

NIH Public Access

Author Manuscript

Proteomics. Author manuscript; available in PMC 2010 April 1

Published in final edited form as:

Proteomics. 2009 April; 9(7): 1925–1938. doi:10.1002/pmic.200800118.

Proteomic Analysis of Low Dose Arsenic and Ionizing Radiation Exposure on Keratinocytes

Susanne R. Berglund 1,* , Alison R. Santana 2 , Dan Li 3 , Robert H. Rice 4 , David M. Rocke 5 , and Zelanna Goldberg 6

1 Siemens Healthcare Diagnostics, 1584 Enterprise Blvd, West Sacramento, CA, USA, 95691

2Public Health Sciences, University of California Davis, 1 Shields Ave, TBS 168, Davis, CA, USA, 95616

3*Graduate Group in Applied Mathematics, University of California Davis, Davis, 1 Shields Avenue, CA, USA,* 95616

4 Department of Environmental Toxicology, University of California Davis, 1 Shields Ave, 4243 Meyer Hall, Davis, CA, USA, 95616

5Division of Biostatistics, University of California Davis, 1 Shields Avenue, Davis, CA, USA, 95616

60xigene Inc., 1001 Bayhill Drive, Suite 200, San Bruno, CA 94066

Abstract

Human exposure to arsenic and ionizing radiation occur environmentally at low levels. While the human health effects of arsenic and ionizing radiation have been examined separately, there is little information regarding their combined effects at doses approaching environmental levels. Arsenic toxicity may be affected by concurrent ionizing radiation especially given their known individual carcinogenic actions at higher doses. We found that keratinocytes responded to either low dose arsenic and/or low dose ionizing radiation exposure, resulting in differential proteomic expression based on 2DGE, immunoblotting and statistical analysis. Seven proteins were identified that passed a rigorous statistical screen for differential expression in 2DGE and also passed a strict statistical screen for follow-up immunoblotting. These included: α -enolase, epidermal-fatty acid binding protein, heat shock protein 27, histidine triad nucleotide-binding protein 1, lactate dehydrogenase A, protein disulfide isomerase precursor and S100A9. Four proteins had combined effects that were different than would be expected based on the response to either individual toxicant. These data demonstrate a possible reaction to the combined insult that is substantially different from that of either separate treatment. Several proteins had different responses than what has been seen from high dose exposures, adding to the growing literature suggesting that the cellular responses to low dose exposures are distinct.

Keywords

arsenic; human; ionizing radiation; keratinocyte; low dose

Conflict of Interest Statement: All authors declare that there are no conflicts of interest

^{*}Corresponding author: Susanne Berglund, Siemens Healthcare Diagnostics 1584 Enterprise Blvd, West Sacramento, CA, USA 95691; sberglund@ucdavis.edu Phone: (916) 374-2223; Fax: (916) 375-8673

Introduction

Low level arsenic and low dose ionizing radiation are both environmental toxicants. While data exist which examine the human health effects of either toxicant separately, there are no data in the literature regarding possible combined effects at low doses. Yet, combined effects of toxicants to produce disease are a well-known phenomenon (e.g. radon and/or arsenic with tobacco smoke induce lung cancer) [1,2]. In the context of human health, the potential effects of receiving combined or sequential exposure to these particular toxicants in a medical setting requires further biologic characterization. The FDA has approved the use of arsenic to treat acute promyelocytic leukemia, while the growing use of intensity modulated radiation therapy to treat a wide variety of cancer has resulted in increasing amounts of healthy tissue being exposed to low dose ionizing radiation (LDIR) [3,4]. Low dose arsenic toxicity may be affected by concurrent ionizing radiation especially in light of their known carcinogenic actions individually at higher doses [3,5].

Arsenic is a naturally occurring metalloid that can be solubilized in water, posing the threat of contaminated drinking water [5]. It has been well documented that exposure to arsenic can contribute to skin, bladder, liver and lung cancers [6]. While the mechanisms of arsenic toxicity are not fully understood, several ideas include the induction of oxidative stress, decreased functioning of DNA repair systems, chromosomal abnormality and altered growth factors [6-10]. There is evidence that exposure to arsenic generates an oxidative stress response, increasing reactive oxygen species (ROS) which can mutate and/or damage DNA [9,11]. A change in expression of genes involved in the synthesis of DNA repair enzymes has been proposed as an explanation to arsenic's co-mutagenic effects [12,13].

Ionizing radiation (IR) exposure is unavoidable in the environment and further exposure is obtained through medical imaging. There is substantial debate regarding the biological effects of LDIR in humans and no direct information on how such exposure may alter the response of cells to other environmental toxicants [14]. As with arsenic, IR exerts the majority of its toxicity through the intracellular generation of ROS [15]. It is plausible that oxidative stress induced from IR could substantially enhance the effects of otherwise minimally toxic, sub-lethal exposures of arsenic.

Much remains uncertain about the effects of these toxicants at low doses. Historically, radiation and arsenic studies have involved high dose exposures with the assumption that the toxicant profile could be extrapolated down in a linear manner for low dose exposures. This is the underlying assumption in the linear no-threshold model of radiation effects, which is currently undergoing challenge [16]. Likewise, much remains unknown about the dose response curve for low level arsenic exposure. Again, it was assumed that the response for high doses of arsenic could also be applied to low dose exposures [5]. However, current studies have yet to demonstrate a direct relationship between low dose arsenic exposure and cancer, suggesting a nonlinear relationship and supporting the idea that the dose response curve at low levels cannot be inferred from high dose studies [17,18]. Thus, as there is no accepted, comprehensive model describing the mechanism by which low dose toxin exposures exert their effects, there is no predictive modeling that can address the potential interacting effects of co-exposures on cells. Therefore, direct empiric study remains the cornerstone of understanding potential interactions and how the co-exposures may alter the safety profile of each.

It has been shown that transcriptional changes within the cell do not correlate completely with translational data [19,20]. Few studies have focused on the proteomic differences induced by these toxicants [21,22]. As proteins are the molecules through which a cell enacts change, the differences found in the proteome may better reflect the actual cellular response. Using a

proteomics approach in a human keratinocyte model to mimic human skin exposure, we examined the interaction of IR and arsenic.

Materials and Methods

Cell Culture

A spontaneously immortalized human keratinocyte cell line was grown in T-75 cm² tissue culture flasks with a lethally irradiated feeder layer of 3T3 cells obtained from ATCC #48-X (ATCC, VA). Cells were supported with a 3:1 mixture of Dulbecco-Vogt Eagle and Ham's F-12 medium with the addition of serum and other factors as previously described [23].

