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Abstract

Motivation. Durbin et al (2002), Huber et al (2002) and Munson (2001)
independently introduced a family of transformations (the generalized-
log family) which stabilizes the variance of microarray data up to the
first order. However, for data from two-color arrays, tests for differential
expression require that the variance of the difference of transformed ob-
servations be constant, rather than that of the transformed observations
themselves.
Results. We introduce a transformation within the generalized-log fam-
ily which stabilizes, to the first order, the variance of the difference of
transformed observations. We also introduce transformations from the
“started-log” and log-linear-hybrid families which provide good approxi-
mate variance stabilization of differences. Examples using control-control
data show that any of these transformations may provide sufficient vari-
ance stabilization for practical applications, and all perform well compared
to log ratios.
Contact. bpdurbin@wald.ucdavis.edu
Keywords. cDNA array, microarray, statistical analysis, transformation,
normalization.

1 Introduction

Many traditional statistical methodologies, such as regression or ANOVA, are
based on the assumptions that the data are normally distributed (or at least
symmetrically distributed) with constant variance not depending on the mean
of the data. If these assumptions are violated, the statistician may choose either
to develop some new statistical technique which accounts for the specific ways
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in which the data fail to comply with the assumptions, or to transform the data.
Where possible, data transformation is generally the easier of these two options
(see Box and Cox, 1964, and Atkinson, 1985).

Data from gene-expression microarrays, which allow measurement of the ex-
pression of thousands of genes simultaneously, can yield invaluable information
about biology through statistical analysis. However, microarray data fail rather
dramatically to conform to the canonical assumptions required for analysis by
standard techniques. Rocke and Durbin (2001) demonstrate that the measured
expression levels from microarray data can be modeled as

y = α + µeη + ε (1)

where y is the measured raw expression level for a single color, α is the mean
background noise, µ is the true expression level, and η and ε are normally-
distributed error terms with mean 0 and variance σ2

η and σ2
ε , respectively. The

variance of y under this model is

Var(y) = µ2S2
η + σ2

ε , (2)

where S2
η = eσ2

η (eσ2
η − 1). Note that the variance is a quadratic function of the

true expression µ.
The error structure of two-color spotted cDNA arrays can be modeled by

an extended version of (1). With this microarray technology, mRNA from two
different biological samples is reverse transcribed and labelled with two different
fluorescent dyes, usually Cy3 and Cy5. The two samples are then hybridized
to the same spotted cDNA array, resulting in two correlated measurements for
each spot.

Rocke and Durbin (2001) model this pair of treatment and control observa-
tions for a single spot as

yT = αT + µT eηS+ηT + εS + εT

yC = αC + µCeηS+ηC + εS + εC

where yT and yC are the raw signal intensities for the control and treatment
samples, respectively, µT and µC are the true expression levels of the gene in
question, ηS and εS are spot-specific multiplicative and additive error terms
shared by yT and yC , and ηT , ηC , εT , and εC are multiplicative and additive
error terms unique to control and treatment. Each error term is assumed to
have mean 0 and to be stochastically independent from the others, with its own
variance.

For the purposes of the following discussion, it will be more convenient to
work with zT and zC rather than with yT and yC , where zT = yT − α̂T .
This presumes that any requisite background correction and normalization have
already been applied to the data so that, to the first order, E(zT ) = µT and
E(zC) = µC . The specific method normalization method used is left to the
discretion of the reader.
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A central question posed by a two-color microarray experiment is that of
which genes are differentially expressed between the control and treatment sam-
ples. A common approach to determining differential expression is to examine
the ratio zT /zC , or its logarithm ln(zT /zC). However, calculations based on
the two-component model (1) and examination of mean-variance plots of mi-
croarray data show that ln(z) has a greatly inflated variance for µ close to 0
(Durbin et al., 2002). Due to this nonconstancy of variance, a log ratio that is
statistically significant for one pair of true expression values (µT , µC) may not
be significant for a different pair of values, even if the log ratio itself remains
the same. Therefore, log ratios do not appear to provide an optimal means of
determining differential expression.

The identity ln(zT /zC) = ln(zT ) − ln(zC) does, however, suggest that one
might approach the issue of differential expression using differences of transfor-
mations applied to treatment and control. We examine the behavior of

∆h(zT , zC) = h(zT )− h(zC)

for three different families of transformations: the generalized-log transforma-
tion of Durbin et al. (2002), Huber et al. (2002), and Munson (2001), the
“started log” (Tukey, 1964, 1977), and the log-linear hybrid (Holder et al. 2001).
Extending our previous work on one-color arrays (Rocke and Durbin 2002), we
will discuss which member of each of these families provides the best variance
stabilization for ∆h.

