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Classification of Contamination in Salt Marsh Plants
Using Hyperspectral Reflectance

Machelle D. Wilson, Susan L. Ustin, Member, IEEE, and David M. Rocke

Abstract—In this paper, we compare the classification ef-
fectiveness of two relatively new techniques on data consisting
of leaf-level reflectance from five species of salt marsh and two
species of crop plants (in four experiments) that have been exposed
to varying levels of different heavy metal or petroleum toxicity,
with a control treatment for each experiment. If these method-
ologies work well on leaf-level data, then there is hope that they
will also work well on data from air- and spaceborne platforms.
The classification methods compared were support vector clas-
sification (SVC) of exposed and nonexposed plants based on the
spectral reflectance data, and partial least squares compression
of the spectral reflectance data followed by classification using
logistic discrimination (PLS/LD). The statistic we used to compare
the effectiveness of the methodologies was the leave-one-out
cross-validation estimate of the prediction error. Our results
suggest that both techniques perform reasonably well, but that
SVC was superior to PLS/LD for use on hyperspectral data and it
is worth exploring as a technique for classifying heavy-metal or
petroleum exposed plants for the more complicated data from air-
and spaceborne sensors.

Index Terms—Heavy metals, hyperspectral, logistic discrimina-
tion (LD), partial least squares (PLS), petroleum, reflectance, re-
mote sensing, support vector machines (SVMs).

I. INTRODUCTION

NEW REMOTE sensing technologies that provide high spa-
tial and spectral resolution are technologically mature and

could address critical environmental monitoring issues, but the
ability to analyze and interpret the data lags behind the tech-
nology. When robust analytical methods are developed, they can
be applied to a wide range of environmental problems for which
remote detection is the best method, e.g., inaccessible areas,
sites with potentially hazardous contamination, sites that need
routine and frequent monitoring, and where information about
the spatial context of such conditions is critical to understanding
the location, distribution, or spread of adverse conditions. These
methods will, in turn, have a large impact on the policy and eco-
nomics of environmental monitoring for such industries as pe-
troleum, chemical, waste management, transportation, as well
as the military.
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Fig. 1. Reflectance spectra for (circles) a contaminated and (triangles)
uncontaminated leaf. Wavelength is given in nanometers.

There has been much research in remote sensing at the leaf
level to ascertain the level of stress in plants based on physiolog-
ical changes and how these changes alter the interaction of light
with the foliar medium [1], [2], [13]. The most common and
widespread change occurs in the proportion of light-absorbing
pigments, most notably chlorophylls and , which absorb light
in the 430–660-nm region [12]. Investigators have observed dif-
ferences in reflectance due to stress-induced differences in pig-
ment concentration in the green peak and along the red edge
[7], [16], [25], [31]. Additionally, heavy metal stress is typi-
cally manifest as cell membrane damage, alteration of enzyme
activities, changes in water content and leaf temperature, and
interference with respiratory gas exchange, as well as with the
photosynthetic apparatus [3], [14], [15]. This paper seeks to de-
termine if such responses to stress can be detected in reflectance
at the leaf level, and it explores the use of two important statis-
tical techniques.

Reflectance spectra can be seen to change under heavy metal
stress. Fig. 1 shows an example of this shift. Notice the depres-
sion in reflectance in the exposed plant. The fact that differences
are detectable by the human eye lends confidence that the al-
gorithms tested here will be able to use the reflectance data to
distinguish exposed from unexposed plants.

Interpretation of remotely sensed data for monitoring pur-
poses can be seen as a decision or classification problem, i.e.,
how can we decide at a given level of certainty that these data
have been generated by plants or ecosystems that are experi-
encing anthropogenic stress? Traditional methods of classifica-
tion usually rely on assumptions of normality or asymptotic nor-
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mality that cannot always be validated. Hence, nonparametric,
small-sample methods are needed in order for investigators to
make reliable decision and classification rules based on a an
available dataset, often called the training set. Additionally, the
large dimensionality of the data often poses difficulty. Further-
more, remote sensing data present issues in calibration: what is
the relationship between changes in reflectance and changes in
plant health and the degree of plant exposure to a toxin?