Arsenic and IR Treatment

Once cells reached near confluency, half of the flasks were treated with medium containing 2 μ M sodium arsenite. At 24 hours, flasks were irradiated with a Varian 2100C linear accelerator on a 30 × 30 cm² solid water block covered with a tissue equivalent bolus to ensure accuracy of dose delivery. Dose rate was set at 80 cGy/min, and SSD was 101.3 cm (1 cGy) or 100 cm (10 cGy). Radiation free controls were maintained with and without sodium arsenite. One or four days post irradiation, flasks were rinsed with 0.02% EDTA in phosphate buffered saline to remove residual 3T3 cells and held at -80° C until protein extraction. All samples were prepared in triplicate.

Protein Extraction

One ml of Mammalian Protein Extraction Reagent (Pierce Biotechnology, IL) containing protease inhibitor (Sigma-Aldrich, MO) was added to each flask, cells were scraped and lysate transferred to a 2 ml tube on ice. Each sample was sonicated for 1 minute and centrifuged at $10,000 \times g$ for 20 minutes at 4°C. Supernatant was removed and placed in a clean 2 ml tube. Protein quantitation was performed using Coomassie Plus Protein Assay (Pierce Biotechnology, IL).

2D electrophoresis

Isoelectric focusing was performed using a Protean IEF Cell (Bio-Rad, CA). 30 µg of protein was combined with lysis solution (0.5% Triton X-100, 4% CHAPS, 7 M urea, 2 M thiourea, nanopure water), 1% Biolyte 3-10 buffer, 2% protease inhibitor cocktail (Calbiochem, CA), 0.065% ditheothreitol and a trace amount of bromophenol blue dye for a total volume of 200 µl. The protein samples were left at room temperature for one hour before loading. ReadyStrip IPG strips (pH 3-10, 11cm) were used for separation (Bio-Rad, CA).

Isoelectric focusing was conducted at 20°C using the following program: 50 V for 12- hours; 50-250 V linear ramp; 250-8000 V linear ramp and hold for a total of 42 kVh. After focusing, the strips were incubated in an equilibration buffer (5 ml consisting of 50 mM Tris, pH 8.8, 6 M urea, 30% glycerol, 2% SDS, trace bromophenol blue and 0.065% ditheothreitol (DTT)) for 15 minutes on a rocking platform. The strips were subsequently incubated with the same equilibration buffer substituting 10 mM iodoacetamide for DTT to alkylate cysteine sulfhydryls. Each strip was then placed on top of a 12% SDS Duracryl gel and sealed using 0.5% agarose (Genomic Solutions, MI).

The second dimension separation was performed in a Hoefer SE 600/SE 660 2D-PAGE system. Gels were run in buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) at 15 mA per gel for 30 minutes followed by 25 mA per gel until the dye migrated to the bottom of the gel. Broad Range Precision Plus Protein Standard molecular weight protein plugs were used for mass calibration of the gels (10-250 kDa) (Bio-Rad, CA). Gels were fixed in 10% acetic acid, 40%

methanol, and 50% water, silver stained and scanned with an Epson Perfection 4870 photo scanner.

Image analysis

The 36 gel images were processed with the analysis software Progenesis (PG240 v2006) and TT900 S2S (Nonlinear Dynamics, UK). Gel images were first warped with TT900 S2S. Warped images were then imported to Progenesis for further analysis including: spot detection, spot matching, background subtraction, spot filtering and 'Samespot Outline'. The Samespot Outline in Progenesis copies spot outlines from gels where a spot exists to those gels missing the spot, then calculates the spot volume within the new outlines. Therefore all missing values are filled with calculated volumes.

Protein digestion and mass spectrometry

The Nevada Proteomics Center analyzed selected proteins using MALDI TOF/TOF analysis. Spots were destained and digested using a previously described protocol with some modifications [24]. Samples were washed twice with 25 mM ammonium bicarbonate (ABC) and 100% acetonitrile, reduced and alkylated using 10 mM DTT and 100 mM iodoacetamide and incubated with 75 ng sequencing grade modified porcine trypsin (Promega, WI) in 25 mM ABC for 6 hours at 37°C. Samples were spotted onto a MALDI target with ZipTip µ-C18 (Millipore Corp., MA). Samples were eluted with 70% acetonitrile, 0.2% formic acid and overlaid with 0.5 μl 5 mg/ml MALDI matrix (α-Cyano-4 hydroxycinnamic acid, 10 mM ammonium phosphate). All mass spectrometric data were collected using an ABI 4700 Proteomics Analyzer MALDI TOF/TOF mass spectrometer (Applied Biosystems, CA), using their 4000 Series Explorer software v. 3.6. The peptide masses were acquired in reflectron positive mode (1-keV accelerating voltage) from a mass range of 700-4000 Daltons and either 1250 or 2500 laser shots were averaged for each mass spectrum. Each sample was internally calibrated on trypsin's autolysis peaks 842.51 and 2211.10 to within 20 ppm. Any sample failing to internally calibrate was analyzed under default plate calibration conditions of 150 ppm. Raw spectrum filtering/peak detection settings were S/N threshold of 3, and cluster area S/N optimization enabled at S/N threshold 10, baseline subtraction enabled at peak width 50. The eight most intense ions from the MS analysis, which were not on the exclusion list, were subjected to tandem mass spectrometry. The MS/MS exclusion list included known trypsin masses along with unidentified background peaks: 842.51, 856.52, 870.54, 1011.65, 1045.56, 1126.56, 1338.83, 1666.01, 1794.9, 1940.94, 2211.10, 2225.12, 2283.18 and 3094.62. For MS/ MS analysis the mass range was 70 to precursor ion with a precursor window resolution of 50 FWHM (full-width at half maximum) with an average 2500 laser shots for each spectrum, CID on, metastable suppressor on. Raw spectrum filtering/peak detection settings were S/N threshold of 5, and cluster area S/N optimization enabled at S/N threshold 6, baseline subtraction enabled at peak width 50. The data was then stored in an Oracle database (Oracle database schema v. 3.19.0, Data version 3.90.0).

MALDI data analysis

The data was extracted from the Oracle database and a peak list was created by GPS Explorer software v 3.6 (Applied Biosystems). Analyses were performed as combination mass spectrometry and tandem mass spectrometry. MS peak filtering included mass range 700-4000 Da, minimum S/N filter 10, mass exclusion tolerance of 0.2 Da. Exclusion list of known trypsin fragments and unidentified background peaks: 2211.2, 2283.2, 1045.6, 842.5, 1794.9, 1011.65, 1338.83 and 1666.01. A peak density filter of 50 peaks per 200 Da with a maximum number of peaks set to 65. MS/MS peak filtering included mass range of 60 Da to 20 Da below each precursor mass. Minimum S/N filter 5, peak density filter of 50 peaks per 200 Da, cluster area filter used with maximum number of peaks 65. The filtered data were searched by Mascot v.

