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ABSTRACT
Motivation: Authors of several recent papers have independ-
ently introduced a family of transformations (the generalized-
log family), which stabilizes the variance of microarray data
up to the first order. However, for data from two-color arrays,
tests for differential expression may require that the variance of
the difference of transformed observations be constant, rather
than that of the transformed observations themselves.
Results:We introduce a transformation within the generalized-
log family which stabilizes, to the first order, the variance of
the difference of transformed observations. We also introduce
transformations from the ‘started-log’ and log-linear-hybrid
families which provide good approximate variance stabiliza-
tion of differences. Examples using control–control data show
that any of these transformations may provide sufficient vari-
ance stabilization for practical applications, and all perform
well compared to log ratios.
Contact: bpdurbin@ucdavis.edu

1 INTRODUCTION
A number of recent papers have addressed the importance of
constant variance in the analysis of gene-expression micro-
array data (Durbin et al., 2002; Huber et al., 2002; Munson,
2001; Hawkins, 2001; Rocke and Durbin, 2003). These
authors have generally approached variance stabilization in
the context of one-color arrays or a single channel from a two-
color array. However, variance stabilization is also crucial for
comparison of pairs of samples from two-color microarrays.
Because two observations from the same spot on a two-color
array will be correlated, techniques intended for statistically
independent data (such as for comparison of one-color arrays)
will not always apply in the two-color case.

A key purpose of a two-color microarray experiment is
the comparison of two samples in order to determine which
genes are differentially expressed. As with many statistical
techniques, hypothesis tests for differential expression may
be more effectively performed on data that have been trans-
formed so that they have constant variance. Of course, one
could attempt to circumvent the issue of non-constant variance

∗To whom correspondence should be addressed.

by, e.g. testing for differential expression on a gene-by-gene
basis via a two-sample t-test not assuming equal variances.
However, one may soon find oneself left with few significant
differences after compensating for hundreds or thousands of
multiple tests. Should one wish to ‘borrow’ power for testing
from other genes by using an ANOVA model, non-constancy
of variance quickly becomes an obstacle.

A common approach for determining differential expres-
sion is to examine the ratio zT /zC , or its logarithm ln(zT /zC).
However, Durbin et al. (2002) show that ln(z) has a greatly
inflated variance for µ close to 0. Due to this non-constancy
of variance, a log ratio that is statistically significant for one
pair of true expression values (µT , µC) may not be signific-
ant for a different pair of values, even if the log ratio itself
remains the same. Therefore, log ratios do not appear to
provide an optimal means of determining differential expres-
sion. Extending previous work on one-color arrays (Rocke
and Durbin, 2003), we present three different families of
transformations as alternatives to log ratios.

2 THE TWO-COMPONENT ERROR MODEL
FOR TWO-COLOR ARRAYS

Our choice of transformation in each family will be motivated
by a model describing the variance–covariance structure of a
pair of observations from the same spot on a two-color array.
This error structure can be modeled by an extended version of
the two-component error model of Rocke and Durbin (2001).
Now, in a two-color microarray experiment, mRNA from two
different biological samples is reverse-transcribed and labeled
with two different fluorescent dyes, usually Cy3 and Cy5. The
two samples are then hybridized to the same spotted cDNA
array, resulting in two correlated measurements for each spot.
This correlation requires the case of two-color arrays to be
treated differently from, say, data from a pair of one-color
arrays.

Rocke and Durbin (2001) model this pair of treatment and
control observations for a single spot as

yT = αT + µT eηS+ηT + εS + εT ,

yC = αC + µCeηS+ηC + εS + εC ,
(1)
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where yT and yC are the raw signal intensities for the control
and treatment samples, respectively, µT and µC are the true
expression levels of the gene in question, ηS and εS are spot-
specific multiplicative and additive error terms shared by yT

and yC , and ηT , ηC , εT and εC are multiplicative and additive
error terms unique to control and treatment. Each error term is
assumed to have mean 0 and to be stochastically independent
from the others, with its own variance.

