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Design and analysis of experiments with high throughput
biological assay data
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Abstract

The design and analysis of experiments using gene expression microarrays is a topic of considerable current research, and work is beginning
to appear on the analysis of proteomics and metabolomics data by mass spectrometry and NMR spectroscopy. The literature in this area is
evolving rapidly, and commercial software for analysis of array or proteomics data is rarely up to date, and is essentially nonexistent for
metabolomics data. In this paper, I review some of the issues that should concern any biologists planning to use such high-throughput biological
assay data in an experimental investigation. Technical details are kept to a minimum, and may be found in the referenced literature, as well
as in the many excellent papers which space limitations prevent my describing. There are usually a number of viable options for design and
a erature. This
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nalysis of such experiments, but unfortunately, there are even more non-viable ones that have been used even in the published lit
s an area in which up-to-date knowledge of the literature is indispensable for efficient and effective design and analysis of these e

In general, we concentrate on relatively simple analyses, often focusing on identifying differentially expressed genes and the c
ssues in mass spectrometry and NMR spectroscopy (consistent differences in peak heights or areas for example). Complex mul
attern recognition methods also need much attention, but the issues we describe in this paper must be dealt with first.
The literature on analysis of proteomics and metabolomics data is as yet sparse, so the main focus of this paper will be on meth

or analysis of gene expression data that generalize to proteomics and metabolomics, with some specific comments near the en
f metabolomics data by mass spectrometry and NMR spectroscopy.
2004 Elsevier Ltd. All rights reserved.
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. Principles of experimental design

There was at one time the widespread notion that the large
umber of measurements obtained in a gene expression array
ould somehow make up for small sample sizes. In fact,
xperiments with many responses in most cases need to be as

arge (and well designed) as if there were only one response.
n experiment that is inadequate for understanding a single

esponse is most likely inadequate for understanding 20,000
esponses. The multiple measurements obtained from a gene
xpression, proteomics, or metabolomics experiment do not
ake the experiment more effective in such a way that less

eplication is needed.

∗ Tel.: +1 530 752 0510; fax: +1 530 752 8894.
E-mail address:dmrocke@ucdavis.edu.

1.1. Biological replicates are more important than
technical replicates

Most of the variation in any biological experiment or cl
ical trial is biological. Usually, the largest differences
between organisms, though there are cases in which
factors as diurnal variation can make the within-organ
variability larger than the between-organism variability
almost all cases, the analytical variability, sometimes ca
technical variability is usually small by comparison with
biological variability. Given the same biological sample,
standard deviation of replicate data from genes that are h
expressed is usually no more than 5–10% (for example
[1]). The percentage difference for levels of mRNA or o
biologically active compounds that are present at low
els can be much smaller, but this is actually a consequ
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of using the wrong measure of change rather than increased
variability at low levels. This is explained in more detail be-
low.

This has several consequences for the design of experi-
ments and studies. For data with relatively small amounts of
variability, such as cell lines, only a few replicates may be
needed, but even for inbred strains of mice or rats, at least a
few replicates per condition are likely to be required. In many
cases, use of several experimental factors can reduce the need
for replication within each treatment combination, but does
not decrease the total number of animals required (usually in
the tens at least). For human studies and trials, hundreds of
patients and controls may be needed before accurate answers
may emerge, just as is the case in drug and surgical clinical
trials.

1.2. To pool or not to pool?

Pooling samples can reduce the cost. Given a measure
in which the variation between subjects isσ2

1 and in which
the variation due to the analysis isσ2

2, a study withn ar-
rays or other analyses withk subjects pooled on each ar-
ray has variability of the mean of all the measurements of
(σ2

1/kn) + (σ2
2/k). Suppose that sampling a subject costsc1

and running an array (or mass spec, NMR) costsc2, so that
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the effect of administration of a toxic substance on gene ex-
pression or on metabolite profiles in the mouse lung. The pri-
mary factor is treatment or control, but one may also consider
mice of, say, four developmental ages and both sexes. This
gives a total of 16 treatment groups. With two mice/arrays per
group, the total experimental effort is 32 runs (arrays, mass
spec runs, etc.).

