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Abstract

In microarray tumor tissue classi'cation studies, the expressions of thousands of genes (vari-
ables) are simultaneously measured across a few tissue samples. Standard statistical methodolo-
gies in classi'cation do not work well when the dimension, p, is greater than the sample size,
N . One approach to classi'cation problems, when p�N , is to 'rst apply a dimension reduc-
tion method and then perform the classi'cation in the reduced space. In this paper, we study
dimension reduction for classi'cation in high dimension based on partial least squares (PLS)
and principal components analysis (PCA). In addition, we propose and explore two hybrid-PLS
methods for dimension reduction. PLS components are linear combinations of the original pre-
dictors, but the weights are nonlinear functions of both the predictors and response variable. This
makes it di:cult to study the PLS classi'cation methodologies analytically, so, in this paper,
we turn to a numerical study using simulation.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

DNA microarray technology, introduced in 1995–1996, allows the measurement of
thousands of gene expression values simultaneously, providing insight into the global
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gene expression patterns of cells (tissues) being studied (Lockhart et al. 1996; Schena
et al., 1995, 1996). Despite the need for further technological developments with
microarray assays (Nguyen et al., 2002d), the approach remains powerful for studying
the myriad of transcription-related pathways involved in cellular growth, diEerentiation,
and transformation in various organisms. In particular, the ability to measure thousands
of gene expressions simultaneously using DNA microarrays has made it possible to in-
vestigate genome-wide objective approaches to molecular cancer classi'cation.

A typical DNA microarray data set in tumor tissue classi'cation studies consists
of expression measurements on thousands of genes over a small number of known
tumor tissue samples (p�N ). However, many standard statistical methodologies for
classi'cation and prediction require more samples than predictors. For example, in
regression, N ¡p leads to an ill-posed problem because the ordinary least squares
(OLS) solution is not unique. Another example is Fisher’s discriminant analysis, where
the covariance matrix is singular when N ¡p.

One approach to this problem of classi'cation in high dimension, encountered with
microarray data, is to 'rst apply dimension reduction techniques. After dimension
reduction, standard classi'cation/prediction tools, such as linear discriminant analysis
(LDA) or logistic discrimination (LD), can be implemented in the reduced subspace.
The information retained (i.e., the dimension reduction strategy used in the 'rst step)
plays an important role in the subsequent prediction. We have found that dimension
reduction via partial least squares (PLS) (HIoskuldsson, 1988; Helland, 1988) performs
well relative principal components analysis in microarray-based tumor classi'cation
studies (Nguyen and Rocke, 2002a,b,c). Although the PLS components used in clas-
si'cation/prediction are linear combinations of the predictor variables, the weights are
functions of both the predictors and response variable (see Section 3.2). The structure
of PLS weights leads to estimates that are nonlinear functions of {yi}N

i=1, even in the
simple case of linear regression estimates. This makes analytical study of the PLS clas-
si'cation methodology di:cult, so, in this paper, we turn to a numerical study using
simulation.

Also, PLS was originally designed for continuous response variable(s) and the method
is advanced in the 'eld of Chemometrics. Many applications of this kind are available
in the Journal of Chemometrics (Wiley) and Chemometrics and Intelligent Labora-
tory Systems (Elsevier). See also Martens and Naes (1989). In classi'cation problems,
the response is categorical. Here, we focus on binary classi'cation only and study the
performance of PLS in this setting. Using singular value decomposition (SVD) we char-
acterize the structure of the PLS weights when the response variable is binary. This
derivation of the response-dependence structure of PLS components led us to explore
a modi'ed PLS procedure for binary response (PLSM2). In addition, using a formula-
tion of PLS as a sequence of simple linear regressions (SLRs) by Garthwaite (1994),
we explore another modi'cation of PLS for binary response variables (PLSM1). We
compare the performance of these hybrid-PLS methods (PLSM1 and PLSM2) to the
traditional PLS method as well as to PCA when N�p.

In this paper, we provide a simulation study of dimension reduction methods for
logistic classi'cation in high dimension based on (1) PLS, (2) hybrid-PLS (PLSM1
and PLSM2) and (3) PCA. In addition, we also compare these methods to unmodi'ed
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PLS for classi'cation using estimates from ordinary least squares on binary response
(Section 4).

We brieLy review logistic discrimination in Section 2 and then describe dimen-
sion reduction methods in Section 3. In this section, the relevant aspects of PCA and
PLS are introduced. In addition, we derive two characterizations of how PLS compo-
nents depend on the response values, leading us to explore two hybrid-PLS methods
(PLSM2 and PLSM1). Classi'cation after dimension reduction using logistic discrim-
inant analysis is described in Section 4. The data simulation procedure used to study
the performance of these dimension reduction methods and classi'cation is described
in Section 5. Results of the simulation study and a discussion of the limitation of the
study is described in Section 6. As this is a simulation study, we will exercise care to
not over-generalize conclusions.

