studies. This means cross-species analysis gives 
more false negatives, and thus the accuracy of the 
analysis decreases. To improve the array sensitiv-
ity, some researchers suggested a filtration approach 
called masking procedure.3,4 That is, to install a mask 
to screen off poorly hybridized probes in Affymetrix 
arrays. The approach did improve the array sensitivity 
to some extents. But the problem is there are no con-
sensus filtration schemes available. Thus, it is needed 
to provide guidelines for the selection of masks or 
investigate if there is a better alternative.

Previous cross-species studies have used different 
microarray platforms, such as short oligonucleotide 
arrays, long oligonucleotide arrays, and two-color 
cDNA arrays. Affymetrix high-density oligonucle-
otide GeneChips (Affymetrix, Santa Clara, CA) 
is a kind of short oligonucleotide microarrays. In 
Affymetrix system, an mRNA molecule transcribed 
from a gene is represented by a probe set composed 
of 11–20 probe pairs. Each probe pair consists of a 
25 bases long perfect match probe (PM) and a 25 
base long mismatch probe (MM). The multi-probes 
structure of Affymetrix microarrays may have an 
advantage for cross-species analysis compared to 
other platforms such as cDNA microarrays.3 The rea-
son is that the presence of multiple probes of each 
probe set may increase its probability to match with 
the target sequence, and thus make it possible to pro-
duce a good measure of its expression. In this study, 
novel statistical methods to improve the sensitivity of 
cross-species analysis using Affymetrix GeneChips 
are investigated, and the results of analysis of a cross-
species data set are discussed.
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�. Methods
2.1. cross-species hybridization 
experiment
Data used in this study was generated at Lawrence 
Livermore National Lab from a cross-species hybrid-
ization experiment to study the heterocyclic amine food 
mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-
b]pyridine (PhIP). PhIP is the most abundant of the 
carcinogenic heterocyclic amines found in well-
cooked or over-cooked meat and fish. This compound 
has been shown to be a potent initiator and promoter 
of prostate and other cancers.8 In this study, a DNA 
repair-proficient Chinese hamster ovary (CHO) cell 
line (5P3R2) was exposed to PhIP, at a dose level of 
0.4 micro ml, and RNA was harvested at different time 
points (2 hours, 4 hours, and 8 hours) after exposure. 
The PhIP-treated RNA samples and untreated refer-
ence samples were hybridized to Affymetrix’s mouse 
GeneChip, MG U74Av2, respectively. Two technical 
replicates were available at each time point. Thus a 
total of 12 arrays with 197993 probes were available, 
that correspond to 12488 probe sets on each array. 
The aim of this study is to identify genes that respond 
to PhIP in cell line 5P3R2.

Using the same approach as other similar stud-
ies,3,9,10 the current study also assumes the divergence 
between mammals to be in the order of less than 
100 million years. This also suggests that the conser-
vation of protein function might ensure that sequence 
identity is also sufficiently conserved. The cumulative 
effect of such conservation across related proteins and 
sequences of interest would leverage the effort in this 
study to use gene sets to analyze gene expression data 
rather than the use of single gene data points.

2.1.1. Preparation of cDnA, rnA, hybridization 
to affymetrix chips
Purified total RNA was analyzed to ensure quality 
and quantity using the NanoDrop spectrophotom-
eter and gel microelectrophoresis using Agilent’s 
Bioanalyzer. Total RNA (5ugms) from all samples 
was labeled using a modified version of the Ebervine 
method. RNA was reverse transcribed using an 
oligo-dT T7 promoter primer and double stranded 
cDNA generated using the RiboAmp RNA Amplifi-
cation Kit (Cat # KIT0209) according to manufac-
turer’s directions as follows: a primer containing T7 

