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Abstract. This paper describes a clustering method for unsupervised classification of objects in large data sets.
The new methodology combines the mixture likelihood approach with a sampling and subsampling strategy in
order to cluster large data sets efficiently. This sampling strategy can be applied to a large variety of data mining
methods to allow them to be used on very large data sets. The method is applied to the problem of automated
star/galaxy classification for digital sky data and is tested using a sample from the Digitized Palomar Sky Survey
(DPOSS) data. The method is quick and reliable and produces classifications comparable to previous work on
these data using supervised clustering.
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1. Introduction

Development of algorithms for automated classification of objects in massive data sets is
a research area of fundamental importance to data mining and knowledge discovery in
databases (KDD) (Fayyad, 1997). In this paper we describe a clustering algorithm based on
finite mixture models for unsupervised classification for large databases. This new method
combines the mixture likelihood approach with a sampling and subsampling strategy in
order to reduce model estimation time and increase search efficiency. Although the sampling
strategy is paired here with a particular clustering algorithm, it is applicable to a broad range
of data mining methods. The study was motivated by the problem of classifying astronomical
objects detected from images of sky surveys; and our clustering algorithm will be tested
using a sample data from the Digitized Palomar Sky Survey (DPOSS).

1.1. Surveying the cosmos

For a number of years, the Oschin Schmidt 48 inch telescope at Palomar was dedicated to
work on the second Palomar Observatory Sky Survey (POSS II). POSS II will eventually
cover 894 fields spaced 5 degree apart in three passbands: blue (IIIa-J+GG 395), red
(IIIa-F+RG 610), and near-infrared (IV-N+RG 9). The survey covers the entire northern
sky. The resulting data, the Palomar-STScI Digital Sky Survey (DPOSS), will consist of
some 3 terabytes of data—enough information to fill 6 million books. The Palomar-Norris



216 ROCKE AND DAI

Sky Catalog is expected to contain approximately 50 million galaxies, more than 2 billion
stars, and over 100,000 quasars (Fayyad et al., 1996). Data from the sky survey will help
scientists understand fundamental aspects of the universe, such as the large scale distribution
of galaxies, the rate of their evolution, and the structure of our own galaxy. More sky surveys
are under way or coming, including the Sloan Digital Sky Survey (SDSS), the 2 Micron All
Sky Survey (2MASS), and the NRAO VLA Sky Surveys (NVSS/FIRST).

1.2. Automated cataloging of sky surveys

Sky surveys result in mountains of data. The first step in making the data useful is to
identify, measure, and catalog all of the detected objects into their respective classes. Once
the objects have been classified, scientific analysis can proceed. Historical methods of
cataloging are not effective for classifying image features from sky surveys due to two
severe limitations: (1) They cannot identify objects that are very faint. The fact is that the
majority of objects in a DPOSS image are too faint for traditional recognition algorithms,
or even object-by-object classification by eye; (2) They are too time consuming to be used
for classifying massive data sets. New methods for automated classification of data can be
generally classified as supervised or unsupervised methods. The supervised methods require
that a human expert both has determined into what classes an object may be categorized and
also has provided a set of sample objects with known classes (White, 1997). An example of
supervised classification is the Sky Image Cataloging and Analysis Tool (SKICAT) (Fayyad
et al., 1996), which is based on decision trees and associated methods of machine learning
and uses a training set to derive the classification rules. SKICAT has been successfully
applied to DPOSS. An example of unsupervised classification is AutoClass (Cheeseman
and Stutz, 1996), which is based upon the classical mixture model, supplemented by a
Bayesian method for determining the optimal classes.

1.3. Unsupervised classification: Clustering via mixture models

Unsupervised classification methods assume no or very limited prior knowledge about
the underlying structure of the data and require no training set. Thus, those methods are
often more difficult but can be used in a much wider set of circumstances, since one does
not require a training set of already correctly classified data points in order to proceed.
Furthermore, unsupervised clustering methods can reveal structure not previously known,
whereas supervised methods can only classify based on a prior known structure. Both types
of methods have their place. We address the problem of unsupervised classification. We
only use prior results on supervised classification to provide a kind of upper bound on
potential performance; since it would be unreasonable to expect an unsupervised method to
achieve better results when the structure is known than supervised methods, which utilize
much more information.

In the mixture model approach to cluster analysis, the data are assumed to come from
a mixture of probability distributions, each representing a different group or cluster. By
adopting some parametric form for the density function in each underlying cluster, a like-
lihood can be formed in terms of the mixture density, and unknown parameters estimated
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by consideration of the likelihood. A probabilistic clustering of the objects can be obtained
using the estimated posterior probabilities of group membership. Classification can be done
by allocating each object to the group to which it has the highest estimated posterior prob-
ability of belonging. For multivariate data of a continuous nature, the multivariate normal
(Gaussian) density is often a convenient choice due to its computational tractability.