1.9.05 (Matrix Science) using CDS combined database (Celera Discovery System v. KBMS3.2.20040119), containing 1,416,555 sequences. Searches were performed without restriction to protein species, Mr, or pI and with variable oxidation of methionine residues and carbamidomethylation of cysteines (no fixed modifications). Maximum missed cleavage was set to 1 and limited to trypsin cleavage sites. Precursor mass tolerance and fragment mass tolerance were set to 20 ppm and \pm 0.2 Da, respectively. Protein hits with high confidence identifications and statistically significant search scores, greater than 95% confidence interval (C.I.%) or p≤0.05, were accepted. The majority of the ions present in the mass spectra were accounted for and high confidence identifications were consistent with the protein experimental Mr, and pI.

Immunoblot analysis

10 µg of each sample were separated on 12%, Ready Gel Tris-HCl precast gels (BioRad, CA), transferred to PVDF and blocked overnight at 4°C. The primary antibodies included: pyruvate kinase (ab6191, Abcam, MA), α -enolase (sc-15343, Santa Cruz Biotechnology, CA), S100A9 (sc-8114), PDI (sc-30932), profilin-1 (sc-18346), annexin XI (sc-9322), E-FABP (sc-16060), LDH-A (sc-27230), cytokeratin 1 (sc-17091), CaM (sc-1989), HSP27 (sc-1048), HINT-1 (10717-1-AP, Proteintech Group, IL) and cyclophilin A (10720-1-AP, Proteintech Group, IL). All primary antibodies were used at 0.2 µg/ml final concentration, typically a 1:1000 dilution. The secondary antibody (donkey anti-goat-HRP, sc-2020 or donkey anti-rabbit-HRP, sc-2004) was used at a 1:40,000 dilution. Membranes were developed using ECL Advanced (GE Healthcare, NJ) and images were captured on a ChemiDoc system with Quantity One software (BioRad, CA). A monoclonal antibody to β -actin was used as a loading control and all density readings were normalized (sc-47778). All western blots were performed in triplicate. The western blot data were analyzed using ANOVA in the R statistical software package after normalization by β -actin.

Statistical Analysis on 2D Gels

For each spot aligned across gels, the image analysis produces a spot volume, either directly or from the Same Spot method of imputation. We took the natural logarithms of the spot volumes and then used additive mean normalization. We then used two-way ANOVA with interaction on each spot to identify differentially expressed proteins with effects for the level of arsenic, the level of IR, and the interaction effect. Two methods of estimating the protein-specific variance in ANOVA were utilized, the usual mean square for error and an estimate adjusted by an empirical Bayes method originally developed for microarrays [25,26] (manuscript submitted, Dan Li, et al). The resulting p-values were adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate (FDR) method [27].

Results

Image and Statistical Analysis

Proteins were isolated from keratinocytes exposed to 0 or 2 μ M sodium arsenite and 0, 1 or 10 cGy of irradiation for one or four days. These proteins were separated using two-dimensional gel electrophoresis. All conditions were run in triplicate and the resulting 36 gels were imaged and analyzed using Progenesis (PG240 v2006) and TT900 S2S (Nonlinear Dynamics, UK). The initial analysis included keratinocytes exposed to a 1 cGy dose. Little differential expression was detected with this low dose and these samples were omitted from further analysis, resulting in 24 remaining gels.

ANOVA was performed on each of the 2,002 spots detected separately at each time point. Thus, the ANOVA for each spot had 12 observations at each of two IR doses and each of two arsenic doses replicated in triplicate. Proteins that displayed significant differential expression $(p \le 0.05)$ after correction for multiple comparisons using either ANOVA method (see methods and materials) were selected as candidates for sequencing, resulting in 444 spots identified for further characterization.

Mass Spectrometry and Protein Identification

Protein spots were chosen for sequencing only if they were distinct, outside of areas with background smearing and could be removed from the gel without excising other nearby proteins. Most of the statistically significant spots did not meet these criterions, leaving 24 of the 444 available for identification.

A total of 24 samples were sent to the Nevada Proteomics Center for analysis, nine spots from day one and fifteen from day four. Thirteen proteins with protein score confidence indices above 95% were identified by mass spectrometry (MS) and tandem mass spectrometry (MS/ MS) (table 1). The remaining proteins could not be identified with confidence. The proteins identified from the day one time point included: calmodulin (CaM), heat shock protein 27 (HSP27), lactate dehydrogenase A (LDH-A) and protein disulfide isomerase precursor (PDI, synonym: thyroid hormone binding protein precursor) (table 1). The proteins found four days post exposure included: annexin XI, S100A9 (synonym: calgranulin B), cyclophilin A (synonym: peptidyl-prolyl cis-trans isomerase), α -enolase, epidermal fatty acid binding protein (E-FABP), histidine triad nucleotide-binding protein 1 (HINT-1), profilin-1, pyruvate kinase M isozyme, and R3372_1 (protein fragment) (table 1).

Immunoblotting

Twelve identified proteins with available commercial antibodies were selected for immunoblotting to confirm significant differences between the control sample, IR only, arsenic only and IR with arsenic (figure 1). This was done as an important cross-check on the ANOVA analysis on the 2D gels. Given the complexity of the required statistical analysis for the 2D gels, it is always possible that some spots identified as differentially expressed were in fact artifactual. CaM was not recognized by the antisera in detectable amounts and no protein band was verified at the appropriate molecular weight. This does not exclude the possibility that CaM may have been differentially expressed since western blots require a relatively high concentration for detection.

ANOVA analysis

For the eleven proteins that had usable immunoblot data, the intensities were normalized to β -actin and these data were analyzed using ANOVA. The ANOVA analysis allows for direct comparison of a protein immunoblotted on independent gels by adjusting for density and background signal resulting in a more sensitive test. Seven of the eleven proteins (E-FABP, α -enolase, HINT-1, HSP27, LDH-A, PDI, and S100A9) showed significant (p \leq 0.05) differences for either IR, arsenic, or the interaction, which far exceeds the chance rate as roughly one or two false significance values could be expected out of the 11 proteins by chance alone (table 2). Four proteins (annexin XI, cyclophilin A, pyruvate kinase and profilin-1) showed no significant difference at the p \leq 0.05 level.

E-FABP, PDI and S100A9 decreased with exposure to arsenic. HSP27 was down-regulated and HINT-1 was up-regulated in response to individual treatments, neither protein showed an interaction effect that was significantly different than either single treatment. Four proteins showed a response to the combined insult that was different than would have been expected from either treatment alone. E-FABP and LDH-A showed an increased response while α enolase and PDI had a response that was less than would have been expected based on the individual exposures.

Discussion

When below a certain threshold, the individual toxicity of IR and arsenic are believed to be minimal. However, the effects of combining these two known carcinogens at low doses are unknown. As a model for low dose toxicant interaction, they are of significant interest as irradiation is ubiquitous and arsenic, although heavily regulated in the U.S., is still a major environmental burden in many countries. There is little in the scientific literature examining human health risks associated with possible toxicant interactions despite the known roles of such agents in malignancy [2,6,8,28].

