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Abstract

An important application of gene expression microarray data is classification of biological
samples or prediction of clinical and other outcomes. One necessary part of multivariate statistical
analysis in such applications is dimension reduction. This paper provides a comparison study of
three dimension reduction techniques, namely partial least squares (PLS), sliced inverse regression
(SIR) and principal component analysis (PCA), and evaluates the relative performance of classifi-
cation procedures incorporating those methods. A five-step assessment procedure is designed for
the purpose. Predictive accuracy and computational efficiency of the methods are examined. Two
gene expression data sets for tumor classification are used in the study.
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1. Introduction 
 
A characteristic of gene expression microarray data is that the number of variables 
(genes) p far exceeds the number of samples n, commonly known as the “large p, 
small n” problem (West et al., 2001; Dudoit et al., 2002). In addition, the gene 
expression measures can be highly correlated. These features present a challenge 
to modeling the relationship between phenotype and gene expression profiles and 
classifying (predicting) samples into known categories such as tumor types in 
cancer research (Speed, 2003). There are several ways to deal with the problem. 
One can reduce dimension of the data by selecting a subset of interesting genes 
(gene selection), or producing gene components or super genes – combinations of 
genes (dimension reduction), or using combination of the strategies. Gene 
selection is usually based on some univariate measure related to the classification 
(e.g. Hedenfalk et al., 2001; Dettling and Buhlmann, 2003). Gene components can 
be constructed using multivariate techniques with the premise that, although the 
microarray data contain numerous genes, there may be actually a small number of 
underlying variables that account for most of the variation in the data (West et al., 
2001). For example, a few linear combinations of genes may explain most of the 
response variation. Each approach has its own advantages and limitations 
(Boulesteix, 2004). A combination of the strategies is often used in practice for 
classification with gene expression data. Such classification procedures often 
consist of the following steps: the first step is gene selection/dimension reduction, 
in which a few gene components are constructed from a large number of genes; 
the second step is classification, in which the samples are classified into 
categories by applying standard statistical models on the gene components 
(Nguyen and Rocke, 2002a, 2002b). 

Dimension reduction is a subject of study in several research areas 
including high-dimensional data analysis, pattern recognition, and machine 
learning, where one seeks to explain observed high-dimensional data using an 
underlying low-dimensional representation. Dimension reduction has many 
applications in bioinformatics and computational biology. The purpose of this 
study is to evaluate some of those recently proposed for tumor classification with 
gene expression data. Specifically, we focus on three dimension reduction 
methods: partial least squares (PLS) (Nguyen and Rocke, 2002a, 2002b; Huang 
and Pan, 2003; Boulesteix, 2004), sliced inverse regression (SIR) (Chiaromonte 
and Martinelli, 2002; Antoniadis et al., 2003; Bura and Pfeiffer, 2003), and 
principal component analysis (PCA) (Ghosh, 2002). These methods have been 
shown highly useful for classification with gene expression data. However, there 
is lack of comparison studies on those methods. For example, the relative 
performance of PLS and SIR dimension reduction for classification is largely 
unknown. 
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In this paper, we evaluate the relative performance of several classification 
procedures incorporating those dimension reduction methods (PLS, SIR and 
PCA). We discuss the methodological presumptions of the methods, address 
issues involved in comparing the models, design a five-step assessment 
procedure, and present results of evaluations based on two gene expression data 
sets in cancer research: the leukemia data set of Golub et al. (1999) and the colon 
data set of Alon et al. (1999). The paper is organized as follows. In Section 2, we 
describe the methods of dimension reduction, classification, gene selection, model 
selection and validation, and design a procedure for assessing the relative 
performance of the models. In Section 3, we describe the microarray data sets and 
the experiments, and present the results of evaluations. Summaries and 
discussions are presented in Section 4. 
 
 
2. Methods 
 
The application context is prediction of response classes such as tumor types 
using gene expression microarray data. We view the problem as a multivariate 
regression problem where the number of variables far exceeds the number of 
observations (Stone and Brooks, 1990; Frank and Friedman, 1993; Krzanowski, 
1995; Kiers, 1997). A classification procedure for the purpose may consist of two 
basic steps: the first step is dimension reduction, in which the data are reduced 
from the high p-dimensional gene space to a lower K-dimensional (K<n) gene 
component space; the second step is class prediction, in which response classes 
are predicted using a standard class prediction model on the gene components. A 
step of preliminary gene selection can be easily incorporated into the procedure. 
In this section, we first discuss three dimension reduction methods (PLS, SIR and 
PCA) and a standard classification model (logistic discrimination), and then 
describe the methods for gene selection, model selection and validation, and 
finally design and present a five-step procedure for model assessment. 
 
