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Abstract

In classical statistics the likelihood ratio statistic used in testing hypotheses about covariance matri-
ces does not have a closed form distribution, but asymptotically under strong normality assumptions
is a function of thexz-distribution. This distributional approximation totally fails if the normality
assumption is not completely met. In this paper we will present multivariate robust testing procedures
for the scatter matrix’ using S-estimates. We modify the classical likelihood ratio test (LRT) into
a robust LRT by substituting the robust estimates in the formula in place of classical estimates. A
nonlinear formula is also suggested to approximate the degrees of freedom for the approximated
Wishart distribution proposed for S-estimates of the shape matii¥e present simulation results to
compare the validity and the efficiency of the robust likelihood test to the classical likelihood test.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The estimation of covariance matrices may be called the key step to multivariate analy-
sis. Robust estimators of these matrices open the door to the robustification of classical
normal-theory multivariate procedures. The development of testing procedures for the
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multivariate shape parameter is one of the most difficult problems in robust statistics. In
classical theory, the likelihood ratio test (LRT) is the most commonly used test in the mul-
tivariate case because of its general asymptotic chi-square property. The LRT is based on
the sample covarianc@which is described by the Wishart distributiow, (X, n — 1)),
provided that the samples are fravi (u, X). This test is not at all robust. The type-I error of

the LRT is very sensitive to distributional assumptions. One way to decrease the sensitivity
of the LRT to distributional assumptions is to replace the sample covariance with some high
quality robust estimate of the covariance matrix for multivariate normals.

S-estimators are highly resistant to outliers and give essentially the same values as the
usual analysis whenthere are no outliers. One of the plausible distributions one could think of
to describe the S-estimate of shape matrix of multivariate normal is the Wishart distribution.
The analogous behavior of S-estimators to the sample covariawith reference to its
distribution and asymptotic unbiasedness led us to think about the development of a robust
likelihood ratio test (RLRT) based on the S-estimate. In this paper we develop a RLRT for
the following test on covariance matrices of a multivariate normal:

Hop:21=2=---=2,.
1.1. Definition: LRT

If the distribution of the random samplé= (x1, x2, . .., x,)’ depends upon a parameter
vectord, andifHy : 0 € Qo and H, : 8 € Q1 are any two hypotheses, then the likelihood
ratio (LR) statistic for testing blagainst H is defined as:

Ax) = Ly/L5,

whereL] is the largest value which the likelihood function takes in regipni =0, 1.
The LRT of sizex for testing iy against H has as its rejection region

R = {x|A(x) <}, (1.1)
wherec is determined so that

sup Pyp{x € R} =oa. (1.2)
0eQo

For the hypotheses we are interested in, the distributigndafes not in fact depend on the
particular value of) € Qp, so the supremum is unnecessary.

In general the exact density functions of LR statistics in multivariate analysis are so
complicated that they appear to be of limited usefulness except for some special cases for
which the distribution is quite tractabl&(irhead, 1982 The LRT has a very important
asymptotic property given in following result:

If Q1 is a region inR? and if g is anr-dimensional subregion d®;, then under
suitable regularity conditions for each € o, —2log/ has an asymptotiqﬁ,r
distribution as1 — oo.

LR statistics are based on maximum likelihood estimators. The MLE ahd u for
N,(u, 2) are the sample covariance matfxand sample meaX. These estimates are
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very sensitive to outliers and long tail distributions. This makes the LR statistic also non-
robust to outliers besides its sensitivity to the distribution. A simple way to robustify the
statistic is to replace the nonrobust estimate with a high quality robust estimate. A basic
criterion for a good robust estimator is its high breakdown and equally good behavior with
uncontaminated data sets.

