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Mahalanobis-type distances in which the shape matrix is derived from a consistent,
high-breakdown robust multivariate location and scale estimator have an asymptotic chi-
squared distribution as is the case with those derived from the ordinary covariance matrix.
For example, Rousseeuw’s minimum covariance determinant (MCD) is a robust estimator
with a high breakdown. However, even in quite large samples, the chi-squared approximation
to the distances of the sample data from the MCD center with respect to the MCD shape is
poor. We provide an improved F approximation that gives accurate outlier rejection points
for various sample sizes.
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1. INTRODUCTION

In one or two dimensions, outlying points that are sufficiently far from the main mass

of data are easily identified from simple plots, but detection of outliers is more challenging

in higher dimensions. In multivariate applications, with three or more dimensions, outliers

can be difficult or impossible to identify from coordinate plots of observed data. Although

the outliers may lie at a great distance from the main body of data in a certain projection,

identification of this projection can be difficult.

Various methods for detecting multivariate outliers have been studied (Atkinson 1994;

Barnett and Lewis 1994, Becker and Gather 1999, 2001; Davies and Gather 1993; Gather

and Becker 1997; Gnanadesikan and Kettenring 1972; Hadi 1992, 1994; Hawkins 1980;

Maronna and Yohai 1995; Penny 1995; Rocke and Woodruff 1996; Rousseeuw and van

Zomeren 1990). One way to identify possible multivariate outliers is to calculate a distance

from each point to a “center” of the data. An outlier would then be a point with a distance

larger than some predetermined cutoff. A conventional measurement of quadratic distance
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from a point X to a location Y given a shape S, in the multivariate setting is

d2
S(X,Y ) = (X − Y )′S−1(X − Y ).

This quadratic form is often called the Mahalanobis squared distance (MSD). If there are

only a few outliers, large values of d2
S(xi, X̄), where X̄ and S are the standard sample mean

and covariance matrix, indicate that the point xi is an outlier (Barnett and Lewis 1994). The

distribution of the MSD with both the true location and shape parameters and the standard

sample location and shape parameters is well known (Gnanadesikan and Kettenring 1972).

However, the standard sample location and shape parameters are not robust to outliers, and

the distributional fit to the distance breaks down when robust measures of location and

shape are used in the MSD (Rousseeuw and van Zomeren 1991). Determining exact cutoff

values for outlying distances continues to be a difficult problem.

In trying to detect a single outlier in a multivariate normal sample, d2
S(xi, X̄) will

identify a sufficiently outlying point. In data with clusters of outliers, however, the distance

measure d2
S(xi, X̄) breaks down (Rocke and Woodruff 1996). Datasets with multiple out-

liers or clusters of outliers are subject to problems of masking and swamping (Pearson and

Chandra Sekar 1936). As an example, consider a dataset due to Hawkins, Bradu, and Kass

(1984). These data consist of 75 points in dimension three. We can see only one outlying

point, but 14 of the points were constructed to be outliers. By using the mean and variance

of all the data, we have masked the remaining 13 outliers (see Figure 1).

Problems of masking and swamping can be resolved by using robust estimates of

shape and location, which by definition are less affected by outliers. Outlying points are

less likely to enter into the calculation of the robust statistics, so they will be less likely

to influence the parameters used in the MSD. The inlying points, which all come from the

underlying distribution, will completely determine the estimate of the location and shape of

the data. We use Rousseeuw’s minimum covariance determinant (MCD) (Rousseeuw 1985)

to estimate the location and shape of the data. When using the MCD in the distance function,

however, we no longer have well-known distributional information for the distances. Using

the motivation that independent data distances have an F distribution, we apply an adjusted

F distribution to the extreme sample points. The F distribution is more representative of

the extreme points than the more commonly used χ2 distribution.

For the remainder of the article we describe in detail how to use robust distances to

determine outlying data points. Section 2 describes the minimum covariance determinant.

Section 3 derives the method for determining critical values used in identifying outlying

points. Section 4 provides the results of simulation studies, and we conclude the article with

Section 5.