2. Logistic discrimination in high dimension

The cancer classi'cation problem using microarray gene expression data is to con-
struct a classi'er or prediction algorithm that can accurately predict the class of ori-
gin of a tumor tissue, y, based on the expression pro'le of p genes, denoted by
x = (x1; : : : ; xp)′. The prediction algorithm is trained on N samples of known classi'-
cation, {(yi; xi)}N

i=1, from N microarray experiments. For example, in case of logistic
discrimination/classi'cation, the logit of the conditional class probabilities (	i =P(Yi =
1|xi)), is modelled as a linear function of the gene expression values: logit(	i) ≡
log(	i=(1− 	i)) = x′

i�. Thus, the conditional class probabilities are modelled using the
logistic functional form, 	i = {exp(x′

i�)=(1 + exp(x′
i�))} (see McCullagh and Nelder,

1989; Hosmer and Lemeshow, 1986).
In the traditional setting where N ¿p, the predicted conditional class probabilities,

{	̂i}N
i=1, are obtained by replacing the parameter, �, with its maximum likelihood esti-

mate (MLE) �̂. The LD classi'er is ŷ i=I(	̂i¿ c), where 0 ¡c¡ 1 is a probability cut-
oE point and I(A) is indicator function taking value 1 if A is true and 0 otherwise. For
example, with the common choice of c = 0:5, a sample pro'le x is classi'ed/predicted
as belonging to group 1 (ŷ = 1) if 	̂¿ 1 − 	̂, where 	̂ = {exp(x′�̂)=(1 + exp(x′�̂)}.

However, the estimation of 	i (i.e. �) for classi'cation requires that N ¿p. We use
dimension reduction to reduce the dimension p to K�N (Section 3). Classi'cation
becomes feasible after dimension reduction, where the original sample pro'les, {xi}N

i=1,
are replaced by the corresponding “component” pro'les in the reduced subspace (Sec-
tion 4). More precisely, the matrix of predictor values, X, is approximated by the matrix
of components, T = [t1; : : : ; tK ]. In the next section, we consider dimension reduction
methods for obtaining T based on PLS, hybrid-PLS methods, and PCA.

3. Dimension reduction methods

Principal components analysis is a well-known dimension reduction technique and
in this section we only give a brief review of selected aspects of PCA that are related



410 D.V. Nguyen, D.M. Rocke / Computational Statistics & Data Analysis 46 (2004) 407–425

to PLS. After the relevant aspects of PLS are described, we introduce two hybrid-PLS
methods for binary responses (PLSM1 and PLSM2), based on modi'cations of the
traditional PLS approach.

3.1. Principal components analysis

Dimension reduction of the p-dimensional space by PCA is achieved by constructing
principal components (PCs), which are linear combinations of the original p predic-
tor/explanatory variables. More precisely, in PCA, orthogonal linear combinations are
constructed to maximize the variance of the linear combination of the explanatory
variables sequentially,

wk = argmax
w′w=1

var(Xw) = argmax
w′w=1

(N − 1)−1w′Sw; (1)

subject to the orthogonality constraints w′
kSwj = 0; for all 16 j ¡k. We have used

the notation S=X′X where X is the N ×p matrix of predictor values. The maximum
number of nonzero components is the rank of X. Since X is assumed to be centered
the rank is N − 1 because N − 1 ¡p. The kth step of PCA seeks the strongest mode
of variation and the k − 1 orthogonality constraints imposed require that the kth linear
combination identi'es a mode of variation distinct from those previously identi'ed (by
the previous k − 1 gene components). For details, the reader is referred to JolliEe
(1986).

For example, consider PCA of the correlation matrix, R = (1=(N − 1))X′X, for a
standardized data matrix X. The principal components are obtained from the spec-
tral decomposition, R = V�V′, where � = diag {�1¿ · · ·¿ �N−1}, {�k}N−1

k=1 are the
eigenvalues, and V = (v1; : : : ; vN−1) are the corresponding eigenvectors. The PCs are
constructed as �k = Xvk .

In PCA of the correlation matrix, the ratio of the explained to total variability has a
simple form in terms of the eigenvalues. Since var(Xj)=1 for all j, the total variability

is p. It is straightforward to show that var(�k) = �k and
p∑

j=1
var(Xj) =

∑N−1
k=1 var(�k) =

∑N−1
k=1 �k (e.g., see Mardia et al., 1979). Thus, the proportion of variation explained

by the kth PC is �k=p and the cumulative proportion for K PCs is
∑K

k=1 �k=p. If there
are only d (¡N ¡p) underlying components which explain nearly all of the observed
variation then we expect that

∑d
k=1 �k=p ≈ 1.

Prediction/class'cation using standard methods can then be carried out in the reduced
space by using the constructed PCs. For instance, prediction of a continuous response
vector, y, based on the constructed PCs is the well-known principal component re-
gression (PCR) method (Massey, 1965). A PCR model is the linear regression model
based on the subspace spanned by K PCs, {�1; : : : ; �K}.

3.2. Partial least squares

In PCA, dimension reduction is achieved by constructing linear combinations that maxi-
mize the variance-based objective function, namely var(Xw). A parallel formulation can
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be made for PLS, but with an objective function based on covariance. More precisely,
PLS components are linear combinations of the predictor variables, constructed to max-
imize an objective criterion based on the sample covariance between y and Xw, namely
cov(Xw; y). Thus, the kth PLS component is obtained by 'nding the weight vector, w,
satisfying

wk = argmax
w′w=1

cov(Xw; y) = argmax
w′w=1

(N − 1)−1w′X′y: (2)

Similar to PCA, the components, tk =Xwk , are required to be orthogonal: t′k tj=w′
kSwj=

0 for all 16 j ¡k. The maximum number of PLS components is at most the rank
of X.

Analogous to PCR, a PLS regression model with K PLS components is based on
the subspace spanned by the 'rst K PLS components, TK = {t1; : : : ; tK}. In practice,
cross-validation is used to determine the number of dimension, K . In seeking dimension
reduction useful for prediction, the objective criterion of PLS may be more sensible than
PCA since there is no a priori reason why components with high predictor variation
should be strongly related to the response variable. A component with small predictor
variance could be a better predictor of the response variable (JolliEe, 1986).