First consider the issue of efficiency. One can compare
treatment and control with the precision of 16 versus 16, and
one can also compare male vs. female at the same time, as
well as the effect of developmental age on the response. A
series of experiments on male/female, age comparison, and
treatment/control would take far more experimental runs.

Even more important, this design allows more complex
questions to be asked. Do males and females respond differ-
ently to the administration of the toxic substance? Does the
response vary by age? Is the age variation in response to the
toxic substance itself dependent on sex? These interactions
may be the most important findings of the experiment.

Given a single response, a standard statistical model is:

Response= mean+ dose+ sex+ age+ dose× sex

+ dose× age+ sex× age

+ dose× sex× age+ error
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he total cost of this experiment isnkc1 + kc2. Using, for ex-
mple, Excel’s solver routine, we can solve for the de

hat has the minimum variance subject to keeping the
ost below some thresholdC. As an example, if the cost p
ample is US$ 100 and the cost per array is US$ 500 a
he standard between samples is 0.3 and the analytica
ard deviation is 0.1, then the best design by this crite

hat keeps the cost below $10,000 is eight arrays with s
amples pooled on each array for a total cost of US$ 9
o analyze the 56 samples with 56 arrays would cost a m
reater sum of US$ 33,600. In general, the largest gains
ooling are when the cost per sample is low and the cos
nalysis is high.

There are several factors that are left out in this anal
owever. One is that a single bad or unusual sample
poil an entire array, which can lead to loss of power. In
ase of human samples, it also does not lead to an abi
etect differences after the fact between patients that le
ifferences in gene expression or metabolic profiles. It is
lear how these disadvantages balance against reduce
ut it may be useful in some cases to consider pooling
esign factor[2].

.3. Use multiple experimental factors when appropriat

It is often the case that the investigation of multiple fac
t the same time may be more efficient and effective th
eries of experiments aimed at each factor alone. This
eem counter-intuitive, but it is a well known to student
he statistical design of experiments[3]. Consider a study o
-

t,

All of these effects can be estimated and their sta
al significance explored by a standard analysis of vari
ANOVA) or linear model statistical program such as th
ound in SAS, S-Plus, R, or Stata. In many cases, cons
ion with a biostatistician on issues of design and ana
ay be helpful. Software (LMGene) for fitting such mod

or each gene in an array is available in the form of R c
n the websitehttp://www.cipic.ucdavis.edu/∼dmrocke.

.4. Two color arrays can make designs more complex
ut may reduce variability

In two-color arrays, two samples using different colo
yes (conventionally called red and green) are hybridize

he same array. The advantage of this is that a direct com
son of these two samples may be more accurate than i
re hybridized to two different arrays, since such sourc
rror as array-to-array variability and differential spot
ill cancel out. Of course, there may be dye bias that n

o be accounted for[4].
Frequently, the data from a two-color array experim

s immediately reduced to log ratios, but this is probab
istake for reasons explained below in the section on pu

he data on the right measurement scale. Briefly, log r
ork well when both conditions have the gene expre
ell above background, but work badly when the gen
ssentially off in one condition or the other.

A different issue is the effect on experimental desig
wo-color arrays. Given the 32-array experiment descr
n the last section, design issues with one-color array
elatively straightforward. The 32 arrays should be run

http://www.cipic.ucdavis.edu/~dmrocke
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random order in the same lab by the same operator with the
same batch of reagents (the random order is to avoid biases
due to time order). With two-color arrays, we have further
design choices. We can provide a universal control (such as
by pooling a large number of similar samples), and always
use the control on red and the sample on green or vice versa.
We can make half the arrays with the control on red and half
with the control on green. Or we can use loop designs[5].
In the latter, we use no control, but always hybridize one
experimental sample labeled with red with another labeled
in green. This is more efficient, but creates some complex-
ities. We need to make sure that comparisons are balanced
between red and green. Direct comparisons of two conditions
are the most accurate, but usually we cannot accommodate
all of these. For example, with 16 treatment combinations,
there are 120 possible pairs (or 240 if we do one each of
red/green and green/red). With only 32 arrays this cannot be
accommodated. Efficient design in this case requires use of
optimal design software such as that found in SAS.