2 The Generalized-Log Transformation

Durbin et al. (2002), Huber et al. (2002), and Munson (2001) independently
discovered the application to gene-expression microarray data of transformation
which stabilizes, to the first order, the variance of a random variable z satisfying

Var(z) = a2 + b2µ2,

where µ = E(z). This transformation may be written in several equivalent
forms, but we will use

hλ0 = ln(
z +

√
z2 + λ0

2
) (3)

where λ0 = a2/b2. This transformation converges to ln(z) for large z, and is ap-
proximately linear at 0 (Durbin et al., 2002). The transformation and its inverse
are monotonic functions with derivatives of all orders. Because its behavior for
large values of µ is identical with the natural logarithm, and following Munson
(2001), we will call this transformation a generalized logarithm.

Since there exist transformations of the family hλ(z) = ln((z +
√

z2 + λ)/2)
which stabilize the variances of zT and zC individually, it seems reasonable
to search within this family for a transformation hλ(·) such that ∆hλ(zT , zC)
has constant variance. For the purposes of testing for differential expression,
we need to know the variance of a test statistic in the null case, that is, no
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differential expression. Therefore, for each of these families of transformations
we will focus on the behavior of Var(∆h(zT , zC)) when µT = µC = µ.

The asymptotic variance of ∆hλ(zT , zC) for an unspecified parameter λ may
be determined using the multivariate delta method. Once we have calculated
the asymptotic variance of a function of λ, we may solve for lambda such that
AVµC=µT =µ(∆hλ(zT , zC)) does not vary with µ. (We will adopt the notation
AV(X) to denote the delta-method asymptotic variance of a random variable
X.)

The details of the multivariate delta method are as follows: If X is a p-
dimensional vector-valued random variable taking values near a constant vector
θ, and h(·) is a smooth function mapping p-dimensional vectors into the real
line, then the variance of h(X) is, to the first order

AV(X) = ḣ(θ)>Σ ḣ(θ),

where Σ is the variance-covariance matrix of X and

ḣ(t) = [
∂h

∂t1
, . . . ,

∂h

∂tp
]>.

Notice that ∆hλ(zT , zC) is a function of the six independent random vari-
ables ηS , ηT , ηC , εS , εT , and εC , which have mean 0 and joint variance-
covariance matrix Σ = diag(σ2

ηS
, σ2

ηT
, σ2

ηC
, σ2

εS
, σ2

εT
, σ2

εC
), so for the following

calculations we will use X = [ηS , ηT , ηC , εS , εT , εC ]> and θ = 0.
Using this technique we find that

AV(∆hλ(zT , zC)) =
µ2(σ2

ηT
+ σ2

ηC
) + σ2

εT
+ σ2

εC

µ2 + λ
. (4)

At µ = 0 this becomes (σ2
εT

+ σ2
εC

)/λ, and as µ → ∞, AV(∆hλ(zT , zC)) →
σ2

ηT
+σ2

ηC
. If the variance is to be constant, at the very least it should be equal

at µ = 0 and as µ →∞. Setting

σ2
εT

+ σ2
εC

λ
= σ2

ηT
+ σ2

ηC

and solving for λ yields the candidate value

λ? =
σ2

εT
+ σ2

εC

σ2
ηT

+ σ2
ηC

(5)

Inserting this value into (4) we find that

AV(∆hλ?(zT , zC)) = σ2
ηT

+ σ2
ηC

, (6)

which does not depend on µ. This member of the family of transformations
hλ(z) = ln((z+

√
z2 + λ)/2) exactly stabilizes the asymptotic variance of hλ(zT )−

hλ(zC), allowing meaningful hypothesis tests to be performed on the differences.
One may compare (5) with the expression for one color arrays of the optimal
transformation parameter λ = σ2

ε/σ2
η (Durbin et al. 2002).
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3 The Started-Log Transformation

While the generalized-log transformation of section 2 of course provides the
most exact variance stabilization, it may occasionally prove more convenient to
use a transformation which only approximately stabilizes the variance of the
difference of transformed observations. In particular, log ratios are occasionally
touted as providing better interpretability than alternatives, despite their inher-
ent problems with inflation of the variance of low-level observations. However,
one problem with log ratios which is more difficult to ignore is that of negative
observations. When µT or µT is near 0, zT or zC will often be negative, in
which case the log ratio is not defined. An ad hoc solution is to simply discard
data for which zT or zC is less than zero; however, this approach can result in
the loss of valuable biological information.

