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Abstract

We examine relationships between the problem of robust estimation of multi-
variate location and shape and the problem of maximum likelihood assignment of
multivariate data to clusters and we o®er a synthesis and generalization of com-
putational methods reported in the literature. These connections are important
because they can be exploited to support e®ective robust analysis of large data
sets. Recognition of the connections between estimators for clusters and outliers
immediately yields one important result that we demonstrate in this paper; namely,
the ability to detect outliers can be improved a great deal using a combined per-
spective from outlier detection and cluster identi¯cation. One can achieve practical
breakdown values that approach the theoretical limits by using algorithms for both
problems. Computational results are reported that demonstrate the e®ectiveness
of this approach.

1 Introduction

Topics related to multivariate analysis gain importance as scientists, engineers and
business managers grapple with the exploding availability of data. Under the rubric
data mining many ad hoc methods provide quick results but lack the solid foundation
provided by statistical models. However, there are numerous places where statistical
models can be employed in data mining (see e.g. Glymour et al 1997).

For example, statistical research has a lot to o®er in the areas of robust estimation
of multivariate location and shape parameters and maximum likelihood assignment
of multivariate data to clusters. In this paper we examine some of the relationships
between these two problems and o®er a synthesis and generalization of computational
methods reported in the literature. These connections are important because they
can be exploited to support e®ective robust analysis of large data sets. For example,
we introduce a partial assignment estimator that is needed in order to make use of
subsampling and to ¯nd clusters in data sets that have extraneous data.
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Recognition of the connections between estimators for clusters and outliers imme-
diately yields one important result that we demonstrate in this paper; namely, the
ability to detect outliers can be improved a great deal using a combined perspective
from outlier detection and cluster identi¯cation. One can achieve practical breakdown
values that approach the theoretical limits by using algorithms for both problems. It
turns out that many con¯gurations of outliers that are hard to detect using robust
estimators are easily detected using clustering algorithms. Conversely, many con¯gu-
rations of small clusters that could be considered outliers are easily distinguished from
the main population using robust estimators even though clustering algorithms fail.

It is useful to divide estimators for such problems into two classes that we will
call combinatorial and smooth. Smooth estimators are computed in the parameter
space, which is continuous. Combinatorial estimators, on the other hand, work in the
combinatorial space of subsets of the set of data points. These estimators are often
used to ¯nd starting points for iterative algorithms applied to the smooth estimators,
or may be used on their own. There are assumed to be n data points in Rp and we
may refer to them sometimes as a set of column vectors, fxig. We are concerned here
primarily with combinatorial estimators and restrict ourselves to those that are a±ne
equivariant.

A location estimator tn 2 Rp is a±ne equivariant if and only if for any vector
b 2 Rp and any non-singular p £ p matrix A

tn(fAxi + bg) = Atn(fxig) + b: (1)

A shape estimator Cn 2 PDS(p) is a±ne equivariant if and only if for any vector
b 2 Rp and any non-singular p £ p matrix A

Cn(fAxi + bg) = ACn(fxig)AT (2)

Estimators satisfying (1) and (2) transform properly under changes of scale and rotation
so that clusterings or identi¯cation of outliers do not change under these operations.
Perhaps more important, a±ne equivariant estimators are exactly those for which dis-
tances are completely data determined and do not depend on any arbitrary prior metric
(such as the Euclidean metric). Although there may be some few instances in which
theory or prior knowledge determines the correct metric for distances between data
points, we would argue that in almost all cases these should be data determined. Some
care must be taken in designing methods, algorithms, and their implementations to
maintain this property.

E®ective a±ne equivariant estimators for outlier detection and for ¯nding clusters
are hard to compute. Many theoretical estimators are de¯ned in terms of the minima
of functions over subsets or partitions, but there are no known algorithms to ¯nd or
verify such minima in less than geologic amounts of time for even modest sized data
sets. Hence, the algorithms that search for approximations to the theoretic statistics
are very important. Because the performance of the estimator is intimately tied to
the performance of the search algorithm, and since the second best answer if often far
worse than the best (correct) answer, we argue that, in essence, the algorithms are the
estimators (Rocke 1998; Seidel, Mosler, and Alker 1999). To study the properties of
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the estimates, we must separate the statistic that is the objective function from the
algorithms. Furthermore, we must decompose the algorithms into their constituent
parts to identify e®ective methods.

The next section de¯nes the theoretical estimators. In x3 we synthesize and gen-
eralize some of the algorithms and literature by viewing these methods as variations
of local search, and studying the neighborhood structures. In x4 we provide a new
estimator and some analysis that compares the statistics (or objective functions) and
the neighborhood structures. In x5 we explore computational boundary between data
classes where one is better o® using an outlier model and where one is better using a
two cluster model. Furthermore, we show that by using both types of algorithms, the
e®ective breakdown point for outlier detection can be extended to be near theoretical
limits. The ¯nal section o®ers concluding remarks and directions for further research.

2 Estimation and Clustering

2.1 Robust Estimation and Outlier Detection

When there is thought to be one main population contributing data points, but when
one must guard against the possibility of one or more \contaminating" or \outlying"
populations, the problem becomes one of robust estimation. In order to remove the
outliers, one must estimate the parameters of the main population, but the presence of
the outliers can make this di±cult. We will follow the bulk of the literature by assuming
the main population obeys an elliptical distribution, with estimators calibrated to the
multivariate normal.