While the arsenic concentration used in this study is within environmental background levels $(2 \mu M)$, the IR dose (10 cGy) is higher than the typical US average background exposure of 0.3 cGy per year. However, the natural background varies with location and Kerala Coast, India has a natural background of 1 cGy per year, while Ramsar, Iran receives 20 cGy per year. A single CT scan for medical purposes is 1 cGy, and the dose limits set by the DOE NCR for occupational exposure is 5 cGy (Office of Biological and Environmental Research, Office of Science, U.S. Department of Energy, Orders of Magnitude guide, March 2006). Higher exposures than these can occur occupationally, under medical treatment, or as a result of a nuclear accident.

The skin is the major barrier to many environmental toxicants, with keratinocytes being the most prevalent cell type. IR generally penetrates the skin, while arsenic exposure can lead to many diseases of the skin. Chronic arsenic exposure often leads to hyperpigmentation, hyperkeratosis and arsenic induced Bowen's disease [6]. In time, Bowen's disease can progress into invasive skin cancer in the form of basal or squamous cell carcinoma [6]. Keratinocytes, which have been used in previous sub-lethal arsenic and LDIR studies, are readily cultivated and respond to toxicant challenges with changes in transcription of up to 10% making them an ideal model for this study [23,29,30].

Of the twelve proteins selected for immunoblotting, seven showed significant differences in protein expression and four yielded inconsistent results (annexin XI, cyclophilin A, pyruvate kinase and profilin-1). It is possible that the expression changes detected by the ANOVA of the gel images were too small to be detected by western blotting given its semi-quantitative nature. All proteins with variable results had faint spots on the 2D gels indicating a very low protein concentration as silver staining can detect nanogram quantities of protein, a sensitivity beyond that of western blotting. Proteins that were immunoblotted included three proteins from the early time point: PDI, LDH-A and HSP27. None of these proteins were found at the later time point indicating a transient response. At four days post exposure, E-FABP, α -enolase, S100A9, and HINT-1 had altered expression. Doses examined in this study are much lower than those that are clearly cytotoxic and this proteomic response implies that the cells are actively responding to low-level exposures.

Both IR and arsenic dose responses are currently based on the idea of a linear no-threshold model [18,31]. Many studies are revealing that low dose exposures are fundamentally different from high dose exposures [17,31-34]. For example, it has been shown that α -enolase was upregulated in-vivo with a high dose exposure of 9 Gy, whereas our low dose study showed the opposite expression [35]. Prasad et al showed that a high dose of 6 Gy of irradiation led to increases in the protein levels of PDI, calreticulin and calnexin in apoptotic cells 48 hours post exposure [36], whereas low dose exposure of 2 μ M arsenic alone or with 10 cGy IR diminished cellular amounts of both PDI and calreticulin [23,36]. These results suggest that the response to low doses of irradiation and arsenic may be substantially different than those seen following higher dose exposures. A response pattern of that type would be consistent with emerging data from other studies dealing with LDIR and low dose arsenic [23,31-33].

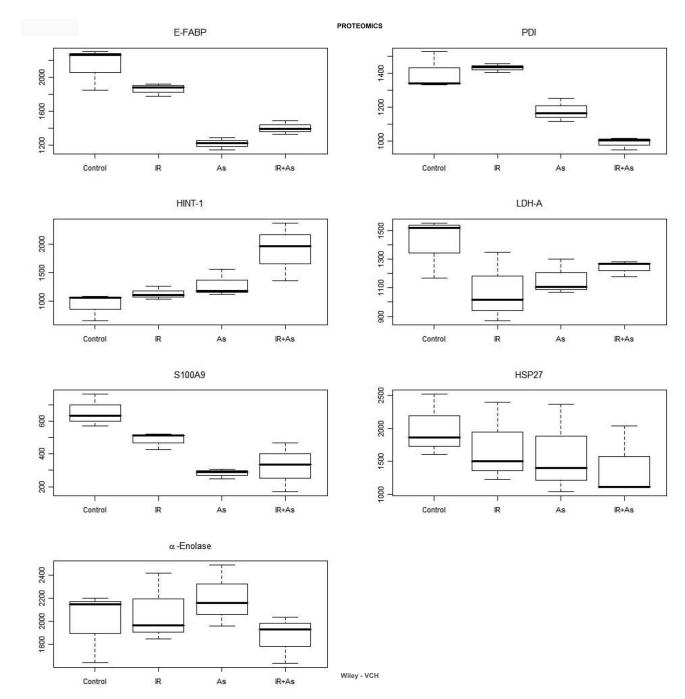
Several of the identified proteins were found to have a response to the combined exposure that was different from the response to either toxicant individually, including E-FABP, α -enolase, LDH-A and PDI. These data demonstrate a possible response to the combined insult that is significantly different than either treatment alone, making them candidates for further study as potential biomarkers. Many of the proteins found in this study are currently recognized as biomarkers of disease processes including α -enolase which is found to be increased in many tumors; S100A9 has been found as a serum component after irradiation; and LDH, where a change in the usual LDH isozyme spectrum is indicative of ischemia, radiation treatment or cancer [37-42]. The identification of biomarkers in conjunction with changing isozyme spectra that are unique to a combination of environmental toxicants may lead to novel detection panels for suspected environmental toxicant exposures. With these findings, we have begun the process of identifying potential biomarkers of these types of combined exposures.

Acknowledgments

We would like to acknowledge that the first and second authors have made equal contributions to this work. We would like to thank Rebekah Woolsey at the Nevada Proteomics Center for her technical expertise and Karen Kalanetra for her help with manuscript preparation. This work was supported by grants from a Campus Laboratory Collaboration Grant 2003-2004 from UCOP (ZG), the Air Force Office of Scientific Research FA9550-06-1-0132 and FA9550-07-1-0146 (ZG, SB, and DMR), National Cancer Institute P30 CA093373-04 (DMR), NHGRI R01-HG003352 (DMR), NIEHS P42-ES04699 (DMR), UC Davis Health Systems (DMR) and the U.S. Department of Energy Office of Biological and Environmental Research, DE-FG02-01ER63237 and DE-FG02-07ER64341 (DMR, ZG), Nevada Proteomics Center NIH Grant Number P20 RR-016464 from the INBRE Program of the National Center for Research Resources.

Abbreviations

As, sodium arsenite; CaM, calmodulin; E-FABP, epidermal fatty acid-binding protein; HINT-1, histidine triad nucleotide-binding protein 1; HSP27, heat shock protein 27; IR, ionizing radiation; LDH-A, lactate dehydrogenase A; LDIR, low dose ionizing radiation; PDI, protein disulfide isomerase precursor.