RNA polymerase promoter sequence-oligodT was 
annealed to the total RNA molecules by heating at 
65 °C for 5 minutes. A master mix including dNTPs 
was prepared using the RiboAmp kit and added and 
first strand cDNA generated by incubation at 42 °C 
for 45 minutes. The RNA is then degraded using a 
proprietary nuclease enzyme at 37 °C for 20 minutes 
followed by inactivation of nuclease at 95 °C, 
5 minutes and cooled to 4°C. Thereafter, the second 
strand cDNA synthesis was initiated by annealing 
another proprietary primer (Primer B) supplied with 
the RiboAmp kit to the first strand cDNA fragments 
(95 °C for 2 minutes, chill to 4 °C). Post addition 
of the second strand cDNA synthesis mix, the reac-
tion is incubated at 25 °C for 5 minutes, 37 °C for 
10 minutes and then finally at 70 °C for 5 minutes. 
The reaction mixture was then chilled to 4 °C and 
the double stranded cDNA thus generated was puri-
fied using columns and proprietary buffers supplied 
along with the RiboAmp kit with vendor provided 
purification protocol. The Enzo BioArray HighYield 
Transcript Labeling Kit (Cat # 42655–20) was used 
to generate labeled antisense RNA from the double 
stranded cDNA using T7 RNA polymerase and bio-
tinylated UTP for amplification mediated labeling 
by incubation for 5 hours at 37 °C in a shaking water 
bath. Post labeling, the antisense RNA (ranging from 
500–1800 nts) was first purified using the RNEasy 
procedure (Qiagen), fragmented as described in the 
Affymetrix Gene Expression Analysis Technical 
Manual (Affymetrix, Santa Clara, CA) and evalu-
ated for quality and quantity by microchannel elec-
trophoresis on the Agilent 2100 Bioanalyzer.

2.1.2. genechip staining, scanning,  
image processing
Affymetrix MG U74Av2 gene chips were hybrid-
ized using 15 µg of fragmented complementary DNA 
followed by washing and staining in an Affymetrix 
Fluidics Workstation as described in the Expres-
sion Analysis Technical Manual (Affymetrix, Santa 
Clara, CA). Hybridized chips were scanned and sig-
nals were detected using an argon-ion laser scanner 
(Agilent Technologies, Palo Alto, CA). Microarray 
reports were generated to assess the hybridization 
quality and individual CEL files were used for data 
preprocessing.
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2.1.3. Data preprocessing step
The resulting images were processed to give a raw 
intensity value for each probe. Then probe level data 
need to be converted to expression values. There have 
been quite a few methods which achieve this goal such 
as MAS5.0,11 MBEI,12,13 RMA14 and GLA.15 All these 
methods contain mainly three steps: 1) background 
correction, which refers to the adjustment intended 
to remove background noise; 2) normalization, which 
is a technique to reduce non-biological variation in 
different arrays; 3) summarization, which gives an 
expression measure for each gene or probe set.

Among these, RMA expression measure has 
become a widely accepted method for Affymetrix 
GeneChips. In Zhou and Rocke,15 they compared the 
performances of these preprocessing methods through 
two real data sets and concluded that GLA and RMA 
outperform the other methods. For our cross-species 
data set, both GLA and RMA methods to background-
correct and normalize the whole data set were applied 
before any further analysis.

2.2. Masking procedure
In Ji et al3 and Grigoryev et al,4 a masking proce-
dure was applied to filter out the poorly hybridized 
probes in the data preprocessing step thus improving 
the sensitivity of cross-species analysis. However, the 
masking procedure is very empirical and both studies 
lack details explaining the reasoning of mask selec-
tion. The currently available CHO sequences were 
used to choose masks. GenBank was searched for all 
the available CHO sequences and then BLAST pro-
gram was used to match those CHO sequences to the 
probe sequences of Affymetrix’s mouse gene chip. 
907 mouse probes were identified that were 100% 
matched to currently available CHO sequences. We 
hypothesized that if a known CHO sequence is 100% 
matched to a mouse probe, there is less chance of 
cross-hybridization in this probe. Therefore all such 
probes were retained in the data preprocessing step. 
Following this hypothesis, a ratio was created, 