For the purposes of the following discussion, it will be
more convenient to work with zT and zC rather than with
yT and yC , where zT = yT − α̂T . This presumes that suffi-
cient background correction and normalization have already
been applied to the data so that, for σηC

, σηT
and σηS

all small,
E(zT )=̇µT and E(zC)=̇µC . Preprocessing of the data prior to
transformation should be limited to addition or subtraction of
constants, as other changes have the potential to obscure the
variance structure of the data.1

3 THE GENERALIZED-LOG
TRANSFORMATION

Durbin et al. (2002), Huber et al. (2002) and Munson (2001)
independently introduced the application to gene-expression
microarray data of a transformation that stabilizes, to the first
order, the variance of a random variable z satisfying

Var(z) = a2 + b2µ2,

where µ = E(z). (By ‘to the first order’ we mean that the first-
order Taylor expansion of the function has constant variance
not depending on µ.) This transformation may be written in
several equivalent forms but we will use

hλ0 = ln

(
z + √

z2 + λ0

2

)
, (2)

where λ0 = a2/b2. This transformation converges to ln(z)

for large z and is approximately linear at 0 (Durbin et al.,
2002). The transformation and its inverse are monotonic func-
tions with derivatives of all orders. Because its behavior for
large values of µ is identical with the natural logarithm, and
following Munson (2001), we will call this transformation a
generalized logarithm.

Since, there exist transformations of the family hλ(z) =
ln[(z + √

z2 + λ)/2] that stabilize the variances of zT and zC

individually, it seems reasonable to search within this family
for a transformation hλ(·) such that

�hλ(zT , zC) = hλ(zT ) − hλ(zC),

has constant variance. For the purpose of testing for differen-
tial expression, we need to know the variance of a test statistic

1Of course, further normalization may be performed on the data follow-
ing transformation. For example, the loess normalization procedure of Yang
et al. (2002) could be performed on data that have been transformed via a
generalized-log transformation (2) rather than a log transformation.

in the null case, i.e. no differential expression. Therefore, for
each of these families of transformations we will focus on the
behavior of Var[�h(zT , zC)] when µT = µC = µ.

The approximate variance of �hλ(zT , zC) for an unspe-
cified parameter λ may be determined using the mul-
tivariate delta method. We may approximate the variance
of �hλ(zT , zC) by taking its first-Taylor expansion and
evaluating the variance of the expansion. However, since
�hλ(zT , zC) is a function of the six independent random vari-
ables ηS , ηT , ηC , εS , εT and εC , we use an expansion in
six variables rather than one, as would be the case with the
univariate delta method. [The interested reader is referred to
Chapter 7 of Ferguson (1996) for details.]

Once we have calculated the delta-method variance, we may
solve for lambda such that AVµC=µT =µ[�hλ(zT , zC)] does
not vary with µ, adopting the notation AV(X) to denote the
delta-method approximated variance of a random variable X.

Using this technique we find that

AV[�hλ(zT , zC)] = µ2(σ 2
ηT

+ σ 2
ηC

) + σ 2
εT

+ σ 2
εC

µ2 + λ
. (3)

At µ = 0 this becomes (σ 2
εT

+ σ 2
εC

)/λ, and as µ → ∞,

AV[�hλ(zT , zC)] → σ 2
ηT

+ σ 2
ηC

.

If the variance is to be constant, at the very least it should be
equal at µ = 0 and as µ → ∞. Setting

σ 2
εT

+ σ 2
εC

λ
= σ 2

ηT
+ σ 2

ηC
,

and solving for λ yields the candidate value

λ� = σ 2
εT

+ σ 2
εC

σ 2
ηT

+ σ 2
ηC

. (4)

Inserting this value into (3) we find that

AV[�hλ�(zT , zC)] = σ 2
ηT

+ σ 2
ηC

, (5)

which does not depend on µ. This member of the family of
transformations

hλ(z) = ln

(
z + √

z2 + λ

2

)
,

exactly stabilizes the delta-method variance of hλ(zT ) −
hλ(zC), allowing meaningful hypothesis tests to be performed
on the differences. One may compare (4) with the expression
for one-color arrays of the optimal transformation parameter
λ = σ 2

ε /σ 2
η (Durbin et al., 2002).

4 THE STARTED-LOG TRANSFORMATION
While the generalized-log transformation of Section 3 is the
exact delta-method variance-stabilizing transformation for
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data with a quadratic variance structure, transformations that
only approximately stabilize the delta-method variance may
occasionally be more convenient to use. In particular, log
ratios are occasionally touted as providing better interpretab-
ility than alternatives, despite their inherent problems with
inflation of the variance of low-level observations. However,
one problem with log ratios that is more difficult to ignore
is that of negative observations. When µT or µT is near 0,
zT or zC will often be negative, in which case the log ratio is
not defined. An ad hoc solution is simply to discard data for
which zT or zC is less than zero; however, this approach can
result in the loss of valuable biological information.