2. S-estimates

S-estimators originated in the regression cont®ausseeuw and Yohai, 1984s a
constraint optimization problem. Later, they were applied to the multivariate scale and
location estimation problenD@vies, 198Y. Lopuhaé showed that an S-estimate of location
and scale is atype of constrained M-estimatgphad, 198p An S-estimate of multivariate
location and shape is defined as follows:

2.1. Definition (Rousseeuw and Yohai, 1984)

Letp : W™ — R be a twice continuously differentiable, symmetric, nondecreasing
function which hag(0) = 0 and is constant at(x) = p(c) for all x >c. Given a data set
of n points inR?, let the S-estimatoxji, 2), be defined by minimizing| subject to

n"t ) pdi) = bo,

where
d? = (xi — ' X Hxi — )

andbg = E(p(d)) withd ~ N (0, 1). Choice ofc depends on the desired breakdown point
for the estimate.
We chose to use the translated biweight (t-biweighBatke (1996)o provide the lowest
sensitivity to outliers for a given breakdown point. Following is the t-biweight function:
Translated-Biweighfa,b) Rocke, 199%

d2
> d<a,
a®  a?(a®* —54°p? + 15b%)
2 304
TEm at  a® L3 4a3
Pip = 2 " opd p2 32 34
3?2 1 d®4a  db
4
(G )~ i+ asdsath
2
a?  b(5b + 16a)
P T > .



866 S. Aslam, D.M. Rocke / Computational Statistics & Data Analysis 49 (2005) 863—-874
2.2. Definitions: asymptotic rejection point (Rocke, 1996)

Consider a redescending M- or S-estimator, in whigk= inf{dg || w(d) =0, Vd > dp},
wherew =y(d)/d andys=0dp(d)/0(x). The asymptotic rejection probability (ARP) of this
estimator is then defined as the probability in a large sample under a reference distribution
(usually multivariate normal) that the Mahalanobis distance excggdisthe estimator is
normed, the ARP is & F,z(, (c3), whereF is

F(x)=Pr{(X — 21X — p<x) (2.1)

andp is the dimension of data matrx

The ARP gives the percentage of data points that would be given zero weight if in fact
the data were uncontaminated (i.e. distributed multivariate normal). It is clear that we can
choosecg to give any value for the ARP, but manipulating the value of the ARP will also
change the breakdown of the estimator.

Though we are not constrained by only one parameter, not every combination of break-
down and ARP is possible with the t-biweight. Our programs are set to have the maximum
breakdown, and the user is able to choose the ARP. If the user chooses an ARP that is too
large, the parametéris reduced, and ds— 0 the limit of the t-biweight is the Winsorized
squares estimator. If the user chooses an ARP that is too small, the paramsetztuced,
and asu — 0, the limit of the translated biweight is the biweight estimator. Using the t-
biweight, the two parameteesandb can be chosen to give the desired breakdown and ARP
subject to the estimator changing in the limit. In other words, given a particular breakdown
point, the ARP of the t-biweight cannot be larger than that of the least Winsorized squares
estimator or smaller than that of the biweight estimaRwcke, 199%

With the t-biweight function beyond + b, data point will be given zero weight in the
estimating equations. The valaewill be calculated to give the correct breakdown. In this
work we setr = (n — p)/2n, as this allows for the breakdown possible for S-estimators.

3. Distribution of S-estimates of in N,(u, X)

Lopuhad (1989) andavies (1987ylerived the asymptotic distributions of S-estimators of
location and the shape matrix for multivariate normal. The main objective of this paper is to
develop the testing procedures for the scatter paramaising its S-estimate for a data set
of given dimensiom x p. This requires some knowledge about the distributional properties
of this estimate. In the univariate case the simulation results showed that S-estimates of the
dispersion parameter fo¥ (0, ¢2) can be approximated by a scale adjustédistribution
with specified degrees of freedorAglam and Rocke, 20030ne cannot immediately
generalize this for the higher dimensions. For small samples S-estimates behave equally
well as the classical estimate when the underlying distribution is uncontaminated and the
asymptotic properties of S-estimate frare comparable with the asymptotic properties
of its classical estimate. This led us to think that similar to the classical sample covariance
matrix a scale adjusted Wishart distribution is indeed the most plausible candidate to be
considered for the approximate distribution of an S-estimate of such type of parameter
when the underlying distribution is multivariate normal. That is, for a sample data matrix
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X, xp from N, (0, 2), mS;, may approximately followeW , (2, m), wherec is a constant
satisfying