In this study, we grew the salt marsh plants Frankenia
grandifolia, Salicornia virginica, and Scirpus robustus and
two crop species, Zea mays (corn) and Phaseolus vulgaris
(kidney beans), under controlled conditions at varying levels of
heavy metal stress and Spartina alterniflora, Spartina foliosa
under varying levels of petroleum contamination, then gathered
data at the leaf level to test the efficacy of two relatively new
classification methods, and to ascertain the mathematical model
most appropriate for prediction (i.e., a calibration relationship).

A. Statistical Learning and Multivariate Calibration

There are many statistical data analysis techniques that fall
into the category of statistical learning. The two classification
techniques considered here, logistic discrimination and support
vector machines (SVMs), are among them. The most commonly
used statistical learning method is linear regression. We refer to
it as “learning” because we have data that we want to use to
discover the relationship between a quantity that we would like
to predict and one or several other quantities, called predictors.
That is, we would like to “learn from examples.” The data we
have consists of measurements of both the response (the quan-
tity we would like to predict in the future), along with corre-
sponding measurements of the predictors, in what is called the
“training set.” We then use our data to “train” a statistical algo-
rithm, which produces a mathematical relationship via param-
eter estimation, from the known data, which we can then use
to predict the quantity of interest when all we have measured
in the future are the predictors. In this sense, the machine or
algorithm, and presumably we ourselves have “learned” from
our training data to predict future observations. Here and below
boldface characters represent matrices.

In the binary classification scheme, in our case exposed or
normal, we have a set of examples, i.e., observations and their
labels (or response), with variables

(1)

In the general case, i.e., classification or regression, let be
the matrix of all observations and be the corresponding labels
(or response). Let be a parameter vector indexing a function
space . Then, statistical learning involves finding the best func-
tion , out of the set (called the hypothesis
space), where is the set of all possible parameters for , such
that, with high probability, is close to for all and the
corresponding . By “best” we mean a function that minimizes
the prediction error. Methods of estimating the prediction error
include leave-one-out cross validation, separating the data into a
training set and a test set, which is usually not performed unless
there are a lot of data, and model-based estimates such as the

empirical risk, which estimates the quality of the decision rule
[8], [30]. For both methods we use leave-one-out cross valida-
tion, which involves removing one data point, fitting the model
and using the left-out point as a test point to see how well the
classification technique performs on a given observation that has
not been included during training. This is done for each observa-
tion in the dataset. The number of misclassified test points plus
the number of misclassified training points divided by twice the
sample size is an estimate of the prediction error. This technique
will be discussed in more detail in Section II [10], [23].

Another advantage of both techniques is that neither requires
us to make any questionable distributional assumptions. Sup-
port vector machines require only the assumption that the ob-
servations are independent and identically distributed. Partial
least squares is similar to least squares in that we are merely
attempting to fit the best linear equation of the data and we are
not implicitly making any distributional assumptions. In logistic
discrimination, we are making only the assumption that the re-
sponse is binomial, which can hardly be questioned given that
it is binary.

Inherent in the problem of interpreting (and learning from)
remotely sensed data is the issue of calibration. In simple cali-
bration, the investigator performs what is basically an univariate
linear regression to establish the relationship between the re-
sponse of the measurement technology and the quantity of in-
terest, for example, the linear relationship between absorbance
at a given wavelength and the concentration of an analyte in a
sample. However, if the quantity being measured is produced
by complex processes, or if there is a high degree of error in
the measurement process, we often require the information con-
tained in several different measurements. For example, we may
require measurements of absorbance at several wavelengths to
determine the concentration of an analyte in a sample. Multi-
variate calibration, most notably principal components and par-
tial least squares, has been used quite successfully for some time
in analytical chemistry [21]. Recently, a combination of partial
least squares (PLS) data compression and logistic discrimina-
tion as a classification technique has been used for analysis of
DNA arrays [24]. We test the same technique below on remotely
sensed data. There are many parallels between the issues and
problems in analytical chemistry and those of remote sensing.
Reflectance and aborbance data in both disciplines are often
high dimensional, they presumably have similar error structures,
and interest in how changes in chemical composition affect the
interaction of light with a substance plays a large role in both
fields.

