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1 Statistics and Data Mining

Statistics is about the analysis of data. Some statistical ideas are designed for problems in
which well-formulated prior hypotheses are evaluated by the collection and analysis of data,
but other currents of thought in the ¯eld are aimed at more exploratory ends. In this sense,
data mining (de¯ned as the exploratory analysis of large data sets) should be a branch of
statistics. Yet the ¯eld of data mining has evolved almost independently of the community
of statistical researchers. Why is this?

One reason for the separate development of data mining is that the methods were
developed by those who needed to solve the problems, and these rarely included researchers
whose primary areas of interest were statistical theory and methodology. Several authors
have recently pointed out ways in which statistical ideas are relevant to data mining (see
Elder and Pregibon 1996; Friedman 1997; Glymour et al. 1996, 1997; as well as many
contributors to the NRC CATS report 1996). If the only reason for the lack of use of
standard statistical and data analytic methods was unfamiliarity, this approach would be
su±cient. But perhaps there are other problems.

Statistical methods have traditionally been developed to make the greatest use of rela-
tively sparse data. The concept of statistical e±ciency, for example, is crucial when data are
expensive, and less important when additional data can be obtained for the price of fetching
them from the disk. On the other hand, computational e±ciency has always played a smaller
role, especially since the advent of electronic computers. When analyzing potentially vast
data sets, the importance of various considerations is changed or reversed compared to what
statisticians are traditionally used to. It is perhaps this that has made the use of standard
statistical methods less common in the ¯eld of data mining than it might otherwise have
been.
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2 Computational Complexity of Statistical Methods for Data Mining
Applications

We consider this issue in the context of two fundamentally important methods in data min-
ing: data cleaning and data segmentation. Data cleaning here will mean the identi¯cation of
anomalous data (outliers for short) that may need to be removed or separately addressed in
an analysis. Variable-by-variable data cleaning is straightforward, but often anomalies only
appear when many attributes of a data point are simultaneously considered. Multivariate
data cleaning is more di±cult, but is an essential step in a complete analysis. We will avoid
technical details of these methods (see Rocke and Woodru® 1996), but the essential nature
of the methods is to identify the main \shape" of the data and identify as outliers those
data points that lie too far from the main body of data.

Data segmentation is here taken to mean the division of the data into nonoverlapping
subsets that are relatively similar within a subset. Some points may be outliers, and so
belong to no group. We do not assume that any reliable prior knowledge exists as to which
points belong together, or even how many groups there may be. Statistical methods for
this problem often go by the name \cluster analysis."

In both cases of data cleaning and data segmentation, consideration will be restricted to
measurement data, rather than categorical data. This will simplify the discussion so that
many separate sub-cases do not need to be separately described.

It seems like an obvious point that the computational e®ort cannot rise too fast with
the size of the dataset, otherwise processing large datasets would be impossible. If there are
n data points, each with p associated measurements, then many statistical methods naively
used have a computational complexity of O(np3), while more complex methods may in
principle be high order polynomial, or even exponential in n or p. This is obviously not
satisfactory for larger data sets.

In the quest for low computational e®ort, one limit is that there must of necessity be a
piece which is linear in n. This is because we cannot identify outliers unless each point is
examined. It will be important that the linear part has a low constant; that is, the e®ort
will rise proportional to n, but the constant of proportionality must be small. This will be
the case if we simply plug each point into a quick outlier identi¯cation routine. In no case,
however, should we tolerate calculations that rise more than linearly with n.

In data segmentation, it might seem di±cult to avoid a piece that is proportional to
n2, since pairwise distances are often needed for classi¯cation. We avoid this di±culty by
employing sampling (in the ¯rst of two ways). If n is very large, the basic structure of a
data set can be estimated using a much smaller number of points than n, and that basic
structure can be used to classify the remaining points. For example, if a complex algorithm
for data segmentation is O(n3), but we instead perform the calculation on a subset of size
proportional to n1=4 (for large n), the net complexity is a sublinear O(n3=4).