 
2.1. Dimension Reduction: PCA, PLS and SIR 
 
One way to achieve dimension reduction is to transform the large number of 
original variables (genes) to a new set of variables (gene components), which are 
uncorrelated and ordered so that the first few account for most of the variation in 
the data. The K new variables (gene components) can then replace the initial p 
variables (genes), thereby reducing the data from the high p-dimension to a lower 
K-dimension. PCA, PLS and SIR are three of such methods for dimension 
reduction. To describe them, let X be the n × p matrix of n tissue samples and p 
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genes, y be the n × 1 vector of response values, and XS  be the p × p covariance 
matrix of the gene expressions.  
 
  
2.1.1. Principal Component Analysis 
 
PCA is a well-known method of dimension reduction (Jolliffe, 1986). The basic 
idea of PCA is to reduce the dimensionality of a data set, while retaining as much 
as possible the variation present in the original predictor variables. This is 
achieved by transforming the p original variables X = [x1, x2, …, xp] to a new set 
of K predictor variables, T = [t1, t2, …, tK], which are linear combinations of the 
original variables. In mathematical terms, PCA sequentially maximizes the 
variance of a linear combination of the original predictor variables,  
 

)(maxarg
1'

Xuu Var
uu

K
=

=     (1) 

 
subject to the constraint 0' =jXi uSu , for all .1 ji <≤  The orthogonal constraint 
ensures that the linear combinations are uncorrelated, i.e. 0),( =jiCov XuXu , 

.ji ≠  These linear combinations  
 

ii Xut =                                                          (2) 
 
are known as the principal components (PCs) (Massey, 1965). Geometrically, 
these linear combinations represent the selection of a new coordinate system 
obtained by rotating the original system. The new axes represent the directions 
with maximum variability and are ordered in terms of the amount of variation of 
the original data they account for. The first PC accounts for as much of the 
variability as possible, and each succeeding component accounts for as much of 
the remaining variability as possible. Computation of the principal components 
reduces to the solution of an eigenvalue-eigenvector problem. The projection 
vectors (or called the weighting vectors) u can be obtained by eigenvalue 
decomposition on the covariance matrix XS , 
 

iiiX λ uuS =       (3) 
 
where iλ is the i-th eigenvalue in the descending order for i=1,…,K, and iu is the 
corresponding eigenvector. The eigenvalue iλ measures the variance of the i-th PC 
and the eigenvector iu provides the weights (loadings) for the linear 
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transformation (projection). The maximum number of components K is 
determined by the number of nonzero eigenvalues, which is the rank of XS , and 
K ≤  min(n,p). The computational cost of PCA, determined by the number of 
original predictor variables p and the number of samples n, is in the order of 
min(np2 + p3 ,  pn2 + n3). In other words, the cost is O(pn2 + n3) when p > n. 
 
 
2.1.2. Partial Least Squares 
 
The objective of constructing components in PLS is to maximize the covariance 
between the response variable y and the original predictor variables X, 
 

),(maxarg
1

yXww
'

Cov
ww

K
=

=      (4) 

 
subject to the constraint 0' =jXi wSw , for all .1 ji <≤  The central task of PLS is 
to obtain the vectors of optimal weights wi (i=1,…,K) to form a small number of 
components that best predict the response variable y. Note that PLS is a 
“supervised” method because it uses information on both X and y in constructing 
the components, while PCA is an “unsupervised” method that utilizes the X data 
only. 

To derive the components, [t1, t2, …, tK], PLS decomposes X and y to 
produce a bilinear representation of the data (Martens and Naes, 1989): 
 

EwtwtwtX ++++= KK '...'' 2211     (5) 
and 

Fttty ++++= KK qqq ...2211     (6) 
 
where w’s are vectors of weights for constructing the PLS components t=Xw, q’s 
are scalars, and E and F are the residuals. The idea of PLS is to estimate w and q 
by regression. Specifically, PLS fits a sequence of bilinear models by least 
squares, thus given the name partial least squares (Wold, 1966, 1973, 1982). 