Support vector machines have been attempted in a few remote
sensing applications, for problems such as land cover classifica-
tion [19], detection of soil contamination and discrimination of
healthy and diseased plants [17], [18], [22]. Partial least squares
regression has been applied to soil spectroscopy for use in clas-
sifying contaminated areas in river floodplains [20] with some
success. However, the use of support vector machines on hyper-
spectral data is still relatively untested, and we are not aware of
any other investigators who have used PLS/logistic discrimina-
tion (LD) or support vector classification (SVC) on hyperspec-
tral data for the detection of heavy metal or petroleum contam-
ination in plants.
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B. PLS

As per the above discussion, one good candidate for the cali-
bration of remotely sensed data is partial least squares. PLS is a
method of data dimension reduction, similar to principal com-
ponents, to find the most relevant factors for both prediction
and interpretation, and is derived from Herman Wold’s devel-
opment of iterative fitting of bilinear models [32], [33]. Once
the data have been compressed, analysis techniques that require
the number of predictor variables to be smaller than the number
of observations, such as least squares regression, can then be
used. Partial least squares regression (PLSR) improves upon
principal components analysis by actively using the response
variables during the bilinear decomposition of the predictors.
By balancing the information in both the predictors and the re-
sponse, PLS reduces the impact of large, but irrelevant predictor
variations. Estimation of prediction error is achieved using cross
validation.

C. Classification Using Logistic Discrimination

For this study, we do not wish to perform a regression, but
we wish to classify our data as either exposed or unexposed.
Once we have used PLS to compress our data with the op-
timal compression matrix, we can use more classical techniques
that require . One such classification technique is logistic
discrimination.

Let be the column vector of reflectance measurements (or
their components) observed on a plant and , where a
0 value indicates that the plant was not experiencing any stress,
and a 1 value indicates that the plant was. In logistic regres-
sion, the conditional class probability,

(the plant has been exposed given the reflectance ), is
modeled by

(2)

The estimated response probabilities, are obtained by re-
placing the parameter with its maximum-likelihood estimate
(MLE) . The predicted class of each sample (as either exposed
or not) is , where is the indicator func-
tion. That is, if is true and zero otherwise. Note that
if (plant has been exposed given the reflectance ),
then (plant has not been ex-
posed given ). So, we classify a sample as exposed if
the estimated conditional probability that it is exposed is greater
than the estimated conditional probability that it is not. In this
case, we are using the components of the reflectance data, rather
than the reflectance data itself.

To estimate the prediction error of this classification method,
we use leave-one-out cross validation. For PLS/LD, each data
point was left out sequentially, the remaining data were used to
train the full PLS/LD procedure, and the left out point fed back
into the procedure to obtain the predicted class and any errors
noted.

D. SVMs

Support vector classification is based on a particular type of
statistical learning machine, with supporting theory well devel-

oped by Vapnik and others [4]–[6], [11], [28], [29]. Support
vector classification requires no assumptions on the distribution
of the underlying population, other than that the data are inde-
pendent and identically distributed. Furthermore, support vector
machines exploit theorems bounding the actual risk in terms of
the empirical risk [10], [29], rather than estimating error using
asymptotic convergence to normality. Hence, an upper bound on
the prediction error of the decision rule can be calculated even
for small samples, while making no distributional assumptions.
The optimal machine seeks a balance between consistency in
the training set and generalization to future datasets. That is, the
optimal machine uses the information in the data to predict fu-
ture observations, while avoiding overfitting. Additionally, sup-
port vector machines allow us to avoid the degradation of both
computational and generalization performance that often occurs
in high dimensions [10], [29]. For an excellent and more thor-
ough introduction to SVMs, see [26]. Because of these impor-
tant qualities, support vector classification is a good candidate
for analyzing spatial and spectral data, and could provide a so-
lution to many of the problems encountered when trying to use
these data in environmental monitoring.

Support vector machines find the optimal separating hyper-
plane in , where is the number of predictors and “optimal”
is defined as the hyperplane which minimizes the prediction
error, i.e., support vector machines find a linear decision rule
such that we classify the plant as exposed if it lies on one side
of the hyperplane and as unexposed if it lies on the other. In this
paper, we use soft margin hyperplanes and cross validation to
find the optimal decision rule. The decision rule, or the equation
for the separating hyperplane, is derived from a process called
structural risk minimization, as well as standard optimization
theory, and finds a balance between correct classification of the
training set and predictive ability. Any given hyperplane can be
written

(3)

for some and . Then, for , if
is a separating hyperplane, then the decision rule is: classify
as exposed if and as not exposed if . The
vector is a vector of weights that is optimized during training.
The decision rule then has the form

(4)