An additional advantage of estimating the structure of the data set on a subset of the
data is that it can be done more than once and the results compared. This allows for a kind
of independent veri¯cation of results and avoids making conclusions based on accidental
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appearances. If each subcalculation is sublinear, then repeating it any ¯xed number of
times that does not rise with n is also sublinear.

Sampling has an additional role to play in estimating complex structures within a sam-
ple. Some estimation methods have a computational e®ort that rises exponentially with n if
done naively. An example of this is a method of data cleaning that depends on ¯nding the
most compact half of the data and then evaluating each point against this half. Speci¯cally,
the MCD method ¯nds that half of the data for which the determinant of the covariance
matrix of the data is smallest. Since the space that must be searched to ¯nd even a gross
approximation of the MCD rises exponentially with n, there is a danger that the computa-
tional e®ort to ¯nd a solution within given quality bounds will also rise rapidly (Woodru®
and Rocke 1993). A solution (Woodru® and Rocke 1994) is to conduct most computations
only on the cells of a partition of the data, and then use the full sample only for the ¯nal
stages.

3 The Role of Algorithms in Statistical Science

At one time, it would have been feasible to argue that algorithms were not central to statisti-
cal science because all a better algorithm did was somewhat speed up arriving at essentially
the same estimate. Things have changed. More and more, we are using estimators that
have a substantial stochastic component, in which the \theoretical estimator" is not achiev-
able, and all we get are various approximations of varying degrees of exactness. Due to
space limitations, we will describe this phenomenon in terms of an example|S-estimators
of multivariate location and scale|but it clearly applies equally to Markov chain Monte
Carlo, optimal experimental design, and other important areas of statistical science.

Given a function ½(), nondecreasing on [0; 1), the S-estimator of multivariate location
and scale consists of that choice of a location vector t and PDS matrix C which minimizes
jCj subject to

n¡1
X

½
³
[(xi ¡ t)>C¡1(xi ¡ t)]1=2

´
= b0 (1)

which we write as

n¡1
X

½(di) = b0: (2)

It has been shown by LopuhaÄa (1989) that S-estimators are in the class of M -estimators with
standardizing constraints with weight functions v1(d) = w(d), v2(d) = pw(d), v3(d) = v(d),
where Ã(d) = ½0(d), w(d) = Ã(d)=d, v(d) = Ã(d)d, with constraint (2) (Rocke and Woodru®
1993).

The S-estimator can always be shown to exist in some theoretical sense, but there exists
no known algorithm that can always produce it, even in an arbitrarily long computation.
The theoretical S-estimator must be a solution to the associated M -estimating equations;
however, there is no known method of determining how many such local solutions there
are. Given a list of such local solutions, the best of them is a candidate for the theoretical
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S-estimator, but there is no known method of determining whether there is another solution
with smaller determinant. Furthermore, there can be very large di®erences between the best
solution (the theoretical S-estimator), and the second-best solution (Rocke and Woodru®
1993, 1997).

Under these circumstances, which occur in more and more modern statistical methods,
the algorithm used to ¯nd local solutions is critical in the quality of the approximation
to the theoretical S-estimator. Use of a less e®ective algorithm can result, not in a small
degradation of performance, but in a very large one (Woodru® and Rocke 1994; Rocke
and Woodru®, 1996). In a very real sense, \the algorithm is the estimator," and di®erent
algorithms result in essentially di®erent estimators, which can have very di®erent ¯nite-
sample properties.

Furthermore, if the only available algorithm for an estimator has exponential compu-
tational complexity, estimation in large, or even medium sized samples is impossible. For
example, the exact computation of the MCD is only possible in samples of size 30 or less.
No conceivable improvement in computational speed could raise this level higher than 100.
For massive data sets, even polynomial-time algorithms may be far too slow. An O(n3)
algorithm may be feasible in samples of size 1000, but not in samples of size 1,000,000.
Linear, or even sub-linear, algorithms are required to deal with massive data sets.

4 Data Cleaning = Outlier Identi¯cation

While methods of detection of sporadic outliers in multivariate data have existed for many
years (see Hawkins 1980), the problem of detecting outliers can be extremely di±cult.
This essentially requires robust estimation of multivariate location and shape, and most
estimators are known to fail when the fraction of contamination is greater than 1=(p + 1),
where p is the dimension of the data. Thus detecting outliers or a disparate population that
compose more than a small fraction of the data has been impractical in high dimension.