References

- Alavanja MC. Biologic damage resulting from exposure to tobacco smoke and from radon: implication for preventive interventions. Oncogene 2002;21:7365–7375. [PubMed: 12379879]
- Hertz-Picciotto I, Smith AH, Holtzman D, Lipsett M, Alexeeff G. Synergism between occupational arsenic exposure and smoking in the induction of lung cancer. Epidemiology 1992;3:23–31. [PubMed: 1554806]
- 3. Hall EJ, Wuu CS. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56:83–88. [PubMed: 12694826]
- Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997;337:1021–1028. [PubMed: 9321529]
- Ahsan H, Chen Y, Parvez F, Zablotska L, et al. Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 2006;163:1138–1148. [PubMed: 16624965]
- 6. Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci 2006;13:657–666. [PubMed: 16807664]
- Kitchin KT. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, methylated arsenic metabolites. Toxicol Appl Pharmacol 2001;172:249–261. [PubMed: 11312654]
- Klein CB, Leszczynska J, Hickey C, Rossman TG. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol 2007;222:289–297. [PubMed: 17316729]
- Lau AT, He QY, Chiu JF. A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 2004;382:641–650. [PubMed: 15175009]

- 11. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40. [PubMed: 16430879]
- Hamadeh HK, Trouba KJ, Amin RP, Afshari CA, Germolec D. Coordination of altered DNA repair and damage pathways in arsenite-exposed keratinocytes. Toxicol Sci 2002;69:306–316. [PubMed: 12377979]
- Vogt BL, Rossman TG. Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts -- a possible mechanism for arsenite's comutagenicity. Mutat Res 2001;478:159–168. [PubMed: 11406180]
- Schwartz JL. Variability: the common factor linking low dose-induced genomic instability, adaptation and bystander effects. Mutat Res 2007;616:196–200. [PubMed: 17145066]
- Cook JA, Gius D, Wink DA, Krishna MC, et al. Oxidative stress, redo., and the tumor microenvironment. Semin Radiat Oncol 2004;14:259–266. [PubMed: 15254869]
- Tubiana M, Aurengo A, Averbeck D, Masse R. The debate on the use of linear no threshold for assessing the effects of low doses. J Radiol Prot 2006;26:317–324. [PubMed: 16926474]
- Andrew AS, Bernardo V, Warnke LA, Davey JC, et al. Exposure to arsenic at levels found inU.S. drinking water modifies expression in the mouse lung. Toxicol Sci 2007;100:75–87. [PubMed: 17682005]
- Schoen A, Beck B, Sharma R, Dube E. Arsenic toxicity at low doses: epidemiological and mode of action considerations. Toxicol Appl Pharmacol 2004;198:253–267. [PubMed: 15276404]
- Chen G, Gharib TG, Huang CC, Taylor JM, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002;1:304–313. [PubMed: 12096112]
- Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999;19:1720–1730. [PubMed: 10022859]
- 21. Gottschalg E, Moore NE, Ryan AK, Travis LC, et al. Phenotypic anchoring of arsenic and cadmium toxicity in three hepatic-related cell systems reveals compound- and cell-specific selective up-regulation of stress protein expression: implications for fingerprint profiling of cytotoxicity. Chem Biol Interact 2006;161:251–261. [PubMed: 16729991]
- Moore LE, Pfeiffer R, Warner M, Clark M, et al. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology. J Biochem Mol Toxicol 2005;19:176. [PubMed: 15977200]
- 23. Lee C, Lee YM, Rice RH. Human epidermal cell protein responses to arsenite treatment in culture. Chem Biol Interact 2005;155:43–54. [PubMed: 15899475]
- 24. Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 1992;203:173–179. [PubMed: 1524213]
- 25. Rocke DM. Design and analysis of experiments with high throughput biological assay data. Semin Cell Dev Biol 2004;15:703–713. [PubMed: 15561590]
- 26. Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 2003;19:2448–2455. [PubMed: 14668230]
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57:289– 300.
- Ivanov VN, Zhou H, Hei TK. Sequential treatment by ionizing radiation and sodium arsenite dramatically accelerates TRAIL-mediated apoptosis of human melanoma cells. Cancer Res 2007;67:5397–5407. [PubMed: 17545621]
- Bernstam L, Lan CH, Lee J, Nriagu JO. Effects of arsenic on human keratinocytes: morphological, physiologica., and precursor incorporation studies. Environ Res 2002;89:220–235. [PubMed: 12176006]
- Franco N, Lamartine J, Frouin V, Le Minter P, et al. Low-dose exposure to gamma rays induces specific gene regulations in normal human keratinocytes. Radiat Res 2005;163:623–635. [PubMed: 15913394]

- 31. Ding LH, Shingyoji M, Chen F, Hwang JJ, et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res 2005;164:17–26. [PubMed: 15966761]
- Berglund SR, Rocke DM, Dai J, Schwietert CW, et al. Transient genome-wide transcriptional response to low-dose ionizing radiation in vivo in humans. Int J Radiat Oncol Biol Phys 2008;70:229– 234. [PubMed: 17996396]
- Goldberg Z, Rocke DM, Schwietert C, Berglund SR, et al. Human in vivo dose-response to controlled, low-dose low linear energy transfer ionizing radiation exposure. Clin Cancer Res 2006;12:3723– 3729. [PubMed: 16778099]
- 34. Yang F, Stenoien DL, Strittmatter EF, Wang J, et al. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation. J Proteome Res 2006;5:1252–1260. [PubMed: 16674116]
- 35. Zhang B, Su YP, Ai GP, Liu XH, et al. Differentially expressed proteins of gamma-ray irradiated mouse intestinal epithelial cells by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. World J Gastroenterol 2003;9:2726–2731. [PubMed: 14669322]
- Prasad SC, Soldatenkov VA, Kuettel MR, Thraves PJ, et al. Protein changes associated with ionizing radiation-induced apoptosis in human prostate epithelial tumor cells. Electrophoresis 1999;20:1065– 1074. [PubMed: 10344286]
- Ewald N, Toepler M, Akinci A, Kloer HU, et al. [Pyruvate kinase M2 (tumor M2-PK) as a screening tool for colorectal cancer (CRC). A review of current published data]. Z Gastroenterol 2005;43:1313– 1317. [PubMed: 16315127]
- Ishiguro Y, Kato K, Ito T, Horisawa M, Nagaya M. Enolase isozymes as markers for differential diagnosis of neuroblastoma, rhabdomyosarcom., and Wilms' tumor. Gann 1984;75:53–60. [PubMed: 6327451]
- Katayama M, Nakano H, Ishiuchi A, Wu W, et al. Protein pattern difference in the colon cancer cell lines examined by two-dimensional differential in-gel electrophoresis and mass spectrometry. Surg Today 2006;36:1085–1093. [PubMed: 17123137]
- 40. Nagasue N. Changes in lactic dehydrogenase isoenzymes after hepatic artery ligation in patients with hepatic carcinoma. Gastroenterol Jpn 1975;10:150–156. [PubMed: 185117]
- Pandit MK, Joshi BH, Patel PS, Chitnis KE, Balar DB. Efficacy of serum lactate dehydrogenase and its isozymes in monitoring the therapy in patients with acute leukemia. Indian J Pathol Microbiol 1990;33:41–47. [PubMed: 2394475]
- 42. Sewell DA, Yuan CX, Robertson E. Proteomic signatures in laryngeal squamous cell carcinoma. ORL J Otorhinolaryngol Relat Spec 2007;69:77–84. [PubMed: 17127822]

Berglund et al.