At each step i (i=1,…,K), the vector wi is estimated in such a way that the 
PLS component, ti, has maximal sample covariance with the response variable y 
subject to being uncorrelated with all previously constructed components. The 
first PLS component t1 is obtained based on the covariance between X and y. 
Each subsequent component ti (i=2,…,K), is computed using the residuals of X 
and y from the previous step, which account for the variations left by the previous 
components. As a result, the PLS components are uncorrelated and ordered 
(Garthwaite, 1994; Helland, 1988, 1990). 
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The maximum number of components, K, is less than or equal to the 
smaller dimension of X, i.e. K ≤ min(n,p). The first few PLS components account 
for most of the covariation between the original predictors and the response 
variable and thus are usually retained as the new predictors. The computation of 
PLS is simple and a number of algorithms are available (Martens and Naes, 
1989). In this study, we used a standard PLS algorithm (Denham, 1995).  
 Like PCA, PLS reduces the complexity of microarray data analysis by 
constructing a small number of gene components, which can be used to replace 
the large number of original gene expression measures. Moreover, obtained by 
maximizing the covariance between the components and the response variable, 
the PLS components are generally more predictive of the response variable than 
the principal components.  

The number of components, K, to be used in the class prediction model is 
considered to be a meta parameter and must be estimated in the application, which 
we will discuss later. PLS is computationally very efficient with cost only at 
O(np), i.e. the number of calculations required by PLS is a linear function of n 
and p. Thus it is much faster than the other two methods (PCA and SIR). 
 
 
2.1.3. Sliced Inverse Regression 
 
SIR, one of the sufficient dimension reduction methods (Li, 1991, 2000; Duan 
and Li, 1991; Cook 1998), is a supervised approach, which utilizes response 
information in achieving dimension reduction. The idea of SIR is simple. 
Conventional regression models deal with the forward regression function, 
E(y|X), which is a p-dimensional problem and difficult to estimate when p is 
large. SIR is based on the inverse regression function,  
 

)|E()( yXyη =       (7) 
 
which consists of p one-dimensional regressions and is easier to deal with. The 
SIR directions v can be obtained as the solution of the following optimization 
problem, 
 

   
vSv

vyXvv
vv X

K
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'
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=    (8) 

 
subject to the constraint 0' =jXi vSv , for all .1 ji <≤  Algebraically, the SIR 
components ti=Xvi (i=1,…,K) are linear combinations of the p original predictor 
variables defined by the weighting vectors vi. Geometrically, SIR projects the data 
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from the high p-dimensional space to a much lower K-dimensional space spanned 
by the projection vectors v. The projection vectors v are derived in such a way 
that the first a few represent directions with maximum variability between the 
response variable and the SIR components. Computation of vi is straightforward. 
Let ))|(E( yXS Cov=η be the covariance matrix of the inverse regression function 
defined in (7) and recall that XS is the variance-covariance matrix of X. The 
vectors vi (i=1,…,K) can be obtained by spectral decomposition of ηS with respect 
to XS , 
 

iXii λ vSvS =η       (9) 
 
where λi is the i-th eigenvalue in descending order for i=1,…,K; vi is the 
corresponding eigenvector, and 1' =jXi vSv .  

SIR is implemented by appropriate discretization of the response. Let T(y) 
be a discretization of the range of y. SIR computes Cov(E(X|T(y))), the 
covariance matrix for the slice means of X, which can be thought of as the 
between covariance for the subpopulations of X defined by T(y). Usually, if the 
response is continuous, one divides its range into H slices. If the response is 
categorical, one simply considers its categories. In class prediction problems, the 
number of classes G is a natural choice for H, i.e. H=G. The maximum number of 
SIR components is H minus one, i.e. K ≤ min(H-1,n,p). As discussed before, K is 
considered to be a meta-parameter and may be estimated by cross-validation. The 
cost of computing SIR directions using the standard algorithm is O(np2 + p3), 
which is quite expensive comparing to the cost of PLS. We used a standard SIR 
algorithm (Härdle et al., 1995) in this study. 
 
 
2.2. Class Prediction: Logistic Discrimination 
 
After dimension reduction, standard statistical models can be used for class 
prediction based on a small number of new predictors. The class prediction model 
we use for this study is the logistic discrimination (LD). This model has been 
widely used for two-calss prediction problems and has been shown to perform 
well in previous studies (e.g. Nguyen and Rocke, 2002a). A number of statistical 
models can be used for the purpose (e.g. Dudoit et al., 2002). 

