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The -Omics Revolution

The advent of gene expression microarrays,

proteomics by mass spectrometry, and

metabolomics by mass spectrometry and NMR

spectroscopy presents enormous opporunities for

fundamental biological research and for

applications in medicine, agriculture, and

environmental science
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They also present many challenges in design and

analysis of laboratory experiments, population

studies, and clinical trials. We present some

lessons learned from our experience with these

studies.
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Omics Data

Genome Complement of all genes, or of all

components of genetic material in the cell

(mostly static).

Transcriptome Complement of all mRNA

transcripts produced by a cell (dynamic).
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Proteome Complement of all proteins in a cell,

whether directly translated or produced by

post-translational modification (dynamic).

Metabolome Complement of all metabolites

other than proteins and mRNA; e.g., lipids,

saccharides, etc (dynamic).
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The Principles of Experimental Design

Have not Changed

• A design that is not adequate to measure a

change in one indicator across populations is

probably not adequate to measure the change

in 20,000 indicators.

• Usually, biological variability (within or

between organisms) is much larger than the

technical variability of measurements.
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• Thus, most replications should be across

organisms, not repeats of the same sample.

• The measurement of difference between types

of cancer, between varieties of wheat, or

between animal populations will often require

many samples
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We Need Internal Controls

• We learned long ago that clinical studies need

internal controls to be believable.

Comparisons with past history are too

frequently deceptive to be useful.
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• Genomics data are an obvious exception

because the genetic structure of (for example)

humans varies only a little between individuals,

and mostly varies not at all over time in a

given individual.

• Gene expression data, proteomics data, and

metabolomics data are more like clinical data

than genomics data: they vary over time and

over conditions, some of which are hard to

measure.
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• Databases of expression, proteomics, etc. will

mostly be useful as archives of studies; direct

comparisons across studies will need to be

interpreted cautiously.

• What we hope will be reproducible is

differences between groups, not absolute

measurements.
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Detecting Statistically Significant Effects

• Mostly, we do not yet have quantitative

knowledge of what changes in gene

expression, protein content, etc. are

biologically significant. Until we do have such

knowledge, we should detect all changes that

we are sure have occurred without regard to

size. Twofold may be a large or small change.

A 10% change may be important.
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• If we measure 10,000 things at once, and test

each one for significance, we may have too

many false positives to be useful.

• A 5% statistical test will generate an average

of 500 false positives in 10,000. If we have

1,000 “significant” genes in tests for

differential expression, then about half will

likely be “false discoveries.”
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• One way to control this is to use the

Bonferroni method for family-wise error rates,

in which each gene is tested at a significance

level of 5%/10,000 = 0.000005, or one in

200,000. This guarantees that there will be

no genes identified in 19 of 20 studies where

there are no real diffences. It may lack

sensitivity.
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• With a sample of 5 in each of two groups, the

smallest difference that is significant at the

5% level is about 1.7 standard deviations.

With the Bonferroni adjustment on 10,000

variables, the detectable change is over four

times as large (7.5 standard deviations).
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False Discovery Rate

• There are a series of False Discovery Rate

(FDR) methods that provide good protection

but are more sensitive than the Bonferroni

Method.
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• If there are 10,000 genes and 500 are

identified by a 5% FDR method, then

approximately 95% of these 500 will be really

different and no more than about 5% of them

will be false discoveries. This means that only

about 25 of the 500 will be false leads.
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Experimental Design

• Often investigating multiple factors in the

same experiment is better. We can use a full

factorial design (all possible combinations) or

a fractional factorial. Fractional factorial

designs can investigate as many as 7 factors

in 8 experiments, each one with the full

precision of a comparison of 4 vs. 4.
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• Consider a study of the response of mice to a

toxic insult. We can examine 2 ages of mice,

2 sexes, treatment and control, for a total of

eight conditions. With 2 mice per condition,

we are well placed to investigate even complex

relationships among the three factors.

• Two color arrays generate more complexity in

the design, with possible dye bias, and with

the most accurate comparisions being between

the two samples on the same slide.