2. ROBUST ESTIMATORS FOR OUTLIER DETECTION

The estimation of multivariate location and shape is one of the most difficult problems

in robust statistics (Campell 1980, 1982; Davies 1987; Devlin, Gnanadesikan, and Ketten-
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Figure 1. Mahalanobis squared distances for the HBK data plotted against the χ2
3 expected order statistics using

the ordinary mean and covariance matrix. There are by construction 14 introduced outliers; these are masked
when the mean and covariance are used to determine distances.

ring 1981; Donoho 1982; Hampel, Ronchetti, Rousseeuw, and Stahel 1986; Huber 1981;

Lopuhaä 1989; Maronna 1976; Rocke and Woodruff 1993; Rousseeuw 1985; Rousseeuw

and Leroy 1987; Stahel 1981; Tyler 1983, 1991). The multivariate location and shape prob-

lem is difficult, because many known methods (including monotone M-estimators) will

break down if the fraction of outliers is larger than 1/(p + 1), where p is the dimension of

the data (Donoho 1982; Maronna 1976; Stahel 1981) indicating that in high dimensions, a

small amount of outliers can result in arbitrarily bad estimates.

2.1 MINIMUM COVARIANCE DETERMINANT

The MSD can take as its arguments any location and shape estimates. In this article we

are interested in robust location and shape estimates, which are better suited for detecting

outliers. In particular, we are interested in the MCD location and shape estimates. Given n

data points, the MCD of those data is the mean and covariance matrix based on the sample

of size h (h ≤ n) that minimizes the determinant of the covariance matrix.
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MCD = (X̄∗
J , S

∗
J)

where

J = {set of h points : |S∗
J | ≤ |S∗

K | ∀ sets K s.t. |K| = h}
X̄∗

J =
1
h

∑
i∈J

xi

S∗
J =

1
h

∑
i∈J

(xi − X̄∗
J)(xi − X̄∗

J)�.

The value h can be thought of as the minimum number of points which must not be
outlying. The MCD has its highest possible breakdown at h = � (n+p+1)

2 � where �·� is the
greatest integer function (Rousseeuw and Leroy 1987; Lopuhaä and Rousseeuw 1991).
Because we are interested in outlier detection, we will use h at its highest possible break-
down; h = � (n+p+1)

2 � in our calculations, and we refer to a sample of size h as a “half
sample.” The MCD is computed from the “closest” half sample, and therefore, the outlying
points will have little effect on the MCD location or shape estimate. (Symmetric contami-
nation will not affect the MCD estimates, though extreme asymmetric contamination may
affect the MCD estimates, albeit less than classical estimates.) Calculating the MCD can
be quite computationally intensive. Using our own R code, we implement the algorithm of
Rousseeuw and Van Driessen, which is reasonably computationally efficient (Rousseeuw
and Van Driessen 1999). (Calculations are done in R; note, however, if one were to use
the built-in R function for calculating the MCD, the R function cov.mcd() reweights the
MCD and scales the distances so that they do not show the elbow effect and will not be
distributed according to the F distribution. One way to calculate the true MCD is to use the
cov.mcd() function in S-Plus with the $raw.mcd output.)

2.2 AFFINE EQUIVARIANT ESTIMATORS

We are particularly interested in affine equivariant estimators of multivariate location
and shape (Rousseeuw and Leroy 1987). Because MSDs are affine invariant, the properties
and procedures that use the MSD can be calculated without loss of generality for standard-
ized distributions. For the properties under normality, we can simulate N(0,I) data as a
measure of random normally distributed data.

Large values of MSDs, using the MCD location (X̄∗) and shape estimate (S∗), will
be robust estimates of distance and will be more likely than X and S to correctly identify
points as outlying. Recall the constructed data by Hawkins, Bradu, and Kass. Using the
MCD estimates, the distances give a clear identification of the 14 outlying points (see
Figure 2).

Not every dataset will give rise to an obvious separation between the outlying and
nonoutlying points. Consider the data given by Daudin, Dauby and Trecourt and analyzed
by Atkinson (Daudin, Duby, and Trecourt 1988; Atkinson 1994). The data are eight mea-
surements on 85 bottles of milk. Using the robust MCD estimates, we are not subject to
masking or swamping, but we are not sure which group of points should be considered
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Figure 2. Mahalanobis squared distances for the HBK data plotted against the χ2
3 expected order statistics using

the MCD mean and covariance matrix. All 14 outlying points are clearly visible as outlying.

as outlying (see Figure 3). In Figure 2, points were identified as obvious outliers, but in
many situations (including Figure 3) it will be important to construct a minimum outlying
distance in order to determine outlyingness.