Figure 1.

Immunoblot data of proteins identified by MS/MS. Immunoblots were performed for each selected protein and density (intensity per mm2) was calculated on a ChemiDoc system (BioRad, CA). This figure shows boxplots for each analyte for which there was at least one significant effect by ANOVA. Significant effects for these analytes are shown in Table 2.

Table 1

Protein identification. Proteins identified from mass spectrometry and tandem mass spectrometry. Fields include: spot number as displayed in figure 1, protein name, accession number from CDScombined database (Celera Discovery System v. KBMS3.2.20040119), MASCOT protein score, MASCOT ion score, protein and ion score confidence indices, species of protein hit, total amino acid sequence coverage, protein molecular weight, pI, and peptide count. Also shown are the matched peptides and corresponding masses, mass errors, sequences and number of unmatched sequences if fewer than two peptides were confirmed by CID. Peptides analyzed by tandem mass spectrometry display ion scores and confidence indices.

Spot Number	Protein Name						Accession	Protein	Total lon	Total lon	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
oportitaliser	Trotein Hume						Number	Score	Score	C. I. %	C.I.%	opeoleo	Coverage	MW	pl	Count
795	Pyruvate kinase,	M1/M2 isozvme (EC 2.7.1.4	10) (Pvru	ivate		spt P14618	77	25	86.618	97.301	Homo sapiens	16	57769	7.95	11
	kinase muscle iso						-1-1-									
	Peptide Information															
	Calc. Mass	Obsrv. Mass	± da :	± ppm	Start Seq.	End Seq.	Sequence			Ion Score	C. I. %	Modification	# unmatched			
	717.4141	717.4005	-0.0136	-19	166	172	VVEVGSK						54			
	730.4457	730.4366	-0.0091	-12	256	262	VLGEKGK									
	731.3934	731.3998	0.0064	9	224	229	DIQDLK									
	787.4209	787.4111	-0.0098	-12	461	466	QAHLYR									
	912.4533	912.4691	0.0158	17	247	254	ASDVHEVR									
	953.4799	953.4738	-0.0061	-6	270	277	IENHEGVR									
	995.4978	995.4794	-0.0184	-18	489	497	VNFAMNVGK					Oxidation (M)[5]				
	1019.5156	1019.4958	-0.0198	-19	367	375	GDYPLEAVR									
	1040.5483	1040.5513	0.003	3	247	255	ASDVHEVRK									
	1197.6475	1197.626	-0.0215	-18	32	42	LDIDSPPITAR									
	1359.705	1359.6838	-0.0212	-16	43	55	NTGIICTIGPASR					Carbamidomethyl (C)[6]				
Spot Number	Protein Name						Accession	Protein	Total lon	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
							Number	Score	Score	C. I. %	C.I.%		Coverage	MW	pl	Count
853	Thyroid hormone	binding protein pr	recursor				gb AAA61169	128	80	100	100	Homo sapiens	18	57068.7	4.82	10
	(protein disulfide	isomerase precur	sor)													
	(prolyl 4-hydroxyl	ase, beta subunit	precursor)												
	Peptide Information															
	Calc. Mass			± ppm	Start Seq.		Sequence			Ion Score	C. I. %	Modification	# unmatched			
	763.4348	763.4481	0.0133	17	248	254	IFGGEIK						55			
	808.4562	808.4619	0.0057	7	462	468	TLDGFKK									
	862.4668	862.4716	0.0048	6	58	65	ALAPEYAK									
	910.4417	910.4497	0.008	9	445	452	FFPASADR									
	928.525	928.5292	0.0042	5	437	444	VHSFPTLK									
	962.4512	962.4545	0.0033	3	339	345	ITEFCHR					Carbamidomethyl (C)[5]				
	1002.5577	1002.558	0.0003	0	70	78	LKAEGSEIR									
	1066.5164	1066.5112	-0.0052	-5	453	461	TVIDYNGER									
	1451.7013	1451.6896	-0.0117	-8	327	338	YKPESEELTAER									
Count Newsbarr	1780.8348	1780.8119	-0.0229	-13	82	97	VDATEESDLAQC		Totallan	Teteller	Bratala Garage	0	~ • • •	Destain	Destala	Dentida
Spot Number	Protein Name						Accession Number	Protein Score	Total Ion Score	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
1017	Annexin A11 (An		in				spt P50995	221	123	C. I. % 100	C.I.% 100	Homo sapiens	Coverage	MW 54355.1	pl 7.53	Count 14
1017			111-				spile 20992	221	125	100	100	Homo sapiens	27	04300.1	7.55	14
	associated annex Peptide Information	in 50)(CAP-50)														
	Calc. Mass	Obsrv. Mass	t da	± ppm	Start Seq.	End Sea	Sequence			Ion Score	C. I. %	Modification				
	748.4133	748.4154	0.0021	3	440	445	LNKAMR			.511 00070	0 /0	Oxidation (M)[5]				
	789.4902	789.4913	0.0011	1	265	271	TILALMK									
	831.457	831.4673	0.0103	12	321	327	TLEEAIR									
	959.5519	959.5665	0.0146	15	320	327	KTLEEAIR									
	976.5825	976.5814	-0.0011	-1	236	243	QQILLSFK									
	1034.465	1034.4786	0.0136	13	328	336	SDTSGHFQR									
	1052.516	1052.5264	0.0104	10	431	439	NTPAFFAER			44	99.702			Confirmed	by CID	
	1336.6128	1336.6226	0.0098	7	360	371	DAQELYAAGENF			51	99.95			Confirmed	by CID	
	1446.7488	1446.7614	0.0126	9	389	400	AHLVAVFNEYQR									