E(Syp) =cZ (3.1)

(which holds for some becauses;;, is an affine equivariant shape estimate*ofTyler,
1983), andmis the degrees of freedom. Usiitardia et al. (1997%he relationship between
the chi-square and Wishart distributions implies.

mesii ~ 13,05, (3.2)
wheres;; andg;; are the diagonal elements 8f, andX, respectively. Since the estimators
are affine equivariant, we can assume that the data came\y@ef /) and therefore;; =1
and the diagonal elements are identically distributedipel and Rocke, 1990S;;, is an
affine equivariant estimator, so the distribution of it will have the same Wishart degrees of
freedom for anyX. Therefore, the estimates ofandm in the N, (u, 2) case will be the
same as the estimatesoindmin the N, (0, I) case.

3.1. Estimation of constants m and ¢

Now to approximate a distribution fd, for small samples the constarmtandm have
to be estimated correctly. Usingardin’s (2000)method of moments identification, the
estimates ofmandc are determined by first two moments

m=2/CV, (3.3)
p

521/]7 ZS,',‘, (3-4)
i=1

where CV is the estimated coefficient of variation of the diagonal elements of an
S-estimate of the shape matrix. Since S-estimates of the covariance matrix are scaled to
be consistent for the population covariance (under the multivariate normality assumption)
(Davies, 1987, consistency gives us asymptotic unbiasedness, so asymptofically.

Thus, only the second moment is needed to find the desired degrees of freedom. Therefore,

= 2/Var(si), (3.5)

Wherevm) is the estimated variance of the diagonal elements of an S-estimate of the
covariance matrix.

We can estimate the variance in two ways: through simulation and through an asymp-
totic formula (Lopuhad, 198®avies, 198Y. Since the diagonal elements are identically
distributed and uncorrelated, we can simulate= 1000 copies of thep x p S-estimate
of shape matrix from the data points in each sample and then estimatey using the
variance of the\p diagonal elements. Lopuhaé (1989) derived the value of variance of the
diagonal elements under standard multivariate normality as

201+ 02

Varls;i] = T, (3.6)
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where

P(p +2)Eo V> X 1) || X1

01 = / 5 s (3.7)
Eo WX DI XIZ+ (p+ Dy X DI X 11
4Eq 1[(p(l X 1) — bo)?1?
=-2 u , 3.8
2= =2 Pot T A X DT X (38)
bo= Eo1lp | X I, (3.9)

whereEy ; is the expectation under standard multivariate normality,|aid| is the norm
of a vectorXin R”.

3.2. Empirical degrees of freedom for S-estimators

It will make no difference in the results if we use the asymptotic degrees of freedom
instead of simulated ones to approximate the Wishart distributior$ joprovided that
the sample size is very large. But for small samples the actual and asymptotic degrees
of freedom are quite far apart. The simulation is not an easy job particularly in higher
dimensions. Therefore, it is good to have a handy mathematical model to approximate the
degrees of freedom in real life situation. The simulation study showed that the degrees
of freedom estimated by the simulation gets closer and closer to the ones computed by
asymptotic variances but never exceed ihandp get large. These observations from the
simulated and asymptotic values of the degrees of freedom led us to develop an empirical
relationship of the actual degrees of freedom with the asymptotic variaiisample size)
andp (dimension of the data). The following non-linear models fits well:

Msimulated

=1+ aexpfn+yp). (3.10)
Masymptotic
The values ofx, f andy were estimated by fitting the nonlinear regression curve to
the simulated and asymptotic degrees of freedoms for different valuesnafp. The non-
linear equation (3.10) is first linearized by using Taylor's expansion ofx@xgnd can be
written as
M
simulated ~14 a(l+ ﬁn + )’p)
Masymptotic
~ 1+ (a+ofn+ayp).
The initial estimates of, f andy were obtained by fitting the linear regression to the data
and using the formulas

intercept= 1 =+ Gstart,

A coefficient onn
ﬂstart = Bistart ’
R coefficient onp
Vstart= .

