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Overview

• Gene expression data from microarrays present

many challenging problems for analysts. The

data exhibit complicated error structures

which are not widely recognized. The

dimension of the data is usually much higher

than the sample size.
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•We present a model for measurement error in
gene expression data that explains a number

of problems currently facing users of these

data.

•We present a class of data transformations
speci¯cally tuned to microarray data (and

other high-throughput assay data) that can

stabilize the variance and allow more e®ective

use of standard statistical methods. We call

these the generalized logarithmic (glog)

transformations after Munson.
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•We show how the transformation parameter(s)

can be estimated either from a few replicate

arrays or using maximum likelihood in the

context of a linear model analysis.

•We show how the remaining variance

heterogeneity can be accounted for with a

hierarchical Bayes model that can be easily

estimated in an empirical Bayes fashion.
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Gene Expression Arrays

• Genes produce proteins with an intermediary
of mRNA. At any given time, most genes in a

cell are not expressed (translated to proteins).

Some genes are expressed only during

development, others are speci¯c to tissue

types or environmental condition.
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• There is also variation in genetic structure
between organisms or between tissues in the

same organism in case of mutation.

• The purpose of gene expression arrays is to
measure the gene expression in the given

tissue/cell at the given time by measuring

concentration of mRNA for many genes at the

same time.
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• In one version of the technology, microscopic
spots containing cDNA clones or synthesized

oligonucleotides are deposited on a glass slide

using a micropipette from a supply in wells of

microplates.

• The sample is reverse-transcribed, labeled
with a °uorescent dye, hybridized to the spots

on the slide, and the intensity of °uorescence

measured with a laser scanner.
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• In two-color arrays, treatment and control
samples (or any two samples) are labeled with

two color dyes, mixed, and hybridized

together.

• There are other variations including one-color
cDNA arrays and the oligonucleotide arrays

such as those from A®ymetrix, but many of

the statistical issues are the same across

technologies.
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Measurement Error

Some well known properties of measurement

error in gene expression microarrays (GEM's)

include the following:

• For high gene expression, the standard
deviation of the response is approximately

proportional to the mean response, so that

the CV is approximately constant.
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• For low levels of expression, the CV is much

higher.

• Expression is commonly analyzed on the log
scale, so that for high levels the SD is

approximately constant, but for low levels of

expression it rises.
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• Comparisons of expression are usually
expressed as n-fold, corresponding to the ratio

of responses, of which the logarithm would be

well behaved, but only if both genes are highly

expressed.

• These phenomena occur in many
measurement technologies, but are more

important in high-throughput assays like

GEM's.
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•What is the fold increase when a gene goes

from zero expression in the control case to

positive expression in the treatment case?

•Which is biologically more important: an

increase in expression from 0 to 100 or an

increase from 100 to 200?
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• Because the genes expressed on a GEM are a

mixture of levels of expression, and a large

number have no measurable expression, the

average standard deviation of the logarithms

across all genes is quite high. In reality, the

standard deviation of the logs is often quite

low for genes expressed well above

background.
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Error Model for Gene Expression Microarrays

The error model we use that motivates the data

transformation is as follows:

y = α+ µeη+ 6

where y is the intensity measurement, µ is the

expression level in arbitrary units, and α is the

mean background (mean intensity of unexpressed

genes). Our best estimate of µ is y − α̂, the
background-corrected intensity.
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Under this model, the variance of the

background-corrected response y − α at
concentration µ is given by

Var(y − α) = µ2S2η + σ26 .

where

Sη = eσ
2
η(eσ

2
η − 1),

which is of the form

E(z) = µ

V (z) = a2 + b2µ2
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It can be shown that

Var{ln(y − α)} ≈ σ2η + σ26 /µ
2.

and

Var{ln(y)} ≈ µ
2σ2η + σ26
(µ+ α)2

≈ µ
2σ2η + σ26
y2

.

Note the implication for use of logarithms on

background-corrected data.
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Data Transformation

• Logarithms stabilize the variance for high
levels, but increase the variance for low levels.

• Log expression ratios have constant variance
only if both genes are expressed well above

background.
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Transformation and Variance

Let yi estimate µi, and suppose that

Var(yi) = σ20v(µi).