The Analysis of Variance

• The standard method of analyzing designs

with categorical variables is the analysis of

variance (ANOVA).
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• The basic principle is to compare the

variability of group means with an estimate of

how big the variability could be at random,

and conclude the difference is real if the ratio

is large enough.

• Consider an example with four groups and two

measurements per group.

21



Example Data

Group Sample 1 Sample 2 Mean

A 2 4 3

B 8 10 9

C 14 16 15

D 20 22 21
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• The variabiliy among the four group means is

120 (Mean Square for groups). This has three

degrees of freedom.

• The variability within groups is 2 (Mean

Square Error or MSE). This has four degrees

of freedom.
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• The significance of the ratio uses the F

distribution. The more df in the MSE, the

more sensitive the test is.

• The observed F ratio of 120/2 = 60 is highly

significant. If there were no real difference,

the F ratio would be near 1.
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Measurement Scales

• Standard statistical methods are additive: we

compare differences of means.

• Often with gene expression data and other

kinds of assay data we prefer ratios to means.
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• This is equivalent to taking logarithms and

using differences.

log(x/y) = log(x) − log(y)

• In general, we often take logs of data and

then use regression, ANOVA and other

standard (additive) statistical methods.

High-throughput assay data require some

alteration in this method.
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Variation in Microarry and other Omics Data

Some well known properties of measurement

error in gene expression microarrays: include the

following:

• For high gene expression, the standard

deviation of the response is approximately

proportional to the mean response, so that

the CV is approximately constant.
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• For low levels of expression, the CV is much

higher.

• Expression is commonly analyzed on the log

scale, so that for high levels the SD is

approximately constant, but for low levels of

expression it rises.
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• Comparisons of expression are usually

expressed as n-fold, corresponding to the ratio

of responses, of which the logarithm would be

well behaved, but only if both genes are highly

expressed.

• These phenomena occur in many

measurement technologies, but are more

important in high-throughput assays like

microarrays.
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• What is the fold increase when a gene goes

from zero expression in the control case to

positive expression in the treatment case?

• Which is biologically more important: an

increase in expression from 0 to 100 or an

increase from 100 to 200?
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Variance Model for Gene Expression

and other Omics Data

At high levels, the standard deviation of

replicates is proportional to the mean. If the

mean is µ, then this would be

SD(y) = bµ

Var(y) = b2µ2
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• But this cannot hold for unexpressed genes, or

in general for assays where the true

concentration is 0.

• So a reasonable model for the variance of

microarray data is

Var(y) = a2 + b2µ2

(Rocke and Durbin 2001).
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Often, the observed intensity (peak area, etc.)

needs to be corrected for background or baseline

by subtraction of the average signal α

corresponding to genes unexpressed (compounds

not present) in the sample. This may be a single

number, a single number per slide, or a more

complex expression. This can be estimated from

negative controls or by more complex methods.
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So if y is the signal, and z = y − α is the

background corrected signal, our mean/variance

model is

E(z) = µ

V (z) = a2 + b2µ2

It can be shown that

Var{ln(y − α)} ≈ σ2
η + σ2

ε /µ2.
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An Example

We illustrate this with one slide from an

experiment on the response of male Swiss

Webster mice to a toxic substance. The treated

animal received 0.15mg/kg ip of

Naphthoflavone, while the control mouse had an

injection of the carrier (corn oil). Genes were

replicated usually eight times per slide.
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Data Transformation

• Logarithms stabilize the variance for high

levels, but increase the variance for low levels.

• Log expression ratios have constant variance

only if both genes are expressed well above

background.
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• Heterogeneity of variance is an important

barrier to reliable statistical inference

• Such heterogeneity is common in biological

data, including gene expression data
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• Data transformations are a well-known way of

dealing with this problem

• We present a new transformation family that

is expressly designed for biological data, and

which appears to work very well on gene

expression data
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• The logarithm is designed to stabilize data

when the standard deviation increases

proportional to the mean.

• When the data cover a wide range down to

zero or near zero, this transformation

performs poorly on low level data. This does

not mean that these data are “bad” or “highly

variable” or “unreliable”. It only means that

we are using the wrong transformation or

measurement scale.
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The generalized logarithm reproduces the

logarithm at high levels, but behaves better at

low levels. One way to express it is

f(z) = ln(z +
√
z2 + a2/b2)

where z is the background-corrected intensity.

