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Abstract

Motivation and Results Durbin et al (2002), Huber et al (2002) and
Munson (2001) independently introduced a family of transformations (the
generalized-log family) which stabilizes the variance of microarray data
up to the first order. We introduce a method for estimating the transfor-
mation parameter in tandem with a linear model based on the procedure
outlined in Box and Cox (1964). We also discuss means of finding transfor-
mations within the generalized-log family which are optimal under other
criteria, such as minimum residual skewness and minimum mean-variance
dependency.
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1 Introduction

Many traditional statistical methodologies, such as regression or ANOVA, are
based on the assumptions that the data are normally distributed (or at least
symmetrically distributed), with constant variance not depending on the mean
of the data. If these assumptions are violated, the statistician may choose either
to develop some new statistical technique which accounts for the specific ways
in which the data fail to comply with the assumptions, or to transform the data.
Where possible, data transformation is generally the easier of these two options
(see Box and Cox, 1964, and Atkinson, 1985).

∗To whom correspondence should be addressed.
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Data from gene-expression microarrays, which allow measurement of the ex-
pression of thousands of genes simultaneously, can yield invaluable information
about biology through statistical analysis. However, microarray data fail rather
dramatically to conform to the canonical assumptions required for analysis by
standard techniques. Rocke and Durbin (2001) demonstrate that the measured
expression levels from microarray data can be modeled as

y = α + µeη + ε (1)

where y is the measured raw expression level for a single color, α is the mean
background noise, µ is the true expression level, and η and ε are normally-
distributed error terms with mean 0 and variance σ2

η and σ2
ε , respectively. This

model also works well for Affymetrix GeneChip arrays either applied to the
PM-MM data or to individual oligos.

The variance of y under this model is

Var(y) = µ2S2
η + σ2

ε , (2)

where S2
η = eσ2

η (eσ2
η − 1). In Durbin et al. (2002), Huber et al. (2002), and

Munson (2001) it was shown that for a random variable z satisfying V (z) =
a2+b2µ2, with E(y) = µ, there is a transformation that stabilizes the variance to
the first order. There are several equivalent ways of writing this transformation,
but we will use

hλ(z) = ln(z +
√

z2 + λ),

where λ = a2/b2 = σ2
ε/S2

η and z = y − α or y − α̂. (Use of z rather than
y presumes that any requisite background correction and normalization have
already been applied to the data so that, to the first order, E(z) = µ. The spe-
cific method normalization method used is left to the discretion of the reader.)
This transformation converges to ln(z) for large z (up to an additive constant
which does not affect the strength of the transformation) , and is approximately
linear at 0 (Durbin et al. 2002). We shall refer to this transformation as the
generalized-log transformation, as in Munson (2001), as the log transformation
is a special case of this family for λ = 0. The inverse transformation is

f−1
λ (w) = (ez − λe−z)/2.

Both fλ and its inverse are monotonic functions, defined for all values of z and
w, with derivatives of all orders.

When transforming data from two-color arrays or from complex multi-array
experiments, the closed form expression for the transformation parameter shown
in (1) is less useful than in the single color, single array case. Even data from
different colors on the same two-color array might have different estimated values
for the model parameters σ2

η and σ2
ε , which makes it unclear exactly how we

should obtain the transformation parameter. Pooling of data from different
sources in order to estimate parameters could work well for some designs, but
is not very flexible. An estimation method which specifically accounts for the
structure of the data would be useful in these situations.
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One such approach is to fit a linear model to the data while simultaneously
estimating the transformation parameter via maximum likelihood, as was done
in Box and Cox (1964). The linear model structure will allow us to account for
the different sources of variation in the data, such as variation between arrays,
between replicated spots on the same array, and between colors on the same
array, in our estimation of the transformation parameter. Furthermore, the
linear model, fit to appropriately transformed data, can itself be a useful analysis
tool. An example of such an analysis would be the ANOVA normalization
method for microarray data developed in Kerr et al (2000).