Although the PLS objective criterion (2) may be appealing because it incorporates
both response and predictor information into the dimension reduction process, it does
lead to weight vectors, {wi}N

i=1, that are functions of the predictors and the response
variable. As mentioned in the Introduction section, PLS was originally designed for
continuous response variable(s), although the basic algorithm (see HIoskuldsson, 1988;
De Jong, 1993) can be used for binary response variables. However, there are obvious
drawbacks, similar to using ordinary least squares regression on binary response. In the
next section, we characterize the structure of the PLS weights and how they depend
on the response values, {yi}N

i=1. This characterization leads us to suggest a hybrid-PLS
method for binary response variables.

3.3. A hybrid-PLS method based on singular value decomposition

Based on SVD of X, we show that the sequence of PLS weights, {wk}N
k=1, and

PLS components, {tk}N
k=1, are linear combinations of the eigenvectors of X′X and

XX′, respectively. Furthermore, the coe:cients of the linear combinations depend on
the response values, {yi}N

i=1, only through the dot product, {ai} ≡ {ui · y = u′iy}N
i=1,

where {uk}N
k=1 are the eigenvectors of XX′. To state these results more precisely, we

de'ne some notations associated with SVD. Proofs of the results are straightforward
and deferred to Appendix B.

For a real data matrix X of size N × p and N ¡p, the SVD of X is given by

X =
N∑

i=1

�iuiv′i = U�V′; (3)

where U = (u1; : : : ; uN ), V = (v1; : : : ; vN ), and � = diag{�1; : : : ; �N}. The constants
�1¿ · · ·¿ �N ¿ 0 are the singular values of X and {(�2

i ; ui)}N
i=1 are the eigenvalue–

eigenvector pairs of XX′. Also, vi = �−1
i X′ui is the ith eigenvector of X′X with the
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same nonzero eigenvalue �2
i . Based on the SVD of X, we have the following results.

(Note that we are only interested in the case when p�N , although the results below
apply when N ¿p as well.)

Result 3.1. The kth PLS component is tk =
∑k

i=1 rkiu(2i), where u(s) =
∑N

i=1 �s
i aiui

and the coe;cients, rki, are functions of bs =
∑N

i=1 �s
i a

2
i (s = 2; 4; : : :).

Result 3.2. The kth PLS weight vector is wk =
∑N

i=1 (�i −d1�3
i −d2�5

i −d3�7
i − · · · −

dk−1�2k−1
i )aivi where dj =

∑k
i=1 kij and kij is a functions of bs (s = 2; 4; : : :).

Note that the PLS weight vector is of the form
∑N

i=1 �ivi, where the coe:cient, �i,
depends on the response values only through the dot product ai =u′iy. Thus, modifying
the form of ai, provide alternative ways to incorporate diEerent response-dependence
structure. We investigate one such modi'cation of PLS for binary response as follows.

Note that the slope of the simple regression of Y on Ui equals y′ui=(u′iui)=y′ui =ai,
when ui has norm 1. Thus, when X is centered, the ai’s are the slope coe:cients.
When Y is binary, application of the standard PLS results in linear regression of
a binary response on Ui. There are some drawbacks associated this procedure, as
linear regression is designed for a continuous response variable. Thus, we explore
a hybrid-PLS algorithm obtained by replacing ai by the coe:cient of the logistic
regression (LR) model. The components generated according to this modi'ed PLS
algorithm is denoted as PLSM2 throughout the manuscript. In addition, we investigate
the performance of another hybrid-PLS algorithm (PLSM1), as will be described in
the next section.

3.4. A hybrid-PLS method based on logistic regression predictors

The PLS components can also be obtained as linear combinations of SLR predic-
tors (Garthwaite, 1994). Along this line, we show that the PLS components can be
expressed as weighted averages of the original predictor/explanatory variables, with
weights depending on the sample predictor variances and the partial correlation coe:-
cients. This formulation also suggests another way to modify PLS for binary response
variables.

De'ne Y(1) = Y and Xj = X(1) j, where the subscript in parentheses refers the 'rst
(kth) component. The 'rst PLS component is obtained by regressing Y(1) on each of the
explanatory variables separately. Regressing {Y(1) on X(1) j}p

j=1 gives p SLR predictors
of Y , {Ŷ (1) j = b(1) jX(1) j}p

j=1, where {b(1) j}p
j=1 are the SLR slope coe:cients. The 'rst

PLS component, T1, is a linear combination of the p SLR predictors

T1 =
p∑

j=1

v(1) jŶ (1) j =
p∑

j=1

v(1) jb(1) jX(1) j; (4)

where v(1) j=(N−1) var (X(1) j). Denoting s(1)y=
N∑

i=1
(y(1)i− Sy (1))2 and s(1) j=

∑N
i=1 (x(1)ij−

Sx(1) j)2, the jth slope coe:cient can be expressed as b(1) j = (s(1)y=s(1) j) Corr(X(1) j; Y(1)),
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where Corr(X(1) j; Y(1)) is the correlation between X(1) j and Y(1). Thus, from the second
equality in (4), it follows that T1 is a linear combination of the original predictors with
coe:cients depending on the sample predictor variances and the correlation coe:cients.