(Durbin, Hardin, Hawkins, and Rocke 2002;

Hawkins 2002; Huber, von Heydebreck,

Sültmann, Poustka, and Vingron 2002; Munson

2001)
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f(z) = ln(z +
√
z2 + a2/b2)

• f(z) ∼ ln(z) for large z.

• f(z) is approximately linear for z = 0.

• f(z) is monotonic (does not change the order

of size of data).
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Estimation

This transformation has one parameter that

must be estimated, as well as the background.

We can do this in various ways.

hλ,α(y) = ln
(
y − α +

√
(y − α)2 + λ

)
.
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• We can background correct beforehand, or

estimate the background and transformation

parameter in the same step.

• We can estimate λ = a2/b2 by estimating the

low-level variance a2 and the high-level square

CV b2, and take the ratio.
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• We can estimate the parameters in the

context of a model using standard statistical

estimation procedures like maximum

likelihood.

• We can estimate the transformation each

time, or use values estimated with a given

technology in a given lab for further

experiments.
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This helps solve the puzzle of comparing a

change from 0 to 40 to a change from 1000 to

1600. Suppose that the standard deviation at 0

is 10, and the high-level CV is 15%. Then

• A change from 0 to 40 is four standard

deviations (4 × 10 = 40 = 40 − 0).

• A change from 1000 to 1600 is also four

standard deviations

(1600/1000 = 160% = increase of 4 × 15%).
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• So is a change from 10,000 to 16,000

(16,000/10, 000 = 160% =

increase of 4 × 15%).

• The biological significance of any of these is

unknown. Different transcripts can be active

at vastly different levels.

• But the glog transformation makes an equal

change equally statistically significant.
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Normalization and Transformation of Arrays

Given a set of replicate chips from the same

biological sample, we can simultaneously

determine the transformation parameter and the

normalization.
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The statistical model used is

hλ,α(intensity) = gene + chip + error

and we can estimate the transformation, the

gene effects, and the normalization together.
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Two color Arrays

We wish to model two-color arrays so that after

transformation the model is linear. We have a

red and a green reading from each spot. Our

transformation model is as follows:
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hλ,α(red intensity) = red gene + chip

= + spot + red error

hλ,α(green intensity) = green gene + chip

= + spot + green error
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hλ,α(red intensity) − hλ,α(green intensity) =

red gene − green gene + errors
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• hλ,α(red) − hλ,α(green) looks like the log ratio

at high levels, but makes sense also at low

levels. We call this a generalized log ratio.

• Can solve iteratively for the transformation

parameters and the gene and slide effects, for

example by maximum likelihood.
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• Dye swap designs remove one source of bias.

• Exercise flexibility in choice of two types of

samples (e.g., loop designs).
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Determining Differentially Expressed Genes

Consider an experiment on four types of cell

lines A, B, C, and D, with two samples per type,

each of the eight measured with an Affymetrix

U95A human gene array. We have a measured

intensity for each gene for each sample (array) in

each group. The measured expression is derived

from the mean glog-transformed PM probes.
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Steps in the Analysis

• Background correct each array so that 0

expression corresponds to 0 signal.

• Transform the data to constant variance using

a suitably chosen glog or alternative

transformation (started log, hybrid log).

• Normalize the chips additively.
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• The transformation should remove systematic

dependence of the gene-specific variance on

the mean expresssion, but the gene-specific

variance may still differ from a global average.

Estimate the gene-specific variance using all

the information available.

• Test each gene for differential expression

against the estimate of the gene-specific

variance. Obtain a p-value for each gene.
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• Adjust p-values for multiplicity using, for

example, the False Discovery Rate method.

