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Abstract

In classical statistics the likelihood ratio statistic used in testing hypotheses about covariancematri-
ces does not have a closed form distribution, but asymptotically under strong normality assumptions
is a function of the�2-distribution. This distributional approximation totally fails if the normality
assumption is not completely met. In this paper we will present multivariate robust testing procedures
for the scatter matrix� using S-estimates. We modify the classical likelihood ratio test (LRT) into
a robust LRT by substituting the robust estimates in the formula in place of classical estimates. A
nonlinear formula is also suggested to approximate the degrees of freedom for the approximated
Wishart distribution proposed for S-estimates of the shape matrix�. We present simulation results to
compare the validity and the efficiency of the robust likelihood test to the classical likelihood test.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The estimation of covariance matrices may be called the key step to multivariate analy-
sis. Robust estimators of these matrices open the door to the robustification of classical
normal-theory multivariate procedures. The development of testing procedures for the
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multivariate shape parameter is one of the most difficult problems in robust statistics. In
classical theory, the likelihood ratio test (LRT) is the most commonly used test in the mul-
tivariate case because of its general asymptotic chi-square property. The LRT is based on
the sample covarianceSwhich is described by the Wishart distribution(Wp(�, n − 1)),
provided that the samples are fromNp(�,�). This test is not at all robust. The type-I error of
the LRT is very sensitive to distributional assumptions. One way to decrease the sensitivity
of the LRT to distributional assumptions is to replace the sample covariance with some high
quality robust estimate of the covariance matrix for multivariate normals.
S-estimators are highly resistant to outliers and give essentially the same values as the

usual analysiswhen therearenooutliers.Oneof theplausibledistributionsonecould thinkof
to describe the S-estimate of shapematrix of multivariate normal is theWishart distribution.
The analogous behavior of S-estimators to the sample covarianceSwith reference to its
distribution and asymptotic unbiasedness led us to think about the development of a robust
likelihood ratio test (RLRT) based on the S-estimate. In this paper we develop a RLRT for
the following test on covariance matrices of a multivariate normal:

H0 : �1 = �2 = · · · = �r .

1.1. Definition: LRT

If the distribution of the random sampleX= (x1, x2, . . . , xn)
′ depends upon a parameter

vector�, and if H0 : � ∈ �0 and Ha : � ∈ �1 are any two hypotheses, then the likelihood
ratio (LR) statistic for testing H0 against Ha is defined as:

�(x) = L∗
0/L

∗
1,

whereL∗
i is the largest value which the likelihood function takes in region�i , i = 0,1.

The LRT of size� for testing H0 against Ha has as its rejection region

R = {x|�(x)< c}, (1.1)

wherec is determined so that

sup
�∈�0

P�{x ∈ R} = �. (1.2)

For the hypotheses we are interested in, the distribution of� does not in fact depend on the
particular value of� ∈ �0, so the supremum is unnecessary.
In general the exact density functions of LR statistics in multivariate analysis are so

complicated that they appear to be of limited usefulness except for some special cases for
which the distribution is quite tractable (Muirhead, 1982). The LRT has a very important
asymptotic property given in following result:

If �1 is a region inRq and if �0 is an r-dimensional subregion of�1, then under
suitable regularity conditions for each� ∈ �0, −2 log� has an asymptotic�2q−r

distribution asn → ∞.

LR statistics are based on maximum likelihood estimators. The MLE of� and� for
Np(�,�) are the sample covariance matrixS and sample mean̄X. These estimates are
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very sensitive to outliers and long tail distributions. This makes the LR statistic also non-
robust to outliers besides its sensitivity to the distribution. A simple way to robustify the
statistic is to replace the nonrobust estimate with a high quality robust estimate. A basic
criterion for a good robust estimator is its high breakdown and equally good behavior with
uncontaminated data sets.