As described by Garthwaite (1994), the variability in the explanatory variable, Xj,
not accounted for by the 'rst PLS component, T1, can be estimated by the residual
variables, denoted {X(2) j}p

j=1, from regressing X(1) j on T1. Similarly, the variability in
response Y(1) not explained by T1 is estimated by the residual variable, Y(2), from the
regressing Y(1) on T1. The second PLS component, T2, is constructed from regressing
the Y -residual variable on each X -residual variable separately: {Y(2) on X(2) j}p

j=1. Sim-
ilar to the 'rst PLS component, T2 is a linear combination of the p SLR predictors
(of Y(2)),

T2 =
p∑

j=1

v(2) jŶ (2) j =
p∑

j=1

v(2) jb(2) jX(2) j =
p∑

j=1

v∗(2) j CorrT1 (X(1) j; Y(1))X(2) j; (5)

where v(2) j = (N − 1) var(X(2) j). Note that the last equality follows since b(2) j =
(s(2)y=s(2) j) CorrT1 (X(1) j; Y(1)), where CorrT1 (X(1) j; Y(1)) is the partial correlation between
X(1) j and Y(1), adjusted for the eEect of T1. The scale factors {v∗(2) j}p

j=1 depend on the
sample variance of X(2) j and Y(2).

The PLS components for k¿ 2 are constructed as in the construction of T2 and is
given by

Tk =
p∑

j=1

v(k) jŶ (k) j =
p∑

j=1

v∗(k) j CorrTk−1 (X(k−1) j; Y(k−1))X(k) j; k = 2; : : : ; K; (6)

where K is less than or equal to the rank of X. Thus, coe:cients of the linear combi-
nation depends on the response values, {yi}N

i=1, through the scaled partial correlations,
{v∗(k) j CorrTk−1 (X(k−1) j; Y(k−1))}p

j=1.
Based on the above construction, various response-dependence structures can be

explored by altering the partial correlation structure in (6). For example, when the
response variable is binary, alternative correlation measures for a binary response vari-
able may be more appropriate. The above formulation of PLS leads us to explore a di-
rect modi'cation of the PLS components by a sequence of logistic regression predictors,
rather than simple linear regression predictors, since the response variable is binary.
More precisely, in the original PLS algorithm, the sequence of linear regression predic-
tors is replaced by a corresponding sequence of logistic regression predictors, since Y
is binary. We refer to this hybrid-PLS procedure as PLSM1 throughout this manuscript.

4. Classi&cation after dimension reduction

As mentioned earlier, our primary goal is to investigate further dimension reduction
methods based on PLS for classi'cation via logistic discrimination. Because our focus
here is on the dimension reduction step, we 'xed the classi'cation step with LD,
although other methodologies can be used (e.g., see Nguyen et al., 2002d). After dimen-
sion reduction, the original data matrix is approximated by the matrix of components,
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Table 1
Combination of dimension reduction and classi'cation methods examined

Notation/procedure Step 1: Dimension reduction Step 2: Classi'cation Estimated values

1 PLS–LD PLS → Tpls ⇒ LD → ŷpls
2 PLSM2–LD PLSM2 → Tplsm2 ⇒ LD → ŷplsm2
3 PLSM1–LD PLSM1 → Tplsm1 ⇒ LD → ŷplsm1
4 PCA–LD PCA → Tpc ⇒ LD → ŷpc

5 PLS–OLS PLS → Tpls ⇒ OLS → ŷols

T = [t1; : : : ; tK ], constructed by PLS, PLSM2, PLSM1, or PCA, as described in the
previous section. Thus, the estimated conditional class probability for sample i is

	̂i = {exp(t(i)�̂∗)}={1 + exp(t(i)�̂∗)}; (7)

where t(i) is the ith row of T and �̂∗ is the K × 1 vector of MLEs based on T.
Table 1 summarizes the 've procedures that we will explore in the simulation study

(see Section 5). Algorithmic summaries of the procedures are given in Appendix A.
The 'rst four procedures, use dimension reduction via PLS, PLSM2, PLSM1 and PCA
and classi'cation using LD. The 'fth procedure (denoted PLS–OLS) uses PLS di-
mension reduction as in the 'rst procedure (PLS–LD), but the second step uses OLS
estimates instead. We included this additional procedure in our study because it is es-
sentially unmodi'ed PLS, therefore treating the binary response variable as though it
is a continuous response variable. In the next section, we describe the simulation of
the data, {yi; xi}N

i=1, needed for a numerical study of the procedures summarized in
Table 1.

Note that we 'x the classi'cation method in the simulation study, namely LD. Our
interest is to study the dimension reduction methods based on PLS and their perfor-
mance relative to PCA in high dimension. We have found that the combination of
methods, such as PLS–LD, works reasonably well in applications to real microarray
data (e.g., Nguyen et al., 2002d). However, we point out here that many discriminant
analysis methodologies have been proposed for classi'cation based on gene expression
data. The latest discriminant analysis techniques for microarray data can be found in
Dudoit et al. (2002), Furey et al. (2000) and Ben-Dor et al. (2000) among others.
Our focus here is on studying the dimension reduction step and not on comparing
classi'cation methodologies, which has already been carried out (Dudoit et al., 2002;
Ben-Dor et al., 2000 among others).

5. Simulation procedure

The 'rst few principal components of real microarray data can explain a wide range
of variability in the data. Thus, we design a Lexible simulation procedure for generating
data, {yi; xi}N

i=1, so that the 'rst K PCs explain a speci'ed proportion of predictor
variability. The amount of variability explained is then allowed to vary in a wide range
to encompass most situations encountered in practice (30–90%). From the generated
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Table 2
Summary and notation of simulation model

Model Parameters

Components {�k}d
k=1 N(#$; %2

$) #$; %2
$

Error {”i}N
i=1 N(#&; %2

& ) #&; %2
&

Data matrix {xij}N;p
i; j=1 LN(ai; b2

i ) ai = #$
∑d

k=1 rki, b2
i = %2

$
∑d

k=1 r2
ki + %2

&

data matrix, X, the conditional class probabilities are obtained as 	i = P(Yi = 1|xi) =
exp(x′

i�)=(1+exp(x′
i�)) and the binary response values are generated as Yi ∼ Bin(1; 	i).