Smooth estimators for the determination of robust location and shape, such as
maximum likelihood and M-estimators (Campbell 1980, 1982; Huber 1981; Kent and
Tyler 1991; LopuhaÄa 1992; Maronna 1976; Rocke 1996; Tyler 1983, 1988, 1991), and
S-estimators (Davies 1987; Hampel et al. 1986; LopuhaÄa 1989; Rousseeuw and Leroy
1987) can be computed with a straightforward iteration from a good starting point
provided by a combinatorial estimator (Rocke and Woodru® 1993). Combinatorial
estimators, such as the minimum volume ellipsoid (MVE) and minimum covariance de-
terminant (MCD) estimators of Rousseeuw (1985; Hampel et al. 1986; Rousseeuw and
Leroy 1987), have been addressed with random search (Rousseeuw and Leroy 1987),
steepest descent with random restarts (Hawkins 1993, 1994), and heuristic search opti-
mization e®orts (Woodru® and Rocke 1993, 1994). Sequential point addition estimators
have been de¯ned algorithmically by Atkinson (1994; Atkinson and Mulira 1993), Hadi
(1992), Rousseeuw and Van Driessen (1999), and Hawkins (1999).

It was originally thought that the MVE would be preferable for computational
reasons (see Rousseeuw and Van Zomeren 1990), even though the MCD has greater
asymptotic e±ciency. This was based on the notion that MVE algorithms would make
use of random elemental subsets, of which there are much fewer than random half
samples. Woodru® and Rocke (1993) demonstrated that heuristic search algorithms
that use larger subsample sizes perform better. Given this fact, there is no longer
any reason to prefer the MVE to the MCD. Simulations done by Woodru® and Rocke
(1994) strongly support the contention that the MCD is in fact the better estimator to
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use (also see Rousseeuw and Van Driessen 1999).
Given a sample fxig of n points in dimension p, the MCD is de¯ned as that sample

of size h that results in the lowest covariance determinant. Usually, h is chosen as the
\half-sample size" b(n+p+1)=2c (the choice that maximizes the breakdown (Rousseeuw
and Leroy 1987; LopuhaÄa and Rousseeuw 1991). We de¯ne the MCD formally as the
solution to the problem of selecting a set J ½ N of size h so as to minimize jW j, where
N = f1; 2; : : : ; ng and where

W =
X

j2J
(xj ¡ ¹xJ)(xj ¡ ¹xJ )

T ;

and where
¹xJ = h¡1

X

j2J
xj :

The location and shape estimates are then xJ and n¡1W (or (n¡1)¡1W if one prefers).
The only known method of exact solution is complete enumeration. In fact, this

is the only known method of verifying an exact solution. As a consequence, one must
use heuristic algorithms that search for a good solution. The di±culty in constructing
such algorithms is that if points that are \outliers" are included in J, they will distort
the estimates of shape and location so as to make it di±cult to detect that they should
be removed.

An analysis of di±cult forms is provided by Rocke and Woodru® (1996) making use
of the following de¯nitions. Here, as elsewhere, the word metric (a distance function
satisfying several properties) is used interchangeably to refer to the distance itself and
to the positive de¯nite symmetric matrix ­ that is used to de¯ne the quadratic metric

d2­(X;Y ) = (X ¡ Y )T­¡1(X ¡ Y );

which is sometimes referred to as the squared Mahalanobis distance.

De¯nition 1 Let ­ be a matrix de¯ning a metric. The size of the metric is the
determinant j­j. The shape of the metric is the equivalence class of metrics ¥ such
that ­=j­j = ¥=j¥j. Equivalently, we may identify the shape as the member of the
equivalence class with determinant 1; that is, ­=j­j.
This leads to similar de¯nition of shape and size for samples.

De¯nition 2 Let X be an n £ p matrix representing a sample of n points in Rp. Let
S = n¡1(X ¡ X)0(X ¡ X) be the sample covariance matrix. The size or scale of
X is the determinant jSj of its covariance matrix, and the shape of X is S=jSj. By
extension, we refer to the size and shape of other covariance-like estimators.

Rocke and Woodru® (1996) go on to show that the class of outliers composed of a
single group with the same shape as the main data are well masked in the sense that
under the metric of the majority population, the distribution of Mahalanobis distances
from the mean of the majority population to outliers overlaps with the distribution
of distances to majority population points. This overlap is made more severe as the
scale of the outlying cluster is reduced with the worst overlap occurring for a point
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mass. Of course, an actual point mass is easy to detect. An extremely plausible, yet
still di±cult, form of contamination is referred to as shift outliers (see Hawkins 1980
page 104). Shift outliers have the same shape and size as the main population, but a
di®erent location.

So we summarize by noting that based both on theoretical arguments and on simu-
lations, di±cult outlier cases are when the data points that are not optimally included
in J are themselves from a population that generates either a point mass or a cluster
with a covariance structure that is similar to that for the points that are optimally in
J . In some cases one is interested in just the main cluster and wants to simply remove
the outlying cluster. In other situations, the outlying cluster can be more interesting.
What emerges is that a large class of plausible and di±cult outlier problems can be
modeled as problems of identifying clusters. In general, of course, one cannot know
that clusters are present until they have been identi¯ed.

A kind of corollary of the observation that placing the outliers in a cluster is a
di±cult con¯guration is that radial outliers are a particularly easy case. The outliers
have the same radial distribution as the main data but lie further away. A robust
estimator such as the MCD or M- or S-estimator has no di±culty with this case. This
con¯guration can be seen as each outlying point forming its own cluster. One can
think of parameterizing outlier con¯gurations by the number of clusters. With ®n
radial outliers, there are ®n + 1 clusters and with shift outliers there are 2 clusters.
In general, the more di±cult outlier problems have 2 or 3 clusters. The exact level
of di±culty depends, of course, on the con¯guration of the clusters and the algorithm
used for estimation.