Olstart
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Using the nonlinear regression function from S-plus we got the following fit to the simulated
data with 3% residual standard error:

MNsimulated 1 _ 0,449 exg—0.00078: — 0.17128)).

Masymptotic
The above estimated non-linear regression is based on the valuesnfies between
10 and 500 for values gf ranges between 2 and 10. It is a fact that simulation is time
consuming especially in high dimensions. Once a computer code is available for computing
the asymptotic degrees of freedom on any computer package (S-plus, Fortran, Mathematica),
one could get an approximate degrees of freedom for given valuesmaip. For simplicity
of notation the author used in rest of the papénstead ofinsimulatedto get the empirical
number of degrees of freedom.

v & masymptotid1l — 0.449 exg—0.00078: — 0.17128)). (3.11)

4. RLRT

One of the reasons for the lack of robustness of the LRT is related to the poor robustness
property of the sample covariance matrix as an estimate of the scatter matrix. This suggests
that replacing the sample estim&@dy a robust estimate of the shape matrix in the LR
statistic will produce a test with less sensitivity to the distributional assumptions.

4.1. Testing equality of covariance matrices

In this section we consider testing the null hypothesis that the covariance matrices of
multivariate normal distributions are equal, given independent samples fronrthepa-
lations. LetX;1, ..., X;,, be independernw, (y,, ;) random vectors =1,2,...,r and
consider the null hypothesis

Ho: Z1=---=2,

against the alternative Hwhich says that @lis not true. Under gl the common covari-
ance matrix is unspecified. The assumption of equal covariance matrices is important in
multivariate analysis of variance and discriminant analysis.

The classical modified LR statistic, suggesteBaytlett (1937)or » = 2, is defined as

. (IS1)™73(1So))

- (|n151+n252 |)(n1+n2)/2'
ni+nz

(4.1)

This LR statistic was obtained by working with the likelihood function2af and X»
specified by the joint marginal density functionafS; andn2 S (a product of Wishart dis-
tribution), rather than the likelihood function specified by the original normally distributed
variables. The modified LRT then rejectg H X1 = X5 for small values of1*. The un-
biasedness of this test was established in the univariatepcast by Pitman (1939)For
r = 2, this test is a uniformly most powerful unbiased test. The unbiasedness for general
andr was proved byPerlman (198Q)
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The asymptotic distribution for-2p log A*, can be expanded for larg®&f = pn
(Muirhead, 198as

P(=2p log A* <x)=P (15 <x) + 7/ M*[P (15 4 <x)
— P(5<0)]1+0M ), (4.2)

where
n=ni+ny,

f=pp+D(0—-1/2,

. @pP+3p-1 a AN
P 8+ Do — Dn ((;1/1"> 1)’

ni
ki = =
D i
Y= M2w2,

p(p+1) - 2 2
== -V -2 D VK| -1)-6¢—Dnd- .
w2 =" o) [(p )(p )(( / ,) ) (r = Dln( p)]]

i=1

Earlier we mentioned that the Wishart distribution is the most plausible distribution
to describe S-estimates of the shape matrix of the multivariate normal distribution. This
conjecture along with the fact that the derivation of the classical LR stati$tiovolves
the product of two Wishart distributions associated with the sample covariance matrix
motivated us to derive a robust modified LR statistic by replacing sample covarisinces

with S-estimates}) andn; with the corresponding degrees of freedami.e.