2. S-estimates

S-estimators originated in the regression context (Rousseeuw and Yohai, 1984) as a
constraint optimization problem. Later, they were applied to the multivariate scale and
location estimation problem (Davies, 1987). Lopuhaä showed that an S-estimate of location
and scale is a typeof constrainedM-estimate (Lopuhaä, 1989).AnS-estimate ofmultivariate
location and shape is defined as follows:

2.1. Definition (Rousseeuw andYohai, 1984)

Let � : R+ → R+ be a twice continuously differentiable, symmetric, nondecreasing
function which has�(0) = 0 and is constant at�(x) = �(c) for all x�c. Given a data set
of n points inRp, let the S-estimator,(�̃, �̃), be defined by minimizing|�̃| subject to

n−1
∑
i

�(di) = b0,

where

d2i = (xi − �)t�−1(xi − �)

andb0 = E(�(d)) with d ∼ N(0,1). Choice ofc depends on the desired breakdown point
for the estimate.
Wechose to use the translated biweight (t-biweight) ofRocke (1996)to provide the lowest

sensitivity to outliers for a given breakdown point. Following is the t-biweight function:
Translated-Biweight(a,b) (Rocke, 1996):

�tb =



d2

2
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2.2. Definitions: asymptotic rejection point (Rocke, 1996)

Consider a redescending M- or S-estimator, in whichc0 = inf {d0 ‖ 	(d) = 0,∀d�d0},
where	=
(d)/d and
=��(d)/�(x). The asymptotic rejection probability (ARP) of this
estimator is then defined as the probability in a large sample under a reference distribution
(usually multivariate normal) that the Mahalanobis distance exceedsc0. If the estimator is
normed, the ARP is 1− F�2(p)(c

2
0), whereF is

F(x) = Pr{(X − �)T�−1(X − �)�x} (2.1)

andp is the dimension of data matrixX.
The ARP gives the percentage of data points that would be given zero weight if in fact

the data were uncontaminated (i.e. distributed multivariate normal). It is clear that we can
choosec0 to give any value for the ARP, but manipulating the value of the ARP will also
change the breakdown of the estimator.
Though we are not constrained by only one parameter, not every combination of break-

down and ARP is possible with the t-biweight. Our programs are set to have the maximum
breakdown, and the user is able to choose the ARP. If the user chooses an ARP that is too
large, the parameterb is reduced, and asb → 0 the limit of the t-biweight is theWinsorized
squares estimator. If the user chooses an ARP that is too small, the parametera is reduced,
and asa → 0, the limit of the translated biweight is the biweight estimator. Using the t-
biweight, the two parametersaandbcan be chosen to give the desired breakdown andARP
subject to the estimator changing in the limit. In other words, given a particular breakdown
point, the ARP of the t-biweight cannot be larger than that of the least Winsorized squares
estimator or smaller than that of the biweight estimator (Rocke, 1996).
With the t-biweight function beyonda + b, data point will be given zero weight in the

estimating equations. The valueawill be calculated to give the correct breakdown. In this
work we setr = (n − p)/2n, as this allows for the breakdown possible for S-estimators.

3. Distribution of S-estimates of� in Np(�,�)

Lopuhaä (1989) andDavies (1987)derived theasymptotic distributions ofS-estimators of
location and the shapematrix for multivariate normal. The main objective of this paper is to
develop the testing procedures for the scatter parameter� using its S-estimate for a data set
of given dimensionn×p. This requires some knowledge about the distributional properties
of this estimate. In the univariate case the simulation results showed that S-estimates of the
dispersion parameter forN(0,�2) can be approximated by a scale adjusted�2 distribution
with specified degrees of freedom (Aslam and Rocke, 2003). One cannot immediately
generalize this for the higher dimensions. For small samples S-estimates behave equally
well as the classical estimate when the underlying distribution is uncontaminated and the
asymptotic properties of S-estimate for� are comparable with the asymptotic properties
of its classical estimate. This led us to think that similar to the classical sample covariance
matrix a scale adjusted Wishart distribution is indeed the most plausible candidate to be
considered for the approximate distribution of an S-estimate of such type of parameter
when the underlying distribution is multivariate normal. That is, for a sample data matrix
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Xn×p fromNp(0,�), mStb may approximately followcWp(�,m), wherec is a constant
satisfying

E(Stb) = c� (3.1)