Consider a transformation z = f(y). It is well

known that, up to the ¯rst order,

Var(zi) = (f I(µi))2σ20v(µi).

This is called propogation of error or the delta

method.
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This is based on a linear approximation to the

transformation function. If

SD(y) = σ,

and if z = a+ by, then

SD(z) = bσ,
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Thus a transformation that fully stabilizes the

variance would be one in which

(f I(µi))2 =
1

σ20v(µi)
or

f I(µi) =
1

σ20v(µi)
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If v(µ) = µ2, then

f I(µ) = 1

µ
.

so

f(µ) = ln(µ).

(as is well known).
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If v(µ) = µ (as in Poisson data), then

f I(µ) = µ−1/2.

so

f(µ) =
√
µ.

(as is also well known).
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In much of chemical analysis and biological

measurement data, a reasonable model is

y = µeη+ 6,

so that

V (y) = a2 + b2µ2

where a= σ6 and b= Sη.
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With this variance function, we have

f I(µ) = 1

a2 + b2µ2
.

which integrates to what we call the generalized

log (glog) function

f(µ) = ln(µ+ µ2 + a2/b2).

(Durbin, Hardin, Hawkins, and Rocke 2002;

Hawkins 2002; Huber, von Heydebreck,

SÄultmann, Poustka, and Vingron 2002; Munson

2001)
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To use this, we must estimate a, the standard

deviation of the untransformed data at low

levels, and b, which is the standard deviation of

the logged data at high levels. Alternatively, we

can estimate directly the transformation

parameter λ = a2/b2. We also need to estimate

the parameter α in the TCM, either separately or

together with λ. The glog transform is then

hλ,α(y) = ln y − α+ (y − α)2 + λ .
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This helps solve the puzzle of comparing a

change from 0 to 50 to a change from 200 to

300. Suppose that the standard deviation at 0 is

10, and the high-level CV is 10%. Then

• A change from 0 to 50 is ¯ve standard

deviations (5× 10 = 50 = 50− 0).

• A change from 200 to 300 is also ¯ve standard

deviations (300/200 = 150% = 5× 10%).
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• So is a change from 1000 to 1500

(1500/1000 = 150% = 5× 10%).

• The biological signi¯cance of any of these is
unknown. Di®erent transcripts can be active

at vastly di®erent levels.

• But the glog transformation makes an equal
change equally statistically signi¯cant.
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Determining Di®erentially Expressed Genes

Consider an experiment on four types of cell

lines A, B, C, and D, with two samples per type,

each of the eight measured with an A®ymetrix

U95A human gene array. Let yijk be the

measured expression for gene i in group j and

array k in group j. We used MAS 4.0 Average

Di®erence since it does not arti¯cially compress

low-level data.
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Steps in the Analysis

• Background correct each array so that 0
expression corresponds to 0 signal.

• Transform the data to constant variance using

a suitably chosen glog or alternative

transformation (started log, hybrid log).

• Normalize the chips additively.
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• The transformation should remove systematic
dependence of the gene-speci¯c variance on

the mean expresssion, but the gene-speci¯c

variance may still di®er from a global average.

Estimate the gene-speci¯c variance using all

the information available.

• Test each gene for di®erential expression
against the estimate of the gene-speci¯c

variance. Obtain a p-value for each gene.
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• Adjust p-values for multiplicity using, for
example, the False Discovery Rate method.

• Provide list of di®erentially expressed genes

• Investigate identi¯ed genes statistically and by
biological follow-up experiments.
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Structure of Example Data

Gene Group 1 Group 2 Group 3 Group 4

ID 1 2 3 4 5 6 7 8

1 y111 y112 y123 y124 y135 y136 y147 y148

2 y211 y212 y223 y224 y235 y236 y247 y248

3 y311 y312 y323 y324 y335 y336 y347 y348

4 y411 y412 y423 y424 y435 y436 y447 y448

5 y511 y512 y523 y524 y535 y536 y547 y548
... ... ... ... ... ... ... ... ...
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The model we use is

hλ,α(yijk) = µi+ nk+ βij + 6ijk

•We estimate all the parameters by normal
maximum likelihood after the fashion of Box

and Cox.