Details of the simulation procedure follow.

5.1. Generating the data matrix of predictor values

The ith sample (row) of the N × p data matrix is generated from a basic model
with d underlying components

x∗
i = r1i�1 + · · · + rdi�d + ”i ; i = 1; : : : ; N: (8)

More precisely, x∗ij=
∑d

k=1 rki$kj+&ij, where {�k=($k1; : : : ; $kp)′}d
k=1 are the components,

{”i = (&i1; : : : ; &ip)′}N
i=1 are i.i.d. vectors of noise, and {r1i ; : : : ; rdi} is a set of 'xed

constants. We take the component values as $kj ∼ N(#$; %2
$) and the noise values as

&ij ∼ N(#&; %2
& ). The matrix of predictor values are obtained as xij = exp(x∗ij). Note

that x∗ij ∼ N(#$
∑d

k=1 rki; %2
$
∑d

k=1 r2
ki + %2

& ) ≡ N(ai; b2
i ). Thus, xij is distributed as

log-normal with parameters ai and b2
i , denoted as xij ∼ LN(ai; b2

i ). A log-normal
model has been used for microarray expression data (e.g., see Rocke and Durbin,
2001). Data values generated according to (8) suggest that each row of X comprises
of a linear combination of d underlying components and a random error component.
Table 2 summarizes the simulation procedure for the predictor data matrix.

The data matrix is generated with a mean noise of zero, #& = 0, and with a com-
ponent mean of #$ = 5=d. The number of components is 'xed at d = 6. The relative
variance between the noise and component factors is controlled by the ratio of variance
parameter ' = %&=%$. Thus, the ability to separate the noise from the component signal
is controlled by varying '. For example, the separation between noise and component
signal can be decreased by increasing the noise variance parameter (%&) for a 'xed %$.

5.2. Generating the conditional class probabilities

The binary response values, {yi}N
i=1, are generated as Yi ∼ Bin(1; 	i), where 	i =

{exp(x′
i�)}={1 + exp(x′

i�)} and � a 'xed vector of parameters. A careful choice of �
is necessarily to avoid producing too many 	i close to zero or one, leading to data
con'gurations of complete or quasicomplete separation (Albert and Anderson, 1984).
Maximum likelihood estimates do not exist for these data con'gurations. Thus, it is
important to ensure that the conditional class probabilities, {	i}N

i=1, generated do not
cluster at zero and one, as classi'cation for such data sets will be too easy.
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Table 3
For each combination of simulation parameters (p; ave(�; 3); '; %	) 100 data sets are generated. The proportion
of variability explained by K principal components is given by ave(�; K) =

∑K
k=1 �k =p

p

100 300 500 800 1000 1200 1400 1600

ave(�; 3) ' = %&=%$ %	

33% 0.01 0.280 0.150 0.115 0.090 0.080 0.073 0.0705 0.0700
50% 0.05 0.282 0.151 0.117 0.091 0.088 0.079 0.0702 0.0701
72% 0.10 0.350 0.200 0.130 0.105 0.095 0.080 0.0790 0.0780
90% 0.20 0.305 0.205 0.135 0.110 0.105 0.081 0.0791 0.0780

To avoid such data con'gurations, we control the magnitude of {)j}p
j=1 (in conjunc-

tion with '), using the following simple procedure. Because the number of predictor
variables, p, is large (ranging from 100 to 1600), we 'nd it convenient to select them
from an N(0; %2

	) distribution. The simulation parameter %2
	 allows overall control over

the selection of {)j}p
j=1. For a given value of p, ranging from 100 to 1600, Table 3

lists the value of %	 which gives {	i}N
i=1 about evenly distributed on (0,1).

5.3. Simulation size and parameter settings

Note that the data matrix is of size N ×p, where p�N . Because this is the case of
interest in practice, we consider the number of predictors in the range of 100–1600,
with the sample size, N , 'xed at a small value of 40. Although the dimension of micro-
array data, p, in practice is in the thousands, often a smaller subset of hundreds are
selected for analysis (see e.g., Nguyen and Rocke, 2002b; Ambroise and McLachlan,
2002).

As mentioned earlier, a predictor data matrix is generated so that the 'rst K PCs
explain a speci'ed proportion of predictor variability. This is controlled by the simu-
lation parameter '. Data sets are generated so that the proportion of total variability
explained by the 'rst K PCs, namely ave(�; K)=

∑N
k=1 �k=p, is between 0.30 and 0.90

(see Table 3). The number of dimension retained, K , should be 'xed across methods
and we 'xed it to be 3 in the simulation. For each percentage of variability explained,
100 × ave(�; K)∈{32%; 50%; 72%; 90%}, and for each p = 100, 300, 500, 800, 1000,
1200, 1400, and 1600, one hundred data sets were generated. The exact simulation
parameter settings are given in Table 3.