To describe the model, let Z be the n by K matrix of predictor values (gene 
components) and y be the vector of binary responses (class labels), for example,  
y =1 for tumor type A, and y=0 for tumor type B. We want to predict the 
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probability that the i-th tissue sample is of tumor type A given the gene 
expression profile Zi  

 
)/1( iii P Zy ==π        (10) 

 
and then use the probability to classify the sample. In LD, this probability is 
computed using the logistic function (Hosmer and Lemeshow, 2000)  
 

)exp(1
)exp(
βZ

βZ

i

i
i +
=π       (11) 

 
where β is a vector of coefficients in the logistic regression, whose values can be 
estimated by the method of maximum likelihood estimation (MLE). The predicted 
probabilities π̂  are computed by replacing β with the MLE estimates β̂ . These 
probabilities are then used to classify each of the samples, i (for i=1,…,n), 

)ˆ1ˆ(ˆ iiiy ππ −>= 1 , where 1(.) is the indicator function. 1(A)=1 if condition A is 
true and 1(A)=0 otherwise. The classification rule is simple: a tumor sample is 
classified as type A ( 1ˆ =iy ) if the predicted probability that the sample is of type 
A is greater than the probability that the sample is of type B; otherwise, the 
sample is classified as type B.  
 
 
2.3. Methods of Assessment 
 
With dimension reduction/logistic discrimination one can predict the response 
classes using gene expression data. The observed error rates can be used to 
compare the accuracy of the classifiers. Several issues need to be addressed in 
designing a procedure for the assessment. First, the procedure must provide 
protection against over-fitting the data. Cross-validation and re-randomization 
studies can be used for this purpose. Second, due to repeatedly fitting high 
dimensional data, the assessment studies can be very time-consuming. It would be 
useful to add a step of gene selection. Third, the number of gene components to 
be retained is a meta-parameter in the procedure and its value must be estimated. 
We now discuss these methods and design a five-step procedure for evaluating the 
relative performance of the classification procedures. 
 
 
2.3.1. Cross-validation and re-randomization study 
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Cross-validation of prediction results can be achieved by leaving out part of the 
data, training a prediction rule on the remaining data (the training set), and 
predicting response values using the left-out data (the test set) (Stone, 1974). The 
prediction errors are used to evaluate the prediction accuracy of a model. Leave-
one-out (LOO) cross-validation is often used when the number of samples in the 
data is relatively small. By this method, one of the samples is left out and a model 
is fitted based on all but the left-out sample. The fitted model is then used to 
predict the left-out sample. This is repeated for all samples. The error rate 
estimated through cross-validation is unbiased. It is important to treat dimension 
reduction as a step in building the prediction rule and therefore subject to cross-
validation. We use cross-validation to choose the number of gene components 
(estimate the value of K).  
 Cross-validation provides some protection against overfitting the data, yet 
it may not be sufficient, because relatively small cross-validated errors can be 
achieved by capitalizing on chance properties. A further step to protect against 
overfitting is to do re-randomization studies. That is to re-randomize the entire 
data and then repeat the modeling and validation steps. Re-randomization studies 
help stabilize prediction errors. 
  
 
2.3.2 Selection of gene subset 
 
Although dimension reduction via PLS, SIR or PCA can handle a large number of 
genes, it is useful to include gene subset selection as part of the procedure. First, 
the assessment studies require fitting the data many times due to cross-validation 
and re-randomizations. A vary large p (number of genes) can be an impediment to 
the studies due to large computational time and other challenges. A usual 
approach to this is to select a subset of genes and use the subset for model 
comparisons. Second, it is often the case that only a subset of genes is of interest 
in practice. Thus, we include gene subset selection into the procedure and use 
subsets of genes in the assessment studies.  