Should one insist on using log ratios to determine differen-
tial expression, a modified version of the logarithm, called
the ‘started logarithm’ by Tukey (1964, 1977), can mitig-
ate some of the problems with negative observations. This
transformation takes the form

hc(z) = ln(z + c), (6)

where c > 0. The delta-method variance of

�hc(zT , zC) = hc(zT ) − hc(zC),

= ln

(
zT + c

zC + c

)
,

under the null hypothesis µC + µT = µ is

AVµT =µC=µ[�hc(zT , zC)] = µ2(σ 2
ηC

+ σ 2
ηT

) + σ 2
εC

+ σ 2
εT

(µ + c)2
,

(7)

= q2 + µ2r2

(µ + c)2
, (8)

where

q =
√

σ 2
εT

+ σ 2
εC

,

and

r =
√

σ 2
ηT

+ σ 2
ηC

.

While no member of this family will exactly stabilize the delta-
method approximated variance, we may ask for the choice of c
that minimizes the maximum deviation of the variance from
constancy. As µ → ∞,

AV[�hc(zT , zC)] → r2,

which does not depend on c, so we will focus on the deviation
of the variance from this limiting value. Following a lengthy
derivation [which is exactly as in Rocke and Durbin (2003),
and thus is not reproduced here], we find that the value of
the shift constant minimizing the maximum deviation from

constancy is

c = q

21/4r
.

The minimized maximum deviation of the variance from
constancy is

q2

c2
− r2 = r2

√
2 − r2,

and the ratio of the SD at 0, which is 21/4r , to the limiting
SD r is about 1.2. For one-color arrays, the optimal shift
constant is

c = σ 2
ε

21/4σ 2
η

,

which has the same structure as the optimal constant for dif-
ferences but with q replaced by σε and r replaced by ση (again,
see derivation in Rocke and Durbin, 2003).

5 THE LOG-LINEAR-HYBRID
TRANSFORMATION

A third class of transformations that may prove useful in the
analysis of microarray data is the log-linear hybrid (Holder
et al., 2001). As described in Rocke and Durbin (2001), for
µ close to 0, the untransformed data have approximately
constant variance, and for µ large, ln(z) has approximately
constant variance. This suggests that we might use a lin-
ear transformation for small z and a log transformation for
large z.

Let

hk(z) =
{

c + dz, z ≤ k

ln(z), z > k.
(9)

If we choose c and d so that hk(z) is continuous with con-
tinuous derivative at k, we get c = 1/k and d = ln(k) − 1,
yielding

hk(z) =
{

z/k + ln(k) − 1, z ≤ k

ln(z), z > k.
(10)

It remains to choose k to minimize the maximum deviation
of the variance of

�hk(zT , zC) = hk(zT ) − hk(zC), (11)

from constancy. The delta method variance of (11) takes
four different forms, depending on the values of zT and
zC relative to the splice point k. Therefore, under the null
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hypothesis µT = µC = µ,

AV[�hk(zT , zC)]

=




µ2(σ 2
ηT

+ σ 2
ηC

) + σ 2
εT

+ σ 2
εC

k2
, zT , zC ≤ k

σ 2
ηT

+ σ 2
ηC

+ σ 2
εT

+ σ 2
εC

µ2
, zT , zC > k(

1 − µ

k

)2
σ 2

ηS
+ σ 2

ηT
+ µ2

k2
σ 2

ηC

+
(

1

µ
− 1

k

)2

σ 2
εS

+ σ 2
εT

µ2
+ σ 2

εC

k2
, zT > k, zC ≤ k(µ

k
− 1

)2
σ 2

ηS
+ µ2

k2
σ 2

ηT
+ σ 2

ηC

+
(

1

k
− 1

µ

)2

σ 2
εS

+ σ 2
εT

k2
+ σ 2

εC

µ2
, zT ≤ k, zC > k.

(12)

When µ = 0,

AV[�hk(zT , zC)] = σ 2
εT

+ σ 2
εC

k2
,

= q2

k2
,

where q =
√

σ 2
εT

+ σ 2
εC

, as in Section 4. As µ → ∞,

AV[�hk(zT , zC)] → σ 2
ηT

+ σ 2
ηC

= r2,

where r =
√

σ 2
ηT

+ σ 2
ηC

, also as in Section 4.

