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ABSTRACT
Motivation: Microarrays are increasingly used in cancer
research. When gene transcription data from microarray
experiments also contains patient survival information, it
is often of interest to predict the survival times based
on the gene expression. In this paper we consider the
well-known proportional hazard (PH) regression model for
survival analysis. Ordinarily, the PH model is used with
a few covariates and many observations (subjects). We
consider here the case that the number of covariates, p,
exceeds the number of samples, N , a setting typical of
gene expression data from DNA microarrays.
Results: For a given vector of response values which
are survival times and p gene expressions (covariates)
we examine the problem of how to predict the survival
probabilities, when N � p. The approach taken to cope
with the high dimensionality is to reduce the dimension
using partial least squares with the response variable as
the vector of survival times. After dimension reduction,
the extracted PLS gene components are then used as
covariates in a PH regression to predict the survival
probabilities. We demonstrate the use of the methodology
on two cDNA gene expression data sets, both containing
survival data. The first data set contains 40 diffuse large
B-cell lymphoma (DLBCL) tissue samples and the second
data set contains 49 tissue samples from patients with
locally advanced breast cancer in a prospective study.
Availability: The methodology can be implemented using
a combination of standard statistical methods, available,
for example, in SAS. Sample SAS macro codes to
implement the methods will be available at http://stat.tamu.
edu/∼dnguyen/supplemental.html.
Contact: dnguyen@stat.tamu.edu; dmrocke@ucdavis.edut

INTRODUCTION

The introduction of DNA microarray technology is a
technical advance in biomedical research. Microarray
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technologies, including cDNA (Schena et al., 1995)
and oligonucleotide arrays (Lockhart et al., 1996) allow
simultaneous monitoring of thousands of gene expressions
per sample. Despite the need for improvement of the
current technologies, there have been many applications of
microarrays in human cancer research, including DeRisi et
al. (1996); Ross et al. (2000); Alizadeh et al. (2000), and
Perou et al. (2000) among others.

The ability to measure gene expression en masse has
also resulted in data with the number of variables (genes),
p, far exceeding the number of samples, N . Of particular
interest, for example, is when survival times of N cancer
patients are available in conjunction with their mRNA
expression data. In this setting, it is of interest to predict
the patient survival probabilities using p gene expressions
(N � p). For example, through gene expression profiling,
Alizadeh et al. (2000) identified two distinct molecular
subtypes of diffuse large B-cell lymphoma (DLBCL):
germinal centre (GC) B-like and activated B-like. Estimate
of patient survival probabilities for the two groups were
then compared using Kaplan and Meier (1958) survival
curves.

In this paper, we demonstrate how prediction of patient
survival probabilities can be based on the proportional
hazard (PH) regression model after extracting gene
components by partial least squares (PLS). Details of the
methodology, which involves dimension reduction and
PH regression, are described in the Methods Section.
We applied the methodology to a diffuse large B-cell
lymphoma cDNA data set of Alizadeh et al. (2000)
and a breast carcinomas data set published by Sørlie
et al. (2001). The predicted survival probabilities for
various molecular subgroups previously identified in the
literature, are summarized in the Results Section. Other
issues, including the PH assumption, goodness-of-fit, and
the choice of the PLS dimension reduction parameter, are
also discussed in the Results Section. We conclude with
a discussion of the limitations of the proposed method
and directions for future work. Computational details
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are given in the Supplemental Appendix available at
http://stat.tamu.edu/∼dnguyen/supplemental.html.

METHODS
In this section we describe the methodology for estimat-
ing survival probabilities using the gene expressions as
covariates. The method involves reduction of the high
p-dimensional covariate space to a lower K -dimensional
gene component space. The dimension reduction method
utilized is partial least squares (PLS). Next, the K PLS
gene components are used as covariates in a proportional
hazard (PH) regression model.