There are different methods for subset selection and each has its own 
limitations (Parmigiani et al., 2003). The simplest and fastest one is to form 
random subsets, each consisting of p* (p* < p) genes from the set of all genes. 
This can be done by random partition of the whole gene set or simple random 
sampling. The use of random subsets works for the purpose of this study, i.e. 
assessing the relative performance of the models, which doesn’t require a gene 
subset to be “optimal”. In other words, regardless of whether a subset contains 
“good” or “bad” (more or less predictive) genes, all models will be applied to the 
same subset of genes, and thus the comparison of model performance is valid.  
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A subset of genes can also be selected based on measures related to the 
classification. Use of the class information in gene selection can help select genes 
whose expressions are more correlated to the response and thus improve 
prediction accuracy of the models. Most gene selection methods use some 
univariate measures related to classification. For a two-class application, gene 
selection can be based on the simple t-statistic (Nguyen and Rocke, 2002a): 
 

   
2

2
21

2
1

21

// nsns
xxt
+

−
=    

 
where kn , kx  and 2

ks are the size, mean and variance of class k, k=1,2. Using this 
method, t-scores are computed for all genes and the top p* genes with the best 
scores are retained. We use both random subset selection and the t-score based 
gene selection in the assessment studies.  
 
 
2.3.3. Selecting the number of components  
 
The number of components (K) is a meta parameter in the procedure. It can be 
estimated by cross-validation (CV) on the learning set using leave-one-out (LOO) 
or leave percentage out procedures. The leave-one-out validation procedure is as 
follows: one of the samples in the learning set is left-out, and a subset of genes 
(p* genes, p* < p) is selected. The models are fitted to all but the left-out sample. 
The fitted models are then used to predict the left-out sample. This is repeated for 
all samples in the learning data set with K taking successively different values. 
The predicted residual sum of squares (PRESS) is computed for each value of K, 
and the one that minimizes PRESS is chosen and denoted as K*. In our studies, 
the K values are set to be 1,2,3,4,5, which seems to be a good balance between 
computation time and estimation accuracy for binary classification (Boulesteix, 
2004; Nguyen and Rocke, 2002b).  
 
 
2.3.4. Assessment procedure 
 
The assessment procedure consists of the following steps: 

 
1. Form a learning set L with nL samples and a test set T with nT samples 

(nL+nT=n). Denote XL as the learning data matrix of size nL by p, and XT 
as the test data matrix of size nT by p. Use the learning set to determine the 
number of gene components, K*, by cross-validation (See 2.3.3).  
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2. Select a subset of p* genes from the set of all genes using one of the gene 

selection methods, resulting in X*
L (nL by p* matrix) and X*

T ( nT by p* 
matrix).  

 
3. Perform dimension reduction using PLS, SIR, or PCA. Let W denote the 

p* by K* matrix containing the projection vectors. Compute the matrix ZL 
of gene components for the learning data set: ZL = X*

L × W, and the gene 
components for the test data set: ZT = X*

T × W. 
 

4. Fit the class prediction model (logistic regression) to the learning 
components ZL. Predict the classes of samples in the test set using the 
fitted classifier and the test components, ZT. 

 
5. Repeat all above steps R times with re-randomizations of the whole data 

set. The total class prediction error (TCPE) for each method is computed 
by 

 

∑∑
= =

−=
R

r

n

i
ii

T

yyTCPE
1 1

)ˆ(1   

 
where y is the observed response class, ŷ is the predicted response class, 
1() is an indicator function, nT is the number of test samples, and R is the 
number of re-randomization studies. The error rate (proportion of 
misclassification) is computed by TCPE/(nT×R) based on the test data 
only. 

 
 
 
3. Results 
 
In this section, we present the results of evaluations of the relative performance of 
three classification procedures: PLSLD, SIRLD and PCALD, which combine 
PLS, SIR, PCA with logistic discrimination (LD). The assessment studies are 
based on two microarray data sets: the leukemia data set of Golub et al. (1999) 
and the colon cancer data set of Alon et al. (1999). Both data sets are from 
Affymetrix high density oligonucleotide microarrays and are publicly available. 
The leukemia data set contains 72 tissue samples on 7129 genes; the colon data 
set has 62 tissue samples on 2000 genes. We implemented the five-step 
assessment procedure in the R software environment (Ihaka and Gentleman, 
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1996) and then applied it to each of the data sets. We describe the leukemia data 
set first.  