Should one insist on using log ratios to determine differential expression,
a modified version of the logarithm, called the “started logarithm” by Tukey
(1964, 1977), can mitigate some of the problems with negative observations.
This transformation takes the form

hc(z) = ln(z + c), (7)

where c > 0. The delta-method variance of

∆hc(zT , zC) = hc(zT )− hc(zC)

= ln(
zT + c

zC + c
)

under the null hypothesis µC + µT = µ is

AVµT =µC=µ(∆hc(zT , zC)) =
µ2(σ2

ηC
+ σ2

ηT
) + σ2

εC
+ σ2

εT

(µ + c)2
(8)

=
q2 + µ2r2

(µ + c)2
(9)

where q =
√

σ2
εT

+ σ2
εC

and r =
√

σ2
ηT

+ σ2
ηC

.
While no member of this family will exactly stabilize the asymptotic vari-

ance, we may ask for the choice of c which minimizes the maximum deviation
of the variance from constancy. As µ →∞, AV(∆hc(zT , zC)) → r2, which does
not depend on c, so we will focus on the deviation of the variance from this
limiting value.

At µ = 0, AV(∆hc(zT , zC)) = q2/c2. The derivative of (9) with respect to µ
is

2r2µ(µ + c) + 2(q2 + r2µ2)
(µ + c)3

(10)

and the value of the derivative at µ = 0 is −2q2/r3 < 0, indicating that the
asymptotic variance decreases initially as µ increases away from 0. The denom-
inator of (10) will never be negative for µ ≥ 0, so any change in the sign of the
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derivative will occur where

2r2µ(µ + c)− 2(q2 + r2µ2) = 0, (11)

i.e., when µ = q2/(r2c). So, at µ = q2/(r2c), the asymptotic variance stops
decreasing and starts increasing toward r2.

The value of c that minimizes the maximum deviation from constancy will
occur when the asymptotic variance at 0 is as much above the limiting value
r2 as the asymptotic variance at the minimum is below r2. The asymptotic
variance at the minimum is

q2 + (q2/(r2c))2r2

(q2/(r2c) + c)2
=

q2r2

q2 + r2c2
.

In order to minimize the maximum deviation of the variance from constancy,
we set the deviation at 0 equal to that at the minimum and solve for c, which
yields

q2

c2
− r2 = r2 − q2r2

q2 + r2c2
,

or
c = q/(2

1
4 r)

. The minimized maximum deviation of the variance from constancy is

q2

c2
− r2 = r2

√
2− r2

and the ratio of the standard deviation at 0, which is 2
1
4 r, to the limiting

standard deviation r is about 1.2
We illustrate the behavior of this transformation using an example from

Rocke and Durbin (2001). The parameter values estimated from the data of
Bartosiewicz et al. (2000) are shown in Table 1. For these parameter values,
q = 7460, r = 0.0674, and the optimal shift constant c for the started log
is 93,200. Figure 1 shows the standard deviation function of ∆hc(zT , zC) =
ln(zT + c) − ln(zC + c) for the optimal shift constant, as well as for two other
values. The horizontal line on the plot shows the limiting standard deviation
r = 0.0674.

The uppermost line in Figure 1 shows the standard deviation function when
c = 0, corresponding to the log ratio ln( zT

zC
). The standard deviation of the

log ratio approaches infinity as µ approaches 0, but decreases towards r as µ
increases. The middle line shows the standard deviation function for c = 25000,
which would correspond roughly to taking the log ratio of data that had been
adjusted so that αT = αC , but without subtracting the expression background.
The standard deviation at µ = 0 for the transformation using c = 25000 is 0.299
and the minimum standard deviation is 0.0657, yielding a maximum deviation
from r of 0.231. The lowest line on the plot shows the standard deviation
function for the optimal transformation using c = 93200. For this constant,
the standard deviation at µ = 0 is 0.0801 and the minimum standard deviation
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is 0.0516, yielding a maximum deviation from r of 0.0127. These results are
summarized in Table 2, which shows the standard deviation at µ = 0, the argmin
(value where the minimum occurs), the minimum standard deviation, and the
maximum deviation of the standard deviation from constancy for different values
of c.