Finding a good approximation to the distribution of d2
S∗(Xi, X̄

∗) will lead to cutoff
values that identify minimum outlying values, even for clusters of outliers. We argue that
the d2

S∗(Xi, X̄
∗) will be approximately distributed as a multiple of an F statistic for the

outlying points not included in the MCD calculation. This insight allows us to find cutoff
values for outlying points using an estimation of the degrees of freedom associated with the
F statistic. We will examine various cutoff values for MSD with MCD shape and location
estimates for multivariate normal data given different values of n and p.

3. APPROXIMATE DISTANCE DISTRIBUTIONS

Mahalanobis squared distances give a one-dimensional measure of how far a point is
from a location with respect to a shape. We describe an alternative approximation to the
distribution of robust MSDs that we later show is superior to the standardχ2 approximation.
We first cite some known results on the exact distribution of squared distances under certain
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Figure 3. Mahalanobis squared distances for the Milk data plotted against the χ2
8 expected order statistics using

the MCD mean and covariance matrix. The dotted line shows the usual χ2 cutoff (at .05), and the solid line shows
the F -cutoff as developed above. One outlier is apparent, but how many outlying points are there? One? Five?
Six?

conditions and then use these results to construct a new approximation for robust distances.
Our method is suggested by heuristic arguments and strongly supported by computational
results.

Consider n multivariate data points in Rp, Xi ∼ N(µ,Σ). Let S be an estimate of Σ
such that, mS ∼ Wishartp(m,Σ). Below are three distributional results for distances based
on multivariate normal data.

1. The first distance distribution is based on the true parameters µ and Σ. We know that
if the data are normal, the distances have an exact χ2

p distribution (Mardia, Kent,
and Bibby 1979).

d2
Σ(Xi, µ) ∼ χ2

p.

Which gives

E[d2
Σ(Xi, µ)] = p,

var[d2
Σ(Xi, µ)] = 2p.
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2. The second distance distribution is based on the standard mean and covariance
estimates. These distances have an exact Beta distribution (Gnanadesikan and Ket-
tenring 1972; Wilks 1962). When the distances are scaled to have the same mean
as in case 1, they have smaller variance than the distances that take µ and Σ as
arguments because fitting the mean and covariance allows the distances to be made
smaller since the estimates accommodate random fluctuations in the data.
Given

X̄ =
1
n

n∑
i=1

Xi

S =
1

n − 1

n∑
i=1

(Xi − X̄)(Xi − X̄)�,

then

(n − 1)2

n
d2

S(Xi, X̄) ∼ Beta

(
p

2
,
(n − p − 1)

2

)
.

Which gives

E

[
nd2

S(Xi, X̄)
(n − 1)

]
= p

var

[
nd2

S(Xi, X̄)
(n − 1)

]
= 2p

(n − p − 1)
(n + 1)

.

3. The third distance distribution is based on an estimate, S, of Σ that is independent of
the Xi. S is an unbiased estimate of Σ based on a sample of size n. These distances
have an exact F distribution when µ is the location argument (Mardia, Kent, and
Bibby 1979), and an approximate F distribution when X̄ is the location argument
[using a Slutsky-type argument; see Serfling (1980)]. It is interesting to note here that
this metric has a larger variance than the metric that takes µ and Σ as its parameters.
This is because the independent variation in S adds to the variability of the distances
which are in part functions of S.
Given S and Xi independent

n − p

(n − 1)p
d2

S(Xi, µ) ∼ Fp,n−p.

Using a variant of Slutsky’s Theorem

n − p

(n − 1)p
d2

S(Xi, X̄) ·∼ Fp,n−p.

Which gives

E

[
(n − p − 2)

(n − 1)
d2

S(Xi, X̄)
]

.= p

var

[
(n − p − 2)

(n − 1)
d2

S(Xi, X̄)
]

.= 2p
(n − 2)

(n − p − 4)
.
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The standard location and shape estimates (X̄ and S) are fully within-sample estimates
since all data points are used with equal weight in their calculations. The MCD location and
shape estimates (X̄∗ and S∗) behave partially like out-of-sample estimates because extreme
observations will not be used to calculate the MCD (with high probability). Our interest
is in the extreme points which enter into the within-sample (WS) calculations but not the
partial out-of-sample (POS) calculations.