(which holds for somec becauseStb is an affine equivariant shape estimate of� (Tyler,
1983)), andmis the degrees of freedom.UsingMardia et al. (1997)the relationship between
the chi-square andWishart distributions implies.

mc−1sii ∼ �2m�2ii , (3.2)

wheresii and�ii are the diagonal elements ofStb and�, respectively. Since the estimators
are affine equivariant, we can assume that the data came fromNp(0, I ) and therefore�ii =1
and the diagonal elements are identically distributed (Grübel and Rocke, 1990). Stb is an
affine equivariant estimator, so the distribution of it will have the sameWishart degrees of
freedom for any�. Therefore, the estimates ofc andm in theNp(�,�) case will be the
same as the estimates ofc andm in theNp(0, I ) case.

3.1. Estimation of constants m and c

Now to approximate a distribution forStb for small samples the constantsc andmhave
to be estimated correctly. UsingHardin’s (2000)method of moments identification, the
estimates ofmandc are determined by first two moments

m̂ = 2/ĈV , (3.3)

ĉ = 1/p
p∑

i=1

sii , (3.4)

where ĈV is the estimated coefficient of variation of the diagonal elements of an
S-estimate of the shape matrix. Since S-estimates of the covariance matrix are scaled to
be consistent for the population covariance (under the multivariate normality assumption)
(Davies, 1987), consistency gives us asymptotic unbiasedness, so asymptoticallyĉ = 1.
Thus, only the second moment is needed to find the desired degrees of freedom. Therefore,

m̂ = 2/ ̂V ar(sii), (3.5)

where ̂V ar(sii) is the estimated variance of the diagonal elements of an S-estimate of the
covariance matrix�.
We can estimate the variance in two ways: through simulation and through an asymp-

totic formula (Lopuhaä, 1989;Davies, 1987). Since the diagonal elements are identically
distributed and uncorrelated, we can simulateN = 1000 copies of thep × p S-estimate
of shape matrix from then data points in each sample and then estimatem̂ by using the
variance of theNpdiagonal elements. Lopuhaä (1989) derived the value of variance of the
diagonal elements under standard multivariate normality as

V ar[sii] = 2�1 + �2
n

, (3.6)



868 S. Aslam, D.M. Rocke / Computational Statistics & Data Analysis 49 (2005) 863–874

where

�1 = p(p + 2)E0,I [
2(‖ X ‖) ‖ X‖2]
E0,I [
′(‖ X ‖) ‖ X‖2 + (p + 1)
(‖ X ‖) ‖ X ‖] , (3.7)

�2 = −2/p�1 + 4E0,I [(�(‖ X ‖) − b0)
2]2

E0,I [
(‖ X ‖) ‖ X ‖] , (3.8)

b0 = E0,I [� ‖ X ‖], (3.9)

whereE0,I is the expectation under standard multivariate normality, and‖ X ‖ is the norm
of a vectorX in Rp.

3.2. Empirical degrees of freedom for S-estimators

It will make no difference in the results if we use the asymptotic degrees of freedom
instead of simulated ones to approximate the Wishart distribution forStb provided that
the sample size is very large. But for small samples the actual and asymptotic degrees
of freedom are quite far apart. The simulation is not an easy job particularly in higher
dimensions. Therefore, it is good to have a handy mathematical model to approximate the
degrees of freedom in real life situation. The simulation study showed that the degrees
of freedom estimated by the simulation gets closer and closer to the ones computed by
asymptotic variances but never exceed it asn andp get large. These observations from the
simulated and asymptotic values of the degrees of freedom led us to develop an empirical
relationship of the actual degrees of freedom with the asymptotic variance,n (sample size)
andp (dimension of the data). The following non-linear models fits well:

msimulated

masymptotic
= 1± � exp(�n + 
p). (3.10)

The values of�, � and 
 were estimated by fitting the nonlinear regression curve to
the simulated and asymptotic degrees of freedoms for different values ofn andp. The non-
linear equation (3.10) is first linearized by using Taylor’s expansion of exp(x) and can be
written as

msimulated

masymptotic
≈1± �(1+ �n + 
p)

≈ 1± (� + ��n + �
p).