2.2 Maximum Likelihood Clusters

The problem of ¯nding the maximum likelihood assignment of data points to clusters is
similar, but the literature has developed separately for the most part. There is a very
large literature devoted to clustering when there is a metric known in advance. These
methods include, for example, the widely used K-means algorithm. However, in order
to retain a±ne equivariance, we rely on the smaller but growing literature related to
using metrics gleaned from the data itself.

To do this with maximized likelihood, a statistical model is assumed. In this model
the data are generated in two stages: 1) a cluster distribution is randomly selected
from among g possibilities and 2) an observation is drawn from the selected cluster.
The probability of selecting cluster i is denoted by ¼i. Cluster i is assumed to be
modeled by a multivariate normal distribution with density Á and mean and covariance
µi = (¹i;§i): This results in the mixture likelihood

L(X; µ) =
nY

j=1

"
gX

i=1

¼iÁ(xj ; µi)

#
(3)

where µ = (µ1; : : : ; µg; ¼1; : : : ; ¼g):
A thorough examination of criteria based on the likelihood is given by Ban¯eld and

Raftery (1993). Their paper proposes a number of criteria that maximize the likelihood
conditional on a clustering, under a number of assumptions about the relative sizes and

5



shapes of the clusters. A popular method is to solve problem (MINW), (Friedman and
Rubin 1967), which ¯nds the clustering that minimizes the determinant of the pooled
covariance jW j where

W =
gX

i=1

Wi;

Wi =
X

j2Ji
(xj ¡ ¹xJ)(xj ¡ ¹xJ )

T ;

and where J1; J2; : : : ; Jg is a partition of N . This corresponds to maximum classi¯cation
likelihood under the assumption that the data vectors are multivariate normal with
homogeneous but otherwise unrestricted cluster covariances. Here the classi¯cation
likelihood is

L(X; µ) =
gY

i=1

Y

j2Ji
Á(xj; µi): (4)

which (unlike the mixture likelihood) uniquely assigns each point to a cluster. Algo-
rithms proposed for this minimization include hierarchical agglomeration (Ward 1963,
Murtagh and Raftery 1984) and local search (SpÄath 1985, Coleman et al. 1999).

The striking similarity with the MCD leads immediately to the idea that for data
with shift outliers that are far enough from the main population, one of the clusters
for the optimal solution of (MINW) for g = 2 is the same as the optimal solution to
the MCD. We explore such comparisons in x4.2.

Generally, we have no particular reason to expect homogeneous cluster covariance
structures, so we can make use of an objective that is similar from a computational
standpoint, which is

gX

i=1

ni log

¯̄
¯̄Wi

ni

¯̄
¯̄ ;

where ni = jJij. The minimum corresponds to a maximum classi¯cation likelihood
under the assumption of heterogeneous covariance matrices. It was ¯rst given by Scott
and Symons (1971) and adjusted by Ban¯eld and Raftery (1993). Call the problem
with this objective function (MIND). In order to avoid singularities, as a practical
matter a parameter H > p must be given for the minimum number of points assigned
to each cluster.

3 Neighborhoods

Although most were not written using the terminology of local search, the proposals in
the literature for algorithms for robust estimation and cluster ¯nding can be cast in that
framework. This facilitates synthesis and some generalization. Local search is de¯ned
relative to an evaluation function for an optimization problem and a neighborhood
structure.
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3.1 Local Search

We de¯ne the generic hard problem to which local search algorithms are applied as

min¿ f(¿) (P)
Subject to: ¿ 2 ¥

where the set ¥ is intended to summarize the constraints placed on the decision vector
¿ . Solution vectors that (do not) satisfy the constraints are said to be (in)feasible.
Constrained optimization literature refers to all data for the problem { the data that
speci¯es the objective function f (¢) and ¥ { as (P). It is easy to see that the MCD,
MINW and MIND estimators can all be stated in this form.

As an example, consider (MIND). We have as data the number of groups, g, a
minimum cluster size, H, and n points in Rp with each point given as xj for j = 1; : : : ; n.
Our objective is to select indicators of membership ¿ij; i = 1; : : : ; g; j = 1; : : : ; n so as
to

minimize
gX

i=1

ni log

¯̄
¯̄Wi

ni

¯̄
¯̄ (MIND)

subject to

Wi =
Pn
j=1 ¿ij(xj ¡ ¹xJi)(xj ¡ ¹xJi)

T i = 1; : : : ; g

¹xJi =
³Pn

j=1 ¿ijxj
´

=ni i = 1; : : : ; g

ni =
Pn
j=1 ¿ij i = 1; : : : ; gPg

i=1 ¿ij = 1 j = 1; : : : ; n (placement)Pn
j=1 ¿ij ¸ H i = 1; : : : ; g (size)

¿ij 2 f0; 1g i = 1; : : : ; g;
j = 1; : : : ; n:

The formulations for (MINW) and the (MCD) are very similar.
Neighborhoods are based on moves from one solution to another. All of the solutions

that can be reached from a given solution in one move are said to be in the neighborhood
of the solution. We use the notation N (¿) to indicate the set of solutions that are
neighbors of a solution ¿ .

An evaluation function, f̂(¿ ), from a set A to R must be speci¯ed for move evalu-
ation. The function usually resembles f(¢), but may di®er in order to take advantage
of special knowledge of the problem. Often, A = ¥ and care must be taken to avoid
encountering infeasible solutions during the search. In cases where infeasible solutions
are allowed during the search, A

¾
6= ¥ and f̂(¢) is constructed to encourage discovery

of feasible solutions. In many cases, the function would be more precisely written as
f̂(N ; ¿ ; ¿ 0) de¯ned only for ¿ 0 2 N (¿), because the functions are typically constructed
to compute changes from one solution to the next for a particular neighborhood struc-
ture.