In Rocke and Woodru® (1996) we give new insights into why the problem of detect-
ing multivariate outliers is so di±cult and why the di±culty increases with the dimension
of the data. We then describe signi¯cant improvements in methods for detecting outliers
and demonstrate using extensive experiments that a hybrid method extends the practi-
cal boundaries of outlier detection capabilities. Determination of the exact envelope is
complicated by the fact the probability of detecting outliers depends on many things such
as the computer time expended, dimension, number of data points, fraction of data con-
taminated, type of contamination and algorithm parameters. Nonetheless, we are able to
specify approximately what levels of contamination can be detected by this algorithm under
a variety of conditions. The method we implement is based on extensive theoretical and
methodological work, some by us and some by others.

For some statistical procedures, it is relatively straightforward to obtain estimates that
are resistant to a reasonable fraction of outliers|for example, one-dimensional location
(Andrews et al. 1972) and regression with error-free predictors (Huber 1981). The multi-
variate location and shape problem is more di±cult, since most known methods will break
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down if the fraction of outliers is larger than 1=(p+1), where p is the dimension of the data
(Maronna 1976; Donoho 1982; Stahel 1981). This means that, in high dimension, a very
small fraction of outliers can result in very bad estimates.

We are particularly interested in obtaining estimates that are a±ne equivariant. Tech-
nically, a location estimator tn 2 Rp is a±ne equivariant if and only if for any vector b 2 Rp

and any non-singular p £ p matrix A

tn(AX + b) = Atn(X) + b:

A shape estimator Cn 2 PDS(p), the set of p £ p positive-de¯nite symmetric matrices, is
a±ne equivariant if and only if for any vector b 2 Rp and any non-singular p £ p matrix A

Cn(AX + b) = ACn(X)AT

Informally, a±ne equivariance means that nonessential changes in the data, such as
changing the measurement scale, do not change the solution. In addition, identi¯cation of a
structure such as a low-dimensional surface that contains an important fraction of the data
should not depend on the orientation or location of that structure.

4.1 Multivariate Outlier Rejection: Current State of the Art

All known a±ne-equivariant methods for this problem consist of the following two phases:

Phase I: Estimate a location and shape.

Phase II: Scale the shape estimate so that it be used to suggest which points are far
enough from the location estimate to be considered possible outliers.

For details of these phases, see Rocke and Woodru® (1996).
Rocke and Woodru® (1996) give some simulation results to support the good behavior of

the proposed two-phase method when the data are multivariate normal. In computational
experiments, the fraction of data rejected as outliers was always near to the nominal rejection
fraction used in the construction of the algorithm.

In Rocke and Woodru® (1996), we compared results using three di®erent strategies for
Phase I: the hybrid algorithm, random search over elemental subsets (Rousseeuw 1985:
MinVol), and the forward algorithm (Atkinson 1992: Forward). The steepest descent
algorithm (Hawkins 1993b; FSA) was not separately shown since it has been incorporated
into the hybrid algorithm.

In these studies, we found that the Forward algorithm is greatly superior to random
search over elemental subsets at all levels of contamination. The hybrid algorithm in turn
is noticeably more e®ective than Forward. Similar results obtain for many choices sample
sizes, times, and distances, and dimensions. In higher dimension, limited trials suggest that
the superiority of the hybrid algorithm is even greater.

The software described here is publicly available from statlib in the form of a C program
(http://lib.stat.cmu.edu/jasasoftware/rocke).
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5 Data Segmentation = Cluster Analysis

There is not space here to review the extensive literature on cluster analysis. Since we focus
on a±ne equivariant methods, we restrict out comments to selected previous work with this
property. Our goal in this short account is not to be comprehensive, but merely to indicate
where our methods could contribute to the e±cacy of cluster analysis techniques, especially
in massive data sets.