1 2
(1S5 1"v21555 "2/

Ay = , (4.3)

|% |(1+v2)/2
wherev;’s are the empirical degrees of freedom. When the null hypothegsis = 2>
is true the distribution of-2p log A can be expanded for large = pn by Eq. (4.2) Of
course the values gfandM depend on; instead ofz;, wherei =1, 2.

4.2. Results

First, we obtained the upper 5% and 1% critical values for different combinatighof
(2,4, 6) and (n1, n2) € {(20, 20), (20, 50), (100, 50), (500 500} using the approximate
equation (4.2). Itwas found that the critical values are very comparable for the three methods.
In higher dimension the critical values get close for these three estimates as the sample size
gets large.
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Table 1
The table contains critical values using the simulated degrees of freedo(s;f0r the empirical degrees of
freedom(S;,)

(n1, n2) o Estimates p
2 4 6
(20,20) 1% Sip 13.572 28.488 49.148
Sip 11.895 26.400 45.890
S 12.023 26.243 47.118
5% Sip 9.476 22.473 41.222
Sip 8.560 20.947 38.584
S 8.286 20.698 39.522
(20,50) 1% Sip 13.084 26.968 46.322
Sip 11.783 24.399 46.322
S 11.845 25.407 44.760
5% Sip 9.017 21.252 38.842
Sip 8.137 19.250 34.790
S 8.160 20.034 37.540
(100,50) 1% Sip 11.895 24.520 41.873
Sip 11.572 23.782 40.150
S 11.541 24.034 41.029
5% Sip 8.195 19.340 35.134
Sip 7.975 18.761 33.693
S 7.951 18.958 34.430
(500,500) 1% Sip 11.405 23.362 39.268
Sip 11.384 23.313 39.154
S 11.367 23.307 39.179
5% Sip 7.857 18.429 32.954
Sip 7.843 18.390 32.859
S 7.831 18.386 32.880

Classical LR statistic is used for computing values corresponding to sample covaance (

To examine the performance of the robust LR statistic for uncontaminated data we
drew 1000 Monte Carlo data sets fraN),(0, ) for each of the different combinations
of (n1, n2) € {(20, 20), (20, 50),(100 50), (500 500} andp € (2, 4, 6). The S-estimates
of the covariance matrix and corresponding degrees of freedom were obtained for each sam-
ple. Table 2contains the simulated type-I error probabilities using the respective critical
values fromTable 1

The coverage probabilities corresponding to degrees of freedoml andn, — 1 and
corresponding to degrees of freedamandv, are very comparable. No specific pattern
was observed with large andp. This means the robust LR statistic based on S-estimates
performs equally well as the non-robust one. No significant difference was observed in
the performance of the robust LR statistic when empirical degrees of freedom were used.
This implies we do not need to always simulate the degrees of freedom to approximate the
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Table 2

Each entry corresponding 8, ands;;, is computed using the robust version of LR statistic with simulated degrees
of freedom and with empirical degrees of freedom, respectively. Each entry correspon8irggcdomputed by

the classical LR statistic

(n1,n2) o Estimates p
2 4 6
(20,20) 1% Sip 0.024 0.058 0.017
Sip 0.050 0.058 0.012
S 0.019 0.009 0.009
5% Sih 0.074 0.138 0.057
Sip 0.110 0.139 0.046
S 0.059 0.043 0.046
(20,50) 1% Sip 0.025 0.048 0.024
Sip 0.039 0.048 0.016
S 0.007 0.006 0.010
5% Sip 0.071 0.116 0.177
Sep 0.103 0.110 0.063
S 0.046 0.042 0.041
(100,50) 1% Sip 0.013 0.015 0.019
Sip 0.012 0.010 0.019
S 0.008 0.012 0.013
5% Sip 0.064 0.055 0.062
Sip 0.060 0.042 0.066
S 0.052 0.050 0.067
(500,500) 1% Sip 0.012 0.008 0.010
Sip 0.011 0.002 0.008
S 0.012 0.008 0.010
5% Sip 0.043 0.033 0.038
Sip 0.041 0.029 0.038
S 0.061 0.047 0.048

Critical values are used froffable 1

distribution of the S-estimates affor any real data set. The empirical degrees of freedom
perform equally well.