The acute leukemia data contain 72 bone marrow samples on 7129 genes 
from patients with either acute lymphoblastic leukemia (ALL) or acute myeloid 
leukemia (AML). The original data consist of a training set of 38 samples with 27 
ALL and 11 AML and a test set of 34 samples with 20 ALL and 14 AML. We 
preprocessed the gene expression data using the standard procedure including 
background correction, transformation and normalization (Kerr, 2000; Rocke and 
Durbin, 2001). In data transformation, we applied the generalized logarithm 
(glog), )ln( 2 λ++ xx , where x is an intensity value (background corrected) and 
λ is a transformation parameter whose value can be estimated using the method of 
maximum likelihood (Durbin et al., 2002; Durbin and Rocke, 2003; Huber et al., 
2002; Munson, 2001). The glog transformation is a generalization of and 
improvement over the log transformation as the latter can inflate the variance of 
the expression values near background. 

After data preprocessing, we applied the 5-step assessment procedure on 
the data set. We considered p* = 200, 500, 1000 genes and used 100 random 
subsets (R=100) for each p*. We randomly split each subset of genes into two 
data sets: a training set with 36 samples (nL=36) and a test set with 36 samples 
(nT=36). We used leave-one-out cross-validation on the training set to determine 
the number of gene components K̂ , and the test set for evaluating prediction 
errors. In total, 3600 class predictions (36*100=3600) were made using each of 
the three classifiers based on 100 random subsets. The prediction error rates of the 
classifiers were computed. 
 

 
Table 1. Classification error rates of the three methods on the leukemia data set 
with 36/36 split of tissue samples averaged over 100 randomization studies. 
 
 
p* 

 
PLSLD 
 

 
SIRLD 

 
PCALD 

 
200 

 
0.086 (0.051) (2.1) 

 
0.096 (0.051) (1.0) 

 
0.120 (0.069) (3.4) 

 
500 

 
0.059 (0.045) (1.8) 

 
0.059 (0.041) (1.0) 

 
0.087 (0.065) (3.6) 

 
1000 

 
0.045 (0.033) (1.9) 

 
0.046 (0.032) (1.0) 

 
0.068 (0.055) (3.7) 
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The estimated error rates are presented in Table 1. The standard deviation 
of an error rate is shown in the first parentheses and the average value of the 
estimated meta parameter (K*) is in the second parentheses. It can be seen from 
the table that the error rates decrease with the increase of size of gene subset (p*). 
At any of the subset sizes, the error rates of PLS and SIR based procedures 
(PLSLD and SIRLD) are similar and they are lower than that of the PCA based 
procedure (PCALD). It suggests that PLS and SIR are about equally effective 
comparing to each other and are more effective than PCA in dimension reduction. 
To compare the relative computational cost, we computed the ratios of 
computational time of PLSLD and SIRLD to that of PLSLD.  The ratios are 7.8 
for PCALD/PLSLD and 30.8 for SIRLD/PLSLD with p*=500. It is clear that the 
PLS based procedure is much faster than those based on SIR or PCA. 

The second data set used in this study is the colon data, which consist of 
gene expressions of 2000 human genes with 62 colon tissue samples (40 tumor 
and 22 normal). In pre-processing the data, we did background correction, glog 
transformation and normalization. For assessment, we considered p*=200, 500 
and 1000 genes and generated 100 random subsets for each p*. Each subset was 
randomly partitioned into two parts: a training set with 36 samples (nL=36) and a 
test set with 26 samples (nT=26). The training set was used for dimension 
reduction and model selection by leave-one-out cross-validation, and the test set 
was used for prediction. In total, 2600 (26*100) class predictions were made 
using each of the three classifiers and misclassification rates were computed. The  
error rates and their standard deviations, based on 100 randomization studies, are 
reported in Table 2. It can be seen from the table that the classes in the colon data 
are less well separated than the leukemia data, as noted in the previous studies 
(Nguyen and Rocke, 2002a; Antoniadis et al., 2003). 
 
 
Table 2. Classification error rates of the three methods on the colon data set with 
36/26 split of tissue samples averaged over 100 randomization studies.  
 
 
p* 

 
PLSLD 
 

 
SIRLD 

 
PCALD 

 
200 

 
0.167 (0.055) (2.2) 

 
0.193 (0.054) (1.0) 

 
0.224 (0.096) (3.5) 

 
500 

 
0.152 (0.063) (2.1) 

 
0.159 (0.046) (1.0) 

 
0.201 (0.086) (3.9) 

 
1000 

 
0.151 (0.057) (2.4) 

 
0.156 (0.040) (1.0) 

 
0.187 (0.087) (3.7) 
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The pattern of performance of the methods on the colon data is similar to 
that on the leukemia data. It is observed from Table 2 that the average error rates 
of PLSLD and SIRLD are consistently lower than that of PCALD. It is also noted 
that PLSLD and SIRLD have similar error rates although the misclassification 
rate of SIRLD seems to be a little higher than that of PLSLD. In terms of relative 
computational cost, the results are also comparable to those from the leukemia 
data. The ratios of computation time are 7.2 for PCALD/PLSLD and 27.2 for 
SIRLD/PLSLD as p*=500. Again, PLS dimension reduction is much faster than 
the other two.  