r
n
nm

m

T
=

where nm represents the number of remaining probes 
that are 100% matched to available CHO sequences 
and nT represents the number of total remaining 
probes after applying the mask. Intuitively thinking, 

a strict mask will lead to small value of nm and also 
small value of nm. The goal is to mask off as many 
unmatched probes as possible while keeping most of 
the matched probes. Thus, a larger value of rm results 
in a better mask based on our hypothesis. Three groups 
of masks were selected for use: PM only, PM-MM, 
and PM/MM. In each group, three masking thresh-
olds together with five masking stringencies were 
tested. The three masking thresholds are 25th, 50th 
and 75th percentile of the data set. The five masking 
stringencies are 8.33%, 25%, 50%, 75%, and 100%. 
The masking stringency 8.33% means that the probe 
is masked off if it does not meet the masking thresh-
old in at least 8.33% of the 12 arrays, that is 1 array. 
Similarly, the masking stringency 100% means that 
the probe is masked off if it does not meet the mask-
ing threshold in all of the 12 arrays. 45 masks were 
tested and Supplementary Table 1 shows the details 
and results of all these masks. If the masking threshold 
is the same, a smaller masking stringency will lead to 
larger rm value. In addition, if the masking stringency 
is the same, a larger masking threshold will lead to 
larger rm value. Based on these findings, three best 
masks were selected using the rm value in the three 
groups: PM only, PM-MM, and PM/MM and these 
were used for further analysis.

2.3. gene-set analysis
In DNA microarray studies, single-gene analysis has 
some limitations. A successful microarray experiment 
can result in a long list of differentially expressed 
genes which may not be easy to be interpreted by 
biologists. On the other hand, no single gene may be 
detected if the change of expression is very moder-
ate. Gene-set analysis can generally overcome these 
limitations to some extents. Quite a few statistical 
methods have been proposed in recent years to study 
gene sets.16–19 The basic idea of gene-set analysis is 
to look at the expression patterns in a group of genes 
to find out if they are associated with a class label or 
differentially expressed under different experimental 
conditions. Usually the genes in a predefined gene 
set have some biological themes, such as coming 
from the same biological pathway or having simi-
lar cellular functions. Thus the results of gene-set 
analysis are much easier to interpret and can help 
biologists understand some fundamental biological 
mechanisms.
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In the cross-species data set, preprocessing of the 
probe-level data using a standard method such as 
MAS5.0 or RMA and fitting a linear model for each 
gene resulted in no single gene that met the threshold 
for statistical significance after adjusting for multiple 
hypothesis testing. This is due to the low sensitivity of 
cross-species data analysis. In Affymetrix systems, since 
each gene has multiple probes on the chips, it is very 
unlikely to see that all the probes match well with the 
target even if this gene is truly differentially expressed. 
The standard summarization method, such as MAS5.0 
or RMA, which gives an expression measure of each 
gene based on the intensity of all its probes, will often 
lead to low expression measures for truly differentially 
expressed genes.3,4 This makes it harder to distinguish 
between genes that are truly differentially expressed 
and genes that have minimal or no change at all.

Thus, gene-set analysis was chosen as the method 
of choice for our data set. Masking procedure and 
gene-set analysis were combined in the first step. Since 
there is no consensus on the selection of a good mask, 
we propose a new way to apply gene-set analysis to 
cross-species data without using masking procedure, 
that is, to investigate the probe-level data instead of 
gene-level data. By applying the general ideas of gene-
set analysis to probe-level data, the effects of multiple 
probes are aggregated and statistically tested to iden-
tify any general trend of expression changes in a group 
of genes under different experimental conditions.

Through Sections 2.4–2.5, the basic algorithms 
of two gene-set analysis methods and the use of the 
following notations are introduced: S is a predefined 

gene set, N is the number of genes in a gene set S, L is 
a rank list of all the genes based on its association with 
class phenotypes, and r is the Pearson correlation.