The optimal started log transformation seems to provide reasonable variance
stabilization of the difference of transformed observations for the parameters
given. According to this theoretical plot, the log-ratios of the background-
corrected data suffer from infinite variance as µ approaches 0. The log-ratios of
the color-normalized, uncorrected data also do not perform as well as the opti-
mal transformation, with a maximum deviation from constancy of the standard
deviation more than 18 times of that for the optimal transformation.

4 The Log-Linear-Hybrid Transformation

A third class of transformations which may prove useful in the analysis of mi-
croarray data is the log-linear hybrid (Holder et al. 2001). According to the
two-component model (1), for µ close to 0, the untransformed data have approx-
imately constant variance, and for µ large, ln(z) has approximately constant
variance (Rocke and Durbin, 2001). This suggests that we might use a linear
transformation for small z and a log transformation for large z.

Let

hk(z) =
{

c + dz, z ≤ k
ln(z), z > k

(12)

If we choose c and d so that hk(z) is continuous with continuous derivative at
k, we get c = 1/k and d = ln(k)− 1, yielding

hk(z) =
{

z/k + ln(k)− 1, z ≤ k
ln(z), z > k

(13)

It remains to choose k to minimize the maximum deviation of the variance
of

∆hk(zT , zC) = hk(zT )− hk(zC) (14)

from constancy. The delta method variance of (14) takes 4 different forms,
depending on the values of zT and zC relative to the splice point k. Therefore,
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under the null hypothesis µT = µC = µ,

AV(∆hk(zT , zC)) =





µ2(σ2
ηT

+σ2
ηC

)+σ2
εT

+σ2
εC

k2 , zT , zC ≤ k

σ2
ηT

+ σ2
ηC

+
σ2

εT
+σ2

εC

µ2 , zT , zC > k

(1− µ
k )2σ2

ηS
+ σ2

ηT
+ µ2

k2 σ2
ηC

+( 1
µ − 1

k )2σ2
εS

+
σ2

εT

µ2 +
σ2

εC

k2 , zT > k, zC ≤ k

(µ
k − 1)2σ2

ηS
+ µ2

k2 σ2
ηT

+ σ2
ηC

+( 1
k − 1

µ )2σ2
εS

+
σ2

εT

k2 +
σ2

εC

µ2 , zT ≤ k, zC > k

(15)
When µ = 0,

AV(∆hk(zT , zC)) =
σ2

εT
+ σ2

εC

k2

=
q2

k2
,

where q =
√

σ2
εT

+ σ2
εC

, as in section 3. As µ →∞,

AV(∆hk(zT , zC)) → σ2
ηT

+ σ2
ηC

= r2,

where r =
√

σ2
ηT

+ σ2
ηC

, also as in section 3.
Notice that when µ = k, all four expressions become

σ2
ηT

+ σ2
ηC

+
σ2

εT
+ σ2

εC

k2
= r2 +

q2

k2
.

It can be seen that the value of k which minimizes the maximum deviation of
the variance from constancy will be the one for which the variance at 0 is as
much below the limiting value r2 as the variance at the splice point is above r2.
Setting

r2 − q2

k2
= r2 +

q2

k2
− r2

yields
k = q

√
2/r

. With this value of k, the maximum deviation of the variance from constancy is
r2/2 and the ratio of the standard deviation of the difference at 0 to the limiting
value r is about 0.7.

Figure 2 shows plots of the standard deviation function for the optimal log-
linear-hybrid transformation, the optimal started-log transformation, and the
optimal generalized logarithmic (variance-stabilizing) transformation with con-
stant λ = 1.23×1010. The parameters used were those estimated from the data
of Bartosiewicz et al. (2000) and are shown in Table 1. The optimal splice point

8



for the log-linear hybrid transformation is 157,000. For the purposes of plot-
ting the standard deviation function for the log-linear-hybrid transformation,
we assume zT and zC to both lie either above or below the splice point. For
the log-linear hybrid transformation,

√
AV∆hk(zT , zC) = 0.0476 when µ = 0

and
√

AV∆hk(zT , zC) = 0.0825 when µ = k, resulting in a maximum deviation
from the limiting value r = 0.0674 of 0.0197. The maximum deviation from con-
stancy for the started log transformation is 0.0127, so the started log appears to
behave better in this case than the log-linear hybrid, with the transformation of
the family proposed by Durbin et al. (2002), Huber et al. (2002), and Munson
(2001) of course providing the best variance stabilization. Since the maximum
deviation from constancy of variance for the started log transformation is about
.41r2 , and that for the log-linear hybrid is .5r2, the log-linear hybrid always has
the larger maximum deviation from constancy. However, as Figure 2 shows, dif-
ferences of observations transformed using the log-linear hybrid transformation
appear to reach constant variance much sooner than those transformed with the
started log transformation. Any of these transformations may be sufficient to
stabilize the variance of the difference of transformed observations for practical
purposes.