PH regression with gene expressions as covariates
Let Y be time to some event, such as the survival time of
a diseased patient. Associated with each patient are p co-
variates which could be p gene expression measurements
obtained from DNA microarray experiments, for example.
A data set consists of N samples, each containing the triple
(Ti , δi , xi ) for i = 1, . . . , N , where x′

i = (xi1, . . . , xip)

is the covariate profile of the i th patient, Ti is the sur-
vival time if δi = 1, and it is the right-censored time if
δi = 0. In the current context, xi is the gene expression
profile of the i th patient. The response values of interest,
the survival times, are not observed for every patient. In-
stead, the clinical data recorded for the i th patient is only
Ti = min(Yi , Zi ), where Zi is a censored value. It is as-
sumed that the censoring mechanism or the censoring time
distribution is independent of the survival time distribu-
tion.

Cox (1972) suggested the proportional hazard (PH) re-
gression model to study the relationship between the time
to event and a set of covariates in the presence of cen-
soring. Model estimates are obtained by maximizing the
partial likelihood. Details are given in the Supplemental
Appendix B. Subsequent studies of the analysis of the PH
model includes Kalbfleisch and Prentice (1973); Breslow
(1975) and Cox (1975) among others.

In the context of data generated from DNA microarray
experiments, the number of genes, p, is in the thousands,
but the number of samples, N , is quite small. Standard sta-
tistical methodologies, including the classical PH regres-
sion method described above, do not work in this situa-
tion. For example, the breast carcinomas cDNA data set,
considered in the next section, consists of N = 49 sample
tissues from breast cancer patients. The number of genes
(covariates) corresponding to each sample is p = 3846.
Furthermore, survival information is recorded for each of
the N patients. It may be of interest to study the survival
experiences of the patients in relation to the p genes. For
instance, does more positive survival experiences coincide
with certain gene expression patterns?

When there are more genes (covariates) than there are
samples and the PH regression is not defined, how do we

predict the patient survival probabilities? One approach
to cope with the high p-dimensional covariate space is to
utilize some dimension reduction method to reduce the p-
dimensional space. The survival probabilities can then be
estimated using PH regression in the reduced space. We
describe the PLS dimension reduction method next.

PLS dimension reduction
The method of dimension reduction we considered is
partial least squares (PLS). Since its introduction the
method has been applied with much success in the field
of chemometrics. See, for instance, Martens and Naes
(1989). Gene expression data from DNA microarray
experiments display similar characteristics as those found
in chemical applications. Dimension reduction of gene
expression data based on PLS has been applied to binary
tumor classification (Nguyen and Rocke, 2002a,b) as well
as multi-class discrimination (Nguyen and Rocke, 2002c)
problems. The reader is referred there for details. The
uses of PLS in the classical setting where the response
is continuous have been investigated by Helland (1988);
Höskuldsson (1988) and Frank and Friedman (1993)
among others. In the present context, the response variable
is continuous but some observed values (times) are right
censored.

In some aspects, PLS is similar to the well known
method of principal component analysis (PCA). In a
PCA orthogonal linear combinations are constructed to
maximize the variance of the linear combination of the
predictor variables (genes) sequentially. However, the
optimization criterion may not be appropriate for some
prediction problems associated with microarray data and
this was pointed out earlier (Nguyen and Rocke, 2002a,b).
Roughly, the constructed principal components summa-
rize as much of the original p predictors’ information
(variation), irrespective of the response class information.

Maximizing the variance of the linear combination of
the predictors, namely var(Xv), may not necessarily yield
components predictive of the response variable, such
as survival times. For this reason, a different objective
criterion for dimension reduction may be more appropriate
for prediction. The objective criterion for constructing
components in PLS is to sequentially maximize the
covariance between the response variable (y), survival
time, and a linear combination of the genes (X). That
is, in PLS, the components are constructed to maximize
the objective criterion based on the sample covariance
between y and a linear combination of X. Thus, we find
the weight vector w satisfying the following objective
criterion,

wk = argmax
w′w=1

cov2(Xw, y) (1)

subject to the orthogonality constraint

w′
kSw j = 0 for all 1 ≤ j < k (2)
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where S = X′X. The i th PLS component is also a linear
combinations of the original genes, namely ti = Xwi , but
the weights are non-linear functions of both y and X.