However, if the points in our dataset lie very close to the sep-
arating hyperplane, we may expect that there will be a good
deal of error in our prediction of future data. One measure of
predictability (both intuitively and mathematically, though the
mathematics will not be shown here) is the size of the margin,
defined as the distance between the separating hyperplane and
the nearest data point. Finding the best balance between pre-
dictability and correct classification of the training set amounts
to find the separating hyperplane with the widest margin, while
still correctly classifying as much of the training set as possible.
The data points that lie on, and define, the margin are called the
support vectors. In the results shown below, the parameter is
inversely related to the size of the margin. That is, a large im-
plies a small margin, and vice versa.
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1) Support Vectors in Nonlinear Feature Spaces: Often, the
data are not linearly separable in the input space (i.e., the un-
transformed data cannot be separated by hyperplanes in their
original dimension), or we may know a priori that most of the
information is contained in functions of the data, rather than the
data themselves. When this is the case, we may need or prefer
to work with nonlinear functions of the data which map the data
into high-dimensional feature spaces where they are linearly
separable, using the map . However, the chance of
overfitting and the computational effort grow quite rapidly for
certain nonlinear transformations. The mathematics of feature
spaces allows us to control the growth of computations, while
still gaining an advantage that the increased richness of our hy-
pothesis space offers in terms of classifying the training set. The
key is to work exclusively within a dot product space and to find
a nonlinear kernel representation that allows us to compute the
dot product in the feature space without explicitly mapping into
it. A kernel is a function , such that for all

(5)

If we can find such a kernel, we can maximize the target func-
tion and evaluate the decision function in terms of the kernel
without calculating the values in the feature space .
Since we are not explicitly mapping the data into the new space,
we do not have to perform anymore calculations that we would
have in the original space, once we have computed the kernel.
This yields a decision function of the form

(6)

for some kernel where the are Lagrange multipliers that are
found during optimization. Notice the similarity to the linear
decision rule. Hence, all of the developed arguments for the
linear machine also apply to nonlinear machines by using a valid
kernel instead of the Euclidean dot product. One important
aspect of using kernels is that we do not need to know the un-
derlying feature map in order to be able to learn in the feature
space. If we can identify that is a kernel for some map

and in some dot-product space , we do not need to actually
identify the that produced it. For more information about ker-
nels, see [10] and [26].

This result also holds in general for polynomials of degree
with variables. Define as the map which takes

where the entries of the vector are all possible th degree
products of the entries of . Then, the corresponding kernel that
computes the dot product in is

(7)

See [10] and [20].
The use of kernels allows us to find hyperplanes in high-di-

mensional spaces, without the explosion of computational effort
normally associated with such spaces. Additionally, for classi-
fiers such as the radial bias function:

and the neural network kernel:
we know that, since these functions satisfy the def-

inition of a kernel, there is a corresponding dot product space

Fig. 2. Two-dimensional example of an optimal decision boundary using the
full dataset.

Fig. 3. Two-dimensional example with class one support vector left out.

where our theory based on linear functions holds and, therefore,
that the problem has a solution.

2) Leave-One-Out Cross Validation: A tighter bound on the
prediction error than can be found theoretically is an estimate
provided by leave-one-out cross validation. Traditionally,
leave-one-out cross validation involves removing one data
point, fitting the model, and using the left-out point as a test
point to see how well the classification technique performs on
a given observation that has not been included during training.
This is done for each observation in the dataset. The number
of misclassified test points plus the number of misclassified
training points divided by twice the sample size is an estimate
of the prediction error. When using SVM, only the support
vectors are actually relevant in the classification. Only when
the left-out point is a support vector will the classification of
the remaining data change. Since whatever errors (or not) were
made on the training set will remain exactly the same until
one of the support vectors is removed as a test point, when
performing a leave-one-out cross validation, one only needs
to cross validate the support vectors. See Figs. 2 and 3 for an
example of this procedure for two-dimensional data.
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Fig. 2 shows the full dataset. There is one classification error
(one circle on the wrong side of the decision boundary) and
one margin error (one square on the correct side of the decision
boundary but within the margin). The support vectors (which
include the errors) are the data with ’s inside the square or
circle.

Fig. 3 shows the change in the decision boundary when the
class one support vector is removed. Notice the widening of the
margin.