Once an evaluation function and neighborhood have been given, special purpose
algorithms can be designed or general purpose algorithms can be adapted. Steepest
descent is a general purpose procedure begins with an initial solution, ¿ 0, and selects
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solutions at iteration k > 0 using the relation

¿ k = argmin
¿2N (¿ k¡1)

f̂(¿)

(a tie breaking rule may be needed). The algorithm terminates when there are only
higher objective function value solutions in the neighborhood of the current solution.
Such a solution is referred to as a local minimum. A ¯rst-improving descent is similar
but requires more notation and proceeds through an ordered neighborhood until an
improving move is found which is then immediate made. After a move, the traversal of
the neighborhood continues using the ordering (or some approximation to it). One pos-
sibility is to repeat the descent many times, restarted at a random starting point each
time the algorithm hits a local minimum. Parallelization of such an algorithm, referred
to here as steepest descent with random restarts, can be classi¯ed as embarrassingly
easy.

Well-known algorithms such as simulated annealing (see, e.g., Aarts and Korst
1989) and Tabu Search (see, e.g., Glover and Laguna 1997) are clearly in the local
search family. Classic, simple genetic algorithms (GA) are not unless the de¯nition
of a neighborhood is extended. However, almost all modern GAs used for function
minimization make extensive use of steepest descent (see, e.g., MÄulenbein 1992) so
that their performance often resembles steepest descent with random restarts in that
the genetic recombination and mutation select starting points for descent.

3.2 Exchange Neighborhoods

For the MCD a sensible neighborhood is one where a point in J is exchanged with one
not currently in J. We refer to this as a swap neighborhood.

For (MINW) and (MIND) the corresponding neighborhood is one where a point
is moved from one group to another. For solutions where the size constraints are not
binding, the neighborhood has (g¡1)n solutions. There are fewer neighbors of solutions
for which one or more of the size constraints is binding.

Neighborhoods of this type are used, for example, by (SpÄath 1985) as well as
Coleman and Woodru® (1997) in ¯rst-improving local search algorithms for (MINW);
Hawkins (1994) as well as Rocke and Woodru® (1996) for the MCD.

Update formulas for the covariance determinant form the basis of the move evalua-
tion functions. The test for the e®ect of a swap move for the MCD can be done quickly
using a method described by Hawkins (1994). We construct a p + 1 by n matrix Z
that has a one in the ¯rst element of each vector and matches data vectors in all other
elements. If J ½ N let ZJ consist of the rows of Z indexed by J. A matrix BJ is then
formed as ZJZ

T
J . Let u be the column (i.e., data point) of ZJ to be swapped out by

the move being evaluated, v be the one swapped in. The determinant will change by
the factor

(1 ¡ uTB¡1
J u)(1 + vTB¡1

J v) + (uTB¡1
J v)2: (5)

Hence, we can compute the e®ect of a swap move with an O(p2) e®ort. Furthermore,
a shortcut given in Hawkins (1994) allows the best swap to be computed in an O(np2)
e®ort instead of the obvious O(n2p2). For problems such as (MINW) and (MIND),
very similar functions can be used.
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3.3 Constructive Neighborhoods

The swap neighborhoods can be classi¯ed as transition neighborhoods that move from
one full solution to another. In contrast, constructive neighborhoods move from a
partially speci¯ed solution to a more complete solution and destructive neighborhoods
are the opposite. So-called greedy algorithms can then be cast as steepest descent with
a constructive neighborhood. These sorts of algorithms were no doubt ¯rst applied to
combinatorial problems before our species developed language. They have a tradition
in the literature of combinatorial optimization with too many citations to begin to
sample them; one entry into the literature is Korte et al. (1991). A recent example of
a general purpose descent algorithm with a constructive neighborhood, a randomized
evaluation function and random restarts is commonly called GRASP (see, e.g. Feo and
Resende 1995).

In the realm of clustering, constructive neighborhoods have been used as the basis
for K-means algorithms (see, e.g., Selim and Ismail 1984). There are many variations
of K-means but, roughly, the algorithm proceeds as follows when given as data the
number of groups (we call it g and they call it K), a metric and the data points:

1. Find an initial collection of g points that will serve as seed points, one point for
each group. These might be randomly selected data points. Assign each seed
point to its respective group.

2. Use a constructive neighborhood to assign additional points to each group. Use
as the evaluation function the distance from the point to the groups and pick the
group that is closest to each point.

3. Use the mean of each cluster as its seed point and repeat step 2 or terminate if
none of the groups changed members between the last two executions of step 2.

K-means algorithms are not a±ne equivariant, but typically use columnwise normal-
ization to avoid sensitivity to simple changes in one of the measurement scales.

To apply these types of neighborhoods to the problems of interest to us, the Ma-
halanobis distance is a useful metric. Armed with this metric as the basis for an
evaluation function, we can create steepest descent with a destructive neighborhood.
The algorithm proceeds as follows:

1. Begin with J = N

2. Remove from J the point i 2 J that maximizes d2§J (xi; ¹xJ ) where §J is the
covariance matrix and ¹xJ is the mean of the points in J .

3. If J contains H points, stop; otherwise go to step 2.

Unfortunately, this algorithm cannot be counted on to reject the outliers (see, e.g.,
Atkinson and Mulira 1993), since the beginning shape matrix §N can easily be so
distorted by outliers, that those outliers do not appear especially distant (\masking").