6. Results and discussion

6.1. Simulation results

The estimated conditional class probabilities, {	̂}N
i=1, were obtained for each simu-

lated data set using logistic regression based on K = 3 components (Section 4). The
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Fig. 1. Percentage of correct classi'cation for data sets generated with 32% predictor variability explained.
The y-axis of each plot is the percentage of data sets, out of 100, with correct classi'cation ¿ 90% (column
1), ¿ 80% (column 2) , and ¿ 70% (column 3). Results are given as a function of the cutoE point c (x-axis)
and for each dimension p = 1000, 1200, 1400, and 1600. The methods are PCA–LD (− ∗ −), PLS–LD
(——), PLSM2–LD (· · ·), PLSM1–LD (−−−), PLS–OLS(−◦−). Results for p= 100, 300, 500, and 800
are similar and are given at the supplemental web site http://dnguyen.ucdavis.edu/.html/supplemental.html.

components were obtained using PLS, PLSM2, PLSM1, and PCA (see Table 1). In
addition, the unmodi'ed procedure of OLS on binary responses rather than LR using
PLS components, namely PLS–OLS, was also applied as a baseline comparison. Clas-
si'cation of sample i is ŷ i = I(	̂i¿ c), where c is a pre-speci'ed probability cutoE
and c∈{0:1; 0:2; : : : ; 0:9}. Note that specifying c=0:5 corresponds to the common pro-
cedure of assigning ŷ i = 1 for 	̂i¿ 1 − 	̂i. The proportion of correct classi'cation for
any given data set is #{ŷ i = yi}=N .

The performance of the 've procedures, PLS–LD, PLSM2–LD, PLSM1–LD,
PCA–LD, and PLS–OLS, across 800 simulated data sets is summarized in Fig. 1.
One hundred data sets were generated for each dimension p = 100, 300, 500, 800,
1000, 1200, 1400, and 1600. For each plot in Fig. 1, the y-axis is the percentage of
the data sets, out of 100 generated, which yielded at least 90% correct classi'cation
('rst column), 80% (second column) or 70% (third column). The x-axis is the cutoE
point c∈{0:1; 0:2; : : : ; 0:9}. The amount of total variability explained by the 'rst K = 3

http://dnguyen.ucdavis.edu/.html/supplemental.html


418 D.V. Nguyen, D.M. Rocke / Computational Statistics & Data Analysis 46 (2004) 407–425

0.2 0.4 0.6 0.8
0

20

40

60
p=

10
00

0.2 0.4 0.6 0.8
0

50

100

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

20

40

60

p=
12

00

0

50

100

0

20

40

60

p=
14

00

0

50

100

0

20

40

60

p=
16

00

0

50

100

0

50

100

0

50

100

0

50

100

0

50

100

σε/στ = 0.05,ave(λ,3) = 50%

Fig. 2. Percentage of correct classi'cation for data sets generated with 50% predictor variability ex-
plained. The methods are PCA–LD (− ∗ −), PLS–LD (——), PLSM2–LD (· · ·), PLSM1–LD (− − −),
PLS–OLS(− ◦ −). See Fig. 1 caption for details.

PCs for each data set is about 32% in Fig. 1. Since the pattern of results are similar for
p=100, 300, 500, and 800 the results were not displayed in Fig. 1 (and in subsequent
'gures). Similarly, Figs. 2 and 3 summarize the performance of the 've procedures
when the amount of variability explained for each data set increased to 50% and 72%,
respectively. (This pattern holds for the 90% variability explained case as well so the
results were not displayed.)

When the 'rst three PCs account for 32% of total predictor variability (Fig. 1) classi-
'cation using PLS components or hybrid-PLS components, namely PLS–LD, PLSM2–
LD and PLSM1–LD, performed well: At least 90% correct classi'cation in about 20
–80 out of the 100 data sets (column 1, Fig. 1) was observed. Furthermore, PLS–LD,
PLSM2–LD, and PLSM1–LD had at least 80% correct classi'cation in nearly all data
sets generated (column 2, Fig. 1). Classi'cation based on principal components did
relatively poorly, with only less than 4 of 100 results with at least 80% correct clas-
si'cation (see PCA–LD curves: − ∗ − in column 2 of Fig. 1). In addition, PCA–LD
resulted in none with at least 90% correct (the Lat −∗− lines at zero in column 1 of
Fig. 1).
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Fig. 3. Percentage of correct classi'cation for data sets generated with 72% predictor variability ex-
plained. The methods are PCA–LD (− ∗ −), PLS–LD (——), PLSM2–LD (· · ·), PLSM1–LD (− − −),
PLS–OLS(− ◦ −). See Fig. 1 caption for details.

The relatively poor performance resulting from classi'cation with principal compo-
nents (in Fig. 1) is not surprising, because the information used in prediction only
captured less than 1

3 of the total variability in the data. Thus, as expected, classi'ca-
tion based on principal components did improve as the proportion of total predictor
variability increases to 50% (Fig. 2), 72% (Fig. 3), and 90% (not shown). However,
the improvement of PCA–LD fell far below the performance of PLS, PLSM2, and
PLSM1 for the same data sets. For example, with the predictor variability explained
increasing to approximately 72%, only 20 of 100 data sets have at least 80% correct
classi'cation on average (Fig. 2, column 2). Note that in practice, a principal compo-
nent (dimension) that explain only a small proportion of total variability can be a very
good predictor (see Section 6.2). However, no such dimension were assigned to be of
more predictive value, a priori, in the simulation.

The classi'cation performance using PCA for dimension reduction depends heavily
on the total predictor variability explained (in this simulation). This is reLective of the
variance objective function, var(Xw), used in the PCA dimension reduction step. On
the other hand, the classi'cation performance patterns of PLS remain similar as the total
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explained predictor variability increased. This is reLective of the covariance objective
function of PLS, which requires optimizing both predictor variance and correlation with
the response variable.

The unmodi'ed PLS procedure, namely PLS–OLS based on PLS components, did
poorly when c is not close to 0.5. The classi'cation performance of PLS–OLS is
similar to the other PLS and hybrid-PLS methods at c = 0:5, as indicated by the
peaks of the PLS–OLS curves (the − ◦ − curves in Figs. 1–3). In addition, the
classi'cation performance pattern for PLS–OLS remains similar as the percentage of
total variability increased. This is expected since the dimension reduction procedure
used is exactly PLS. Thus, the performance does not depend solely on the predictor
variance.