II. MATERIALS AND METHODS

To test and compare these techniques, we obtained leaf-level
reflectance data on several salt marsh species and two crop
plants. The plants were grown for six weeks in 1X Hoaglands
solution before the addition of the metal salt directly into the
hydroponic container and fresh Hoaglands. Plants were grown
under metal stress for six more weeks before the final spectral
reflectance data were taken. Water that evapotranspirated from
the containers was replaced with distilled water. We grew
the two species of Spartina together under varying levels of
petroleum contamination, the two crop species together, and
the Salicornia and Scirpus together under varying levels of
different heavy metal stress. This was done to introduce some
of the variability that would be found in the field, but under
well-known conditions.

A. Plant Species and Growing Methods

Frankenia grandifolia plants were grown from rhizomes col-
lected at Suisun Marsh. The rhizomes were covered in vermi-
culite and watered daily until sprouts were large enough and
with sufficient new root mass to transplant into hydroponic con-
tainers. Sprouts that erupted from the same rhizome were placed
in different treatments to avoid violations of the assumption of
independence. The Frankenia treatments were copper at 0, 1.56,
7.79, and 15.6 ppm in the form of CuSO . There were ten repli-
cates for each treatment. Some replicates were lost upon data
collection, resulting in a total of 34 samples for the analysis.

Zea mays (corn) and Phaseolus vulgaris (kidney beans) were
grown in several levels of Vanadium contamination. These crops
plants are vigorously growing and genetically identical within
a species, with large leaves. The corn and kidney beans were
grown from seed by germinating in potting soil for four weeks
before being transplanted into the hydroponic containers. The
crop species treatments were vanadium at 0, 5, 10, 20, and 50
ppm in the form of VOSO . There were ten replicates for each
of the crop plant species, but some were lost during the growing
period, resulting in a total sample size of 83 plants spread among
five treatments.

Two species of Spartina, alternaflora, and foliosa were
grown together in treatments consisting of varying levels of
petroleum at 0 ppm with 100 replicates, 60, 80, 100, and 120
ppm with 30 replicates each, in the form Alba crude, a class A
crude, which is a light volatile oil that penetrates soil. Eleven
plants died during the experiment, yielding a total of 209
replicates.

Salicornia and Scirpus were grown together in treatments
consisting of varying levels of cadmium in the form of CdSO , 0

ppm with 45 replicates, 20, 40, 60 ppm with 20 replicates each,
and 80 ppm with 30 replicates for a total of 135 plants.

B. Data Collection

Every week subsequent to the introduction of the metal
salt, leaf-level measurements of chlorophyll fluorescence were
taken on dark adapted excised leaves to determine the level of
stress using the Waltz PAM-2000 fluorimeter. At the end of the
growing period, reflectance was measured at a high number
(445 for Frankenia and crop species and 950 for the others) of
different wavelengths ranging from 400.95–1506.84 nm using
a GER 1500 and a Licor Integrating Sphere. The Frankenia,
Spartina, Salicornia, and Scirpus leaves were smaller than
the sample port in the Licor Sphere. Hence, we devised an
adaptor to hold the leaf and prevent excess light from entering
the sphere from around the sides of the leaf. The adaptor
consisted of a cardboard square covered with optically black
material, with a disc removed whose diameter was no larger
than the largest diameter of the leaf. The effect of the device
was compensated for by subtracting out its reflectance. That
is, normally reflectance is calculated by dividing the radiance
of the target (leaf) by the radiance of the reference panel. To
correct for the effect of the adaptor, we measured the radiance
of the adaptor with no leaf, and we measured the radiance of
the reference panel through the adaptor. Then, we subtracted
the radiance of the adaptor from the radiance of the leaf, and
we divided this quantity by the radiance of the reference panel
minus the radiance of the adaptor. This device produced spectra
as expected for healthy vegetation when tested on such, except
that there was a good deal more noise. The crop plant leaves
did not require the use of an adaptor.

For the metal experiments, the leaves were harvested at the
end of the treatment period, and the metal concentrations in the
leaves were analyzed for each individual plant in order to assess
plant uptake of the metal.

C. Data Analysis

For the all datasets other than the Frankenia, we analyzed
both species together as independent observations. This was
done in order to keep the sample size high and to introduce some
variability that would normally be present in the field.