The initial estimates of�, � and
 were obtained by fitting the linear regression to the data
and using the formulas

intercept= 1± �̂start,

�̂start=
coefficient onn

�̂start
,


̂start=
coefficient onp

�̂start
.
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Using the nonlinear regression function fromS-pluswe got the following fit to the simulated
data with 3% residual standard error:

msimulated

masymptotic
≈ (1− 0.449 exp(−0.00078n − 0.17128p)).

The above estimated non-linear regression is based on the values ofn ranges between
10 and 500 for values ofp ranges between 2 and 10. It is a fact that simulation is time
consuming especially in high dimensions. Once a computer code is available for computing
theasymptoticdegreesof freedomonanycomputerpackage (S-plus,Fortran,Mathematica),
one could get an approximate degrees of freedom for given values ofnandp. For simplicity
of notation the author used in rest of the paper� instead ofmsimulatedto get the empirical
number of degrees of freedom.

� ≈ masymptotic(1− 0.449 exp(−0.00078n − 0.17128p)). (3.11)

4. RLRT

One of the reasons for the lack of robustness of the LRT is related to the poor robustness
property of the sample covariance matrix as an estimate of the scatter matrix. This suggests
that replacing the sample estimateS by a robust estimate of the shape matrix in the LR
statistic will produce a test with less sensitivity to the distributional assumptions.

4.1. Testing equality of covariance matrices

In this section we consider testing the null hypothesis that the covariance matrices ofr
multivariate normal distributions are equal, given independent samples from theser popu-
lations. LetXi1, . . . , Xini be independentNp(�i ,�i ) random vectorsi = 1,2, . . . , r and
consider the null hypothesis

H0 : �1 = · · · = �r

against the alternative Ha which says that H0 is not true. Under H0 the common covari-
ance matrix is unspecified. The assumption of equal covariance matrices is important in
multivariate analysis of variance and discriminant analysis.
The classical modified LR statistic, suggested byBartlett (1937)for r = 2, is defined as

� = (|S1|)n1/2(|S2|)n2/2
(|n1S1+n2S2

n1+n2
|)(n1+n2)/2

. (4.1)

This LR statistic was obtained by working with the likelihood function of�1 and�2
specified by the joint marginal density function ofn1S1 andn2S2 ( a product ofWishart dis-
tribution), rather than the likelihood function specified by the original normally distributed
variables. The modified LRT then rejects H0 : �1 = �2 for small values of� . The un-
biasedness of this test was established in the univariate casep = 1 byPitman (1939). For
r = 2, this test is a uniformly most powerful unbiased test. The unbiasedness for generalp
andr was proved byPerlman (1980).
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The asymptotic distribution for−2� log � , can be expanded for largeM = �n
(Muirhead, 1982) as

P(−2� log � �x)=P(�2f �x) + 
/M2[P(�2f+4�x)

− P(�2f �x)] +O(M−3), (4.2)

where

n = n1 + n2,

f = p(p + 1)(r − 1)/2,

� = 1− (2p2 + 3p − 1)

6(p + 1)(r − 1)n

((
r∑

i=1

1/ki

)
− 1

)
,

ki = ni∑r
i=1ni

,


 = M2	2,

	2 = p(p + 1)

48(n�)2

[
(p − 1)(p − 2)

((
r∑

i=1

1/k2i

)
− 1

)
− 6(r − 1)[n(1− �)]2

]
.

Earlier we mentioned that the Wishart distribution is the most plausible distribution
to describe S-estimates of the shape matrix of the multivariate normal distribution. This
conjecture along with the fact that the derivation of the classical LR statistic�∗ involves
the product of two Wishart distributions associated with the sample covariance matrix
motivated us to derive a robust modified LR statistic by replacing sample covariancesSi

with S-estimatesS(i)
tb andni with the corresponding degrees of freedom�i , i.e.

� 
R = (|S(1)

tb |�1/2|S(2)
tb |�2/2

| �1S
(1)
tb +�2S

(2)
tb

�1+�2
|(�1+�2)/2

, (4.3)

where�i ’s are the empirical degrees of freedom. When the null hypothesis H0 : �1 = �2
is true the distribution of−2� log� 

R can be expanded for largeM = �n by Eq. (4.2) Of
course the values of
 andM depend on�i instead ofni , wherei = 1,2.

