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Overview

• Data from high-throughput biological assays

such as gene expression arrays, proteomics by

mass spectrometry, or metabolomics by NMR

spectroscopy present many challenging

problems for analysts.

• We present a variance model for these data

that explains a number of problems currently

facing users of these data.
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• We present a class of data transformations

specifically tuned to biological assay data that

can stabilize the variance and allow more

effective use of standard statistical methods.

We call these the generalized logarithmic

(glog) transformations (after Munson).



• We show how the transformation

parameter(s) can be estimated either from a

few replicates, from local properties of

spectra, or using maximum likelihood in the

context of a linear model analysis.

• We note that the remaining variance

heterogeneity can often be accounted for with

a hierarchical variance model that can be

easily estimated in an empirical Bayes fashion

(e.g., Wright and Simon 2003).
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Omics Data

Genome Complement of all genes, or of all

components of genetic material in the cell

(mostly static).

Transcriptome Complement of all mRNA

transcripts produced by a cell (dynamic).
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Proteome Complement of all proteins in a cell,

whether directly translated or produced by

post-translational modification (dynamic).

Metabolome Complement of all metabolites

other than proteins and mRNA; e.g., lipids,

saccharides, etc (dynamic).

5



6



Common Variance Behavior

For many types of assays, the following are

generally true:

• For high concentrations, the standard

deviation of the response is approximately

proportional to the mean response, so that

the CV is approximately constant.
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• For low concentrations, the CV is much

higher.

• Assay data are commonly analyzed on the log

scale, so that for high levels the SD is

approximately constant, but for low levels of

the SD rises.
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• Comparisons of concentration are usually

expressed as ratios or n-fold,, of which the

logarithm would be well behaved, but only if

both concentrations are well above zero.

• These phenomena occur in many

measurement technologies, but are more

important in high-throughput assays such as

are often used for omics data.
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• What is the fold increase when a

concentration goes from zero in the control

case to positive in the treatment case?

• Which is biologically more important: an

increase from 0 to 25 or an increase from 100

to 200?
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Error Model for Assay Data

This model is appropriate for data in which it is

not practical to form a calibration curve. A

model for calibrated assays was analyzed in

Rocke and Lorenzato (1995) and subsequent

literature.
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The error model we use that motivates the data

transformation is as follows:

y = α + µeη + ε

where y is the intensity measurement, µ is the

concentration level in arbitrary units, and α is

the mean background/baseline (mean signal at

zero concentration). Our best estimate of µ is

y − α̂, the background-corrected intensity.
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Under this model, the variance of the

background-corrected response y − α at

concentration µ is given by

Var(y − α) = µ2S2
η + σ2

ε .

where

Sη =

√

eσ2
η(eσ2

η − 1),

which is of the form

E(z) = µ

V (z) = a2 + b2µ2
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It can be shown that

Var{ln(y − α)} ≈ σ2
η + σ2

ε /µ2.

Note the implication for use of logarithms on

background-corrected data.
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Data Transformation

• Logarithms stabilize the variance for high

levels, but increase the variance for low levels.

• Log ratios have constant variance only if both

concentrations are well above zero.
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Transformation and Variance

Let yi estimate µi, and suppose that

Var(yi) = σ2
0v(µi).

Consider a transformation z = f(y). It is well

known that, up to the first order,

Var(zi) = (f ′(µi))
2σ2

0v(µi).

This is called propagation of error or the delta

method.
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In much of chemical analysis and biological

measurement data, a reasonable model is

y = µeη + ε,

so that

V (y) = a2 + b2µ2

where a = σε and b = Sη.
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With this variance function, we have

f ′(µ) =
1

√
a2 + b2µ2

.

which integrates to what we call the generalized

log (glog) function

f(µ) = ln(µ +
√
µ2 + a2/b2).

(Durbin, Hardin, Hawkins, and Rocke 2002;

Hawkins 2002; Huber, von Heydebreck,

Sültmann, Poustka, and Vingron 2002; Munson

2001)
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To use this, we must estimate a, the standard

deviation of the untransformed data at low

levels, and b, which is the standard deviation of

the logged data at high levels. Alternatively, we

can estimate directly the transformation

parameter λ = a2/b2. We also need to estimate

the parameter α in the TCM, either separately or

together with λ. The glog transform is then

hλ,α(y) = ln
(
y − α +

√
(y − α)2 + λ

)
.

22



23



24



Alternative Transformations

• Similar results can be obtained with the

started log transformation log(y + c) or the

log linear hybrid transformation.

• The constants need to be carefully chosen to

maintain approximate constant variance.

25



• Log transforms on non-background-corrected

data amounts to the same thing as a started

log for the background-corrected data with a

particular choice of the started-log constant.

This may or may not work well depending on

the exact details of the quantification in the

assay itself.



Determining Differentially Expressed Genes

Consider an experiment on four types of cell lines

A, B, C, and D, with two samples per type, each

of the eight measured with an Affymetrix U95A

human gene array. Let yijk be the measured

expression for gene i in group j and array k in

group j. The measured expression is derived

from the mean glog-transformed PM probes.
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Steps in the Analysis

• Background correct each array so that 0

expression corresponds to 0 signal.

• Transform the probe-level to constant variance

using a suitably chosen glog or alternative

transformation (started log, hybrid log).
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• Summarize each probe set using perfect

match probes.