Our perspective is similar theoretically to that of McLachlan and Basford (1988) and
Ban¯eld and Raftery (1993). We propose to ¯t a mixture likelihood to identify clusters and
to do so in such a way as to avoid sensitivity to outliers. McLachlan and Basford among
many others use a form of the EM algorithm to obtain a mixture likelihood; Raftery uses
a classi¯cation likelihood in which the data are partitioned into groups instead of being
assigned vectors of posterior probabilities.

We make three main innovations in this literature. First, we use robust \pseudo-
likelihoods" corresponding to M -estimators with goodness criteria depending on ellipsoidal
volume measurements. This allows clustering to be free of outliers without requiring a
pre-speci¯cation of the form of the outliers. Second, we are developing improved search
methods for the combinatorial problem of ¯nding good classi¯cation likelihoods. Exchange
methods such as those of SpÄath (1985) can be improved upon using methods of heuristic
search. Furthermore, our methods will be selected to be robust to outlying observations.
Third, we use a two-stage method, as we have in the one sample problem, in which a com-
binatorial (classi¯cation likelihood) estimate is followed up by a mixture likelihood method
chosen to be robust to outliers.

There are many important theoretical (even philosophical) questions that must be re-
solved before usable robust model-based a±ne-equivariant clustering methods can be de-
veloped. For example, even the de¯nition of robustness requires thought when a cluster of
\outliers" is better thought of as another cluster than as outlying observations.

Cluster analysis within the framework we use is an extension of the problem of outlier
identi¯cation by robust estimation of multivariate location and shape. The problem as
formulated for data cleaning was that a data set is given in which at least the majority of
the points come from a well-behaved, perhaps multivariate normal, population|the other
points are arbitrary. The goal is to estimate the location and shape of the population of
well-behaved points as well as possible, and to identify which points come from the main
population (cluster) and which are \outliers."

Now we attack a more di±cult problem using extensions of the methods we previously
employed. Note that the most di±cult type of outliers to deal with in the above formulation
is when they form a population with a mean far from that of the \good" data, but with
a covariance of the same shape, and possibly smaller size (Rocke and Woodru® 1996).
Now we generalize this di±cult situation and suppose that we are faced with data from
K populations, where K may or may not be known ex ante. Each of these populations
has its own mean. They may share a covariance matrix, or they may each have a unique
shape. In addition, there may be \outliers" de¯ned now as points coming from none of the
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populations.
The robust estimation/outlier detection problem can be thought of as the case when

K = 1 (outliers are spread out) or K = 2 (outliers form a second cluster). We now intend
to attack the problem for general K.

5.1 Formulation of the Cluster Identi¯cation Problem

Suppose that a multivariate population of dimension p is composed of a mixture of sub-
populations indexed by 1 · i · K, each of which has an elliptical (perhaps multivariate
normal) distribution with mean vector ¹i and shape matrix §i with mixing proportions ®i,
1 · i · K. K may or may not be known ex-ante, but the mean vectors, shape matrices,
and mixing proportions are not known.

We may take as a starting point the normal maximum likelihood mixture model (Everitt
1993; Everitt and Hand 1981; Mclachlan and Basford 1988). We propose to deal with two
related problems in the existing approaches to cluster identi¯cation via normal mixture
models. The ¯rst problem is that even in the one dimensional, two-population case, ¯nding
the maximum likelihood estimate is a nontrivial problem (Hathaway 1986; Redner and
Walker 1984) because numerous in¯nite and very large maxima in the likelihood exist
corresponding to very small clusters. In principle, one can merely constrain the minimum
cluster size, but there are still a very large number of local minima and ¯nding a solution
that actually separates even well de¯ned clusters is not easy. This can be seen also from
the fact that the multivariate outlier problem when the outliers lie in a second cluster is
such a problem with K = 2, and yet even here it is very di±cult.

A second problem we address in our methods is that there may be points that are true
outliers in the sense of belonging to no de¯ned cluster. Such points will lead to very poor
estimates of multivariate location and shape if they are not discounted in the estimation
process. This means that we should not look at normal MLE estimates, but at M -estimate
alterations that allow for the down-weighting of aberrant points: we use the t-biweight
estimate for its robustness and outlier resistance (Rocke 1996).