2.4. gene set enrichment Analysis 
(gseA)
Gene Set Enrichment Analysis (GSEA) is a highly 
developed version of gene-set analysis,17 which uti-
lizes the Kolmogorov-Smirnov statistic to measure 
the degree of differential gene expression in a gene 
set across binary phenotypes. It ranks all the genes 
based on their association with a class phenotype and 
test whether the members of a predefined gene set are 
uniformly distributed throughout this list. The main 
steps of GSEA are:

1. Rank the genes or probe sets based on the correlation 
(or another metric) between their expression and 
the class phenotypes;

2. Compute an enrichment score ES by using a running-
sum statistic. Start from the top of the rank list and 
let the running-sum be 0. Increase it if a gene in the 
gene set is encountered or decrease it otherwise. The 
enrichment score ES is calculated as the maximum 
deviation of the running-sum from zero;

ES S max
r p

r p N Si

i

jg jg j S j i g j S j i
( ) 1

 , ,

=
S

| |
∈∈ ∈∑∑ ∑−

   −  

(1)

3. Permute the class phenotypes and repeat steps 1–2. 
This generates a null distribution for the observed 

Table �. Significant pathways identified by applying 3 masks with ToTS method. The last three columns show the FDR-
adjusted p-values by using 3 masks and ToTs, respectively.

Biological pathway no. of genes Mask� Mask� Mask�
hUMAn MITODB 6 2002 428 0.0091 0.0357 0.0091
MrnA PrOcessIng 47 0.0214 0.03 0.0263
Peng gLUcOse Dn 157 0.0091 0.0091 0.0091
Peng gLUTAMIne Dn 313 0.0091 0.0091 0.0176
Peng LeUcIne Dn 180 0.0091 0.0111 0.0176
Peng rAPAMYcIn Dn 229 0.0091 0.0091 0.0091
PrOTeAsOMe
DegrADATIOn 32 0.0091 0.0091 0.0091
PrOTeAsOMePAThWAY 21 0.0091 0.0091 0.0091
PYK2PAThWAY 29 0.03 0.0467 0.0176
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ES and the empirical, nominal p-value can be 
calculated.

If an entire database of gene sets is tested, a final 
step is added to adjust for multiple hypothesis test-
ing. GSEA has been successfully applied to several 
cancer date sets in detecting significant biological 
pathways.17

2.5. Test of Test-statistics (ToTs) method
Test of test-statistics (ToTS) method is another kind 
of gene-set analysis which also aims to detect signifi-
cant biological pathways or any priori defined gene 
sets instead of individual genes. It has been success-
fully applied to an ionizing radiation study of prostate 
cancer where the patient variability in response to low 
doses of ionizing radiation (LDIR) creates substantial 
difficulties in detecting any differential gene expres-
sion.19 The method consists of three steps:

1. For each gene or probe set in the group, conduct a 
statistical test of the hypothesis that it is differen-
tially expressed;

2. Obtain the test statistics of all the genes or probe 
sets in the group and conduct a statistical test of 
hypothesis that there is a detectable up-regulat-
ing or down-regulating signal in the aggregate of 
them;

3. Assess the significance of the group of genes or 
probe sets by doing gene permutation.

In the ionizing radiation study, the effects of each 
gene in different patients are aggregated to test the sig-
nificance of a gene set. In the cross-species hybridization 
experiment using Affymetrix GeneChips, the effects 
of multiple genes or multiple probes are aggregated 
to test the significance of a gene set.

�. Results
3.1. gene groups and pathways
The website of GSEA provides a molecular signature 
database (MSigDB) that has a collection of gene groups 
and pathways from online pathway databases, publica-
tions in PubMed, knowledge of domain experts, and so 
on. Most of the gene group and pathway information 
was collected in human. Annotation files for the human 
chip HG-U133A and the mouse chip MG U74Av2 
were downloaded from the website of Affymetrix. In 
addition a linking table that has Orthologs/Homologs 
information and which therefore links probesets from 
mouse chip to human chip, was also downloaded from 
website of Affymetrix. Using this linking table which 
provides 1-to-1 relationship of human to mouse probe-
sets, a collection of mouse gene groups and pathways 
was created. This resulted in 522 gene sets.