2 Maximum-Likelihood Estimation

The maximum-likelihood estimation of the linear model and transformation
parameters can be conducted essentially as in Box and Cox (1964), with the
key distinction being that we shall search for an optimal transformation within
the family of generalized log transformations, as in (1), rather than among the
power transformations.

The procedure outlined in Box and Cox (1964) is as follows: Suppose that
there exists some λ such that the transformed observations {hi,λ} have inde-
pendent normal distributions with linear mean structure and constant variance
σ2. That is, suppose there exists lambda such that

hλ = (h1,λ, . . . , hn,λ)> = Xβ + ε (3)

where n is the number of observations in the data set, X is the design matrix
from the linear model, β is a fixed vector of unknown linear model parameters,
and ε ∼ N(0, σ2I). The likelihood of the untransformed observations {zi} may
therefore be written in terms of the transformed observations {hi,λ} as

L(β, σ2, λ; z) =
1

(2π)n/2σn
exp

(− (hλ −Xβ)>(hλ −Xβ)
2σ2

)
J(λ), (4)

where

J(λ) =
n∏

i=1

∣∣∣∣
dhi,λ

dzi

∣∣∣∣ (5)

=
n∏

i=1

1/
√

z2
i + λ. (6)

Fixing λ and maximizing (4) over β and σ2, we arrive at the usual maximum-
likelihood estimates for these parameters (presuming X is of full rank):

β̂(λ) = (X>X)−1X>hλ

and
σ̂2(λ) = h>λ (I−H)hλ/n, (7)
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where H = X(X>X)−1X> (Box and Cox (1964)).
Substituting β̂(λ) and σ̂2(λ) into ln(L(β, σ2, λ; z)), we obtain the partially-

maximized log likelihood

lmax(λ) = −n

2
ln σ̂2(λ) + lnJ(λ). (8)

For added simplicity, we may scale the transformed observations by J1/n(λ),
defining

wλ = hλ/J1/n(λ)

= ln(z +
√

z2 + λ)gm(
√

z2 + λ),

where

gm(
√

z2 + λ) =
( n∏

i=1

√
z2
i + λ

)1/n

.

The partially-maximized log likelihood of z in terms of wλ can then be closely
approximated by

lmax(λ) = −n

2
ln σ̂2(λ)

= −n

2
SSE(λ)/n

which depends on the data only through SSE(λ), the error sum of squares from
the linear model fit to the transformed data . (The approximate nature of the
log likelihood arises when we choose to ignore the variability of the Jacobian,
which should be quite minimal given the size of most microarray data sets. See
Chapter 6 of Ferguson (1996) for further explanation.) This new, partially-
maximized log likelihood is a monotone decreasing function of the error sum
of squares from the linear model for fixed λ, SSE(λ), so we may find the MLE
of λ, λ̂, simply by minimizing SSE(λ) (Box and Cox (1964)). This may be
accomplished by plotting the error sum of squares as a function of λ, or via
numerical optimization methods. Estimates of β and σ2 on the scale of the
transformed data without the Jacobian correction may be obtained by fitting
the linear model again using the MLE, λ̂, as the transformation parameter or
by multiplying β̂ by J1/n(λ̂) and multiplying σ̂2 by J2/n(λ̂).

2.1 Examples

We illustrate this estimation method using two example data sets, one from a
two-color cDNA-array experiment and one from an experiment conducted using
Affymetrix oligonucleotide arrays. The first example comes from a toxicology
experiment by Bartosiewicz et al (2002) in which male Swiss Webster mice were
injected with a toxin. We shall focus on a single slide from this experiment. For
this array, the treatment mouse was injected with 0.15 mg/kg of β-napthoflavone
dissolved in 10 ml/kg of corn oil, and the control mouse was injected with 10
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ml/kg of corn oil. mRNA from the livers of these mice was reverse transcribed
and fluor labelled, with the treatment sample labelled with Cy5 and the control
sample labelled with Cy3. The samples were hybridized to a spotted cDNA
array on which each of the 138 genes was replicated between 6 and 14 times,
resulting in a total of 1008 spots.