4.2. Results

First, we obtained the upper 5% and 1% critical values for different combinations ofp ∈
(2,4,6) and(n1, n2) ∈ {(20,20), (20,50), (100,50), (500,500)} using the approximate
equation (4.2). Itwas found that thecritical valuesarevery comparable for the threemethods.
In higher dimension the critical values get close for these three estimates as the sample size
gets large.
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Table 1
The table contains critical values using the simulated degrees of freedom for(Stb), the empirical degrees of
freedom(S̃tb)

(n1, n2) � Estimates p

2 4 6

(20,20) 1% Stb 13.572 28.488 49.148
S̃tb 11.895 26.400 45.890
S 12.023 26.243 47.118

5% Stb 9.476 22.473 41.222
S̃tb 8.560 20.947 38.584
S 8.286 20.698 39.522

(20,50) 1% Stb 13.084 26.968 46.322
S̃tb 11.783 24.399 46.322
S 11.845 25.407 44.760

5% Stb 9.017 21.252 38.842
S̃tb 8.137 19.250 34.790
S 8.160 20.034 37.540

(100,50) 1% Stb 11.895 24.520 41.873
S̃tb 11.572 23.782 40.150
S 11.541 24.034 41.029

5% Stb 8.195 19.340 35.134
S̃tb 7.975 18.761 33.693
S 7.951 18.958 34.430

(500,500) 1% Stb 11.405 23.362 39.268
S̃tb 11.384 23.313 39.154
S 11.367 23.307 39.179

5% Stb 7.857 18.429 32.954
S̃tb 7.843 18.390 32.859
S 7.831 18.386 32.880

Classical LR statistic is used for computing values corresponding to sample covariance (S).

To examine the performance of the robust LR statistic for uncontaminated data we
drew 1000 Monte Carlo data sets fromNp(0, I ) for each of the different combinations
of (n1, n2) ∈ {(20,20), (20,50),(100,50), (500,500)} andp ∈ (2,4,6). The S-estimates
of the covariancematrix and corresponding degrees of freedomwere obtained for each sam-
ple. Table 2contains the simulated type-I error probabilities using the respective critical
values fromTable 1.
The coverage probabilities corresponding to degrees of freedomn1 − 1 andn2 − 1 and

corresponding to degrees of freedom�1 and�2 are very comparable. No specific pattern
was observed with largen andp. This means the robust LR statistic based on S-estimates
performs equally well as the non-robust one. No significant difference was observed in
the performance of the robust LR statistic when empirical degrees of freedom were used.
This implies we do not need to always simulate the degrees of freedom to approximate the



872 S. Aslam, D.M. Rocke / Computational Statistics & Data Analysis 49 (2005) 863–874

Table 2
Each entry corresponding toStb andS̃tb is computed using the robust version of LR statistic with simulated degrees
of freedom and with empirical degrees of freedom, respectively. Each entry corresponding toS is computed by
the classical LR statistic

(n1, n2) � Estimates p

2 4 6

(20,20) 1% Stb 0.024 0.058 0.017
S̃tb 0.050 0.058 0.012
S 0.019 0.009 0.009

5% Stb 0.074 0.138 0.057
S̃tb 0.110 0.139 0.046
S 0.059 0.043 0.046

(20,50) 1% Stb 0.025 0.048 0.024
S̃tb 0.039 0.048 0.016
S 0.007 0.006 0.010

5% Stb 0.071 0.116 0.177
S̃tb 0.103 0.110 0.063
S 0.046 0.042 0.041

(100,50) 1% Stb 0.013 0.015 0.019
S̃tb 0.012 0.010 0.019
S 0.008 0.012 0.013

5% Stb 0.064 0.055 0.062
S̃tb 0.060 0.042 0.066
S 0.052 0.050 0.067

(500,500) 1% Stb 0.012 0.008 0.010
S̃tb 0.011 0.002 0.008
S 0.012 0.008 0.010

5% Stb 0.043 0.033 0.038
S̃tb 0.041 0.029 0.038
S 0.061 0.047 0.048

Critical values are used fromTable 1.