• Provide list of differentially expressed genes

• Investigate identified genes statistically and by

biological follow-up experiments.
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Structure of Example Data

Gene Group 1 Group 2 Group 3 Group 4

ID 1 2 3 4 5 6 7 8

1 y111 y112 y123 y124 y135 y136 y147 y148

2 y211 y212 y223 y224 y235 y236 y247 y248

3 y311 y312 y323 y324 y335 y336 y347 y348

4 y411 y412 y423 y424 y435 y436 y447 y448

5 y511 y512 y523 y524 y535 y536 y547 y548

... ... ... ... ... ... ... ... ...
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The model we use is

hλ,α(intensity) = gene+chip+gene-by-group+error

For a given gene, this model is

z = group + error

where z is the transformed, chip-normalized data

for the given gene. (Kerr, Martin, and Churchill

2001; Kerr 2003)
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• We estimate all the parameters by normal

maximum likelihood, including the

transformation, and possibly the background

correction.

• Some care must be taken in the computations

to avoid computer memory problems.

74



• We can test for differential expression for a

given gene by analyzing the transformed,

normalized data in a standard one-way

ANOVA.

• We can use as a denominator the

gene-specific 4df MSE from that ANOVA.

This is valid but not powerful.

• We can use the overall 50,493df MSE as a

denominator. This is powerful, but risky.
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• The F statistics should be large if a significant

effect exists, and near 1 if no significant effect

exists.

• If very small F statistics occur, it means

something is wrong.
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• As an alternative, we can use a model that

says that the variation in different genes is

similar but not identical. The model that

assumes the variation to be identical is not

tenable in this data set (Wright and Simon

2003; Churchill 2003; Rocke 2003; Smyth

2004).

• Note that we have removed any trend in the

variance with the mean. What is left is

apparently random.
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• The posterior best estimate MSE is a

weighted average of the gene-specific MSE

(with weight 4/8.6) and the global estimate

(with weight 4.6/8.6) and has 8.6 degrees of

freedom. The weights depend on the data set.
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“5% Significant” Genes by Several Methods

MSE Source TWER FWER FDR

Gene-Specific 2054 0 0
Global 4215 1029 2693
Posterior 2804 48 866

82



Metabolomics by NMR Spectroscopy

• Proton NMR spectroscopy produces a

spectrum in which peaks correspond to parts

of molecules.

• This can be used for single compounds to

determine the structure.
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• Compounds often have specific signatures, so

this can be used for compound identification

(particularly by 2D NMR).

• For metabolomics work, one can use patterns

in the spectra for discrimination/classification,

and to identify regions of the spectrum which

carry the discrimination information.
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• Spectra need to be baseline corrected and

peaks need to be aligned

• The peaks are of widely varying magnitudes,

and some of the data are negative.

• The glog is a plausible transformation to help

in the analysis of these data.
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Variance Behavior of NMR Spectra

• We show an example spectrum of 65,536

points.

• We divide this into 8,192 bins of 8 points each

and compute the mean and standard deviation

within each bin.
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A model for the spectrum is

yi = bi + µie
η + εi

Where bi is the baseline, not presumed to be flat,

µi is the true signal, and εi and ηi are

measurement errors, not necessarily independent

across nearby points.

88



89



90



91



92



Baseline Estimation

• The baseline in NMR is arbitrary and needs to

be removed before analysis, just as in mass

spec.

• The baseline is less well behaved than for

mass spec
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Conclusion

• Gene expression microarray and other omics

data present many interesting challenges in

design and analysis of experiments.

• Statistical lessons from years of experience

with laboratory, clinical, and field data apply

with some modification to expression data,

proteomics data, and metabolomics data.
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• A properly chosen transformation can stabilize

the variance and improve the statistical

properties of analyses.

• Slide normalization and analysis of two-color

arrays is made easier by this transformation.

• Other statistical calculations such as the

analysis of variance that assume constant

variance are also improved.
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• After removal of systematic dependence of

the variance on the mean, the remaining

sporadic variation in the variance can be

accounted for by a simple method.

• These methods can be applied to other types

of data such as proteomics by mass spec and

NMR spectroscopy metabolomics. The

variables measured are a large number of peak

heights or areas, or a large number of binned

spectroscopic values
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• “If your experiment needs statistics, you

ought to have done a better experiment,”

(Ernest Lord Rutherford).

• Lord Rutherford to the contrary

notwithstanding, if you need statistics, you

may indeed be doing the right experiment.

• Papers are available at

www.cipic.ucdavis.edu/∼dmrocke or by mail

and e-mail.
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