For the mouse data, we will model the differences of the transformed control
and treatment observations rather than the transformed observations them-
selves. The difference of the transformed observations from replicate j of gene
i, ∆hλij , can be modeled as

∆hλij = µi + εij , (9)

where µij is a gene effect and εij is a normally distributed error term. Notice
that (9) is a one-way ANOVA model.

Figure 1 shows the partially-maximized log likelihood for the mouse data
as a function of the transformation parameter, λ. The likelihood is maximized
at λ = 1.1309 × 109. An asymptotic 95% confidence interval for the MLE, λ̂,
consists of those values of λ for which

lmax(λ̂)− lmax(λ) <
1
2
χ2

1,.05,

where χ2
1,.05 is the upper 5% quantile of a χ2

1 distribution (Box and Cox (1964)).
This yields a confidence interval for λ̂ of (8.6827 × 108, 1.4741 × 109), which is
bounded well away from 0 and thus definitively excludes the log transformation
(corresponding to λ = 0).

Figure 2 shows a quantile-quantile plot of the residuals from the linear model
(9) fit to the transformed data versus a standard normal distribution. The
residuals appear to come from a distribution with heavier tails than a normal
distribution. Although the plot appears to exhibit some skewness, this is entirely
due to the four observations in the lower left-hand corner. These observations
appear to be outliers resulting from phenomena such as dust on the slide, since
they all occur in genes which are expressed near background in the control data,
and feature a single observation which differs so hugely from the other replicates
that it is unlikely to result from actual gene expression. (These observations will
be excluded from the analysis of Section 3). Examination of residuals from the
linear model appears to facilitate identification of outlying observations, since
these outliers were much more obvious in the residuals than they would have
been in the raw data.

The second example comes from an experiment using 4 Affymetrix HG U95
arrays, which is described in Geller et al (2002). In this experiment, a lym-
phoblastoid cell line from a single autistic child was grown up in four separate
flasks. RNA extraction, cDNA synthesis, and in-vitro labelling was conducted
separately on each of the 4 samples, and each of the samples was hybridized to
a separate array.

For the autism data, we model the transformed perfect match minus mis-
match observation from gene j on array i, hλij , as

hλij = µi + ηj + εij , (10)
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where µi is a fixed array effect, ηj is a fixed gene effect, and εij is a normally
distributed error term. Notice that our model is a two-factor ANOVA model
without an interaction term. (We cannot fit the interaction term due to the
absence of replicated genes, but we would not expect a gene-array interaction
effect anyway.)

Figure 3 shows the partially-maximized log likelihood for the autism data
as a function of the transformation parameter. The likelihood is maximized at
λ = 3873, and a 95% confidence interval for λ̂ is (3751, 4000), which, again,
excludes the log transformation. Figure 4 shows a quantile-quantile plot of the
residuals from the linear model (10). The residuals, again, appear to come from
a symmetric distribution with tails heavier than a normal distribution.

3 Other Methods of Estimating the Transfor-
mation Parameter

Maximum-likelihood estimation of the transformation parameter in the manner
described above in essence simultaneously optimizes constancy of variance, the
fit of the transformed residuals to a normal distribution, and the fit to the linear
model. In some applications, some of these criteria may be more important
than others. For example, for many traditional statistical techniques data that
are symmetric are almost as good as data that are normally distributed, and
by trying to force the transformed data to fit all of the moments of a normal
distribution we may inadvertently compromise those characteristics in which
we are most interested. In such cases, we may search within the family of
generalized-log transformations for a transformation optimizing the quantity of
interest, simply by minimizing the appropriate statistic.

For example, to find a transformation minimizing the skewness of residu-
als from the linear model, we would look for a transformation for which the
skewness coefficient of the residuals is equal to 0. To find a transformation for
which the fixed effects in an ANOVA model are the most linear, we would look
for a transformation minimizing the F-statistic for the interaction term in the
model. (Notice that the two estimation procedures just mentioned both incor-
porate the linear model structure used in the maximum-likelihood estimation.)
To find a transformation minimizing the dependency of the replicate mean on
the replicate variance, we would regress the replicate standard deviation of the
transformed data on the replicate mean and look for the transformation mini-
mizing the t-statistic for the significance of the slope parameter. These other
optimal transformations also provide a means of assessing the quality of the
maximum-likelihood estimate of the transformation parameter. If the MLE
differs too greatly from the optimal transformation parameter under another
criterion, this might be cause for concern.