There is an additional rationale for Gaussian likelihood methods, or at least elliptical
likelihood methods. Although cluster shapes are known often to be non-elliptical, in high
dimension a second-order approximation to the shape of the cluster (i.e., an ellipsoid) may
be all that can reasonably be expected from even a very large sample of data. Consider
the problem in dimension 10 (a relatively low dimension). An ellipsoidal model contains
10 parameters for the center and 55 for the shape matrix, for a total of 65 parameters. We
can reasonably expect to estimate such a model with a few hundred to a few thousand
points. But what if the shape is arbitrary? To determine shape in dimension 1 requires
perhaps a minimum of 20 points so that the histogram is well determined. This means that
in dimension 10, we will need about 2010 = 10,240,000,000,000 (ten trillion!) points for a
nonparametric shape estimate. Thus, Gaussian likelihood, while not a perfect reflection of
reality in many cases, is an approximation about as good as can be accomplished. Of course,
individual variables may need to be transformed such as by taking logarithms to improve
the approximation, but such transformations can often be identified from the distribution
variable-by-variable.

The Gaussian mixture likelihood approach to clustering is easy to implement and pro-
gram (McLachlan and Basford, 1988). It has a number of appealing features and has shown
promise in a number of practical applications such as character recognition, diabetes diag-
nosis, identification of textile flaws from images, minefield and seismic fault detection, and
tissue segmentation (see Fraley and Raftery (1998) for a list of recent applications).

1.4. Research objectives

In clustering via mixture models, the values of unknown parameters are estimated using
the expectation-maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm
is a general approach to the iterative computation of maximum likelihood estimates and
is useful for a variety of incomplete-data problems (McLachlan and Krishnan, 1997). A
problem with the mixture likelihood approach is that the likelihood equation usually has
multiple roots, and therefore, we need to search for those local maxima. The approach also
requires the specification of an initial value for the unknown parameters, or equivalently,
of an initial classification of the data with respect to the components of the mixture model
being fitted. In other words, a good initial value is needed to get a good solution. However,
in data-mining applications, we usually do not have prior knowledge about what the initial
values ought to be and, therefore, have to search for them. In clustering massive data sets,
an effective search strategy is critically important due to constraints on computation time.

Generally, one cannot easily search directly for the multiple maxima of the likelihood
function. Descent methods of various kinds (such as the EM algorithm) can locate a local
maximum, but there is no known method for searching in the parameter space in finite time
and locating the global maximum.
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In this paper we propose to use a sampling and subsampling strategy for searching for local
(and potentially global) maxima of the likelihood function and also for locating suitable
initial values for starting the algorithm. This strategy will allow us to save significant
computation time while almost guaranteeing getting a good solution. We use extensive
computational experiments to evaluate the strategy and its parameter values. We test the
new algorithm using a DPOSS sample data and simulated data.

The rest of paper is organized as follows. Section 2 discusses the methodology for this
study and presents our approach to the problem. Section 3 describes the DPOSS sample
data and presents the results of clustering this digital sky data. Section 4 provides the results
of experiments based on simulated data. Section 5 discusses the limitations of this study
and issues for further research.

2. Methodology

2.1. Mixture likelihood approach to clustering

Methods of cluster analysis seek to separate data into its constituent groups or clusters. Some
well-known methods such as discriminant analysis assume that the classification scheme
is known a priori. We consider the more difficult techniques of cluster analysis which can
apply in situations where there is no or very limited knowledge about the underlying group
structure. Furthermore, we are interested in clustering methods that are practical in analyzing
large databases. A promising approach to the problems we consider is clustering via finite
mixture models. These models assume that the data are from a mixture of probability
distributions, each representing a different cluster. The models can be fitted by the well-
established statistical methods of maximum likelihood. As will be seen later, this approach
can be extended to classification of large data sets.

To define the mixture likelihood, let x1, . . . , xn be the observed values of a random
sample of p-dimensions and size n. Under finite mixture models, each xi is assumed to
come from a super population G which is a mixture of a finite number, g, of populations
G1, . . . , Gg in some proportions π1, . . . , πg , respectively, where the mixing proportions π j

are nonnegative and sum to 1. The probability density function of (p.d.f.) an observation x
in G is given by

f (x ; λ) =
g∑

j=1

π j f j (x ; θ ),

where f j (x ; θ ) is the p.d.f. corresponding to the j th component in the mixture, θ is a
vector of unknown parameters associated with the parametric forms that may be chosen
for the density functions, and λ = (π1, . . . , πg, θ

′)′. Multivariate normal components are
a convenient choice in practice due to their computational tractability. The normal mixture
probability density function can be represented as

f (x ; λ) =
g∑

j=1

π jφ(x ; µ j , 	 j ), (1)
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where φ(x ; µ j , 	 j ) denotes the multivariate normal p.d.f. with mean vector µ and covari-
ance matrix 	. With the normal mixture approach the log likelihood function for λ can be
easily formed