At this stage of our understanding, it may be that loop
designs and the like should be used only for quite simple
experiments, and that the universal control, though statisti-
cally perhaps less efficient, should be used for more complex
designs.
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not be used for testing, even after a variance stabilizing trans-
formation (see below).

2.2. Put the data on the right scale for analysis

In general, the intuitively most appealing methods of com-
parison for the expression level of a gene or concentration of
a protein or metabolite in two groups are multiplicative. We
might like to say that a gene is two-fold over expressed in
one group compared to another. It turns out that it is often
better in such cases to log transform the data and conduct an
analysis of differences. This is essentially equivalent since
log(x/y) = log(x) − log(y). In addition, more complex com-
parisons such as the one-way ANOVA above can be con-
ducted on the transformed data with greater validity.

However, one problem with this strategy is when one or
more of the conditions has the gene essentially unexpressed
(protein essentially absent, etc.), an extremely common phe-
nomenon. This is shown by very low measured expression
values, near, or even below zero.1 The answer to this prob-
lem is to use a slight variant of the logarithmic transform,
called the generalized logarithm or glog transformation[6–9].
Much additional work has been devoted to methods of using
this transformation to improve analyses of microarray data
[1,10–12]. This work was motivated by the desire to stabilize
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. Principles of analysis

.1. Analyze the experiment in accord with the design

Suppose we have an experiment with four types of
ines, with two samples per type, and one array or other
sis per sample. With one response, we would typically
yze this by the following one-way ANOVA model:

esponse= mean+ type+ error,

hich is in accord with the design. It may be tempting
se some canned analysis tools to, for example, cluster
ased on eight expression measurements. Since this ig

he treatment (cell-line type) it is unlikely to lead to a go
nalysis. The simplest first step is to test each gene (MS
tc.) as if it were the one response and determine if that
ad changed in a manner that could not be easily expla
y chance. Some care is required in this process, but the

dea is sound.
The entire experiment for all genes (replace gene by

r bin for MS and NMR) and all samples can also be fra
s a single ANOVA model in the form

esponse= mean+ gene+ array+ gene× type+ error.

Here the array effect is a normalization on the transfor
cale (comparable to a multiplicative normalization on
riginal scale), and the effects of main interest are the

type terms. Note, however, that the overall mean sq
rror from the model pooling all the genes should prob
he variance of microarray data, and the glog transform
s the natural choice when the variability of microarray d
s modeled as in[13].

Fig. 1 shows the glog and log transforms over the ra
f a microarray data set. Note that the difference is diffi

o discern except at the very lowest level.Fig. 2 shows the
wo transformations near zero, showing that the glog tr
ormation deals more gracefully with low-level data, bu
therwise similar to the log transform.

.3. Account for multiplicity of tests

Given that there are many probes or probe sets on
roarray, there is a strong possibility of false positives in
or differentially expressed genes. For example, there ar
roximately 40,000 probe sets on the latest Affymetrix
an genome array. If each gene is tested for differentia
ression, and if the chance of a false positive is 1% for

est, then the expected number of false positives is 40
here are 1000 probe sets that are declared to be differen
xpressed, then probably 40% of them arefalse discoveries.

1 Of course the actual concentration cannot be negative. However
rue concentration is zero, and the measurement process is unbiase
egative measurements will always occur. The interpretation of a ne
easurement is in terms of the confidence interval. If the standard dev
ear 0 is, say, 10, then a measured value of 10 suggests a conce
etween 0 and 30 (plus or minus two standard deviations, but trunca
). A measured concentration of−10 suggests a true concentration betw
and 10, thus is indicative of a lower true concentration than a mea

alue of 10 or 0. This implies that negative measurements should n
ensored or reduced to 0 or half the detection limit to avoid low-level b
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Fig. 1. Logarithm (log) and generalized log (glog) transforms over a range consistent with microarray data.