Since X̄ and X̄∗ are consistent estimators for µ, and since S and c−1S∗ (for some
constant c) are consistent estimators for Σ, we know that the WS and POS MSD are both
asymptotically χ2

p statistics (Mardia, Kent, and Bibby 1979; Serfling 1980). χ2
p quantiles

are often used for identifying MSD extrema even though use of χ2
p quantiles will often lead

to identifying too many points as outliers (Rousseeuw and van Zomeren 1991).
The main insight behind this article is that distances based on MCD estimates of location

and shape will behave like Case 1 or 2 above for points that were used to calculate the MCD
(equivalently, that have MSDs in the lower half of the empirical distribution of distances),
and will behave more like Case 3 for extreme points. Approximating the extreme end of
the distribution of robust distances using the tail of the F distribution of Case 3 depends
on two approximations. First, note that the large Mahalanobis squared distances using the
MCD location and shape behave very much like the squared distances from an independent
sample. Second, we approximate the distribution of the shape estimate from an MCD by a
Wishart by fitting the scale parameter and degrees of freedom.

The elbow pattern in robust MSDs described by Rousseeuw and van Zomeren (1991)
can be seen in Figures 4 and 5, which show the mean ordered MSDs from the MCD in two
different situations plotted against the χ2

p quantiles. The distances that are in the smallest
half of distances (coming from points that are included in the MCD subset) appear to follow
a χ2

p distribution since they lie on the line y = x, while the larger distances diverge in a
systematic pattern.

To motivate the F distribution, let X be a sample of size n in Rp generated from
N(µ,Σ) and let (X

∗
, S∗) be the location and shape estimates from the MCD with h points

included. Let h/n < ε < δ < 1 be fixed. Define the following sets in Rp:

R1 = {X ∈ Rp|(X − µ)′Σ−1(X − µ) ≤ χ2
p,ε},

R2 = {X ∈ Rp|χ2
p,ε < (X − µ)′Σ−1(X − µ) ≤ χ2

p,δ},
and

R3 = {X ∈ Rp|(X − µ)′Σ−1(X − µ) > χ2
p,δ}.

Note that these regions are based on the true ellipsoidal contours of the generating distri-
bution and are not data dependent. Let XR3 be the set of points in the sample X lying
in R3. Let (X

∗∗
, S∗∗) be the location and shape estimates from the MCD with h points

included, where the set of possible points is restricted to those in R1 ∪R2. Finally, let Y be
an independent sample with the same distribution as X and let YR3 be the set of points in
the sample Y lying in R3. Then

1. The distribution of y ∈ Y conditional on y ∈ YR3 is independent of (X
∗∗
, S∗∗).

This is obvious since they are derived from different samples.
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Figure 4. Mean Mahalanobis squared distances for simulated (n = 100, p = 5) data plotted against the χ2
5

expected order statistics using the MCD mean and covariance matrix. The points that are in the MCD sample
appear to have a χ2

5 distribution, but the points not included are definitely not distributed χ2
5. The dotted line

represents the F distribution with simulated parameters. The distributions appear to fit the F distribution quite
well.

2. The distribution of x ∈ X conditional on x ∈ XR3 is independent of (X
∗∗
, S∗∗).

This is true since (X
∗∗
, S∗∗) is calculated only from points in R1 ∪ R2.

3. (X
∗∗
, S∗∗) and (X

∗
, S∗) coincide whenever the set of points defining (X

∗
, S∗)

does not overlap with R3. Conditional on this event and x ∈ XR3, the distribution
of x ∈ X is independent of (X

∗∗
, S∗∗).

4. Let pn be the probability that (X
∗∗
, S∗∗) and (X

∗
, S∗) do not coincide. Then

pn → 0 as n → ∞. To see this, note that
(a) (X

∗
, S∗) → (µ, c−1Σ).

(b) The h/n quantile of the distribution of MSDs from the MCD location and shape
converges to χ2

p,h/n < χ2
p,ε with O(n−1/2) standard deviation (where χ2

ν,α is the
α cutoff point for a χ2

ν random variable).
(c) Since δ > ε, the chance that the h/n quantile of the distribution of MSDs from

the MCD location and shape exceeds χ2
p,δ is vanishingly small as n → ∞.