In summary, the dominant methods in this simulation are PLS–LD (logistic classi-
'cation using ordinary PLS components) and PLSM2–LD (modi'cation of PLS using
the SVD as given in Results 3.1 and 3.2). PLS–OLS using PLS components, which
is essentially unmodi'ed PLS, performs satisfactorily with the cutoE point c = 0:5,
but is still dominated by PLS–LD and PLSM2–LD. The modi'cation of PLS that
uses a sequence of logistic regression predictors (PLSM1–LD) is dominated when
the variance explained is high. Finally, PCR is not competitive with any of the other
methods under this simulation, except for PLS–OLS with cutoE points c away
from 0.5.

The classi'cation performance patterns for principal components relative to PLS
components in the simulation are similar to results from real gene expression data
(see, for example, Nguyen and Rocke, 2002a,b,c). The results of the simulation studies
provide some support for the use of PLS as a dimension reduction for classi'cation in
high dimension, such as microarray gene expression data. However, as we will discuss
in the next section, there are some limitations to the simulation studies and also some
practical issues to consider.

6.2. Discussion and limitations of the simulation study

The simulation results, described in the previous section, are only valid for data
sets generated according to the model in Table 2 and the parameter settings given in
Table 3. The motivation for our simulation design is based on our experience with
microarray-based cancer classi'cation studies, where noise in the data is not a neg-
ligible factor. However, it is not possible to realistically model (simulate) the global
dependence structure in microarray data, which is compounded with a complex noise
structure. This is because there are potentially hundreds or thousands of genes expressed
at various levels, with each gene aEecting many others in coordinated pathways, and
the resulting complexity of the gene dependence structure/interaction is enormous. In
the simulation design, we have attempted to control the information between noise and
component signal and then study the performance of the methods under data scenarios
with diEerent amount of predictor variability explained. This is a simplistic model, and
more complex models is needed to accurately reLect real microarray gene expression
data.



D.V. Nguyen, D.M. Rocke / Computational Statistics & Data Analysis 46 (2004) 407–425 421

Despite this limitation, we believe that the simulation results are still instructive and
support empirical 'ndings from classi'cation studies on real microarray data, reported
in Nguyen and Rocke (2002a,b). In particular, we have found that PLS out-performs
PCA with microarray data. However, PCA can be quite competitive if one pre-selects
the predictors (genes) which are predictive of the response classes before applying
PCA. However, this simple variable-'ltering strategy can induce severe bias on the
estimate of accuracy (Ambroise and McLachlan, 2002; Nguyen and Rocke, 2002b).
Alternatively, one can select the PCs with low predictor variation explained, but which
predicts well (JolliEe, 1986). Note that this can be argued as one advantage of PLS
over PCA. That is, PLS only involves choosing the number of gene components K
whereas PCA entails deciding which K gene components to select.

Also, in the simulation we generated data from a 6-component model and then ana-
lyzed data from a 3-component model for each procedure. This allowed a comparison
between the dimension reduction methods that is not confounded by diEerent model
dimensions. However, as we mentioned earlier, cross-validation is used in practice
to choose the number of dimensions K . Clearly, diEerent dimension reduction meth-
ods lead to diEerent choices of the number of dimensions and this will aEect the
subsequent classi'cation. Our experiences with using PLS and PCA for microarrray
gene expression data indicate that when the response class is very di:cult to separate
cross-validation can result in a diEerent K for diEerent methods. The diEerence between
PLS and PCA is usually 2 versus 3 components. However, the classi'cation error from
models selected with the (diEerent) optimal K via cross-validation is usually lower for
PLS relative to PCA. Also, the optimal K for PLS and PCA, chosen by a validation
procedure, is usually the same when the expression patterns between groups are more
easily separated. This occurs, for example, when classifying normal and tumor tissues.
In addition, from our experiences the cross-validation choice of K does not exceed 4
for both PLS and PCA for gene expression data.
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Appendix A. Algorithmic summaries, computation and software

There are two basic algorithms for PLS called (standard) PLS (see HIoskuldsson,
1988; Helland, 1988; Phatak and De Jong, 1997) and SIMPLS (see De Jong, 1993).
When there is one response variable (Y ), which is the case we considered in this
paper, the two algorithms (PLS1 and SIMPLS) give identical components. We refer
the reader to the above references for these algorithms. However, for more than one
response variable the algorithms give slightly diEerent components. See De Jong (1993)
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for details. As PLS–OLS and PCA–LD are standard, we provide below algorithmic
summaries of PLSM2–LD, PLSM1–LD, and PLS–LD.

A.1. PLSM2–LD

(1) Step 1: Compute PLSM2 components.
(a) Compute SVD of data matrix XN×p = U�V′.

(Save eigenvalue/vector pairs {(�2
i ; ui)}N

i=1.)
(b) Compute slopes of logistic regression of Y on Ui: {ai}.
(c) Compute PLSM2 components: tk =

∑k
i=1 rkiu(2i).

(The rki’s (see Appendix B) are functions of {(�2
i ; ui)} and {ai} from part

(1a) and (1b), respectively. Note that only k = 1; : : : ; 4(=K) are available in
Appendix B.)

(2) Step 2: Classi'cation.
Perform LR of Y on T = [t1; : : : ; tK ] and compute conditional class probabili-

ties {	̂i} (Section 4). Make prediction/classi'cation as ŷ i = I(	̂i¿ c) for cutoE
c∈ (0; 1).