Constructive neighborhoods have been used with greater success so we proceed to
formalize them. A number of parameters are needed to synthesize the various proposals
in the literature. Consider ¯rst the MCD. A constructive neighborhood \surrounds"
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p Dimension of the data (given)
n Number of data points (given)
H Minimum cluster size (given)
N Index set 1; : : : ; n
J Subset of N (currently) estimated to be in the majority population
~N Subset of N eligible for inclusion in the J during the next iteration
~J Subset of N required to be included in J during the next iteration

Table 1: The parameters given as data and those computed dynamically using the rules
of the algorithm

a set of points, J , that has between p + 1 and H members. A subset of J (typically
either empty or all of J) is required to be included in all neighbors; call this subset ~J.
Finally, a subset of N is eligible for inclusion in any of the neighbors (typically all of
N); call it ~N . Given a set J, moves to a new set J 0 must be such at all of the points
in ~J are in J 0 plus one more or points from ~N . This is summarized in Table 1.

It sounds a little odd to refer to \construction by steepest descent," but that is the
way many algorithms are cast in our framework. Algorithms based on steepest descent
must specify the method of constructing an initial solution, an evaluation function,
f̂(¢), and perhaps also a refresh period, Ã, that controls how many moves are allowed
before corrections are made for the fact that f̂(¢) is based on an approximation to
the current state of the neighborhood. Some of the algorithms in the literature have
started with an initial set as large as a half-sample (e.g., Hawkins 1994), but many use
a starting set of size p + 1, and we have conducted simulation studies con¯rming this
choice of size for computational reasons. There are three a±ne equivariant possibilities
reported in the literature for picking a initial sets J to begin the descent process.

² Select p + 1 points at random (rand).

² Select p + 1 points that are \good" based on a heuristic (heur).

² Select the p + 1 points that have lowest Mahalanobis distance from the result of
the last full solution constructed (walk).

Clearly, use of the last choice results in an iterative algorithm that can be terminated
either after some number of constructions, or when it reaches a ¯xed point. Refer to
such an iterative algorithm as a walking algorithm. Note that K-means algorithms
are generally (non-a±ne-equivariant) walking algorithms using this convention. Such
algorithms are common in clustering, but apparently were ¯rst used in calculating the
MCD by Hawkins (1999) and Rousseeuw and Van Driessen (1999) independently. A
walking algorithm must be started using either rand or heur.

For the estimators of interest to us, there are two move evaluation function com-
monly in use. One is based on Mahalanobis distances from the mean of points in J
using the covariance matrix of points in J as the metric; i.e., select the point(s) i 2 ~N
that minimize(s)

d2§J (xi; ¹xJ )
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Algorithm f̂ (¢) ~J Ã Start/Restart Walking?
Fast-MCD mahal ; 1 heur Yes
Rousseeuw 1999
Forward update J 1 heur No
Atkinson 1994
Improved FSA update ; 1 rand Yes
Hawkins 1999
Hadi update ; 1 heur No
Hadi 1992

Multout update J 1 heur No
Rocke and Woodru® 1996

Table 2: Summary of A±ne Equivariant Constructive Neighborhoods for MVE/MCD
Algorithms Reported in the Literature as cast in a Local Search Framework

where §J is the covariance matrix and ¹xJ is the mean of the points in J. Call this
evaluation method mahal. We indicate that multiple points might be selected, because
if the refresh period is in¯nite, then one selects the h or h ¡ p ¡ 1 (depending on the
makeup of ~J) points that have lowest distance and all of the moves can be made at
once. If the refresh period is one, then after each point was added, the values of ¹xJ and
§J are updated. An alternative to mahal is to use Equation 5 to predict the e®ect of
a move. Update formulas can be used for the inverse of the covariance matrix and the
refresh period speci¯es how often the mean and covariance are recomputed from the
current set J . Call this method update.

Table 2 gives a summary of constructive neighborhoods that have been reported in
the literature for the MCD (and/or the MVE). In all cases, ~N = N n ~J. Of course,
this table provides only a summary of the constructive neighborhood used and not a
complete description of the algorithms. The start-restart heuristic used by Fast-MCD
is as follows: do a large number of random starts each followed by walking that is
terminated after two constructive descents; the best ten results are then pursued with
a convergent walking algorithm. The heuristic reported for use with Forward is to select
the p + 1 points closest to the mean of all of the data under the metric for the data.
Hadi suggest the use of a non-a±ne equivariant starting heuristic, but his algorithm is
otherwise a±ne equivariant. Multout uses the result of a lengthy search based on swap
neighborhoods to ¯nd a starting point for a constructive descent that is very similar
to Forward. Many of the methods are being updated so that this table represents only
the state of a®airs at the time of this writing. Our main goal is to demonstrate that the
local search framework is very useful as a means of synthesizing the evolving methods.

This notation generalizes to the clustering problems. The constructive neighbor-
hood has a long history of use for K-means and for other non-a±ne-equivariant methods
such as the moving center algorithms of Mirkin (1996). The main di±culty is in ex-
pressing concisely how to deal with the problem of contention, which does not crop up
for the MCD because there is only one set J .
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When viewed from the perspective of a clustering problem, the MCD construction
can be considered cluster-wise in that the main population is assigned the points closest
to it. Cluster-wise assignment can result in contention problems for clustering. For one
thing, unlike the set J for the MCD, the sets Ji for clustering problems typically do not
have a ¯xed number of points. In addition, a point could be one of the closest points
to two or more di®erent clusters under the respective metrics of the clusters.