The results presented so far for both the leukemia data and the colon data 
are based on the studies using random subsets of genes. Next we describe the 
results of evaluations using subsets of genes selected based on the t-scores, a 
univariate measure related to the classification. Use of this “supervised” gene 
selection method should improve the accuracy of the classification procedures. 

As described in Section 2.3.2, we computed t-scores for all genes in the 
data sets, ranked the genes by the scores, and selected top p* genes. For both the 
leukemia and the colon data sets, we used p*=1000 genes for illustration. We 
performed gene selection and dimension reduction within cross-validation using 
the training set only and estimated the error rates using the test set. The results on 
both data sets are presented in Table 3 below. Shown in the table are the estimated 
error rates, their standard deviations and the average values of estimated K* based 
on 100 re-randomizations studies. 

 
   
Table 3. Classification error rates of the three methods on the leukemia data set 
with 36/36 split and the colon data set with 36/26 split, averaged over 100 re-
randomization studies. p*=1000 top genes selected using the t-statistic. 
 
 
Data Set 

 
PLSLD 
 

 
SIRLD 

 
PCALD 

 
Leukemia 

 
0.025 (0.021) (1.7) 

 
0.026 (0.020) (1.0) 

 
0.042 (0.025) (2.1) 
 

 
Colon  

 
0.136 (0.045) (2.2) 

 
0.141 (0.038) (1.0) 

 
0.162 (0.069) (2.8) 
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Comparing the results in Table 3 with those in Table 1 and Table 2, one 
can see that the prediction accuracy of all three methods (PLSLD, SIRLD and 
PCALD) has been improved: the average prediction errors of all three methods 
are reduced and the mean squared errors of prediction are also decreased. The 
relative performance of the methods, however, remains basically the same: 
PLSLD and SIRLD have similar misclassification rates and both have done better 
than PCALD.  
 
  
4. Discussion 
 
An important application of microarray data is to classify biological samples or 
predict clinical or other outcomes. In this paper, we viewed the class prediction 
problem as a multivariate regression problem where the number of variables far 
exceeds the number of samples, and evaluated several classification procedures 
for dealing with the problem. Specifically, we compared three dimension 
reduction methods (PLS, SIR, PCA), examined the relative performance of 
classification procedures incorporating those methods, and designed a five-step 
procedure for assessment studies. The empirical analyses were based on two 
published gene expression data sets. 

We found that PLS and SIR were both effective in dimension reduction 
and they were more effective than PCA. The PLS and SIR based classification 
procedures performed consistently better than the PCA based procedure in 
prediction accuracy. The empirical results are consistent with the analysis of the 
techniques. PLS and SIR construct new predictors using information on the 
response variable while PCA does not; thus PLS and SIR components are more 
likely to be good predictors than those from PCA. For similar reason, the use of 
“supervised” gene selection methods would be likely to improve the classification 
accuracy. We showed that a simple t-score based gene selection method worked 
well for two-class problems. In the study, we also evaluated the computational 
efficiency of the three dimension reduction methods and found that PLS had 
significant advantage over the other two. Considering both predictive accuracy 
and computational efficiency, we conclude that the PLS based procedure has 
provided the best performance among the three classification procedures.  
 Dimension reduction is a necessary part of multivariate analysis of high-
throughput assay data such as gene expression data. Dimension reduction 
methods are frequently used but their relative performance has not been well 
studied. It would be difficult to compare the performance of dimension reduction 
methods based on results of published studies due to differences among the 
studies in data sets, data preprocessing, and methods of gene selection, model 
selection and validation. This study provides a systematic comparison of the three 
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dimension reduction methods. Moreover, the assessment procedure developed in 
this study can be easily extended to include more methods into evaluation. The 
scope of the study is however quite limited. Many methods of gene 
selection/dimension reduction are available. In further studies, we intend to 
continue the investigation and include more methods into our evaluations.  
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