(d) The probability that the MSDs from the MCD for points in R3 is larger than χ2
p,δ

is asymptotically 1 (except for a margin of O(n−1/2)).
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Figure 5. Mean Mahalanobis squared distances for simulated (n = 500, p = 5) data plotted against the χ2
5

expected order statistics using the MCD mean and covariance matrix. Again, the points that are in the MCD
sample appear to have a χ2

5 distribution, but the points not included, and especially the furthest outlying points,
are not distributed χ2

5. Even in large samples, there is still an elbow effect. The dotted line represents the F
distribution with simulated parameters. The distributions appear to fit the F distribution quite well.

These results motivate the use of the F distribution which relies on independence
between the extreme points and the metric. The experimental independence of the extreme
points and the MCD sample can also be seen in Figure 6. The picture shows average distances
of two sets of independently simulated datasets whose distances were computed using the
same MCD estimates. The first set contains the MCD sample, the second set was generated
completely independently of the first sample and the MCD estimates. The extrema behave
like the completely independently generated data.

The only remaining step in approximating the distribution of the extreme distances
from the MCD is to approximate the distribution of the MCD shape by a Wishart, so that we
can apply the F distribution result cited above. We will then be able to apply the following
idea:

If Xi is multivariate normal data, and X̄∗ and S∗ are the MCD mean and covariance,
then

1. X1, . . . , Xn ∼ Np(µ,Σ).
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Figure 6. This figure illustrates the lack of dependence of extreme points on the MCD estimates. The distances
for the dependent data set, the “o”’s, are calculated using the MCD estimates from the “o” data. Independent
data are then simulated, the “+”’s, and the distances are calculated using the MCD estimates from the “o” data.
For both sets of data, the points are averages of the ordered distances for 1,000 repetitions of dimension 5 size
100 data. It is apparent that the extreme distances are not affected by whether the MCD was calculated using the
same sample or a different one.

2. The distribution of S∗ can be approximated by

mc−1S∗ ·∼  Wishartp(m,Σ), (3.1)

wherem is of unknown degrees of freedom, and c is a constant satisfying E[S∗] = cΣ
[where the expectation holds for some c because S∗ is an affine equivariant shape
estimator of Σ in an elliptical family of distributions (Grübel and Rocke 1990)],
and

3. The tail elements of Xi can be treated as if they were independent of S∗.
Then, using X̄∗ → µ,

c(m − p + 1)
pm

d2
S∗(Xi, X̄

∗) ·∼ Fp,m−p+1 (3.2)
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for the tail elements of Xi. That is, the tail elements will follow the tail of the F

distribution.
Using the above F distribution to calculate cutoff values for distances based on the

MCD sample is a robust way of identifying outliers. The only remaining problem, then, is
to estimate c and m correctly.

3.1 FINDING THE DEGREES OF FREEDOM FOR THE F DISTRIBUTION

Using a method of moments identification by the coefficient of variation (CV), we
can estimate the degrees of freedom associated with the approximate F distribution of
c(m−p+1)

pm d2
S∗(Xi, X̄

∗). If for somem,S∗ had a distribution that was a multiple of a Wishart,
then it would be the case that

mc−1s∗
jj

·∼ χ2
mσjj , (3.3)

where s∗
jj are the diagonal elements of S∗. Since the estimators are affine equivariant, we

perform all calculations without loss of generality on N(0, I) data, in which case σjj = 1
and the diagonal elements are identically distributed (Grübel and Rocke 1990).

From (3.3),

E[mc−1s∗
jj ] = m ⇒ E[s∗

jj ] = c,

and

var[mc−1s∗
jj ] = 2m ⇒ var[s∗

jj ] =
2c2

m

which gives

CV =

√
var[s∗

jj ]

E[s∗
jj ]

=
c
√

2/m
c

=

√
2
m

.

So we can estimate m by

m̂ =
2

ĈV
2

where CV (ĈV) is the (estimated) coefficient of variation of the diagonal elements of the
MCD shape estimator. The estimation can be done either from the asymptotics of the MCD
shape matrix or by simulation. Note that the simulation will be used only to compute the
mean and variance of the diagonal elements of the covariance matrix and not the distribution
of the distance order statistics, which greatly simplifies the task. Since the diagonal elements
are identically distributed and uncorrelated, we can simulate N independent copies of the
p × p MCD shape matrix from the n data points in each independent sample, and then
estimate c and m from the mean and coefficient of variation of the Np diagonal elements.
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Alternatively, an asymptotic expression for c exists that works well even for small
samples.

c =
P (χ2

p+2 < χ2
(p,h/n))

h/n
,

where χ2
ν is a chi-square random variable with ν degrees of freedom, and χ2

ν,ε is the ε cutoff
point for a χ2

ν random variable. This formula is easily derived and is apparently well known
(also see Croux and Haesbroeck 1999).