Fig. 2. Logarithm (log) and generalized log (glog) transforms over a range near zero.
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Fig. 3. Histogram of all 12,625p-values from a microarray experiment, in which each gene is analyzed separately.

Generally, this is too high a fraction. False discovery rates
can be controlled by various procedures, but perhaps the most
popular are based on the methods of Benjamini and Hochberg
([14–18]). These are easy to perform using standard software
and can give at least some assurance that the number of false
positives is approximately at or below some threshold. The
same argument holds if there are 1000 peaks per sample in a
mass spectrogram or 256 binned spectral values in an NMR
study.

F in whic led value
a

The alternative of avoiding statistical tests at all, and
screening by some fold-change threshold is a poor substitute.
In the first place, fold change can be inflated if the expression
is low in one of the conditions, though this can be solved
by using the glog ratio instead of the log ratio. Second, fold
change is only easily applicable to comparison of two alter-
natives and is difficult to use with more complex designs,
even a one-way design with more than two levels. Third,
the natural variability of measurements by a given probe is
ig. 4. Histogram of all 12,625p-values from a microarray experiment,
cross all genes.
h the error term for the analysis of each gene comes from a single poo
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not the same. In addition to the well-known dependence of
the standard deviation on the mean[13], there are large dif-
ferences in natural variability between measurements from
probe sets even though the mean expression measurements
may be very similar (see Section2.4). This implies that any
fold-change cutoff will tag too many probe sets that happen
to have large natural variability, and too few that happen to
have small natural variability. What counts is whether the dif-
ferences between conditions are larger than can be explained
by the natural variability attendant on that probe set, and that
requires statistically valid analyses.

2.4. What is the right denominator for t-tests and F-test?

If tests are conducted one gene or probe set (or MS peak,
etc.) at a time, then each such test should be approximately
valid. In many cases, however, the test will not be sensitive
due to relatively poor estimates of the error term. Consider, for
example, the experiment with four types of cell lines and two
arrays per cell line. The ordinary ANOVA test of differential
expression for a single probe set uses an error estimate with
only four degrees of freedom.Fig. 3shows the collection of
12,625p-values produced by analyzing each probe set of the
Affymetrix U95A chips that were used for this experiment.
The probe sets on each array were summarized using the
m milar
w
e -way

F
a

ANOVA as described above. Clearly, there are many probe
sets that are significantly different (if there were none, the
p-value histogram should be flat). However, none of thep-
values passes the 5% FDR threshold, meaning that we are sure
that there are probe sets that are differentially expressed, but
not sure which ones exactly that they are. This is primarily
due to the fact that the MSE is poorly estimated in a one gene
at a time analysis.

An alternative is to pool all the probe sets together and
use the MSE with more than 50,000 degrees of freedom.
Fig. 4 shows thep-values from this procedure. The peak at
the right end of the plot corresponds toF-ratios that are ex-
tremely small, which should not occur under the model. The
reason that they do occur is the aforementioned differences
in natural variability in probe set measurements even after
variance stabilization. If the natural variability of a gene is
low, then the pooled MSE will be much too large, and the
F-ratio will be much too small. Correspondingly, many of
the apparently significant probe sets with very lowp-values
will only be there because the MSE is much smaller than the
natural variability of that probe set. This method is therefore
not recommended since it does not lead to statistically valid
results.