	1453.7256	1453.7286	0.003	2	428	439	CLKNTPAFFAER	2				Carbamidomethyl (C)[1]				
	1696.8323	1696.8431	0.0108	6	372	386	LGTDESKFNAVL	.CSR				Carbamidomethyl (C)[13]				
	1703.8633	1703.8745	0.0112	7	287	302	GVGTDEACLIEIL	ASR				Carbamidomethyl (C)[8]				
	1738.8064	1738.8142	0.0078	4	215	230	GFGTDEQAIIDC	LGSR				Carbamidomethyl (C)[12]				
	1813.8351	1813.8444	0.0093	5	480	495	SLYHDISGDTSG	DYRK								
Spot Number	Protein Name						Accession	Protein	Total lon	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
							Number	Score	Score	C. I. %	C.I.%		Coverage	MW	pl	Count
1096	Enolase 1 (a-enol	ase)					rf NP_001419.	539	262	100	100	Homo sapiens	73	47139.3	7.01	26
	Peptide Information															
	Calc. Mass	Obsrv. Mass	± da ±		Start Seq.		Sequence			Ion Score	C. I. %	Modification				
	704.4089	704.4009	-0.008	-11	127	132	GVPLYR									
	766.3729 806.4518	766.3828 806.4534	0.0099 0.0016	13 2	10 407	15 412	EIFDSR YNQLLR									
	959.5421	959.5441	0.0016	2	407	412	NFRNPLAK			45	99.8			Confirmed	by CID	
	1007.5012	1007.5017	0.0002	0	336	343	SCNCLLLK			45	99.0	Carbamidomethyl (C)[2,4]	r.	Continned	by CID	
	1143.6156	1143.6161	0.0005	0	184	193	IGAEVYHNLK					Carbanidonietnyi (C)[2,4]				
	1259.7106	1259.7244	0.0138	11	121	133	AGAVEKGVPLYF	-								
	1406.7162	1406.7166	0.0004	0	16	28	GNPTVEVDLFTS	SK								
	1425.7261	1425.7271	0.001	1	270	281	YISPDQLADLYK	(0) 10		10	00.004					
	1525.7693	1525.7821	0.0128	8	359	372	LAQANGWGVM			48	99.904			Confirmed	by CID	
	1540.7828	1540.7863	0.0035	2	240	253	VVIGMDVAASEF									
	1541.7642	1541.7775	0.0133	9	359	372	LAQANGWGVM									
	1556.7777	1556.7732	-0.0045	-3	240	253	VVIGMDVAASEF					Oxidation (M)[5]				
	1597.906	1597.9109	0.0049	3	184	197	IGAEVYHNLKNV									
	1633.8214	1633.827	0.0056	3	344	358	VNQIGSVTESLQ	ACK				Carbamidomethyl (C)[14]				
	1690.985	1690.989	0.004	2	65	80	AVEHINKTIAPAL	VSK								
	1691.8962	1691.9104	0.0142	8	407	420	YNQLLRIEEELG	SK								
	1804.9438	1804.9542	0.0104	6	33	50	AAVPSGASTGIY	EALELR								
	1907.9869	1908	0.0131	7	163	179	LAMQEFMILPVG	AANFR		83	100			Confirmed	by CID	
	1923.9819	1923.9922	0.0103	5	163	179	LAMQEFMILPVG	AANFR		62	99.996	Oxidation (M)[3]		Confirmed	by CID	
	1939.9768	1939.9871	0.0103	5	163	179	LAMQEFMILPVG	AANFR								
	2033.0549	2033.0754	0.0205	10	307	326	FTASAGIQVVGD	DLTVTNPK								
	2154.0713	2154.0823	0.011	5	10	28	EIFDSRGNPTVE			32	95.649			Confirmed	by CID	
	2176.0742	2176.0864	0.0122	6	234	253	AGYTDKVVIGME									
	2189.156 2192.0691	2189.1685 2192.1094	0.0125	6 18	307 234	327 253	FTASAGIQVVGD AGYTDKVVIGMD					Oxidation (M)[11]				
	2192.0691 2277.1357	2192.1094 2277.1489	0.0403	18	33	253	AAVPSGASTGIY					Oxidation (W)[11]				
	2353.1592	2353.1702	0.0132	5	373	394	SGETEDTFIADL					Carbamidomethyl (C)[17]				
	2743.3784	2743.3887	0.0103	4	203	228	DATNVGDEGGF		ELLK							
	2985.394	2985.3994	0.0054	2	282	306	SFIKDYPVVSIED	PFDQDDWGA	WQK							
	3011.5696	3011.5767	0.0071	2	133	162	HIADLAGNSEVIL	PVPAFNVING	GSHAGNK							
Spot Number	Protein Name						Accession	Protein	Total lon	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
							Number	Score	Score	C. I. %	C.I.%		Coverage	MW	pl	Count
1573	Lactate dehydroge	nase A					rf NP_005557.	119	76	100	100	Homo sapiens	21	36665.4	8.44	8
	Peptide Information															
	Calc. Mass	Obsrv. Mass	± da ±		Start Seq.		Sequence			Ion Score	C. I. %	Modification	# unmatched			
	734.4195	734.426	0.0065	9	113	118	NVNIFK						58			
	742.457	742.4594	0.0024	3	107	112	LNLVQR									
	913.5828	913.5876	0.0048	5	91	99	LVIITAGAR									
	929.5818 1027.5605	929.5841 1027.5479	0.0023	2 -12	119 270	126 278	FIIPNVVK VHPVSTMIK					Oxidation (M)[7]				
	1118.5841	1118.5861	0.002	-12	319	328	SADTLWGIQK					CARGERON (W)[7]				
	1134.5637	1134.573	0.0093	8	306	315	VTLTSEEEAR									

Berglund et al.