For m there exists an asymptotic expression that is good in large samples and only
moderately accurate in small samples due to Croux and Haesbroeck (1999) who used
influence functions to determine an asymptotic expression for the variance elements of the
MCD sample (see Appendix).

3.1.1 Interpolation to Find Parameters

As we will see from the next section, the results with simulated parameter values are
quite good but take extensive computation time. The following interpolation formula can
be used to modify the theoretical parameter value of the degrees of freedom.

mpred = masy · e(.725−.00663p−.0780 ln(n)), (3.4)

where mpred is the predicted degrees of freedom from adjusting the asymptotic degrees of
freedom, and masy is given by Croux and Haesbroeck (1999) (details for the computation
of masy are given in the appendix).

This formula was derived using linear regression on p, the dimension, and the logarithm
of n, the sample size, with ln(msim/masy) as the dependent variable, where msim is the
simulated value of the degrees of freedom. The motivation behind the above linear model
comes from knowing that the asymptotic value of m will be correct for large sample sizes
(while depending weakly on p.) We could model our predicted value as

mpred

n
=

masy(p)
n

+ b1(p) · n−α.

Where masy(p) and b1(p) are functions of p, and α > 1 is some power representing the
relationship of p on the predicted value. Alternatively, we can model the relationship as

mpred

masy
=

c1(p)
nα−1

or

ln

(
mpred

masy

)
= d1(p) − (α − 1) ln n (as above),

where c1(p) and d1(p) are linear functions of p.
The regression used 36 data points with p = 3, 5, 7, 10, 15, 20 and n = 50, 100, 250,

500, 750, 1000. A subset of the results from the fitting are given below.
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Dimension and size msim masy mpred

p = 5, n = 50 13.09 8.76 12.89

p = 10, n = 100 32.76 24.56 33.13

p = 10, n = 500 122.32 106.51 126.71

p = 20, n = 1, 000 318.05 282.87 298.35

As seen from the table, the asymptotic expression can be adjusted to give values closer
to the simulated degrees of freedom. The adjusted values have the benefit of being more
accurate than the asymptotic values while requiring negligible computation to use.

4. RESULTS

A common and reasonable method for identifying clusters of outliers is to find robust
distances and then compute distributional quantiles to determine cutoffs. By comparing
simulated data to different percentile cutoffs we can determine the entire distribution of
the tail elements of our robust distances. In order to assess the accuracy of the method, we
compare the four distributional cutoff choices that have been described.

1. χ2
p (which is known to reject too many points);

2. F (from (3.2)) with degrees of freedom m and scaling constant c calculated from
the asymptotic formulas (masy);

3. F (from (3.2)) with degrees of freedom m calculated from the adjusted asymptotic
formulas and scaling constant c from the asymptotic formula (mpred); and

4. F (from (3.2)) with degrees of freedom m and scaling constant c calculated from
simulations (msim).

We examined the performance of these methods in the null case by a Monte Carlo
study with p = 5, 10, 20 and n = 50, 100, 500, 1,000. First, simulations of the MCD shape
estimators with 1000 trials were undertaken to obtain values for m and c for each pair of n
and p. Then the cutoff values for 5%, 1%, and .1% rejection for each of the four distribution
choices were calculated.

Next, 1,000 sets of independent data for each pair of dimension and size were simulated,
and the number of points the cutoffs identified as outlying was counted. For the 5% nominal
test, the percent identified as outliers is shown in Table 1. As expected, the chi-square cutoff
points are far too liberal. The problem is worse in higher dimension but gets better with
larger samples. The asymptotic cutoff points are an improvement on the chi-square cutoffs,
but are too conservative, especially in small sample sizes. The performance at sample sizes
of 500 and 1,000 is not bad. Both the adjusted and the simulated cutoff points are close to
the nominal values and appear to accurately reject the correct percentage of points.