A partial remedy is point-wise construction. Each point x is assigned to the cluster
given by

argmin
i

d2§Ji
(x; ¹xJi):

We use the words \partial remedy" because a repair problem remains in the presence
the constraint that each cluster must have at least H ¸ p+1 points. Point-wise assign-
ment can result in a solution where some of the clusters will have too few members.
Something must be done to repair the solution so that all clusters have at least H
points. A simple repair heuristic iteratively assigns to clusters with too few members
the point closest to the cluster under its metric from among those points that are in
clusters with more than H members. Even this simple heuristic requires a fair amount
of notation, so we forgo rigorous description of repair heuristics because they are not
central to analysis.

4 A (somewhat) New Cluster Estimator

There are two related ways to arrive at the need for an estimator that maximizes a
pseudo likelihood for clustering by allowing some points to be ignored. The ¯rst is to
use the same sort of reasoning that results in ¯xed point cluster methods (Hennig 1998)
or partial discrimination rules (see, e.g., Anderson 1969 and Gessaman and Gessaman
1972). One can simply get better classi¯cations if some points can be ignored. It can be
the case that are \stray points" that perhaps come from populations whose probability
of inclusion is low so that there are only one or two points from the population. Actually,
any points from a population that supplies less than p + 1 points cannot be correctly
identi¯ed as a cluster. We could think of such points as \outliers" to highlight the
connection with robust analysis.

The other way to arrive at a need for partial classi¯cation is to construct a sub-
sampling algorithm for maximum likelihood cluster assignment. As is the case for the
MCD, subsampling is clearly needed for large datasets because of the computational
e®ort required to ¯nd a good cluster assignment (see, e.g., Coleman and Woodru®
1997). However, when one constructs a subsample, populations that contributed small
but non-negligible numbers of points to the dataset may contribute too few to the
subsample. A clustering algorithm that can omit discrepant points can be used in a
hierarchical manner to cluster data even with relatively small clusters. This would be
done by re-applying the cluster algorithm to the points collectively omitted from the
¯rst clustering attempt. This could obviously be done recursively as many times as
necessary.
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4.1 The Minimization Problem

We refer to the partial classi¯cation estimator as (MINO) and de¯ne it as the result
of a minimization. We have as data the number of groups, g, a minimum cluster
size, H, maximum number of points to ignore T , and n points in Rp with each point
given as xj for j = 1; : : : ; n. Our objective is to select indicators of membership
¿ij; i = 1; : : : ; g + 1; j = 1; : : : ; n so as to

minimize
gX

i=1

ni log

¯̄
¯̄Wi

ni

¯̄
¯̄ (MINO)

subject to

Wi =
Pn
j=1 ¿ij(xj ¡ ¹xJi)(xj ¡ ¹xJi)

T i = 1; : : : ; g

¹xJi =
³Pn

j=1 ¿ijxj
´

=ni i = 1; : : : ; g

ni =
Pn
j=1 ¿ij i = 1; : : : ; gPg+1

i=1 ¿ij = 1 j = 1; : : : ; n (placement)Pn
j=1 ¿ij ¸ H i = 1; : : : ; g (size)Pn
j=1 ¿ij · T i = g + 1 (ignore)

¿ij 2 f0; 1g i = 1; : : : ; g + 1;
j = 1; : : : ; n:

Constructive and swap neighborhoods generalize quickly to this problem. For the
purpose of analysis and discussion, refer to the g + 1 group as the unassigned points.
This group is limited in size by the constraint labeled (ignore). It is easy to see that
with data in general position, this constraint will be binding for the optimal solution.
A search algorithm can consider solutions that exclude up to T points from assignment.
For constructive neighborhoods there are a number of possibilities. The simplest is to
use all points during a constructive descent then perform a destructive descent until T
points have been removed. A computationally more expedient method is exclude from
~N the T points with greatest

min
i

d2§Ji(x; ¹xJi):

4.2 Remarks

If we adopt the MCD and (MINO) as our primary concerns, then in the language of
local search we have two problems and two neighborhood structures (transition and
constructive). The problems are clearly related, and in this section we provide some
insight by making a few remarks concerning comparisons of the theoretical solutions to
these problems. We then continue with some remarks concerning the neighborhoods
and local minima. This analysis provides guidance for creating an algorithm based
on MCD algorithms to search for good solutions to (MINO) as well as insights into
connections between the problems.

4.2.1 Comparisons of Global Minima

We begin our discussion by comparing the global minima in order to describe the close
relationships between the MCD and the objective functions that maximize cluster like-

13



lihoods. To put it another way, we are comparing the theoretical estimators consisting
of the true global minimum, which is never computationally feasible to locate exactly
except in very small cases. Our ¯rst remark can be seen immediately and provides
motivation for extending (MIND) to become (MINO).

Remark 1 The objective function for (MINO) with g = 1 and T = n¡b(n+p+1)=2c
imposes the same order on feasible solutions as the objective function for the MCD.

The next remark provides a demonstration of the strong connection between the two
estimator types. A very similar remark can be made concerning the problem (MINW).
We make the remark for (MIND) rather than (MINO) because the presence of ignored
points does not add to the insights gleaned.

Remark 2 Consider a dataset of size n with a main population in general position
consisting of at least b(n + p + 1)=2c points and a group of outliers that are shifted
by adding ¸´ to each vector (´ is a unit vector and ¸ is a large number). Then the
larger of the clusters for the optimal solution of (MIND) for g = 2 contains the optimal
solution to the MCD with a probability that goes to one as ¸ ! 1. If the main cluster
is exactly of size b(n + p + 1)=2c, then the two coincide.

This is obvious because inclusion of a point in the far cluster in the MCD group will
in°ate the covariance determinant by an amount that increases without bound with ¸.
Remark 2 does not imply that we can do away with the MCD and use only a cluster
model. As an extreme example, consider radial outliers. They are easily detected by
MCD algorithms, but will generally not be revealed by search for two clusters using a
MINW- or MIND-type criteria.