Notice that when µ = k, all four expressions become

σ 2
ηT

+ σ 2
ηC

+ σ 2
εT

+ σ 2
εC

k2
= r2 + q2

k2
.

It can be seen that the value of k that minimizes the maximum
deviation of the variance from constancy will be the one for
which the variance at 0 is as much below the limiting value r2

as the variance at the splice point is above r2. Setting

r2 − q2

k2
= r2 + q2

k2
− r2,

yields

k = q
√

2

r
.

With this value of k, the maximum deviation of the variance
from constancy is r2/2, and the ratio of the SD of the differ-
ence at 0 to the limiting value r is about 0.7. For one-color
data, the optimal transformation parameter is

k = σε

√
2

ση

,

which has the same structure as the optimal splice parameter
for one-color data, with q replaced by σε and r replaced by
ση (Rocke and Durbin, 2003).

6 COMPARISON OF ONE- AND
TWO-COLOR CASES

As we pointed out above, the optimal transformation in each
family has the same structure as that of the optimal trans-
formation for one-color data. We will show that this occurs
because, under the null hypothesis µC = µT = µ, the
variance of the transformed observations exhibits a similar
structure. However, this similarity between variances in the
one- and two-color cases does not hold in the case where
µC �= µT .

Now, if we assume (as in Rocke and Durbin, 2001), that a
single untransformed microarray observation has variance

Var(z) = µ2σ 2
η + σ 2

ε ,

that observation transformed using an arbitrary function h(·)
will have delta-method approximated variance

Var[h(z)] = ḣ2(µ)µ2σ 2
η + ḣ2(µ)σ 2

ε . (13)

Compare this with the variance of the difference of two
transformed observations, not assuming µT = µC :

Var[�h(zT , zC)] = ḣ2(µC)µ2
Cσ 2

ηC
+ ḣ2(µT )µ2

T σ 2
ηT

(14)

+ [
ḣ(µC) − ḣ(µT )

]2
σ 2

ηS

+ ḣ2(µC)σ 2
εC

+ ḣ2σ 2
εT

+ [
ḣ(µC) − ḣ(µT )

]2
σ 2

εS
.

When µT = µC , the second and fourth terms become 0 and
the first and third combine to yield

VarµC=µT =µ[�h(zT , zC)]
= ḣ2(µ)µ2(σ 2

ηC
+ σ 2

ηT
) + ḣ2(µ)(σ 2

εC
+ σ 2

εT
)

= ḣ2(µ)µ2q2 + ḣ2(µ)r2,

which has the same structure as (13). However, when µT �=
µC (a setting that would be of interest for power calculations)
the spot-specific variances σ 2

ηS
and σ 2

εS
fail to drop out and we

are left with the more complicated variance structure of (14).

7 EXAMPLES
We illustrate the performance of these transformations with
additional data from Bartosiewicz et al. (2000). We will use
a small subset of the data presented in that paper, featuring
control versus control experiments, in order to determine the
behavior of the transformed data when there is no differential
expression. For these data, two groups of three mice were each
treated with 0.10 mg/kg of corn oil. mRNA from the livers of
the mice was extracted, pooled and reverse-transcribed into
fluor-labeled cDNA, with one group labeled with Cy5 and
one group labeled with Cy3. Notice that this is not true self–
self data, since three different mice were used for each group.
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Fig. 1. Robustly estimated SD of differences of transformed observations versus robustly estimated mean expression, generalized-log
transformation. The solid line on the plot is a lowess smooth of the data.

The cDNA was then hybridized to a spotted array in which
each gene was replicated between 6 and 14 times. (We will
use the term ‘replicate’ to refer to replicated spots of the same
cDNA clone on the same array).

Parameters for the two-component model were estimated
as described in Rocke and Durbin (2001). In this procedure,
a set of observations close to background for both samples
and a set of genes with replicated observations expressed
well above background in both samples is identified via an
iterative procedure. Now, according to (1), the variance of a
control observation close to the expression background will
be approximately

Var(zC) = σ 2
εS

+ σ 2
εC

,

the variance of a treatment observation close to background
will be

Var(zT ) = σ 2
εS

+ σ 2
εT

,

and the variance of the difference of paired low-level
observations will be approximately

Var(zT − zC) = σ 2
εC

+ σ 2
εT

.