(λ) = log L(λ) =
n∑

i=1

log

[
g∑

j=1

π jφ(xi ; µ j , 	 j )

]
, (2)

and an estimate of λ̂ of λ can be obtained as a solution of the likelihood equation,

∂
(λ)/∂λ = 0, (3)

(the solution with the highest value of the likelihood is a candidate for the MLE, but there
is never a guarantee that the likelihood obtained is the global maximum). Once λ̂ has been
obtained, the posterior probability that observation i belongs to the j th underlying group
G j can be estimated. Thus, the mixture approach gives a probabilistic clustering in terms of
these estimated posterior probabilities of group membership. A partitioning of x1, . . . , xn

into g nonoverlapping clusters can be effected by assigning each identity to the group to
which it has the highest probability of belonging.

2.2. Application of EM algorithm

Mixture models can be fitted using the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977), which is a general method of iterative computation of maximum
likelihood (ML) estimates when the data can be viewed as incomplete (Everitt and Hand,
1981; McLachlan and Basford, 1988; McLachlan and Krishnan, 1997). As with all known
methods for this problem, the EM algorithm guarantees only a local maximum to the like-
lihood; it gives the local maximum for which the starting point of the iterations lies in
the domain of attraction. The EM algorithm is applied to the mixture model by treating the
observed data (unclassified data) as incomplete. The “complete” data would be yi = (xi,zi ),
where zi = (zi1, . . . , zig) is a vector of indicator variables defined by

zi j =
{

1, xi ∈ G j ,

0, otherwise.

Each zi j is independently and identically distributed according to a multinomial distribution
of one draw on G categories with probabilities π1, . . . , πg . This leads to the complete-data
log likelihood

log L∗(λ) =
n∑

i=1

g∑
j=1

zi j log[π jφ(xi ; µ j , 	 j )]. (4)

The EM algorithm proceeds iteratively in two steps, E(for expectation) and M(for maxi-
mization). The E-step requires the computation of the expectation of the complete data log
likelihood, conditional on the observed data and the initial value of the unknown parame-
ters. In this step each indicator variable zi j is replaced by its conditional expectation, that



220 ROCKE AND DAI

is, the posterior probability that xi is in the j th cluster (i = 1, . . . , n; j = 1, . . . , g). In the
M-step, maximum likelihood estimates of the parameters, λ, are obtained by maximizing
the estimated complete data log-likelihood. The E and M steps are alternated repeatedly.
Under mild conditions, the iteration converges to a local maximum of the log-likelihood
(Wu, 1983). A nice feature of the EM algorithm is that the log likelihood for the incom-
plete data specification can never decrease after an EM sequence. The maximum likelihood
estimate is usually taken to be the root corresponding to the largest of the local maxima
located.

2.3. Research issues

The mixture likelihood approach via the EM algorithm is easy to implement and program,
and has several appealing properties. However, it also has limitations. We consider three
of the problems here. First, the likelihood function tends to have multiple local maxima.
Second, the EM algorithm requires the specification of an initial value. The estimates
obtained and the asymptotic rate of convergence depend on the choice of the initial values. In
data mining applications we usually do not know what suitable initial values are and have to
search for them. We also need to search the solution space to find the multiple local maxima.
In clustering large data sets, these searches can be very costly in terms of computation time,
and a good search strategy is very much needed. Third, a straightforward implementation
of the EM algorithm with multiple starting points has unacceptable complexity for large
data sets. If Rr initial starting points are used in a sample of size N in dimension p, the
complexity (fixing p) must be at least O(N ∗ Rr ∗ i), where i is the number of iterations
needed for convergence. If N is in the millions or billions, this is likely to be unacceptably
large.

2.4. A strategy for clustering large data sets

Our basic purpose is to conduct an unsupervised classification of a very large data set. To
do this classification, we need at the end to pass the entire data set through a classification
program, but otherwise we need to insure that the computations are sublinear in the size of
the data set. We reduce the complexity of the computations in a number of ways.

First, we perform all estimation on a random sample of the full data set. If this random
sample is capped at a level that depends on the dimension, but not on N, then with respect
to N, the computations are O(1). Since our examples are relatively small (60,000–130,000
points), we use the entire data set to perform the calculations, but we would essentially
never need to exceed this sample size no matter how large the data base was so long as we
are searching for large clusters (and identifying small ones by their deviation from the large
clusters).