distribution of the S-estimates of� for any real data set. The empirical degrees of freedom
perform equally well.
The reason we developed a robust test statistic is to deal with the situation when the

underlying assumption of normality for using the Bartlett test statistic is not met. Therefore,
we would like to examine next the performance of the RLRT when the underlying data set
is not exactly normal. Again 1000 Monte Carlo data sets were drawn from contaminated
normal for different combinations of(n1, n2) ∈ {(20,20), (20,50), (100,50), (500,500)}
andp ∈ (2,4,6). Each data set of sizen consists of 90% data fromNp(0, I ) and 10%
data fromNp(0,5I ). Table 3contains the simulated rejection probabilities for RLRT using
simulated and empirical degrees of freedom and the simulated rejection probabilities for the
classical LRT. It is observed that the LRT performance becomesworsewith largep, whereas
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Table 3
This table contains simulated rejection probabilities at nominal�=1% and 5% using the respective critical values
in Table 1when the underlying population is contaminated normal, i.e. 90% of a sample is fromNp(0, I ) and
10% fromNp(0,5I )

n � Estimates p

2 4 6

(20,20) 1% Stb 0.013 0.074 0.032
S̃tb 0.022 0.074 0.020
S 0.461 0.822 0.934

5% Stb 0.056 0.162 0.112
S̃tb 0.093 0.162 0.065
S 0.627 0.915 0.975

(20,50) 1% Stb 0.015 0.053 0.037
S̃tb 0.022 0.049 0.024
S 0.499 0.880 0.983

5% Stb 0.053 0.131 0.116
S̃tb 0.074 0.125 0.084
S 0.682 0.954 0.997

(100,50) 1% Stb 0.007 0.022 0.064
S̃tb 0.007 0.012 0.026
S 0.544 0.945 0.998

5% Stb 0.063 0.070 0.085
S̃tb 0.059 0.050 0.081
S 0.693 0.975 0.999

(500,500) 1% Stb 0.006 0.012 0.013
S̃tb 0.006 0.012 0.013
S 0.559 0.943 0.999

5% Stb 0.037 0.045 0.050
S̃tb 0.035 0.043 0.050
S 0.702 0.974 1.00

Each entry corresponding toStb is based on simulated degrees of freedom. Each entry corresponding toS̃tb is
based on empirical degrees of freedom.

the RLRT behaves very well compared to the LRT, and its performance does not vary with
large values ofp andn. The results from the empirical degrees of freedom compare well
with the simulated results. This paper has presented the robustness of RLRT only under
5% contamination to avoid the paper to become too lengthy. The author found quite similar
results on other percentages of contamination.

5. Conclusion

Testing the dispersion matrix in multivariate analysis is not an easy task in classical
statistics even if the distributional assumptions are met. It becomes even harder if the
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distributional assumptions are not satisfied and these are suspected outliers in the data.
Because of high robust qualities, the S-estimators were considered as a suitable replacement
for the sample variance. We assumed that the S-estimators of the covariance matrix under
the multivariate normal distribution are approximately distributed as Wishart with degrees
of freedom that depend on the dimension of the data and the sample size. A nonlinear
formula was developed to approximate the degrees of freedom for the proposed Wishart
distribution. This formula is an adjustment of the asymptotic degrees of freedom using the
sample size and the dimension of a data set for an approximate degree of freedom. The
two sample RLRT can easily be generalized for ther sample case. These two RLRTs give
values similar to the respective LRTs if the data are uncontaminated. The type-I error of
both the RLRT is highly insensitive to the distributional assumption irrespective of size of
the sample and dimension.

Appendix A. Simulation results

The critical values usingNp(0, I ) for testing the hypothesis H0 : �1 = �2 are given in
Table 1.
Simulated rejection probabilities for testing the hypothesis H0 : �1 = �2 are given in

Table 2.
Simulated rejection probabilities under the null hypothesis H0 : �1 = �2 when the

underlying populations are contaminated are given inTable 3.
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