The PLS analyses and LD classifications were performed
using the software package SAS (SAS Institute, Cary,
NC: http://www.sas.com/) using a macro to perform the
leave-one-out cross validation on the full procedure. SAS
chooses the number of components to include in the model
by choosing the model with the smallest predicted residual
sums of squares (PRESS). However, this model can be only
negligibly better than a smaller model. SAS also performs van
der Voet’s test [27]. This test chooses the model with the fewest
components whose PRESS statistic is insignificantly larger
than that of the model with minimum PRESS. We applied
van der Voet’s test in choosing the number of components to
be used during compression. We used continuous data (the
response was the concentration) during the PLS procedure to
compress the data, and then we used binary data during LD
procedure to classify the data as exposed or unexposed.
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The SVM classifications were performed in Matlab using a
toolbox written by Gavin Cawley [9], which was adapted to
perform the cross validation on our data. The toolbox employs
soft-margin hyperplanes. The parameter was chosen from
values between 0.01 and 1000 such that the prediction error was
minimized, using a binary search algorithm. For purposes of
classification, the data were divided into two groups—exposed
and unexposed, i.e., all treatments except the control were la-
beled “exposed.” The results could be inspected to determine
if the classification scheme had difficulty classifying the lowest
concentrations. Additionally, since plants exposed to a toxin in
the field will not all experience that toxin at the same level, this
experimental design adds some realistic variability to the ex-
periment. We tested a linear kernel and polynomial kernels of
degree 2 and 3.

III. RESULTS

The chemical analyses of leaf metal content showed that up-
take occurred in all treatments for the copper experiment and in
all treatment excepting the control for vanadium and cadmium.
Heavy metal concentrations were below the detection limit for
the controls, except for copper, which is an essential nutrient.
Metal concentrations were significantly higher in the treatment
groups for all treatments measured .

The chlorophyll fluorescence measurements showed signifi-
cant increases in stress between the control and the
treatments for all experiments by the end of the six weeks of
growth.

A. PLS Classification

Plots of the components’ weightings (not shown) for all
datasets showed an almost equal weighting of all wavelengths
for the first component and a contrasting of high and low wave-
lengths for the second and third components, with contrasting
occurring when higher numbers of components were included
as well.

1) Frankenia: The leave-one-out cross validation per-
formed by SAS to choose the model that minimized the PRESS
statistic included five PLS components. The PRESS statistic
was 0.7863. However, applying van der Voet’s test, we chose a
model with three components and a PRESS statistic of 0.904 03
to compress the data.

The leave-one-out cross-validation test error for the
Frankenia experiment was 8.82% and a training error of about
15%, yielding an estimate of the prediction error of 11.91%.
Most of the mistakes were made on either the zero or lowest
concentration, suggesting that better results may be possible
for datasets with a higher minimum concentration above the
control.

2) Crop Species: During compression, the leave-one-out
cross validation performed by SAS to choose the model that
minimized the PRESS statistic included five PLS components.
However, according to van der Voet’s test, a model with zero
components was not significantly better than that with five.
We need to compress the data in order to use logistic discrim-
ination, so we chose the model with the minimum PRESS

statistic, even so. The PLS/LD procedure had a leave-one-out
cross-validation estimate of the prediction error of 15.67%, and
a training error of 12.2%, yielding a total error of 13.9%.

3) Salt Marsh Species: There were over 1000 wavelengths
in the dataset taken on the Spartina, Salicornia, and Scirpus
datasets. This high number of wavelengths was too high for
the SAS algorithm to handle. Hence, the wavelengths below
400 and those above 1500 were removed, leaving a total of 950
wavelengths.

For the Spartina, the leave-one-out cross validation and van
der Voet’s test performed by SAS to choose the model that min-
imized the PRESS statistic included 13 PLS components. How-
ever, during the PLS/LD procedure, using this many factors led
to failure of convergence due to no classification error during
logistic discrimination. Therefore, we reduced the number of
factors until convergence occurred, which resulted in the inclu-
sion of the first ten components in the final model. The PLS/LD
procedure had a leave-one-out cross-validation estimate of the
prediction error of 0.4% and a training error of 2.87%, yielding
an estimate of the prediction error of 1.63% for this method.

For the Scirpus and Salicornia dataset, the leave-one-out
cross validation and van der Voet’s test resulted in the inclusion
of eight PLS components. However, as with the Spartina
dataset, this model failed to converge, due to no classification
error during logistic discrimination. As above, we reduced the
number of factors until convergence occurred, which resulted
in the inclusion of seven factors. For this model, the PLS/LD
procedure had a training error of 4.9% and a CV error of 4.4%,
yielding an estimated prediction error of 4.64%.