The second cost saving comes from the fact that multiple starting points are needed to
insure that the best chance for a global (rather than merely a local) maximum is obtained.
If our evaluation sample is 130,000 points, we might select a few thousand points for
trying out various starting points and iterate on the whole data set only the best result on
the smaller sample. This reduces the computation essentially by the factor of the number
of starting points, since the computations on the smaller sample of a few thousand are
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negligible compared to the final iteration on the whole sample. Finally, and less quantifiable
in a theoretical sense, we speed up the process by using highly variable starting points so
as to maximize the diversity, and thus maximize the chance of hitting the global maximum
in a reasonable number of starts.

In short, we propose a sampling and subsampling strategy for clustering large data sets
using the mixture likelihood approach. In this strategy, most computations are done on
a sample of data large enough to reflect the whole sample structure, but small enough to
reduce computation time to a fraction of what would have been with the entire data set. After
extensive searching in a sample, one can iterate to convergence once using the entire data
set. Subsamples are used as starting points for searching within a sample. These subsamples
should be small in size to generate diversity in starting points, which allows difficult local
optima to be located. Generally, many subsamples will be used with each sample, but only
a few samples will be used because of computation time constraints, and because use of
multiple samples will not be needed if the sample size is carefully chosen. This strategy has
four parameters and is implemented in a three-step estimation procedure:

Given data set of size N in dimension p, which we wish to have clustered by EM into
g groups. In our first example given below, we cluster N = 132,402 points in dimension
p = 6 into g = 2 groups.

Step 1: Search for a suitable initial value

1.1 Take a random sample of size Ns from the whole sample. We try several values for Ns

in our examples, but this may be 1,000 out of the 132,402 total points.
1.2 Take Rr random starts consisting of Nr points randomly chosen from the sample for

each of the g groups. For each start, we initialize the mean and covariance of each group
with the mean and covariance of the Nr randomly selected points. Then we iterate EM
from that start to convergence on the sample of Ns points. For example, our random
starts in the example might consist of 10 points in dimension 6 for each of the two
groups. These 10 points determine a mean and covariance matrix for each group that
are used to begin the EM iteration. How many random starts are necessary depends on
the problem, as we shall see below.

1.3 Keep the estimates of cluster location and shape with the highest likelihood value on
the sample. We iterate to convergence from each starting point on the sample of Nr

points (perhaps 1000 out of 132,402). We keep for further use, only the solution with
the highest likelihood on these Ns points.

Step 2: Get a solution based on the whole data set
Perform the EM algorithm on the whole data set using the best parameter estimates
obtained from Step 1.

Step 3: Repeat above steps Rs times. Report all solutions from step 2. Thus we may select
the sample of Ns points (1,000 out of 132,402) several times and do all the computations.
The idea is that by using multiple samples, we may be able to use smaller samples, and
reduce the computational time considerably.

Some variations on this scheme are possible for extremely large data sets. For model
fitting (identifying the clusters by their centers and shapes), it is hardly necessary to use
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the entire data set. Therefore, step 2 would be conducted only on a supersample, which is
much larger than the sample, but may be only a small fraction of the data set. The whole
data set is then processed only to classify all the points according to the already developed
model, so that the total processing time remains reasonable.

2.5. Design issues

First, we summarize the four data groupings that we use in our approach:

Data Set is the entire collection of data to be analyzed. For inferential purposes, this may
be treated as having been sampled from a population. All of the data set items will be
classified by the process.

Supersample is a subset of the data set chosen by simple random sampling. In our examples,
it is the entire data set, but for larger data sets it will be considerably smaller. All compu-
tations prior to the final classification are performed on the supersample. For problems
in moderate dimension (up to 50), the supersample will never need to be larger than
100,000–1,000,000 points, since the estimation error in a sample of this size is already
too small to matter.

Sample is one of several (Rs) of size Ns chosen by simple random sampling from the
supersample. All intensive search operations are conducted in the sample so that the
supersample is only used for one iteration from the best solution found in the sample.
The sample size Ns should be chosen to be large enough to reflect the essential structure
of the data, while being small enough to keep the computations feasible. In our examples,
1000 is a reasonable choice for Ns, as we will see below.

Subsample is one of several (Rr) of size Nr chosen by simple random sampling from the
sample that is used to begin iterations on the sample. As will be shown below, this number
should be very small (perhaps 5–10 in dimension 4 for example) because great diversity
in starting points generates diversity in solutions, and increases the chance of finding the
best local maximum of the likelihood.

There are four elements in the sampling and subsampling strategy: Rs, Ns, Rr, and Nr,
whose values must be jointly chosen. Small subsample size (Nr) is desirable since it would
generate diversity in starting points and thus help locate difficult local maxima (Rocke,
1998). Nr can be as small as (p + 1) and still generate a nonsingular covariance matrix.
The sample size (Ns) needs to be large enough to reflect the whole data structure and avoid
pathologies, and small enough to reduce computation time. In any case it should be at least
g ∗ Nr (since that is the number of points for the starting iteration which must be a subset
of the Ns sample points). Large number of random starts (Rr) would increase the chance of
getting a good initial value, leading to a good solution within the sample. Since subsampling
is relatively inexpensive, many subsamples can be used. Number of samples (Rs) should be
small since computations involving the whole supersample are very time-consuming, and
each sample in the end requires an iteration on the whole supersample.