A.2. PLSM1–LD

(1) Step 1: Compute PLSM1 components.
(a) Perform LR of Y (Y(1)) on Xj = X(1) j, j = 1; : : : ; p → Ŷ (1). Compute T1 from

Eq. (4).
(b) Perform SLR of T1 on X(1) j; j=1; : : : ; p → X̂ (1) j. Compute X(2) j=X(1) j−X̂ (1) j.
(c) Perform LR of Y on T1 → Ŷ (1), Y(2) = Y(1) − Ŷ (1).
(d) Perform SLR of Y(2) on X(2) j; j = 1; : : : ; p → Ŷ (2) j. Compute T2 from

Eq. (5).
(e) For Tk , k¿ 3, compute similarly as in (1b)–(1d) and compute Tk from

Eq. (6).
(2) Step 2: Classi'cation.

Repeat logistic classi'cation exactly as in the PLSM2–LD algorithm, but using
PLSM1 components (T1; : : : ; TK) from Step 1.

A.3. PLS–LD

(1) Step 1: Compute PLS components.
(a) Obtain K PLS components, T=[t1; : : : ; tK ], using PLS1 or SIMPLS algorithm.

(2) Step 2: Classi'cation.
Repeat logistic classi'cation exactly as in the PLSM2–LD algorithm, except

use PLS components from step 1 instead.

The simulation study was performed using the software Matlab.
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Appendix B. Proofs

B.1. Proofs of Results 3.1 and 3.2

First, we set the following de'nitions: (D1) ai = u′iy, (D2) bs =
∑N

i=1 �s
i a

2
i , for

s = 2; 4; : : : and (D3) u(s) =
∑N

i=1 �s
i aiui and u(t) =

∑N
i=1 �t

iaiui for s; t = 2; 4; : : :. From
the orthogonality of {ui}N

i=1 and de'nitions (D1)–(D3) the following properties follow:
(P1) u(s)′u(t) = bs+t , (P2) u(s)′y = bs, (P3) XX′y = u(2) and (P4) XX′u(s) = u(s+2) for
s; t =2; 4; : : : . From (P1)–(P4) and some tedious, but simple, algebra we have that the
kth PLS component is given by tk =

∑k
i=1 rkiu(2i) with coe:cients:

r11 = 1;

r21 = f2b6=g2
2;

r22 = f2=g2 where f2 = b2 and g2 = −b4;

r31 = f3(b2
8 − b10b6)=g2

3

r32 = f3(b10b4 − b6b8)=g2
3

r33 = f3=g3 where f3 = (b2
4 − b2b6) and g3 = −(b4b8 − b2

6);

r41 = f4(b3
10 + b2

12b6 + b14b2
8 − b10(b14b6 + 2b12b8))=g2

4

r42 = f4(−(b2
12b4) + b10b14b4 − b2

10b8 − b14b6b8 + b12(b10b6 + b2
8))=g2

4

r43 = f4(−(b2
10b6) − b12b6b8 + b14(b2

6 − b4b8) + b10(b12b4 + b2
8))=g2

4

r44 = f4=g4 where f4 = (b3
6 + b10(b2

4 − b2b6) − 2b − 4b6b8 + b2b2
8) and

g4 = −(b2
10b4 − 2b10b6b8 + b3

8 + b12(b2
6 − b4b8)):

We only present the results for K=4 here but higher-order components are similar. This
proves Result 3.1 and the proof of Result 3.2 is similar. That is, from the orthogonality
of {vi}N

i=1 the coe:cients of Theorem 3.2 are

k11y = b2=b4;

k21y = (b6=b4)(f2=g2);

k22y = (f2=g2) where f2 = (−b2
4 + b2b6) and g2 = (−b2

6 + b4b8);

k31y = ((−b10b6 + b2
8)=h3)(f3=g3);

k32y = ((b10b4 − b6b8)=h3)(f3=g3);

k33y = (f3=g3) where f3 = (b3
6 + b10(b2

4 − b2b6) − 2b4b6b8 + b2b2
8);

g3 = (b2
10b4 − 2b10b6b8 + b3

8 + b12(b2
6 − b4b8)) and h3 = (b2

6 − b4b8);
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k41y = −((b3
10 + b2

12b6 + b14b2
8 − b10(b14b6 + 2b12b8))=h4)(f4=g4)

k42y = ((b2
12b4 − b10b14b4 + b2

10b8 + b14b6b8 − b12(b10b6 + b2
8))=h4)(f4=g4)

k43y = ((b2
10b6 − b14b2

6 + b14b4b8 + b12b6b8 − b10(b12b4 + b2
8))=h4)(f4=g4)

k44y = (f4=g4) where

f4 = (b3
10b2 +b14b3

6 +b2
12(−b2

4 +b2b6)−2b14b4b6b8 +b14b2b2
8−b4

8 +2b12b8(−b2
6 +b4b8)

− b2
10(b2

6 + 2b4b8) + b10(2b12b4b6 + b14(b2
4 − b2b6) − 2b12b2b8 + 3b6b2

8));

g4 = (b4
10−b3

12b4 +b2
14b

2
6−b)12b16b2

6−b2
14b4b8 +b12b16b4b8−2b12b14b6b8 +b2

12b
2
8−b16b3

8

− b2
10(b16b4 + 2b14b6 + 3b12b8) + 2b10(b12b14b4 + b2

12b6 + b8(b16b6 + b14b8)));

h4 = (b2
10b4 − 2b10b6b8 + b3

8 + b12(b2
6 − b4b8)):
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