Remark 3 Suppose that the main population is multivariate normal and that any out-
liers are radial. Then the optimal solutions of (MIND), (MINW), and (MINO) for
g = 2 will split the main population between the two clusters with a probability that
goes to one as n increases.

This is not hard to see by looking at the functional de¯nition of the cluster estimators.
Consider ¯rst the case of an uncontaminated multivariate standard normal. Clusters
consisting of a spherical main cluster and the rest of the distribution in the other
produce a (MINW) criterion of exactly 1, and a (MIND) criterion strictly greater than
1. On the other hand, clusters that split along a hyperplane through 0 give a (MINW)
and (MIND) criterion of 1 ¡ ¼¡1 = :68. This generalizes to any radially symmetric
distribution: splits into a sphere and the remainder generate criteria at least equal to
the expected covariance determinant of the whole distribution, while half-space splits
generate criteria strictly less than this. Thus, for large n, the same will be true of the
¯nite sample version.

4.2.2 Neighborhoods and Local Minima

Local minima are de¯ned with respect to a neighborhood structure and evaluation
function. For theoretical purposes such as the remarks we make here, it is often useful
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to consider the evaluation function to be the objective function. This is not unrea-
sonable, since the evaluation functions for these problems are intended to be good
approximations to the objective function and because if all else fails it is computation-
ally reasonable to make use of the objective function as the evaluation function in the
neighborhood of local minima. The next remark is an immediate consequence of the
problem formulations.

Remark 4 The global minima are local minima with respect to swap neighborhoods for
both the MCD and (MINO).

A proof for the following remark is given by Rousseeuw and Van Driessen (1999).

Remark 5 Walking algorithms for the MCD are monotone in the objective function
value.

The proof should carry over to the case of (MINW), where each point can be assigned
to the cluster to which it is closest. Unfortunately, it does not carry over to (MIND)
and (MINO) because of the constraints on cluster size needed to avoid singularity.
The consequence is that MCD and (MINW) walking algorithms can use the objective
function value as a termination criteria and be assured of reaching local minima, but
(MIND) and (MINO) algorithms generally cannot.

5 The Envelope of Outlier Detection

Our interest in this section is in exploring the e±cacy of using a combination of an
MCD algorithm and a (MINO) algorithm to ¯nd a main population in the presence of
outliers. This highlights the connections between the two problems and demonstrates
that there can be important bene¯ts in combining them.

When searching for outliers, combinatorial estimators are of value principally to ¯nd
good starting solutions for iterative algorithms applied to smooth estimators. Hence,
we make use of two stages where the ¯rst stage is either the result of a search for the
MCD or for a solution to (MINO) and the ¯rst stage result is fed to an M-Estimator
of robust location and shape in the second stage. The M-estimator is held ¯xed as
described in Rocke and Woodru® (1996) so that the two ¯rst stage estimators can be
compared.

5.1 Search Algorithm

Based on remarks in the previous section, we can see that it is possible to construct
an algorithm that can search for both the MCD and solutions to (MINO), with the
di®erence determined entirely by input parameters. This will not result in an algorithm
of maximum e±ciency (with respect to computer resources) especially for the MCD.
However, our interest here is in e±cacy and in highlighting connections between the
two problems, so we proceed with a computer program developed by Torsten Reiners,
which exploits the remarks of the preceding section.

The program uses constructive neighborhoods as well as walking. Since, as we
noted, Remark 5 does not hold for (MINO) we hash the solution vectors during walking
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and terminate on a hash collision which indicates (with high probability) either a cycle
or a local minimum. Details of the algorithm are given in the Appendix, and complete
information in Reiners (1998).

For studies such as this one, the trick is to create datasets that are di±cult to
analyze, but where there is not too much overlap in the data. Algorithms can quickly
detect outliers that are very far from the main data as noted by Kosinski (1998), who
considered outliers that were much further than the ones we considered here. We tested
(MINO) on the class of data sets that he used, and we were able to correctly identify
all outliers. On the other hand, if the outliers are so close that they overlap the data
in the main population, then the experiments are di±cult to interpret and test the
e±cacy of the M-estimator more than they test the MCD and (MINO) algorithms.

Like other a±ne-equivariant methods, ours is dependent on discovering from the
data the true shapes of the clusters to use in measuring distances. Thus, di±cult data
sets for our algorithm are those where the shape of the main data and the shape of the
entire dataset di®er substantially. One such class of data sets has a standard normal
main population with outlying clusters arranged on a line (Coleman and Woodru®
1997). The spherical shape of the main data di®ers then from the shape of the entire
data set, which is best described as resembling a cigar along the line.

We generated simulated datasets of n = 1000 points in dimension p = 10. These
datasets all have a main cluster with 550 points, zero, one or two outlying clusters
and either zero or 150 radial outliers. When present, the outlying clusters come from
a population with a mean on the main diagonal that has a distance from the main

population that is a multiple, D = 2; 4, of
q

Â2p;0:001, which is more or less the radius of

the sphere around the mean of the standard-normal main data that contains almost all
the good points. The outlying clusters have the same shape as the main cluster, but
the size is reduced so that the expected distance from an outlier to mean of the main
cluster under the \correct" main cluster metric is equal to the expected distance to a
point in the main cluster itself because this makes identi¯cation even harder than for
shift outliers (see Rocke and Woodru® 1996).