A subset of gene groups and pathways were further 
selected from the collection of 522 gene sets, on the 
basis of their relevance to cancer, signaling, oxidative 
stress which is believed to be one of the outcomes 
of exposure to PhIP, mitochondrial pathways, path-
ways involving p53, pathways pertaining to androgen 
and estrogen, and electron transport pathways. This 
resulted in 100 gene sets, which will be investigated 
in our analysis. The list of these 100 gene sets can be 
found in Supplementary Table 2.

3.2. Using masking procedure
Our fist step for statistical analysis was to get loess-
normalized PM, PM-MM, and PM/MM intensities, 
respectively. As described in Section 2.2, three dif-
ferent masking thresholds and five different masking 
stringencies with PM, PM-MM, and PM/MM data 
were applied. The details are listed in Supplementary 

Table �. FDr-adjusted p-values of six pathways by ToTs and gseA (data preprocessed by gLA).

Biological pathway no. of genes FDR_adjusted p-values  
by ToTs

FDR_adjusted p-values  
by GseA

neLsOn AnDrOgen UP 86 0.033 0.20
Peng gLUcOse Dn 157 0.033 0.40
Peng gLUTAMIne Dn 313 0.033 0.52
MAPK cAscADe 33 0.033 0.10
PrOTeAsOMe
DegrADATIOn 32 0.033 0.39
PrOTeAsOMePAThWAY 21 0.033 0.15
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Table 1. The value of rm was used to select best masks, 
which resulted in, PM  5.83, PM-MM  34.58, and 
PM/MM  1.27. These masks were named mask1, 
mask2 and mask3 respectively. After application of 
these three masks, single-gene analysis still did not 
yield any significant result. Gene-set analysis was 
performed next using GSEA and ToTS methods. 
Whereas GSEA failed to identify any significant gene 
set at the threshold fdr  0.05, ToTS identified some 
significant ones at the threshold fdr  0.05.

Of the 100 gene sets that were selected, 9 were 
statistically significant between treatment and control 
after applying all the three masks, as shown in Table 1. 
The last 3 columns of Table 1 lists the fdr-adjusted 
p-values from using ToTS and the 3 masks, respec-
tively. Supplementary Figure 1 shows the overlap of 
significant gene sets identified by applying mask1, 
mask2, and mask3. The complete list of significant 
gene sets by applying the three masks are shown in 
Supplementary Table 3. Thus, the application of a 
masking procedure together with the ToTS method 
helped identify some significant pathways. We then 
posed the question whether meaningful results could 
be achieved without applying masking procedure. 
The next several sections show the results of apply-
ing gene-set analysis in probe-level data.

3.3. Application of gseA  
to probe-level data
Our first step for statistical analysis is to background-
correct and normalize the whole data set using GLA 
algorithm.15 Through Sections 3.4, the same GLA 
algorithm was used. In Section 3.5, the results from 
the use of a different preprocessing method, Robust 
Multi-array Analysis or RMA, are discussed.

The GSEA method was developed to test the asso-
ciation of a pre-defined gene set or pathway with binary 
phenotypes. The first step of GSEA is to rank all the 
genes based on their association with the class labels. 
There are several metrics that can measure the associa-
tion, such as Pearson’s correlation, signal-to-noise ratio, 
two-sample t-test statistics and so on. Thus GSEA can 
be generalized to data other than binary phenotypes, 
as long as a metric can be applied, that measures the 
association of each gene with class labels in the data 
set. For each probe in our data set, a two-way ANOVA 
model was applied with treatment and time as the two 
factors, and tested for whether the expression of the 
probe is statistically different between treatment and 
control samples. Thus a t-score was obtained for each 
probe out of 197993 probes. Rather than using Pearson 

Figure �. The histogram of the fdr-adjusted p-values for the 100 path-
ways by gseA.
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Table �. FDr-adjusted p-values of six pathways by ToTs and gseA (data preprocessed by rMA).