We can characterize the success of a strategy by some criterion of merit. If a particular
strategy has certain chance of getting a good solution for given values of the parameters
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(Rs, Ns, Rr, Nr), then we can estimate how many samples are needed to get a good answer
with high probability. In this study, we do 20 experiments for each data set (the DPOSS
data set or a simulation data set). In each experiment, we try 3 sample sizes, 3 numbers of
random starts, and 4 sizes of starting groups. There are 36 possibilities for each experiment
and 720 in total for a data set.

3. Clustering the DPOSS sample data

3.1. Data and specification

The DPOSS sample data is a sample of JFN catalog data from a single DPOSS field for
testing new data clustering algorithms (Odewahn et al., 1998). The data set consists of
648,291 objects and 27 parameters (such as magnitude, area, image moments), 9 for each
of three bands: blue, red, and near-infrared (referred to as F, J, and N). An additional
parameter is called CLASS, which gives the astronomers’ current best guess to the type
of each object (=1 for a star, =2 for a galaxy). We clustered the data without using the
classification variable, but we did use it for evaluating the accuracy of our clustering results.
The testing data set we used is a subset of the original data set and contains 132,402 data
points, all of which have measurements on all three bands with values within the expected
ranges given in the data document. We started with preliminary data analysis such as
correlation analysis and Q-Q plots. It turned out that most of the 27 parameters were highly
correlated. We selected following six attributes with little correlations out of total available
attributes: MtotF, csfF, EllipF, csfJ, EllipJ, EllipN. The suffix capital letter in the variable
names indicates the color band from which the measurement is taken. The meanings of the
variables are:

Mtot total instrument magnitude
csf combined stellar function (measure how stellar-like the object is)
Ellip the ellipticity

As a data mining exercise, we did not assume much prior knowledge about the data, and
did not create new physically meaningful variables such as color index and concentration
index by combining the basic attributes. The purpose was simply to see what the clustering
algorithm could achieve with limited information.

The experiment specifications are given in Table 1. For the clustering, we assumed that the
data were composed of two groups of objects (stars and galaxies). We did 20 experiments.
In each experiment, three sample sizes were used: 500, 1000, and 10,000. For each sample,
we tried 1, 5, or 10 random starts. A subsample of data points was used for each start. The
number of points were 10, 20, 40, or Ns/g per group. The last case was designed to show
the problematic nature of using large subsamples.

3.2. Classification accuracy

Three local likelihood maximum solutions resulted from the 20 experiments, which are
shown in Table 2. Astronomers use completeness (fraction of galaxies classified as galaxies)
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Table 1. Experiment specification (DPOSS).

Total data points (N ) 132402

Variables (p) 6

Groups (g) 2

Experiments (Rs ) 20

Sample size (Ns ) 500, 1000, 10000

Random starts (Rr ) 1, 5, 10

Starting points/group (Nr ) 10, 20, 40, Ns /g

Table 2. EM solutions and classification accuracy (DPOSS sample data).

Solution I Solution II Solution III

Magnitude in F Completeness Contamination Completeness Contamination Completeness Contamination

⇐16.5 0.955 0.045 0.787 0.213 0.954 0.046

(16.5, 17.0] 0.972 0.028 0.914 0.086 0.954 0.046

(17.0, 17.5] 0.970 0.030 0.903 0.097 0.945 0.055

(17.5, 18.0] 0.954 0.046 0.881 0.119 0.870 0.130

(18.0, 18.5] 0.914 0.086 0.859 0.141 0.736 0.264

(18.5, 19.0] 0.899 0.101 0.876 0.124 0.677 0.323

(19.0, 19.5] 0.811 0.189 0.808 0.192 0.597 0.403

(19.5, 20.0] 0.754 0.246 0.768 0.232 0.593 0.407

(20.0, 20.5] 0.744 0.256 0.779 0.221 0.642 0.358

>20.5 0.805 0.195 0.817 0.183 0.714 0.286

All 0.844 0.156 0.826 0.174 0.684 0.316

and contamination (fraction of nongalaxies classified as galaxies) to measure the accuracy
of star/galaxy separation (Weir et al., 1995). For much astronomical and cosmological
research, accuracy level at approximately 90% of completeness and 10% contamination is
needed.

In Table 2, the first column lists the total magnitude in the F band, second column gives
completeness, and third column shows contamination. These measures of classification
accuracy were obtained by comparing the classification results from our algorithm with
the known classification. It is obvious from the table that the fainter the objects are, the
harder to classify the objects correctly. It should be noted that the classification given in the
data is the best guess by the astronomers. For obvious reasons, the original classification of
very faint objects is more likely to be erroneous than for bright objects, since there is less
information on which to base the classification.