Since the MCD and (MIND) are both special cases of (MINO), we use a (MINO)
algorithm for all three. For the MCD, we use g = 1 and T = (1¡®)n. For both (MIND)
and (MINO) we use H = (p + 1). Results for D = 2 are summarized in Table 3, where
N1 gives the number of points in the main cluster, N2 and N3 in the outlying clusters,
and the column labeled \Radial" gives the number of radial outliers. The parameters
for (MINO) are given in the columns labeled g and T . When g = 1, the value of T is
set for the MCD. For the other two values of g we used both T = 1=(g +1) and T = 0;
corresponding to (MINO) and (MIND), respectively.

We veri¯ed these conclusions with simulated data sets of n = 8p2; 12p2 points in
dimension p = 5; 10 each with a standard normal main population and ®n outliers, with
® = :2; :3; :4; :48. The outliers are in one or more clusters. When there is more than one
outlier cluster they have the same number of points. For each data set generated, we
search for an MCD using (MINO) with T = (1¡®)n and for (MIND) with H = (p+1)
and the correct value of g.

One can always do better with more time or better algorithms, but that is beside
the point. The point is that by using the results of (MIND), we can extend the envelope
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N1 N2 N3 Radial g T Estimator Success Rate
550 450 0 0 1 495 MCD 0.5

2 333 MINO 0.9
0 MIND 1.0

3 250 MINO 0.8
0 MIND 0.0

225 225 1 495 MCD 0.0
2 333 MINO 1.0

0 MIND 1.0
3 250 MINO 1.0

0 MIND 1.0
0 0 450 1 495 MCD 1.0

2 333 MINO 1.0
0 MIND 1.0

3 250 MINO 1.0
0 MIND 1.0

300 0 150 1 495 MCD 0.6
2 333 MINO 1.0

0 MIND 0.0
3 250 MINO 1.0

0 MIND 1.0

150 150 150 1 495 MCD 1.0
2 333 MINO 0.7

0 MIND 0.0
3 250 MINO 1.0

0 MIND 0.7

Table 3: Fraction of Ten Replicates Resulting in an Outlier Misclassi¯cation Rate
below 0.025 for Spherical Main Cluster with Outlying Clusters and Radial Outliers
with p = 10
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of contamination beyond what is reported in the literature summarized in Table 2 and
to the theoretical limits for these cases.

The algorithm for (MIND) was able to ¯nd a starting point for the M-estimator
that resulted in detection of the outliers for all datasets as was the MCD with ® · 0:4.
When ® = 0:48, the MCD broke down completely with D = 2 and p = 2. When three
groups are generated, the MCD performs well with only a few failures for small n and
® = 0:48.

Several points are notable from these results:

² The MCD does not work as well when the outliers form a single cluster, while
(MINO) and (MIND) work well. Thus it would appear that running a clustering
algorithm can protect against this di±cult kind of outliers.

² Everything works when the only outliers are radial. This is not necessarily be-
cause the cluster estimators work well themselves but rather because the M-
estimator has a unique solution in this case so that any starting point will do.

² The algorithm con¯gured for problem (MIND) works well if one guesses g \cor-
rectly" or guesses low, but (MINO) is more robust. In some cases, (MIND) is
able to treat radial outliers as a cluster, but this is likely because 150 points in
dimension 10 are too few to be evenly distributed.

² For spherical clusters, two shrunken outlying clusters on either side of the main
cluster are harder for the MCD than one at the same distance. We con¯rmed this
result using Fast-MCD (Rousseeuw and Van Driessen 1999). Although masking
is maximized in some sense by a single cluster when the correct metric is known,
the correct metric can only be estimated. As noted earlier, stochastic algorithms
used as estimators are adversely a®ected when the all-data metric is signi¯cantly
di®erent from the correct estimate. The shape of the all-data metric is elongated
more by the presence of two outlying clusters than one, which in turn maximizes
the chances that any sub sample will result in a misleading shape estimate given
that the clusters are spherical.

6 Conclusion

In this paper, we have shown that robust multivariate estimation and outlier detection
on the one hand and cluster analysis on the other can be placed in a common conceptual
and computational framework. This perspective allows a dramatic increase in the abil-
ity to handle outlier problems by subjecting the data both to robust estimation/outlier
detection methods and to companion cluster analysis methods. Furthermore, we have
de¯ned a robust clustering method that can cope with observations that lie in no clus-
ter.
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Appendix: Algorithmic Details

In this appendix, we describe some details of the algorithm we use for the computations
in this paper; a complete description can be found in Reiners (1998). A unique aspect
of this algorithm is the way in which the iterations are started for di®erent descent
trials.

The algorithm keeps a list L of length g of cluster means and covariances corre-
sponding to the best solution seen so far. At the very beginning, each list element is
the same: the location and shape of all of the data. This list is used to process a seed
point to form the nucleus of group i (which is always done after groups i0 < i have
been processed) as follows: Find the member of L with lowest distance from the list
element mean to the seed point using the list element covariance for a metric. Then
form a small cluster of the p + 1 points that are closest to the seed point under that
metric (this will always consist of the seed point and p additional points. Use this as
a starting point for walking as shown for Fast-MCD in Table 2 with h = p + 1 and
~N = N n S

i0<i Ji0 . Call the resulting points Ji.
The algorithm proceeds roughly as follows for each point in the data set, xj.

1. Process xj as seed point for group 1.

2. A seed point for each of the subsequent groups, i = 2; : : : ; g is chosen in order
and processed. The point for group i is the

argmax
x2 ~N

¦k<id§Jk ; ¹xJk ; x)

where ¹xJk and §Jk are the mean and covariance matrix respectively for the set
of points Jk and ~N = N n S

i0<i Ji0 .

3. The points that have been assigned to each cluster are used to start a walking
algorithm with simple repair as described in x3.3 that is terminated when a
duplicate solution is encountered (based on a hash table).
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