We illustrate the skewness-minimizing transformation and the transforma-
tion minimizing dependency of the replicate mean and variance using the mouse
data. Figure 5 shows a plot of the residual skewness coefficient as a function
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of the transformation parameter for the mouse data, using residuals from the
linear model in (9). For these data, the skewness coefficient is non-monotonic
in the transformation parameter, so there are two values of λ for which the
skewness coefficient is equal to 0, 2.3655× 107 and 1.7272× 108. A asymptotic
95% confidence interval for the skewness-minimizing transformation consists of
those values of λ for which the absolute skewness coefficient is not significant
at the 5% level. For a sample of size 1008 the absolute skewness is not statis-
tically significant if it is less than 0.1512, which yields the confidence interval
(1.1621×106, 1.6940×109). The resulting confidence interval is quite large, but
notice that it excludes the log transformation (for λ = 0), indicating that the
log transformation significantly skews the residuals. It does, however, include
the maximum likelihood transformation, (λ = 1.1309 × 109), implying the the
MLE does provide sufficient symmetry.

Figure 6 shows the t-statistic for the significance of the slope parameter
from the regression of the replicate standard deviation on the replicate mean as
a function of the transformation parameter. For the mouse data, the t-statistic
is equal to 0 at λ = 4.0329×109. An asymptotic 95% confidence interval for the
t-minimizing transformation consists of those values of λ for which the t-statistic
is not significant at the 5% level. For 136 degrees of freedom (since we have 138
genes and lose 2 degrees of freedom from fitting the regression parameters) the
cutoff for significance of the t-statistic is ±1.9776, which yields the confidence
interval (2.0172 × 109, 8.1005 × 109). This confidence interval excludes both
the log transformation and the maximum-likelihood transformation. However,
a Wald test to determine if the MLE and the t-minimizing parameters differed
significantly (using 1/4th the length of the respective confidence intervals as
a crude estimate of the standard deviation of the parameters) yields the test
statistic −1.9270, which is not significant at the 5% level.

Figure 7 shows the replicate standard deviation plotted against the replicate
mean for the mouse data transformed using the t-minimizing transformation,
λ = 4.0329× 109. The plot does not display any obvious mean-variance depen-
dency, indicating that the transformation has effectively stabilized the variance
of these data. For purposes of comparison, Figure 8 shows the replicate standard
deviation and mean for data transformed using the maximum-likelihood trans-
formation, λ = 1.1309 × 109. Again, there does not appear to be any obvious
mean-variance dependency, indicating that the MLE also provides sufficient vari-
ance stabilization. The MLE provides surprisingly good variance-stabilization
and symmetrization, especially in light of the fact that the normal likelihood
is almost certainly the ”wrong” likelihood for the transformed data, given the
apparent heavy-tailed distribution of the transformed residuals.

4 Conclusions

The generalized-log transformation of Durbin et al (2002), Huber et al (2002)
and Munson (2001) with parameter λ = a2/b2 stabilizes the variance of data
where Var(z) = a2 + b2E2(z). Maximum-likelihood estimation in the manner of
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Box and Cox (1964) can be used to estimate a transformation parameter for data
where observations have different values of a and b. This procedure estimates
the transformation parameter while simultaneously fitting a linear model to the
data.

The maximum-likelihood estimate can be found by finding the transforma-
tion minimizing the error sum of squares from the linear model fit to the trans-
formed data. Transformations minimizing residual skewness, mean-variance
dependency, and other criteria may be found by minimizing the appropriate
statistic. The maximum likelihood estimate appears to perform well compared
to transformations specifically minimizing residual skewness and mean-variance
dependency, especially in light of the fact that the normal likelihood is a first
approximation to the ”true” distribution of the transformed data and was cho-
sen primarily for computational convenience. The residuals from linear model
fit to the transformed data appear, in fact, to come from a distribution with
heavier tails than a normal distribution. Finally, the log transformation was ex-
cluded from the confidence intervals for each of the 3 optimality criteria tested
(maximum likelihood, minimum residual skewness, and minimum mean-variance
dependency). The generalized-log transformation provides a good alternative
to the log transformation for use with gene-expression microarray data.