Solution one has the highest likelihood value and provides the best result. It achieves the
accuracy level of 90% completeness and 10% contamination in galaxy catalogs down to a
magnitude (F) limit of 19.0. Even with all data including those of the faintest objects (down



SAMPLING FOR CLUSTER ANALYSIS 225

to about the 24th magnitude), the solution achieves an accuracy level of 85% completeness
and 15% contamination. These results are pretty close to those obtained by the astronomers
using supervised classification methods.1 Although there is no method of proving that this is
the global maximum of the likelihood, from a practical point of view there is no alternative
but to treat it as the correct solution.

3.3. Evaluation of sampling strategy

The strategy is (Rs, Ns, Rr, Nr). Given the number of experiments (Rs = 20), we will
see how the other parameters would affect the outcome of clustering. For this purpose, we
classified solutions on the whole data set as good or bad. We consider it to be a success
if the best solution (the largest of the local maxima located) is obtained. Figure 1 consists
of three graphs and shows the relationships between percent success and the parameters:
the number of random starts Rr, the number of starting points (subsample size) Nr, and
the size of sample Ns. The effects of sampling on computation time are shown in figure 2,
in which estimation time is seconds per sample. In the figures, the three graphs show the
results based on sample sizes of Ns = 500, 1000, 10000, respectively. The results are based
on 20 experiments. The following observations are made from the figures.

(1) The smaller the number of starting points, the better the results. On the graphs, results
obtained using the smallest subsamples are shown in squares, those with largest sub-
samples in circles. In figure 1, the squares always show higher percent of success than
the other symbols as long as more than one subsample is taken. This is because smaller
subsamples give higher diversity in starting points, and thus a better chance of finding
solutions that may be more difficult to locate (and may be better).

(2) More random starts result in better outcomes. The best solution can be achieved 100%
of the time by using enough random starts (e.g. 10) and small number of starting points
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Figure 1. Percent of success (DPOSS sample data). Each plotted point shows the frequency of obtaining the best
solution given a sampling and subsampling strategy. Squares correspond to subsample size Nr = 10, triangles to
Nr = 20, diamonds to Nr = 40, and circles to Nr = Ns /g.
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Figure 2. Computation time in seconds (DPOSS sample data). Each plotted point shows the average computation
time in seconds used given a sampling and subsampling strategy. Squares correspond to subsample size Nr = 10,
triangles to Nr = 20, diamonds to Nr = 40, and circles to Nr = Ns /g.

(e.g. 2p to 3p). In this case, a few runs would suffice to pretty much guarantee getting
a good solution. For example, when Ns = 1000 and Nr = 10, a single trial succeeds in
finding the best solution about 50% of the time. If 20 samples are used with only one
random start per sample, the chance of failing to find the best solution is only about
(0.5)20 = .00001. If more than one random start is used, the chance is even greater. The
most conservative interpretation that is consistent with this experiment is as follows.
In 5 random starts, the best solution was obtained in 20 out of 20 samples. This is
consistent with binomial variation and a chance of success on each sample of between
.832 and .999 (95% confidence interval). With and 83% chance of success on each
sample, the chance of missing with only 5 samples is .0001.

(3) Sample size should be large enough to avoid pathology. But it does not need to be very
large. Sample size around 1000 seems to be sufficient. The worst case is using large
sample and large subsample at the same time. The use of too many data points would
not only increase computation time but also degrade the performance of the estimator.

(4) Sample size has significant impact on computation time. Sample size around 1000
seems to be optimal. When it is smaller (e.g. 500), increase of the number of random
starts (up to a point) tends to reduce time, most likely due to improvement of starting
values, which reduces the iteration time on the whole data set. When it is larger (e.g.
10000), more random starts would rapidly increase computation time because each
random start requires iteration on the whole sample, which at 10,000 is a significant
fraction of the data set.

Those results are consistent with our expectations. It is suggested that our sampling and
subsampling strategy works well in clustering large data sets. With the best strategy, a good
solution can be obtained in less than two and half minutes. Our algorithm seems to be fast
and reliable.
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In our schema, the supersample size does not rise indefinitely with the data set size, so
the computation time before the final classification is capped at O(1). With respect to the
supersample size N, for a fixed dimension the sample size which may be determined to be
1000 will stay constant, and will become a decreasing fraction of the supersample size down
to a limit. If the computation time on a sample from one random start is Ts, and the com-
putation time on the supersample is Td(Rr), a decreasing function of the number of random
starts (because a better starting point on the sample reduces the number of iterations on the
supersample), then the total computation time is Ts ∗ Rr + Td(Rr) ∗ Rs. As Rr rises from 1,
the computation time decreases since Td(Rr) can fall rapidly with Rr and is much larger than
Ts. After a point, further increases in Rr do not reduce Td much, but Ts ∗ Rr still increases.