• The likelihood for the data y will be the same
as the MSE from the model for the

transformed Jacobian-corrected data z.
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We can determine the MSE by transforming the

data, multiplying each observation by the

Jacobian, which is gm( (y − α)2 + λ),

normalizing the chips additively, and ¯tting the

model to each gene separately, then summing the

individual MSE's for each gene. This works even

with missing data, with only the normalization

constants being slightly compromised.
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We can't ¯t the model for the full data set using

most linear model software. The X matrix has

12,625× 8 = 101,000 rows and

12,625× 4+ 7 = 50,507 columns. The XdX
matrix is then 50,507 by 50,507, containing

2.55× 109 8-byte reals, or 19GB!
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•We can test for di®erential expression for a
given gene by analyzing the transformed,

normalized data in a standard one-way

AVOVA.

•We can use as a denominator the
gene-speci¯c 4df MSE from that ANOVA.

This is valid but not powerful.

•We can use the overall 50,493df MSE as a

denominator. This is powerful, but risky.
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Histogram of Global p-Values
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• As an alternative, we can postulate a
hierarchical model in which the gene-speci¯c

true variances are generated from an inverse

gamma, the conjugate prior under normality.

• The overall MSE is 0.102. The variance

across genes of the 4df estimates under

homogeneity should be approximately

2σ4/4 = (.102)2/2 = 0.0057. Instead, the

variance is 0.0556, which is 10 times larger.
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•We ¯t an inverse gamma to the mean and
variance of the gene-speci¯c variances in the

hierarchical model, yielding α= 2.308,

β = 7.520, ν = 2α= 4.615.

•We have 1/αβ = .05763, which will be used as

the prior best estimate. Thus number is the

reciprocal mean prior precision. The

empirically estimated degrees of freedom for

the inverse gamma prior is 4.6.
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• The posterior best estimate MSE is a

weighted average of the gene-speci¯c MSE

(with weight 4/8.6) and the prior best

estimate (with weight 4.6/8.6) and has 8.6

degrees of freedom. Like the prior, it is of the

form 1/αβ, for posterior estimates of α and β.
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\5% Signi¯cant" Genes by Several Methods

MSE Source TWER FWER FDR

Gene-Speci¯c 2114 1 18
Global 2478 571 1516
Posterior 2350 29 508
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Probe-Level Analysis of A®ymetrix Data

• The previous analysis started with MAS 4.0
average di®erence (for the sake of

convenience).

• Likely, it is better to transform the probe level

data and determine the gene expression value

from the PM probes only.
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• This is already being done with various
transformation and normalization procedures

by a number of investigators.
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Which Transformation?

•We can use the log of the PM probes, the

glog, the started log, or many others.

• De¯nitive evidence will use dilution and
spike-in data as well as many other data sets

for comparison.

• One desirable property is stability of variance.
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Metabolomics by NMR Spectroscopy

• Spectra need to be baseline corrected.

• After baseline correction, the peaks are of
widely varying magnitudes, and some of the

data are negative.

• The glog is a plausible transformation to help
in the analysis of these data also.
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Conclusion

• Gene expression, proteomics, and
metabolomics data present many interesting

statistical challenges.

•We have presented a model for measurement
error that guides the transformation of the

data, helps determine signi¯cance of changes,

and allows more sophisticated analysis.
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• The two-component model seems to ¯t
microarray and other assay data well.

• A properly chosen transformation can stabilize

the variance and improve the statistical

properties of analyses.
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• Slide normalization and analysis of two-color
arrays is made easier by this transformation.

• Other statistical calculations such as the
analysis of variance that assume constant

variance are also improved.

• After removal of systematic dependence of the
variance on the mean, the remaining sporadic

variation in the variance can be accounted for

by a simple empirical Bayes method.
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•We are now working to apply these methods

to other types of data such as MALDI-TOF

proteomics, LC/MS and LC/TOF

metabolomics, NMR spectroscopy

metabolomics, and GC lipid metabolomics.

The variables measured are a large number of

peak heights or areas, or a large number of

binned spectroscopic values

• Papers are available at
www.cipic.ucdavis.edu/∼dmrocke or by mail
and e-mail.
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