The algorithm used to obtain weights (1) as well as the
relevant PLS quantities is detailed in the Supplemental
Appendix A. We note that the PLS algorithm in the
Appendix Section does not involve matrix inversion.
For further details see Höskuldsson (1988) and Helland
(1988).

As mentioned earlier, the constructed PLS gene compo-
nents profiles are then used as covariates in a PH regres-
sion to predict the survival probabilities. However, inter-
pretation of the fitted parameters of the PLS gene compo-
nent profiles in terms of the original expression profiles,
similar to the classical case where N � p, does not ap-
pear feasible directly. This is due to the fact that the PLS
gene components are linear combinations of all the pre-
dictor genes.

RESULTS
In this section we describe the results of applying the
PLSPH regression method to predict survival probabilities
for two cDNA gene expression data sets with patient
survival information. The first data set contains N =
40 tissue samples from patients with B-cell lymphoma
(Alizadeh et al., 2000) and the second data set consists
of N = 49 breast carcinomas tissue samples (Sørlie
et al., 2001). We briefly described each data set below
and the results from applying the proposed methodology
follow. Specifically we fitted the PH regression model
using PLS gene components as covariates. The model
is then used to predict the patient survival probabilities.
Predicted survival probabilities based on the fitted PH
model are plotted for various cohorts defined by mRNA
expression patterns.

Due to the small number of samples available we
used leave-out-one cross-validation (LOOCV) to examine
the stability of the estimated survival probabilities. Note
that LOOCV is fitting the model using a training data
set of N − 1 samples. Where possible, we assessed
model fit and examined the proportional hazard (model)
assumption. Also, as described in the Methods Section,
PLS dimension reduction requires the selection of the
number of PLS gene components, K . The selection
of K is based on cross-validation and the proportion
of response variation explained by the PLS dimension
reduction model.

Diffused large B-Cell lymphoma data
The lymphoma cDNA data set consists of gene expression
levels from cDNA experiments involving three prevalent
adult lymphoid malignancies: diffuse large B-cell lym-
phoma (DLBCL), B-cell chronic lymphocytic leukemia
(BCLL), and follicular lymphoma (FL). cDNA targets

were prepared from experimental mRNA samples and
were labelled with Cy5-dye during reverse transcription.
A reference cDNA sample was prepared from a com-
bination of nine different lymphoma cell lines and was
labelled with Cy3-dye. Cy-labelled experimental and
reference cDNAs were mixed and hybridized onto the
microarray. See Alizadeh et al. (2000) for details. We
analyzed the standardized log relative intensity ratios,
namely the log(Cy5/Cy3) values.

For this gene expression data set survival times are
also available for N = 40 DLBCL patients. There were
22 deaths. Associated with the survival times are mRNA
expression ratios of p = 5622 genes. Using cluster
analysis Alizadeh et al. (2000) identified two molecularly
‘distinct’ DLBCL subgroups based on the relative mRNA
expression patterns: (1) germinal centre (GC) B-like (19
patients) and (2) activated B-like (21 patients). These
two groups were identified by gene expression profiling
using hierarchical clustering. Distinct expression patterns
(profiles) for the two groups can be seen in Supplemental
Figure 1, which displays the relative expression patterns of
50 genes differentially expressed across the two DLBCL
subtypes. (The 50 genes were selected using the simple
two sample t-statistics.) For details, including survival
analysis using Kaplan–Meier survival curves for the two
subgroups, see Alizadeh et al. (2000).