4. Further experiments

There are certain limitations in experiments with real world data due to factors such as errors
in the data, measurement bias, and variable selection. Therefore, we conducted further tests
using simulated data. We generated 60,000 data points with three clusters and four variables.
Each cluster consisted of 20,000 data points following a multivariate normal distribution.
The mean vectors for the three groups of data were (10,0,0,0), (20,0,0,0), (30,0,0,0), and the
identity covariance matrix was used for all three clusters. One advantage of using simulated
data is that we know the true membership of each data point. This information is useful for
evaluating the accuracy of the clustering. The specifications of the experiments are shown
in Table 3. The design is similar to that used in clustering the DPOSS sample data.

The results from 20 experiments (and hundreds of attempts to locate a maximum of
the likelihood) show that there are 8 solutions to the EM problem. The solution with the
highest log likelihood value correctly classifies all data points. We call this solution the best
solution. Fractions of correct classification of the rest solutions are 76 percent or less. For
the purpose of evaluation, we consider it to be a success if the best solution is obtained. The
results are summarized in figures 3 and 4. Figure 3 shows how the sampling strategy affects
the rate of success. Figure 4 shows how it affects computation time (seconds per sample).
The results are very similar to those obtained using the DPOSS sample data.

(1) As demonstrated using the DPOSS data, the best strategy is to use small number of
starting points and relatively large number of random starts. The best solution is pretty
much guaranteed when sufficient number of random starts and small subsamples are

Table 3. Experiment specification (simulated data).

Total data points (N ) 60000

Variables (p) 4

Groups (g) 3

Experiments (Rs ) 20

Sample size (Ns ) 500, 1000, 60000

Random Starts (Rr ) 1, 5, 10

Starting points/group (Nr ) 5, 10, 100, Ns /g
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Figure 3. Percent of success (simulated data). Each plotted point shows the frequency of obtaining the best
solution given a sampling and subsampling strategy. Squares correspond to subsample size Nr = 5, triangles to
Nr = 10, diamonds to Nr = 100, and circles to Nr = Ns/g.
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Figure 4. Computation time in seconds (simulated data). Each plotted point shows the average computation
time in seconds used given a sampling and subsampling strategy. Squares correspond to subsample size Nr = 5,
triangles to Nr = 10, diamonds to Nr = 100, and circles to Nr = Ns/g. Note that the plot for sample size 60000
is in different scale.

used. With this particular data set, the use of 10 random starts and 5 to 10 starting points
per cluster results in 100 percent success. On the other hand, use of large subsamples
has little chance of getting the best solution.

(2) Sample size should be adequate, sufficiently large to avoid pathology but not too large.
Figure 4 shows that the use of whole data set (the largest sample possible) is very
expensive in terms of computation time, especially with large number of random starts,
and it does not necessarily make the results better. In the experiments sample sizes
around 500 or 1000 worked very well.
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It will never be possible to provide complete assurance that the best solution has been
found. It is also not possible to recommend with certainty parameter choices for unknown
situations. Nevertheless, some general guidelines emerge. First, subsample sizes should be
very small to insure diversity of starting points. Perhaps as small as p + 1, but certainly
no larger than 2p, where p is the dimension of the data. Second, the sample on which
most of the computation occurs should be a function of the dimension and the number of
parameters to be estimated, but no larger than necessary. The simulation was in dimension
4, where there are 4 mean parameters and 4 + (4)(3)/2 = 10 covariance parameters per
group, for a total of 28 parameters. 500 point samples are sufficient. For the DPOSS data
in dimension 6, the number of parameters is 54 and 1000 points seems sufficient. Further
research is needed to determine levels required for high dimension. Finally, the number of
random starts per sample can be fairly large, since it has only a small effect on computa-
tion time (and may even reduce it). Thus for data in dimensions below about 10, we can
recommend sample sizes of 500–2,000, subsample size of 2p, and 10–20 random starts per
sample.

5. Summary and discussions

In this paper we have introduced a new clustering algorithm for automated classification
for large data sets such as those from digital sky surveys. It is an unsupervised method
based on finite mixture models and can be estimated using maximum likelihood via the EM
algorithm. The proposed method uses a sampling and subsampling strategy to search for
multiple local maxima and good initial values. Using this strategy, most computations are
done on a sample of data so that computation time can be reduced to a fraction of what it
would have been with the entire data set.