The reason we developed a robust test statistic is to deal with the situation when the
underlying assumption of normality for using the Bartlett test statistic is not met. Therefore,
we would like to examine next the performance of the RLRT when the underlying data set
is not exactly normal. Again 1000 Monte Carlo data sets were drawn from contaminated
normal for different combinations @fi1, no) € {(20, 20), (20, 50), (100, 50), (500, 500)}
andp € (2,4,6). Each data set of sizeconsists of 90% data fromv, (0, /) and 10%
data fromn, (0, 57). Table 3contains the simulated rejection probabilities for RLRT using
simulated and empirical degrees of freedom and the simulated rejection probabilities for the
classical LRT. Itis observed that the LRT performance becomes worse witlplarpereas
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Table 3

This table contains simulated rejection probabilities at nomirall% and 5% using the respective critical values
in Table 1when the underlying population is contaminated normal, i.e. 90% of a sample is\a /) and
10% fromN, (0, 51)

n o Estimates p
2 4 6
(20,20) 1% Sep 0.013 0.074 0.032
Sip 0.022 0.074 0.020
S 0.461 0.822 0.934
5% Sip 0.056 0.162 0.112
Sep 0.093 0.162 0.065
S 0.627 0.915 0.975
(20,50) 1% Sip 0.015 0.053 0.037
Sep 0.022 0.049 0.024
S 0.499 0.880 0.983
5% Sep 0.053 0.131 0.116
Sip 0.074 0.125 0.084
S 0.682 0.954 0.997
(100,50) 1% Sep 0.007 0.022 0.064
Sip 0.007 0.012 0.026
S 0.544 0.945 0.998
5% Sip 0.063 0.070 0.085
Sip 0.059 0.050 0.081
S 0.693 0.975 0.999
(500,500) 1% Sip 0.006 0.012 0.013
Sip 0.006 0.012 0.013
S 0.559 0.943 0.999
5% Sip 0.037 0.045 0.050
Sip 0.035 0.043 0.050
S 0.702 0.974 1.00

Each entry corresponding &, is based on simulated degrees of freedom. Each entry correspondingiso
based on empirical degrees of freedom.

the RLRT behaves very well compared to the LRT, and its performance does not vary with
large values op andn. The results from the empirical degrees of freedom compare well
with the simulated results. This paper has presented the robustness of RLRT only under
5% contamination to avoid the paper to become too lengthy. The author found quite similar
results on other percentages of contamination.

5. Conclusion

Testing the dispersion matrix in multivariate analysis is not an easy task in classical
statistics even if the distributional assumptions are met. It becomes even harder if the
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distributional assumptions are not satisfied and these are suspected outliers in the data.
Because of high robust qualities, the S-estimators were considered as a suitable replacement
for the sample variance. We assumed that the S-estimators of the covariance matrix under
the multivariate normal distribution are approximately distributed as Wishart with degrees
of freedom that depend on the dimension of the data and the sample size. A nonlinear
formula was developed to approximate the degrees of freedom for the proposed Wishart
distribution. This formula is an adjustment of the asymptotic degrees of freedom using the
sample size and the dimension of a data set for an approximate degree of freedom. The
two sample RLRT can easily be generalized foritlsample case. These two RLRTSs give
values similar to the respective LRTs if the data are uncontaminated. The type-I error of
both the RLRT is highly insensitive to the distributional assumption irrespective of size of
the sample and dimension.

Appendix A. Simulation results

The critical values using/, (0, I) for testing the hypothesisgt 21 = X5 are given in
Table 1

Simulated rejection probabilities for testing the hypothesjs: X1 = %> are given in
Table 2

Simulated rejection probabilities under the null hypothesis:H¥; = X2 when the
underlying populations are contaminated are givereible 3
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