Results for 1% and .1% nominal tests are in Tables 2 and 3. Again, the chi-square cutoffs
are too liberal, the asymptotic cutoffs are too conservative, and the adjusted and simulated
cutoffs are quite good. Cutoffs from either the asymptotic or simulated methods can be used
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Table 1. Each Entry Represents the Percent of Simulated Data That Were Above a Specific 5% Cutoff
Value. (Ideally, an entry in a cell would be 5.) Directly underneath the value (in parentheses) is
the standard error of the estimate, also given in units of percentages. The cutoff values were
determined by dimension, size, and method of analysis. We can see that the chi-square cutoffs
consistently reject too many points as outlying. The asymptotic method is quite conservative,
but it appears to become more accurate as n increases. Both the adjusted and the simulation
methods are very good for medium to large samples, and the simulation method has the best
performance of the four for small samples.

Chi-square(p) cutoff values Asymptotic cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 26.29 16.64 7.30 6.08 p 5 .63 2.44 4.60 4.78
(6.1) (4.9) (1.6) (.9) (1.6) (2.2) (1.3) (.8)

10 36.75 27.16 8.85 6.83 10 0.42 2.00 4.43 4.74
(2.6) (4.9) (1.6) (.9) (1.2) (1.9) (1.1) (.8)

20 29.47 36.79 12.80 8.62 20 .14 1.07 3.87 4.53
(1.0) (1.7) (1.7) (1.1) (.6) (1.3) (1.0) (.7)

Adjusted asymptotic cutoff values Monte Carlo cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 4.93 5.18 5.05 4.95 p 5 5.11 5.09 4.99 4.92
(4.4) (3.2) (1.3) (.8) (4.4) (3.1) (1.3) (.8)

10 7.12 5.71 5.02 4.96 10 5.71 5.56 4.91 4.95
(5.1) (3.3) (1.2) (.8) (4.7) (3.3) (1.2) (.8)

20 8.41 5.27 4.49 4.70 20 6.58 4.98 4.73 4.90
(4.4) (2.9) (1.1) (.7) (4.2) (2.8) (1.1) (.8)

for rejecting outliers in multivariate data without fear that more than the nominal proportion
of good data will be rejected (on the average). The method is a large improvement on the
previously available methods.

From the tables, we can see that the asymptotic accuracy depends primarily on n and
not on p. As expected, the asymptotic cutoff becomes more accurate as n increases. These
results lead to the following recommendations:

1. For large values of n (at least 1,000 observations), asymptotic formulas may be used
for cutoff values of outlying MCD distances.

2. For smaller values of n (fewer than 1,000 observations), the asymptotic formula for
c can be used, but m should be adjusted using (3.4).

3. If ample computation time is available, simulation can be used to find the most ac-
curate cutoffs. The simulation programs, in R, are available at http://pages.pomona.
edu/∼jsh04747/Research/Papers.htm.

An example of the application of this method is shown in Figure 3 (p. 933). The solid
line shows the cutoff from method (2) at 1% significance, and the dotted line shows the
comparable (and known to be overly liberal) χ2 cutoff.

http://pages.pomona.edu/~jsh04747/Research/Papers.htm
http://pages.pomona.edu/~jsh04747/Research/Papers.htm
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Table 2. Each Entry Represents the Percent of Simulated Data That Were Above a Specific 1% Cutoff
Value. (Ideally, an entry in a cell would be 1.) Directly underneath the value (in parentheses) is
the standard error of the estimate, also given in units of percentages. The cutoff values were
determined by dimension, size, and method of analysis. Again, we see the same results, the
chi-square cutoffs consistently reject too many points as outlying. The asymptotic method is
quite conservative, but it appears to become quite accurate as n increases. Both the adjusted
and the simulation methods are very good for medium to large samples, and the simulation
method has the best performance of the four for small samples.