• Normalize the chips additively. In some cases,

intensity-based normalization may be needed.
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• The transformation should remove systematic

dependence of the gene-specific variance on

the mean expression, but the gene-specific

variance may still differ from a global average.

Estimate the gene-specific variance using all

the information available.
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• Test each gene for differential expression

against the estimate of the gene-specific

variance. Obtain a p-value for each gene.

• Adjust p-values for multiplicity using, for

example, the False Discovery Rate method.

• Provide list of differentially expressed genes

• Investigate identified genes statistically and by

biological follow-up experiments.
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Structure of Example Data

Gene Group 1 Group 2 Group 3 Group 4

ID 1 2 3 4 5 6 7 8

1 y111 y112 y123 y124 y135 y136 y147 y148

2 y211 y212 y223 y224 y235 y236 y247 y248

3 y311 y312 y323 y324 y335 y336 y347 y348

4 y411 y412 y423 y424 y435 y436 y447 y448

5 y511 y512 y523 y524 y535 y536 y547 y548

... ... ... ... ... ... ... ... ...
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The model we use is (Kerr, Martin, and

Churchill)

hλ,α(yijk) = µi + nk + βij + εijk

• We estimate all the parameters by normal

maximum likelihood after the fashion of Box

and Cox.
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• The maximum likelihood parameter values for

the data y will be the same as the minimum

MSE parameter values from the model for the

transformed Jacobian-corrected data z.
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We can’t fit the model for the full data set using

most linear model software. The X matrix has

12,625 × 8 = 101,000 rows and

12,625 × 4 + 7 = 50,507 columns. The X>X

matrix is then 50,507 by 50,507, containing

2.55 × 109 8-byte reals, or 19GB!
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• We can test for differential expression for a

given gene by analyzing the transformed,

normalized data in a standard one-way

ANOVA.

• We can use as a denominator the

gene-specific 4df MSE from that ANOVA.

This is valid but not powerful.

• We can use the overall 50,493df MSE as a

denominator. This is powerful, but risky.
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• As an alternative, we can postulate a

hierarchical model in which the gene-specific

true variances are generated from an inverse

gamma, the conjugate prior under normality

(see also Wright and Simon 2003).
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• The overall MSE is 0.01212. The variance

across genes of the 4df estimates under

homogeneity should be approximately

2σ4/4 = (.01212)2/2 = 7.35 × 10−5 Instead,

the variance is 80.37 × 10−5,which is more

than 10 times larger.
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MSE Source TWER FWER FDR

Gene-Specific 2054 0 0
Global 4215 1029 2693
Posterior 2804 48 866
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Metabolomics by NMR Spectroscopy

• Proton NMR spectroscopy produces a

spectrum in which peaks correspond to parts

of molecules.

• This can be used for single compounds to

determine the structure.
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• Compounds often have specific signatures, so

this can be used for compound identification

(particularly by 2D NMR).

• For metabolomics work, one can use patterns

in the spectra for discrimination/classification,

and to identify regions of the spectrum which

carry the discrimination information.
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• Spectra need to be baseline corrected and

peaks need to be aligned

• The peaks are of widely varying magnitudes,

and some of the data are negative.

• The glog is a plausible transformation to help

in the analysis of these data.
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Variance Behavior of NMR Spectra

• We show an example spectrum of 65,536

points.

• We divide this into 8,192 bins of 8 points each

and compute the mean and standard deviation

within each bin.
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A model for the spectrum is

yi = bi + µie
η + εi

Where bi is the baseline, not presumed to be flat,

µi is the true signal, and εi and ηi are

measurement errors, not necessarily independent

across nearby points.
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Baseline Estimation

• The baseline in NMR is arbitrary and needs to

be removed before analysis, just as in mass

spec.

• The baseline is less well behaved than for

mass spec
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Our current best baseline estimation method

solves the problem

max
{bi}



∑

bi − A
∑



yi − bi

sε



2

I(bi − yi) − B
∑

(∆2bi)
2



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This is solved exactly by repeated solution of a

banded linear system of 65,536 × 65,536, not

using splines or other functional models. The

constant B is chosen to achieve approximately

unbiased estimation of the baseline if there is no

signal.
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Conclusion

• Gene expression, proteomics, and

metabolomics data present many interesting

statistical challenges.

• We have presented a model for variability that

guides the transformation of the data, helps

determine significance of changes, and allows

more sophisticated analysis.
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• The two-component model seems to fit

microarray and other assay data well.

• A properly chosen transformation can stabilize

the variance and improve the statistical

properties of analyses.

67



• Slide normalization and analysis of two-color

arrays is made easier by this transformation.

• Other statistical calculations such as the

analysis of variance that assume constant

variance are also improved.

• After removal of systematic dependence of the

variance on the mean, the remaining sporadic

variation in the variance can be accounted for

by a simple empirical Bayes method.
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• We are now applying these methods to many

types of data such as proteomics by 2D PAGE

and MALDI-TOF, metabolomics by LC/MS

and NMR spectroscopy, and GC lipid

metabolomics. The variables measured are a

large number of peak heights or areas, or a

large number of binned spectroscopic values.

And of course to gene expression data.

• Papers are available at

www.cipic.ucdavis.edu/∼dmrocke or by mail

and e-mail.
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