The patient survival probabilities were predicted using
the PLS gene component profiles directly in a PH regres-
sion. We obtained K = 2 PLS gene components based on
p = 2000 genes and then fitted the PH regression model
using K = 2 PLS gene components as the covariates.
Based on the fitted model, the survival probability esti-
mates were obtained for an average PLS gene components
profile vector for the GC B-like and the activated B-like
group, namely t̄GC and t̄Act.. The survival curves for the
two groups are plotted in Figure 1 (top). Based on the fitted
PLSPH model, the predicted survival probabilities for ac-
tivated B-like group is distinctly lower than the GC B-like
at the group average component expression profile (Figure
1, top).

Breast carcinomas data
There was little overlap in observed survival times (includ-
ing censored times) in the DLBCL data set between the
censored and non-censored group. With the exception of
one patient, patients who died all died very early on in the
study. This clustering of survival times could potentially
have an effect on how well our method predicts survival.
Hence, it is of interest to test the methods on survival data
with different characteristics.

We considered a second gene expression data set
with survival information, a breast carcinomas cDNA
data set, published by Sørlie et al. (2001). Unlike the
lymphoma data set, there is considerable overlap between
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Fig. 1. Given are estimated survival curves from the PLSPH regression model fits to the (top) diffuse large B-cell lymphoma data and (bottom)
and the breast carcinomas cDNA gene expression data. The curves are obtained for the group-average component profiles. See figure legend
for group definitions.
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Fig. 2. Plotted are the cross-validated predicted residual sum of squares (PRESS) from the PLS fit for K = 1, . . . , 15 (left column) and the
proportion of response (y) and predictor (X) variation unexplained for dimension K = 1, . . . , 15 (right column). Results are given for the
diffuse large B-cell lymphoma data (top row) and the breast carcinomas data (bottom row).

the distribution of survival and censored times in the breast
carcinomas data set. The data set analyzed consists of
N = 49 samples and expression patterns for p = 3846
genes. Tissue samples were obtained from patients in a
prospective study on locally advanced breast cancer with
no distant metastases.

Sørlie et al. (2001) identified 6 clusters of gene ex-
pression profiles corresponding to basal-like, ERBB2+
(overexpression of ERBB2 oncoprotein), normal breast-
like, luminal subtypes A, B, and C. Expression profiles
for luminal subtypes B and C were similar and in some
of their analyses, these were combined as one group
(Luminal B+C). For details on the data set, including
Kaplan–Meier analysis, see Sørlie et al. (2001).

As in the DLBCL data analysis, we fitted the PLSPH
model to the breast carcinoma data and the survival
probability estimates for each subgroup are given in
Figure 1 (bottom). (Color figures are available at http:

//stat.tamu.edu/∼dnguyen/supplemental.html.) Based on
the fitted model, the predicted survival probabilities are
quite similar for the ERBB2+ group and the luminal B+C
group.

Cross-validation and choice of K
We have chosen K = 2 gene components from PLS to fit
the PH regression. The number of gene components, K ,
to use for prediction can be chosen by cross-validation to
minimize the predicted residual sum of squares (PRESS).
However, this approach is not completely satisfactory be-
cause, often, the model which minimizes PRESS com-
pared with a much simpler model (smaller K ) will have
only a slight difference in PRESS score. This situation
was not encountered in the two data sets examined here,
since a PLS fit with a larger K had a larger PRESS score.
Figure 2 (left column) plots the PRESS score for K = 1
to 14 using leave-out-one-CV (LOOCV). (Five-fold CV
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resulted in the same choice for K .) We find it useful to
also augment the selection of K by examining the propor-
tion of response (y) variation explained by K PLS gene
components, for various values of K . This is given in Fig-
ure 2 (right column). For the breast carcinomas data a
choice of K = 2 resulted in the smallest cross-validated
PRESS score and the total response variation explained
was 77.66%. The choice of K = 1 gives the smallest
PRESS score for the B-cell lymphoma data, but with K =
1 the response variation explained was only 17.14%. As
indicated by Figure 2 (top left) the difference in PRESS
scores for K = 1 and 2 is small, however, the cumula-
tive response variation explained increases to 43.48% for
K = 2. Hence, we also selected K = 2 for the lym-
phoma data. The selection of K is based on CV and an
estimate of the proportion of response variation explained
(Wold, 1994) by the PLS dimension reduction method.
Other methods developed specifically for estimating the
proportion of variation explained in the Cox model may
be of interest to investigators (Schemper, 1992).