Chi-square(p) cutoff values Asymptotic cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 15.76 7.64 1.98 1.44 p 5 .03 .24 .86 .93
(6.5) (3.8) (.8) (.4) (.3) (.6) (.5) (.4)

10 30.49 14.88 2.57 1.68 10 .01 .24 .83 .92
(4.5) (4.7) (.8) (.5) (.2) (.6) (.5) (.3)

20 28.60 30.91 4.22 2.31 20 .00 .12 .07 .86
(1.6) (2.8) (1.0) (.5) (.0) (.4) (.4) (.3)

Adjusted asymptotic cutoff values Monte Carlo cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 .89 1.03 1.02 .99 p 5 .98 .99 1.00 .98
(1.9) (1.4) (.6) (.4) (2.0) (1.4) (.6) (.4)

10 1.74 1.32 1.03 .99 10 1.22 1.27 .98 .99
(2.5) (1.5) (.5) (.3) (2.1) (1.5) (.5) (.3)

20 2.99 1.25 .88 .91 20 2.00 1.15 .95 .97
(3.3) (1.4) (.5) (.3) (2.7) (1.4) (.5) (.3)

5. CONCLUSION

This article derived a new method for determining outlying points in a multivariate
normal sample. The methods presented here are superior to the commonly used chi-square
cutoff. Asymptotic values for the cutoffs work well in samples of size 1,000 or larger, while
an adjustment formula gives good results down to relatively small sample sizes.

Because this work concerns clusters of outliers, there are implications for clustering
as well as outlier identification. It is possible that robust distances may be able to identify
outlying points in populations that are made up of two or more different clusters.

Also, the only robust method discussed in depth here is the MCD. The above methods
also apply to other robust methods such as Rousseeuw’s minimum volume ellipsoid, S-
estimation, and M-estimation [for which similar Wishart parameters can be derived (Davies
1987; Lopuhaä 1989)].
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Table 3. Each Entry Represents the Percent of Simulated Data That Were Above a Specific .1% Cutoff
Value. (Ideally, an entry in a cell would be .1.) Directly underneath the value (in parentheses)
is the standard error of the estimate, also given in units of percentages. The cutoff values were
determined by dimension, size, and method of analysis. Again, we see the same results, the
chi-square cutoffs consistently reject too many points as outlying. The asymptotic method is
quite conservative, but it appears to become quite accurate as n increases. Both the adjusted
and the simulation methods are very good for medium to large samples, and the simulation
method has the best performance of the four for small samples.

Chi-square(p) cutoff values Asymptotic cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 8.25 2.85 .32 .20 p 5 .00 .01 .08 .09
(5.5) (2.4) (.3) (.2) (.0) (.1) (.1) (.1)

10 21.76 6.69 .45 .23 10 .00 .01 .07 .09
(6.1) (3.5) (.3) (.2) (.0) (.1) (.1) (.1)

20 26.90 21.38 .91 .36 20 .00 .01 .06 .08
(2.2) (3.9) (.5) (.2) (.0) (.1) (.1) (.1)

Adjusted asymptotic cutoff values Monte Carlo cutoff values

n n

50 100 500 1,000 50 100 500 1,000

p 5 .07 .09 .10 .10 p 5 .08 .09 .10 .10
(.5) (.4) (.2) (.1) (.6) (.4) (.2) (.1)

10 .24 .15 .10 .10 10 .12 .15 .10 .10
(.9) (.5) (.2) (.1) (.6) (.5) (.1) (.1)

20 0.62 0.16 .08 .09 20 .36 .14 .09 .10
(1.4) (.5) (.1) (.1) (1.1) (.5) (.1) (.1)

APPENDIX

In this appendix we provide for completeness the formulas due to Croux and Haesbroeck
(1999) needed to estimate the asymptotic degrees of freedom parameter m of the Wishart
approximation.

α =
n − h

n
(A.1)

where n is the sample size and h =
⌊

(n + p + 1)
2

 

⌋
.

qα is such that: 1 − α = P (χ2
p ≤ qα) (A.2)

cα =
1 − α

P (χ2
p+2 ≤ qα)

(A.3)

c2 =
−P (χ2

p+2 ≤ qα)
2

(A.4)
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c3 =
−P (χ2

p+4 ≤ qα)
2

(A.5)

c4 = 3 · c3 (A.6)

b1 =
cα(c3 − c4)

1 − α
(A.7)

b2 = .5 +
cα

(1 − α)

(
c3 − qα

p

(
c2 +

(1 − α)
2

))
(A.8)

v1 = (1 − α)b2
1(α(

cαqα

p
− 1)2 − 1) − 2c3c

2
α(3(b1 − pb2)2 (A.9)

+ (p + 2)b2(2b1 − pb2))

v2 = n(b1(b1 − pb2)(1 − α))2c2
α (A.10)

v =
v1

v2
(A.11)

m̂ =
2

c2
αv

. (A.12)
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