Our overall strategy is be a generalization of our strategy for the outlier identi¯cation
problem. We search for preliminary estimates of a cluster using combinatorial methods, ¯t
an estimate to that cluster using the t-biweight pseudo-likelihood, and decide if we have
identi¯ed a potential coherent cluster. The outcomes are more complex than the outlier
detection problem; we must allow for the possibility that we have found not a cluster, but
a group of clusters. Finally, we can ¯t overall pseudo-MLE models using the t-biweight,
and compare di®erent models. Since asymptotics seem to be a poor guide to likelihoods
even for the normal model, we will utilize simulation and the bootstrap to set cuto®s and
compare models.

5.2 Algorithm for Cluster Identi¯cation

We are given a population X of n points in <p that come from an unknown number, K, of
distinct populations with unknown parameters each of which contributes in excess of h > p
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points, plus perhaps additional distinct populations that constitute \outliers" in that they
contribute fewer than h points. Our objective is to determine K as well as estimate the
location and shape of each of the K populations. We do not assume that we have been given
a metric in advance and we require that our methods be a±ne equivariant. Our methods
do not assume a distribution, but scaling is based on multivariate normal distributions.

This is in sharp contrast to the large literature concerning methods that assume that
a distance metric is known or that the Euclidean metric is valid (e.g., Ward 1963, Lance
and Williams 1967, Johnson 1967, Gower 1967, Mulvey and Crowder 1979, Amorin et al
1992, Gersho and Gray 1992, Dorndorf and Pesch 1994). Certainly, various assumptions
can be reasonable or desirable in some settings, but there are other situations where they
are not. Our proposed research concerns the case where we are given a data set and asked to
determine what elliptical clusters we can ¯nd in the data. We are given no other information.

Our model is closer to those that assume only that K is known (some work has been
done on the problem of estimating K; see e.g., Windham and Culter 1992) and attempt to
¯nd a clustering with ni; i = 1; : : : ; K points in each cluster. One method of ¯nding the
members of the K clusters is to assign them so as to minimize the determinant of

W =
1

n ¡ K

KX

i=1

niX

j=1

(xij ¡ ¹xj)(xij ¡ ¹xi)
0

where xij is the jth point in the ith cluster and ¹xi is the mean of the ith cluster (Rubin 1967;
Mariott 1971, 1982). An alternative approach when K is known is based on maximizing
the log likelihood for a normal mixture, which is

L =

nX

i=1

ln

2
4
KX

j=1

®(¹j ;§j; xi)

3
5

where ®(¹;§;x) is the multivariate normal density with parameters ¹ and § evaluated at
x, and ¹j and §j are the mean and covariance of the jth cluster.

There are no methods for solving either of these two optimization problems exactly for
data sets of realistic size. Combinatorial steepest descent from a given starting set of clusters
has been proposed for minimization of W (e.g., SpÄath 1985). An iterative reweighting
descent from a given set of prior pi is suggested for maximizing the likelihood (e.g., Everitt
and Hand 1981; McLachlan and Basford 1988). Both descent methods terminate at local
minima that are very sensitive to the starting con¯guration given (see e.g., Everitt 1992).
The algorithm that we propose can be used to get estimates of the clusters, which can be
used directly or can be used as starting points for algorithms to minimize W or maximize
the log likelihood function.

Note that there are other paradigms for cluster analysis such as hierarchical clustering
that do not directly speak to the problem as we have formulated it (Everitt 1993; Hartigan
1975; Kaufman and Rousseeuw 1990). We will not address these methods here.
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6 Conclusion

A statistical perspective on data mining can yield important bene¯ts if the data mining
perspective on statistical methods is kept in mind during their development. In the data
mining perspective, statistical e±ciency is not a particularly important goal, whereas com-
putational e±ciency is critical. Statistical methods must be used that do not depend on
prior knowledge of the exact structure of the data; the questions to be asked as well as the
answers to be derived must be free to depend on the outcome of the analysis.

Although data mining has developed mostly independently of statistics as a discipline,
a fusion of the ideas from these two ¯elds will lead to better methods for the analysis of
massive data sets.
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