Biological pathway no. of genes FDR_adjusted p-values  
by ToTs

FDR_adjusted p-values  
by GseA

neLsOn AnDrOgen UP 86 0.033 0.22
Peng gLUcOse Dn 157 0.040 0.31
Peng gLUTAMIne Dn 313 0.040 0.47
MAPK cAscADe 33 0.033 0.21
PrOTeAsOMe  
DegrADATIOn

32 0.040 0.33

PrOTeAsOMePAThWAY 21 0.033 0.20
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correlation or other statistics, the absolute values of 
these t-scores were used to rank all the probes. For each 
pathway, an enrichment score was calculated based on 
Equation (1). Gene permutation was used in place of 
sample permutation here to calculate the empirical p-
values of each pathway. That is, to randomly select 
genes as the sampling units and generate a distribution 
for the ES test statistic. It is criticized that gene permu-
tation tends to give anti-conservative results because 
the independence assumption between genes are usu-
ally unrealistic.20 However, in the cases where there 
are only a few arrays available, it is impossible to do 
a large number of sample permutations. Such cases of 
insufficient data points are not as uncommon as one 
may assume, given the typical monetary constraints 
faced by the average research laboratory. It therefore 
becomes imperative to find novel alternatives to deal 
with this case. Gene permutation could be the alterna-
tive in such cases. In this cross-species data set, only 
4 arrays were available at each time point. Thus gene 
permutation was used to test the significance of path-
ways. In order not to worsen the violation of gene-gene 
independence in a gene set, genes rather than probes 
were randomly selected in order to keep each gene’s 
probe structure intact.

It was found that none of the pathways met the 
statistical significance level at 0.05. Figure 1 shows 
the histogram of fdr adjusted p-values for all the 100 
pathways tested. Most of the pathways have p-values 
greater than 0.50.

3.4. Application of ToTs  
to probe-level data
Similar to GSEA, our first step using ToTS was to get 
a t-score for each probe by fitting a two-way ANOVA 
model. To test whether a pathway was associated with 
the treatment PhIP, the t-scores of all the probes cor-
responding to the genes in this pathway were aggre-
gated, and a one-sample t-test and a one-sample 
Wilcoxon test performed. We hypothesize that there 
are effects in at least some genes of a pathway, but it 
may be reflected in only a small number of probes that 
correspond to the genes because of the poor hybrid-
ization qualities of cross-species data set. We would 
therefore expect to see that the t-scores are biased in 
a positive or negative direction if there is in fact, any 
such kind of diffuse response. Figure 2 shows the his-
togram of the t-scores of all the probes corresponding 

to pathway ”PENG GLUCOSE DN” which showed a 
slight upward trend of all the t-scores. In order to ver-
ify that this trend is not seen by chance, the one-sam-
ple t-test or one-sample Wilcoxon test was used to test 
whether the mean or median of the collection of these 
t-scores are different from 0. In order to reduce the bias 
introduced here, we also performed gene permutation 
to generate a null distribution for the t-test statistic or 
Wilcoxon-test statistic and thus obtained empirical p-
values for each pathway tested. The standard p-val-
ues by t-test or Wilcoxon-test correspond well to the 
empirical p-values and were therefore omitted here. 
In addition, the Wilcoxon-test with gene permutation 
tended to be more sensitive than the t-test in this case. 
The results of empirical p-values by Wilcoxon-test are 
showed in Table 2. Six pathways were found to be sta-
tistically significant at the threshold 0.05. In order to 
compare GSEA and ToTS, the p-values of these six 
pathways by GSEA are also listed in Table 2. None of 
them met the statistical significance threshold.