We have applied this clustering method to star/galaxy classification. The testing data set
is a subset of DPOSS sample data and consists of 132,402 objects and 6 variables. Though
the results are preliminary, we were able to achieve the accuracy level of 90% completeness
and 10% contamination down to a magnitude limit of ∼19.0 in F, using the catalog data as
the reference. The computation can be done in as little as less than two and half minutes
in a SGI Origin 2000 server. Computation time can be further reduced by using parallel
processing techniques. The simulated data contain 60,000 data points, 4 variables and 3
clusters. In clustering the simulated data, 100% correct classification is achieved and the
computation can be done in 40 seconds. The results of experiments using the DPOSS sample
data and the simulated data show that the new method is promising: it can produce good
classification; and it is fast and reliable.

This study is our first step in an ongoing research aimed at developing clustering algo-
rithms that can be applied to mining massive data sets. There are a number of limitations
in this study, which may also be opportunities for further research. Some of the issues are
discussed below. Assessing the number of clusters in a given data set is an important but
very difficult problem. In clustering via mixture models, the number of clusters corresponds
to the number of components in the fitted mixture model. A straightforward approach is to
use the likelihood ratio statistic to test for the smallest number of components in the mixture
model. Unfortunately, this test statistic does not have the usual asymptotic null distribution
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of chi-square in mixture models (Wolfe, 1971; Titterington et al., 1985). One way to assess
the null distribution is to use a resampling method in application of the general bootstrap
approach, that is, to bootstrap the log likelihood ratio statistic (McLachlan, 1987). This
method has been applied to assessing the number of clusters in small data sets. But it may
be difficult to use in clustering massive data sets due to constraints on computation time. A
similar method is proposed in Smyth (1996). An alternative approach is to use approximate
Bayes factors to compare models. This approach has the advantage of having a means of
selecting not only the parameterization of the model, but also the number of components
or clusters (Banfield and Raftery, 1993). With the mixture likelihood method via the EM
algorithm, an approximation to twice the log Bayes factor called Bayesian Information
Criterion (BIC) can be derived (Fraley and Raftery, 1998). The BIC can be used to compare
mixture models with different number of components. The larger the value of the BIC, the
stronger the evidence for the model. The problem is that the regularity conditions for BIC
do not hold for mixture models either (Fraley and Raftery, 1998), though there is theoretical
and practical support for its use in mixture models. Another potential problem with the
Bayesian approach is the “Occam Factor” (Cheeseman and Stutz, 1996), which implies that
Bayesian parameters priors always favor classification with smaller numbers of classes and
do so overwhelmingly once the number of classes exceeds some small fraction of the size
of the data.

In this paper, we have used random sampling, a simple method, for search in the solution
space. This method has the merit of simplicity and fastness, but it could not guarantee
finding the best possible solution. There are more sophisticated search methods available
such as simulated annealing (Kirkpaterick et al., 1983) and reactive tabu search (Battiti
and Tecchiolli, 1994). Another possible improvement is to extend the clustering method
described in this paper to modeling noise and outliers. For example, noise can be mod-
eled as a constant rate Poisson process in certain applications. It has been shown that
the mixture likelihood approach can handle data with noise and clusters (Dasgupta and
Raftery, 1995). Identification of outliers in multivariate data has been studied extensively
(e.g. Rocke, 1996; Rocke and Woodruff, 1996; Rousseeuw and Driessen, 1999; Woodruff
and Rocke, 1994). The methodology for detecting outliers can be used to improve the ro-
bustness of the clustering methods. The capability of detecting outliers and separating noise
and true objects of interests is useful in many applications such as mining digital sky data,
where detecting unusual objects and finding unexpected patterns are important research
objectives.

There are also other ways to use sampling to improve the performance of method such
as the EM algorithm for clustering. Bradley and Fayyad (1998) and Fayyad et al. (1998)
use a method of clustering clusters to achieve a similar objective to that of our paper.
One advantage of the schema we describe is that it is completely general and applies
well beyond clustering. For example, if a regression type model is to be used to pro-
vide predictions, the exact same schema can be used to conduct the analysis in reduced
computation time, whereas the Bradley and Fayyad schema is more particularly aimed at
clustering. The ideas of sampling proposed here and in the work of Bradley and Fayyad
(1998) and Fayyad et al. (1998) are fundamental to the efficient analysis of massive data
sets.
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Note

1. Our results and those of Weir et al. (1995) are not completely comparable. They do not give results for objects
brighter than the 16th magnitude. For objects in the range of about the 16th to the 19th magnitudes, our methods
gave a completeness of 94.2% and contamination of 5.8%, so that the total classification error is 11.6%. Their
results for these objects had a completeness of 88.4% and contamination of 5.4% for a total classification
error of 17.0%, which is actually worse. However, for dimmer objects of magnitude 19 or greater, our method
had a completeness of 77.9% and contamination of 22.2% for a total classification error of 44.3%, while the
supervised method had a completeness of 90.8% and contamination of 17.6% for a total classification error
of 26.8%, which is better. Overall, one might give the supervised method a slight edge, which would only be
expected given the larger amount of information they employed.
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