A middle ground is to use a hierarchical model and esti-
mate it using an empirical Bayes methodology. This method
i eb-
s -
e data;
ean glog transformed PM probe values (results are si
ith, for example, the RMA summary method[19]), and
ach probe set was tested for significance using a one
ig. 5. Histogram of all 12,625p-values from a microarray experiment, in whic
nalysis.
s fully described in a manuscript available on the w
ite http://www.cipic.ucdavis.edu/∼dmrocke (Rocke, Het
rogeneity of variance in gene expression microarray
h the error term for the analysis of each gene comes from an empirical Bayes

http://www.cipic.ucdavis.edu/~dmrocke
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2003), and implemented in an R package (LMGene) avail-
able on the same site. This is essentially the same method is
used in[20]. The outcome of this methodology is that small
gene-specific MSE’s are “shrunk” towards a middle value,
and therefore increased, whereas large gene-specific MSE’s
shrink towards the middle value and decrease. The informa-
tion content increases from 4 d.f. to about 8.6 d.f., which
makes the procedure much more powerful.Fig. 5 shows all
thep-values, and the pathology ofFig. 4 is not present. The
number of genes identified as differentially expressed using
a 5% FDR procedure increases from 0 to 866, showing the
greatly improved power of this procedure.

3. Evaluation of alternative analysis tools

3.1. Look for evaluations in the open literature

In all too many cases, procedures for analysis of array data
are not validated by those who propose them. At a minimum,
a newly proposed procedure should be compared to exist-
ing procedures and shown to be at least as effective. Large
comparative evaluations of alternative methodologies are es-
pecially helpful (e.g.[19] and[21]).

3.2. Know what the method does and why it is
appropriate

Always, the first issue should be to answer the specific
scientific question behind the experiment. Tools of analy-
sis should be chosen to address these specific questions. For
example, if one conducts a dose–response study, then the
primary questions are things like (1) Which genes change
measurably at all over the different doses? (2) Which genes
change in patterns thought to be biologically relevant, such as
increasing with the dose, decreasing with the dose, or rising
and then falling? Commonly, the first resort is to conduct a
cluster analysis of the genes, but this is not necessarily aimed
at answering the scientific questions at hand. Clustering can
be useful, but should generally not be the first resort.

4. Proteomics and metabolomics by mass
spectrometry and NMR spectroscopy

The data processing and statistical analysis problems with
proteomics and metabolomics data by mass spectrometry and
NMR spectroscopy resemble those presented by gene expres-
sion data. Instead of background correction of arrays, we have
baseline estimation. Instead of spot intensities, we have peak
Fig. 6. NMR spectra from two abalo
ne, one healthy and one diseased.
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Fig. 7. Two NMR spectra after glog transformation.

Fig. 8. NMR spectra in a limited range.
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Fig. 9. NMR spectra in a limited range after local baseline correction.

Fig. 10. NMR spectra in a limited range after local baseline correction, glog transformation, and additive normalization.
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heights, peak areas, or binned spectral values. This approach
is illustrated for proteomics by mass spectrometry data in
[22] and for NMR metabolomics data in[23].

We illustrate the issues involved by a look at the NMR
spectra for one healthy and one diseased abalone chosen from
a recent study[24]. Obviously, there are not enough data for
a statistical analysis with only one sample from each group (a
more complete analysis is in[23]), but it will serve to illustrate
the commonality of issues with gene expression data analysis.

Fig. 6 shows the two spectra, which have been globally
baseline corrected by a standard quadratic fit algorithm[25].
On this scale, differences are difficult to see, since the en-
tire picture is dominated by a few extremely high peaks.
Fig. 7 shows the same data after a possible glog transfor-
mation. Note that it is now apparent that there are problems
in the baseline correction, since the noise regions at either
end are not aligned. These problems are invisible on the orig-
inal scale.Fig. 8shows a small segment of the spectrum, in
which we can easily see the inadequate baseline correction.
This must be repaired, since otherwise differences in base-
lines may translate into apparent differences in the spectrum
that are entirely artifactual.Fig. 9 shows the same segment
after local baseline adjustment. Finally,Fig. 10 shows the
spectra after local baseline adjustment, glog transformation,
and additive normalization on the glog scale. After these ad-
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many complexities that require consideration by the exper-
imenter. Since the literature is evolving rapidly, and since
commercial software is usually at least several years behind
the literature, the best answer is to have someone on the re-
search team who is expert in the area of analysis of these
data.
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