A Numerical Optimization Via Newton’s Method

Newton’s method provides a means of finding a root of a smooth function. We
use this technique to perform numerical minimization of the error sum of squares
by finding a root of the first derivative of SSE(λ). Plots of the likelihood may be
used to confirm that the root found does indeed constitute a global maximum.
Denote ∂

∂λSSE(λ) by SSE′(λ) and ∂2

∂λ2 SSE(λ) by SSE′′(λ). A new estimate of
λ, λ(n+1), may be obtained from the previous estimate, λ(n) using

λ(n+1) = λ(n) −
SSE′(λ(n))
SSE′′(λ(n))

. (11)

Convergence is achieved when |SSE′(λ)| is less than the predetermined applica-
tion tolerance.

For the generalized log transformation with parameter λ,

SSE
′
(λ) = 2

n∑

i=1

(wλi − ŵλi)(w
′
λi − ŵ

′
λi), (12)

where
ŵλi = x>i β̂(λ),

x>i is the ith row of the design matrix,

w
′
λi = ∂

∂λwλi

= [2{zi +
√

z2
i + λ}

√
z2
i + λ]−1J−1/n(λ)

+ ln(zi +
√

z2
i + λ) ∂

∂λJ−1/n(λ),
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where
∂

∂λ
J−1/n(λ) =

1
n

n∑

i=1

J−1/n(λ)/{2(z2
i + λ)},

and

ŵ
′
λi =

∂

∂λ
ŵλi

= x>i (X>X)−1X>w
′
λ,

The second derivative of the error sum of squares is

SSE
′′
(λ) = 2

n∑

i=1

(w
′
λi − ŵ

′
λi)

2

+ 2
n∑

i=1

(wλi − ŵλi)(w
′′
λi − ŵ

′′
λi),

where
w
′′
λi = ∂2

∂λ2 wλi

= − 1
4 J−1/n(λ)(zi +

√
z2
i + λ)−1{z2

i + λ}− 3
2

− 1
4 J−1/n(λ)(zi +

√
z2
i + λ)−2{z2

i + λ}−1

+(zi +
√

z2
i + λ)−1{z2

i + λ}− 1
2 ∂

∂λJ−1/n

+ ln(zi +
√

z2
i + λ) ∂2

∂λ2 J−1/n

and
∂2

∂λ2 J−1/n(λ) = 1
2n

∑n
i=1{z2

i + λ}−1 ∂
∂λJ−1/n(λ)

− 1
2n

∑n
i=1{z2

i + λ}−2J−1/n(λ)

and

ŵ
′′
λi =

∂2

∂λ2
wλi

= x>i (X>X)−1X>w
′′
λ.
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Figure 1: Log Likelihood by Transformation Parameter, Mouse Data
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Likelihood is maximized at λ = 1.13 X 109 

95% CI for λ is (8.7 X 108, 1.5 X 109) 
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Figure 2: QQ Plot of Residuals vs. Standard Normal, Maximum−Likelihood Transformation, Mouse Data



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−1.35

−1.345

−1.34

−1.335

−1.33

−1.325

−1.32

−1.315
x 10

5

•

Figure 3: Log Likelihood by Transformation Parameter, Autism Data
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Likelihood is maximized at λ = 3873   

95% CI for λ is (3751, 4000) 
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Figure 4: QQ Plot of Residuals from Linear Model vs. Standard Normal, Mouse Data
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Figure 7: Replicate Mean and Standard Deviation, t−Minimizing Transformation, Mouse Data
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Figure 8: Replicate Mean and Standard Deviation, Maximum−Likelihood Transformation, Mouse Data