We may calculate the pooled sample variance for each color
for each of the genes in the near-background group and the
pooled sample variances of their differences in order to cal-
culate the variances above. The three equations may then be
solved for σ 2

εC
, σ 2

εT
and σ 2

εS
. The same procedure is repeated

on logarithms of high-level data in order to calculate σ 2
ηC

, σ 2
ηT

and σ 2
ηS

. This method of estimating variance components may
yield a negative variance estimate when the true value is small.
By convention, negative estimates are set to 0 (Searle et al.,
1992).

This procedure yielded σ̂εC
= 0.335, σ̂εT

= 0.0585,
σ̂εS

= 0.0747, σ̂ηC
= 0, σ̂ηT

= 0.135 and σ̂ηS
= 0.143. These

model parameters yield the transformation parameters
λ̂ = 6.33 for the generalized-log transformation, ĉ = 2.12
for the started-log transformation, and k̂ = 3.56 for the
log-linear-hybrid transformation.

Figures 1–3 show the robustly estimated replicate SD
of differences of transformed observations against the
robustly estimated mean expression for the generalized-log,
started-log and log-linear-hybrid transformations. The robust
mean was estimated for each gene from pooled raw treatment
and control observation using the S-Plus function location.m,
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Fig. 2. Robustly estimated SD of differences of transformed observations versus robustly estimated mean expression, started-log
transformation. The solid line on the plot is a lowess smooth of the data.

– 20 0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

Robust Standard Deviation of Replicate Differences, Log–Linear Hybrid Transformation

Robustly–Estimated Mean Expression Level by Gene

R
ob

us
tly

–E
st

im
at

ed
 S

ta
nd

ar
d 

D
ev

ia
tio

n 
of

 D
iff

er
en

ce
s

Data
Lowess Smooth

Fig. 3. Robustly estimated SD of differences of transformed observations versus robustly estimated mean expression, log-linear hybrid
transformation. The solid line on the plot is a lowess smooth of the data.
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Fig. 4. Robustly estimated SD of differences of transformed observations versus robustly estimated mean expression, log transformation.
The solid line on the plot is a lowess smooth of the data.

and the robust SD of differences of transformed observations
was estimated using the S-Plus function scale.a. The solid line
on each plot shows a lowess smooth that was fit to the robust
means and SD.

In each case, the SD appears relatively constant when com-
pared with the mean expression. Furthermore, the three plots
look quite similar, indicating that each of these transforma-
tions does an adequate job of stabilizing the variance of the
data. For comparison, Figure 4 shows the robustly estim-
ated SD of the log ratios of the data plotted against the
robustly-estimated mean expression. We removed 180 negat-
ive numbers (out of a total sample size of 2304) before taking
the log transformation. As the lowess smooth shows, the SD
increases as the mean expression decreases.

7.1 Minimizing the average deviation from
constancy

One alternative to a transformation that minimizes the the-
oretical maximum deviation from constancy is one that min-
imizes the mean deviation from constancy of the actual data.
The minimum-mean started log transformation was found for

the data of Bartosiewicz et al. (2000) by taking the replicate
SD of differences of transformed observations for each gene
and looking at the mean absolute deviation from r̂ , the estim-
ated theoretical limiting SD. This procedure was repeated for
a number of different values of the shift constant c until the
minimum was found.

For these data, the minimum-mean shift constant is
c̃ = 2.42, compared with ĉ = 2.12 for the minimax trans-
formation. As the vast majority of observations are close to
the expression background, in the same region where the
theoretical maximum deviation from constancy occurs, these
two procedures are likely to yield similar transformation
parameters.

8 CONCLUSIONS
We have presented three variance-stabilizing transformations
for gene-expression microarray data from two-color arrays,
one that exactly stabilizes the delta-method variance of differ-
ences of transformed observations, and two other transforma-
tions, the started-log and log-linear hybrid transformations,
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that provide approximate stabilization of the delta-method
variance. When applied to actual data, each of these trans-
formations appears to stabilize adequately the variance of
differences of transformed observations, and all these trans-
formations provide better variance stabilization than does the
log transformation.

It should be mentioned that the ‘exactness’ of the variance-
stabilization performed by the generalized-log transformation
refers to its theoretical performance based on an approxima-
tion to the variance of the transformed data. Therefore, the
other transformations in question, which are further approx-
imations to an initial approximation, may not be less ‘exact’
in any meaningful sense. This can be seen in the equivalent
performance of the three transformations compared. As with
any theoretical result, the proof remains in the application.
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