5 Examples

We illustrate the performance of these transformations with additional data
from Bartosiewicz et al. (2000). We will use a small subset of the data presented
in that paper, featuring control vs. control experiments, in order to determine
the behavior of the transformed data when there is no differential expression.
For these data, two groups of three mice were each treated with .10 mg/kg of
corn oil. mRNA from the livers of the mice was extracted, pooled, and reverse-
transcribed into fluor-labelled cDNA, with one group labelled with Cy5 and one
group labelled with Cy3. Notice that this is not true self-self data, since three
different mice were used for each group. The cDNA was then hybridized to a
spotted array in which each gene was replicated between 6 and 14 times.

Parameters for the two-component model were estimated as described in
Rocke and Durbin (2001), yielding αC = 0.353, αT = 0.139, σεC = 0.335, σεT =
0.0585, σεS = 0.0747, σηC = 0, σηT = 0.135, and σηS = 0.143. These model
parameters yield the transformation parameters λ = 6.33 for the generalized-log
transformation, c = 2.12 for the started-log transformation, and k = 3.56 for
the log-linear-hybrid transformation.1

Figures 3–5 show the robustly-estimated replicate standard deviation of dif-
ferences of transformed observations against the robustly-estimated mean for
the generalized-log, started-log, and log-linear-hybrid transformations. The ro-
bust mean was estimated using the S-Plus function location.m, and the robust
standard deviation was estimated using the S-Plus function scale.a. The solid

1Although these data come from the same paper as the data from which the parameters in
section 3 were estimated, they were processed using a different scanner and different image-
processing software, which accounts for the dramatic difference in scale.
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line on each plus shows a lowess smooth fit to the robust means and standard
deviations. The plots are centered to the left of 0, a phenomenon likely due to
dye bias or to true differences between the two pooled groups of animals.

In each case, the standard deviation appears relatively constant when com-
pared to the mean. Furthermore, the three plots look quite similar, indicat-
ing that each of these transformations does an adequate job of stabilizing the
variance of the data. For comparison, Figure 6 shows the robustly-estimated
replicate mean and standard deviation of the log ratios of the data. We removed
the 86 negative numbers (out of a total sample size of 2,304) before taking the
log transformation. The standard deviation spikes dramatically as the mean
decreases. Any of the three optimal transformations presented above stabilizes
the variance of the data much better than the log transformation.

6 Conclusions

We have presented three variance-stabilizing transformations for gene-expression
microarray data from two-color arrays, one which exactly stabilizes the delta-
method variance of differences of transformed observations, and two other trans-
formations, the started-log and log-linear hybrid transformations, which provide
approximate stabilization of the delta-method variance. When applied to actual
data, each of these transformations appears to adequately stabilize the variance
of differences of transformed observations, and all of these transformations pro-
vide much better variance stabilization than the log transformation.
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αC 25,300
αT 24,800
σεS

5,270
σεC

0
σεT

7,460
σηS

0.211
σηC

0.0598
σηT

0.0311
λ 1.23× 1010

q 7,460
r .0674

optimal c 93,200
optimal k 157,000

Table 1: Parameters from the Two-Component Model for the Examples in
Figures 1 and 2

c S.D. at 0 Argmin Min. S.D. Max. Dev. S.D.
93,200 0.0801 132,000 0.0516 0.0127

0 ∞ ∞ 0.0674 ∞
25,000 0.299 491,000 0.0657 0.231

Table 2: Summary of the Standard Deviation Functions Shown in Figure 1
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Figure 4: Robust Mean and Standard Deviation of Replicate Differences, Started−Log Transformation
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Figure 5: Robust Mean and Standard Deviation of Replicate Differences, Log−Linear−Hybrid Transformation
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Figure 6: Robust Mean and Standard Deviation of Replicate Differences, Log Transformation
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