3.5. robustness of using different 
preprocessing algorithms
The influence of the preprocessing algorithm used on 
cross-species studies was assessed, since several pre-
processing algorithms are currently available and in use 
widely. In Sections 3.3–3.4, GSEA and ToTS method 

Figure �. The histogram of the t-scores of all the probes corresponding 
to genes in gene set “Peng gLUcOse Dn”. The right-sided vertical line 
is the median of all the t-scores.
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were applied to the probe-level data preprocessed by 
GLA algorithm, and our results showed ToTS to be 
more sensitive and providing better results than GSEA. 
Since RMA has been a standard and quite accepted pre-
processing method for Affymetrix GeneChips, we also 
used RMA to preprocess the raw data and applied sim-
ilar gene-set analysis methods. In Zhou and Rocke,15 
they showed that GLA has comparable performance 
with RMA. In the current study too, the 6 six path-
ways that were identified to have fdr adjusted p-values 
less than 0.05 were the same set of pathways identi-
fied using GLA algorithm. Comparison of Table 3 and 
Table 2 shows that the conclusion based on using GLA 
and RMA methods are the same, providing evidence 
that preprocessing algorithms do not have great effects 
on the results here.

�. Discussion
In this study, a novel masking procedure was proposed 
based on currently available target species sequences, to 
filter out probes, and this masking procedure was com-
bining with gene-set analysis. An alternative method 
is proposed, for analysis of cross-species studies using 
Affymetrix GeneChips, wherein the methods of gene-set 
analysis are applied to the probe-level data. Two gene-
set analysis methods and their application to a cross-spe-
cies data set were investigated. The results showed that 
ToTS has the better performance than GSEA.

The results from ToTS with the masking procedure 
gave 42 pathways with significant p-values by at least 
one mask, and of these, 9 had significant p-values with 
all three masks used (Supplemental Table 3). A particu-
larly relevant biological aspect of this result is that there 
is a significant overlap between these results and path-
ways contributing to the Cancer pathways (subway map 
of cancer pathways). These include the WNT signaling 
pathways, GSK3, B-catenin, eIF4, TERT, PI3K, and 
p53 among others. Although some of these are lost upon 
correcting for multiple hypothesis testing, the results are 
interesting, nevertheless, and deserve further analysis.

The results from ToTS analysis at the probe-level, 
done without masking, gave 6 significant pathways 
with p-values less than 0.05. An important detail 
from this analysis is that 4, of the 6, pathways are 
also shared by the 9 pathways identified by applying 
masking procedure: PENG GLUCOSE DN, PENG 
GLUTAMINE DN, PROTEASOME DEGRADA-
TION, and PROTEASOMEPATHWAY. This con-
sistency may be evidence of improved sensitivity of 
ToTS methods in analysis of cross-species data either 
at probe-level or gene-level.

The application of GSEA either at probe-level or 
gene-level of our cross-species data set didn’t give 
any significant result. A problematic issue of GSEA is 
that the calculation of enrichment score of a particular 
gene set not only depends on the expressions of genes 
in this gene set, but also those outside of the gene set. 
When a particular gene set is biologically meaningful, 
the expressions levels of other genes should not affect 
the inference on this gene set. This problem was also 
reported in Dinu et al21 and it may cause the power 
of GSEA to be low in some situations. In contrast to 
GSEA, ToTS uses t-statistics or Wilcoxon-statistics, 
which does not depend on the expressions of other 
genes outside of a particular gene set. ToTS may be 
expected to have more power than GSEA. Further 
study that includes a comprehensive comparison 
between the two methods may provide fresh insights.

Through the study of this cross-species data set, we 
have seen that ToTS successfully improved the sensi-
tivity of cross-species analysis while GSEA failed to 
do so. ToTS had better performance than GSEA here 
and thus is potentially a useful tool for cross-species 
studies. However, a comprehensive guideline for its 
usage in cross-species hybridization experiments is still 
necessary in order for it to gain widespread success.

Figure �. The histogram of the fdr-adjusted p-values for the 100 path-
ways by ToTs.
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