B. Support Vector Classification

1) Frankenia: For this very noisy dataset, the leave-one-out
estimate of the prediction error was minimized with a choice of

for the linear kernel. The training error was 2.9%, with
CV test error was 11.76%, yielding an estimate of the prediction
error of 7.33%. There were 13 support vectors out of a dataset
of 34 observations.

Interestingly, most of the prediction errors were made on the
unexposed plants. The machine only classified a left-out unex-
posed plant correctly twice. The remaining errors were made
on the lowest concentration treatment. This may imply that the
lowest concentration is below the detection limit for this method
for this dataset.

When a degree 2 polynomial kernel was used, the total error
was minimized with a choice of . The training error
was 3.0% with a CV error of 14.1%, yielding a total estimated
prediction error of 8.55%. There were 13 support vectors.

When a degree 3 polynomial kernel was used, the total error
was minimized with a choice of . The training error
was 3.0%, with a CV error of 17.65%, yielding a total estimated
prediction error of 10.31%. There were 15 support vectors.

2) Crop Species: The choice of , which minimized the
prediction error, was , which is a very narrow margin.
The CV error was 15.66% with a training error of 3.6%, yielding
an estimated prediction error of 9.63%.

For the polynomial of degree 2 kernel, the choice of , which
minimized the prediction error, was , which is a reason-
ably wide margin. The training error was 3.7%, with a CV error
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TABLE I
SUMMARY OF ESTIMATED PREDICTION ERROR FOR SVM AND PLSLD

of 12.05%, yielding an estimated prediction error of 7.87%.
There were 38 support vectors.

For the degree 3 polynomial, the choice of , which mini-
mized the prediction error, was . The training error was
6.1%, with a CV error of 10.84%, yielding an estimated predic-
tion error of 8.92%. There were 37 support vectors.

3) Salicornia/Scirpus: For the Salicornia/Scirpus dataset,
the leave-one-out estimate of the prediction error was mini-
mized with a choice of for the linear kernel. The
training error was 2.2%, with a CV error of 3.70%, yielding
an estimated prediction error of 2.95%. There were 47 support
vectors out of a dataset of 135 observations.

For the degree 2 polynomial machine, the leave-one-out es-
timate of the prediction error was minimized with a choice of

. Both the training error and the CV error were not im-
proved from the linear kernel, yielding the same estimated pre-
diction error. However, the number of support vectors was re-
duced to 37.

For the degree 3 polynomial, the value of , which minimized
the prediction error, was . The training error was 1.5%,
with a CV error of 8.15%, yielding an estimated prediction error
of 4.82%. There were 37 support vectors.

4) Spartina: For the Spartina dataset, the leave-one-out es-
timate of the prediction error was minimized with a choice of

for the linear kernel. The training error was 0.0%, with
a CV error of 1.43%, yielding an estimated prediction error of
1.43%. There were 69 support vectors out of a dataset of 209
observations.

For the degree 2 polynomial, the estimated prediction error
was minimized with a choice of . The training error was
0%, with a CV error of 2.4%, yielding an estimated prediction
error of 2.4%. There were 57 support vectors.

For the degree 3 polynomial, the estimated prediction error
was minimized with a choice of . The training error
was 0%, with a CV error of 2.87%. There were 50 support vec-
tors.

C. Summary of Results

The results for all datasets are summarized in Table I. Figures
shown are percent total error.

IV. CONCLUSION AND DISCUSSION

Using the cross-validation total error as a method of com-
parison, the classification technique with the lowest prediction
error was support vector classification. The linear kernel pro-
vided the best decision rule for all datasets except the crop plant
experiment. For the crop plants, the degree 2 polynomial pro-
vided the lowest prediction error.

While the leave-one-out method for estimating prediction
error is well accepted, another proposed estimate for SVM
is the number of support vectors divided by the sample size.
Since the support vectors lie on the margin, this has some
intuitive appeal. We do not use this method here. However,
we feel it should be mentioned because the number of support
vectors is high for some of these datasets, and the low estimated
prediction error might be questionable on this basis.

These results suggest that good predictability can be achieved
when classifying exposed plants based on hyperspectral data
using support vector machines. Additional difficulties are to be
expected for air- and spaceborne platforms, since atmospheric
noise, differing angles, and the lower resolution all contribute to
the noisiness in the reflectance data. However, since low error
was found for these data, it might be expected that even with
additional noise, reasonable predictability is achievable.
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