Proportional hazard assumption and model fit
Models are approximations and often contain assump-
tions. The Cox PH regression model used to predict the
survival probabilities makes the assumption of propor-
tional hazards. The proportional hazard assumption may
not be true or correct and needs checking. We checked
the model assumption using standard methods based on
testing for significant slope of the smooth curve through
the scatter of the rescaled Schoenfeld residuals versus
time (Grambsch and Therneau, 1994). The tests indicate
that the proportional hazard assumption is reasonable in
both data sets. (The residuals used were from models
displayed in Figure 1.) We also checked the deviance
residuals from the models. Patients with large deviance
residuals are poorly predicted by the model. The residuals
falls within reasonable limits.

Various tests for overall goodness-of-fit attempt to detect
departures, such as over-fitting, from the null hypothesis
that the model fits. See Schoenfeld (1982) and Arjas
(1988) for examples in the traditional PH setting. These
tests rely on large sample sizes, but only small sample
sizes are available from micorarray data currently. For the
two data sets examined, N = 40, with 45% censoring and
N = 49 with 61.2% censoring for the DLBCL and breast
carcinomas data sets respectively. This makes assessing
model fit difficult in the traditional setting, not to mention
now we also need to simultaneously assess both the PLS
and the PH fits.

We examined the cross-validated prediction of the sur-
vival distribution graphically. More precisely, for the i th
sample left out, i ∈ F , we obtained the predicted survival
probabilities using PLSPH regression. The set of failure
times is denoted by F . Figure 3 gives the LOOCV esti-

mates for each i ∈ F for the DLBCL (top) and breast
carcinomas data (bottom). The plots indicate that the pre-
dictions are relatively stable, particularly for the DLBCL
data. Although changes in the predicted probabilities from
LOOCV are more variable for the breast carcinomas data,
the ‘ordering’ of the basal, normal breast-like, and luminal
A groups is preserved. See Figures 1 and 3 (bottom plots).
Predicted survival probabilities for the ERBB2+ and lumi-
nal B+C groups are similar.

DISCUSSION
DNA microarray technologies, such as high-density
oligonucleotide arrays and cDNA arrays, produce high
dimensional gene expression data. Scientists using array
technologies seek useful statistical methodologies able
to cope with the high dimension. The Cox PH regression
method is one of the most widely used tools in scientific
research, particularly in biological and medical science.
We have demonstrated the use of PLS gene compo-
nents as covariates to predict survival probabilities in a
proportional hazards model.

We have suggested the use of dimension reduction
(PLS) in conjunction with proportional hazards regression
(PH) as a possible way to analyze gene expression data
with patient survival information. We hope that this will
prompt further needed work on this method from other
researchers. For example, as hinted in the previous section,
the problem of goodness-of-fit for the PLS and PH
model simultaneously needs to be further addressed. A
potentially fruitful approach is to consider the problem in
a Bayesian framework, where gene selection, prediction,
and model fit may be addressed more fully. Also, the
response variable is continuous but censored. Thus, PLS
components constructed may contain some bias depending
on the amount of censoring. We performed a simulation
(data not shown) which suggests that there may be
a small positive bias in predicting the true survival
probabilities using PLSPH regression. This was observed
with data generated under the condition that the first few
principal components (e.g. 3) capture most of total gene
expression variation (� 70%). Although such microarray
data structure is not typical in practice, it is an issue
deserving of further investigation.
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Fig. 3. Given are cross-validated survival curve estimates from the PLSPH regression model fits to the (top) diffuse large B-cell lymphoma
data and (bottom) and the breast carcinomas data. See text for details. As in Figure 1 the curves are obtained for the group-average component
profiles.
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