Image: constraint of the		1248.6001	1248.6068	0.0067	5	158	169	VIGSGCNLDSAF					Carbamidomethyl (C)[6]				
1968 Heat abox, 27 MB/872/1 (Strate)-regioner-galied 24 24 Disponer-galied 24 Disponer	Spot Number	Protein Name						Accession	Protein	Total Ion	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptid
protein 72 (Extrogen-aguined 24 & Dirotenin Begint formation No. 1. % Modification Calc. Mass 051.508 613 508 Calc. Mass 051.508 Calc. Mass 052.508 Calc. Mass 053.508 Calc. Mass 053.508 Calc. Mass 053.508 Calc. Mass 053.508 Calc. Ma														Coverage			Coun
Periptide Information Cal: Mass B 10506 Obs: Mass B 10506 Stat Sep B 12 VPSLR VPSLR B 12 Not Score B 20007 C. L.% B 40007 Modification Not Score B 40007 Not Score B 40007 <th< td=""><td>1968</td><td>Heat shock 27 kDa</td><td>a protein (HSP 2</td><td>7) (Stress-</td><td>respons</td><td>ive</td><td></td><td>spt P04792</td><td>212</td><td>133</td><td>100</td><td>100</td><td>Homo sapiens</td><td>43</td><td>22768.5</td><td>5.98</td><td>9</td></th<>	1968	Heat shock 27 kDa	a protein (HSP 2	7) (Stress-	respons	ive		spt P04792	212	133	100	100	Homo sapiens	43	22768.5	5.98	9
Cal. Mag Observ. Mags is da Ppm Sint Sage		protein 27) (SRP2)	7) (Estrogen-regi	ulated 24 k	D prote	in)											
bit 30508 83:5030 0007 0 0 10 0 10 VPS1LR 691<4530 081:4530 0011 1 3 20 OpPOPTING V V <																	
4 H 450 9H 421 0H 421											Ion Score	C. I. %	Modification				
981 4630 (97.007) 991 453 (97.07) 901 457 (97.07) 901 457																	
eff cont interest		941.505	941.5215	0.0165	18	189	198	AQLGGPEAAK									
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				0.0011													
1104 5820 1104 5123 0105 513 0105 503 5 24 37 UPCPACE 54 598 598 Confined by CD Confined by CD 1105 5021 1155 5021 055 995 0050 905 0050 905 0050 905 0050 905 0050 905 0050 905 010 100 100 Homo sapins 50 Protein Protein 101 100 Homo sapins 50 1665 905 1665 905 0.00 Homo sapins 50 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 905 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1665 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90 1666 90						-											
11133.037 11133.035 0.010 0 26 0.7 LFDAGRUER EDA 99.989 Confirmative Control 1000 Confirmative Control 10000 Confir				0.0021													
1733 2325 1733 3333 0.011 6 97 112 VSLDVMH2APDELTVX VSLDVMH2APDELTVX VSLDVMH2APDELTVX Onthome by CID Onthome by CID 0105 9195 1095 9955 0.009 2 172 189 Kafa Sage % A S Seq % A A Seq Protein Protein Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Protein Score Cal. % Modification Score Cal. % Score <td></td>																	
1069990 1095 9950 0.0039 2 172 188 LATORNETIPATESR 6 9994 Total Score Species		1163.6207	1163.6315	0.0108	9	28	37	LFDQAFGLPR			58	99.988			Confirmed	by CID	
Ort Number Protein Name Accession Protein Score C.1.% Coll on C.1.% Protein Score % Ad Seq Protein Protein Coverage Protein Protein WW Protein Protein Coverage % Ad Seq Protein Protein Coverage % MA Seq Protein Protein Coverage % MA Seq Protein Protein Coverage % MW protein Protein Coverage % MV protein Protein Coverage % MA Seq Protein Protein Coverage % MA Seq Protein Protein Coverage % MV protein Protein Coverage % MA Seq Protein Protein Coverage % MA Seq % MA Seq % MA Seq % MW protein Protein Coverage 2466 Cal: Mass 059713 0006 4 91 93 Edewine 136 100 Secre C.1.% Modification Confirmed by CID 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0778 2400 0788 2400 0778 2400 0788 <t< td=""><td></td><td>1783.9225</td><td>1783.9335</td><td>0.011</td><td>6</td><td>97</td><td>112</td><td>VSLDVNHFAPD</td><td>LTVK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1783.9225	1783.9335	0.011	6	97	112	VSLDVNHFAPD	LTVK								
Number Number Score Score C.1.% C.1% Control Portage NW P 2465 Galmodulin spt P02593 213 173 100 100 Homo sapiens 50 15697.58 4.09 2465 Additionation Obstationation 0.0052 0 31 57 ELCTWIR Inclusionation 50 15697.58 4.09 15697.13 0.0054 4 91 106 FVDROGNOVISAALER Inslo 100 Homo sapiens 50 Confirmed by CID 1644.8912 0.0056 0 14 30 EAFSERDROGNOTITK 38 100 Voidation (M)(18) VCD Confirmed by CID 2400.076 344.8018 0.0052 9 127 148 EADIGODGOV/FEVCMMTAK 30 100 Homo sapiens 50 178.90 No 2500.077 2508.067 0.0124 6 127 148 EADIGODGOV/FEVCMMTAK 30 100 Homo sapiens 50 178.9		1905.9916	1905.9955	0.0039	2	172	188	LATQSNEITIPVT	FESR		61	99.994			Confirmed	by CID	
2466 Calmodulu Start Sec. spt]P02593 213 173 100 100 Homo sagiens 50 1565 /s 4.09 0450 0654.048 0654.048 00052 6 4 78 500 1565 /s 4.09 1566.7136 1566.7136 1566.713 1566.713 1000 4 78 500 1565 /s 1 160 500 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50 176 50	Spot Number	Protein Name											Species	% AA Seq.	Protein	Protein	Peptic
Peptide Information 605 4/36 605 4/36 1956 7/2 1956 7/3 2460 057 Start Seq. 1956 7/3 1956 7/3 1956 7/3 1956 7/3 2460 057 Start Seq. 1957 7/3 1956 7/3 1956 7/3 1956 7/3 2460 057 Start Seq. 1957 7/3 1956 7/3 2460 057 Start Seq. 1957 7/3 1957 7/3 2460 057 Start Seq. 1957 7/3 1957 7/3								Number	Score	Score	C. I. %	C.1%		Coverage		pl	Cour
Cale. Mass 805 4/28 1969 7/39 1969 7/39 1969 7/39 1969 7/39 1969 7/39 1969 7/39 1969 7/39 1969 7/39 2960 6/30 2960 6/30	2466	Calmodulin						spt P02593	213	173	100	100	Homo sapiens	50	16695.8	4.09	5
805,4236 805,4236 0,0054 4 78 ELGTVMR Confirmed by CID 1596,713 1596,713 0,0064 4 78 90 UTOSECRIFICAT 38 100 Confirmed by CID 174,43707 174,43773 0,0066 0 144 30 EARSINGOGUNYEEFVQMMTAK 38 98.993 Confirmed by CID 2460,0767 260,0747 260,0037 0.0122 -0 127 148 EADIDGOGUNYEEFVQMMTAK Oxidation (M)[18] ctv 700 Total Ion Total Ion Total Ion Potelin Score Species % AA Sec, Protein MW pl 2529 Peptidyl-protyl cist-tar-is isomerse A (EC 5.2.1.5) istip 750 Start Sec, Species Co.1.% Cl.% Modification MW pl 2529 Peptidyl-protyl cist-tar-is isomerse A (EC 5.2.1.5) Start Sec, End Sec, Secure Socre Cl.% Cl.% Modification MW pl 2529 Peptidyl-protyl cist-tar-isomerse Start Secure Socre Cl.% Notification Cl.% Notification Notification N																	
1969 7136 1969 72 00069 4 97 00 VTOSEEDERATION VEST VEST <td></td> <td>Ion Score</td> <td>C. I. %</td> <td>Modification</td> <td></td> <td></td> <td></td> <td></td>											Ion Score	C. I. %	Modification				
1754 8707 1754 8773 0.008 4 91 0.00 PertoRAGN/STALE_R 136 0.00 Confirme U Confirme U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									2								
1844.8912 1844.8918 0.000 0 14 30 EAFSLFDKDGDGTITTK 37 98.993 Continue U										136	100			Confirmed	by CID		
2490.0798 2490.0576 -0.022 -9 127 148 EADIDGDGQV/YEEFVQMMTAK Continue of the continu of the continue of the con						14											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										к					Commed	by OID	
Protein Name Accession Protein Total Ion Protein Score Species % AA Seq. Protein Protein 2529 Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) (Cyclopprin A-binding protein) spt[P05092 197 139 100 100 Homo sapiens 50 17869.8 7.82 (Cyclophilin A)(PPlase)(Rotamase) (Cyclopprin A-binding protein) Peptide Information Ealt Start Seq. End Seq. Sequence Ion Score C.1.% Modification 17869.8 7.82 1154.5728 1154.5835 0.0018 9 82 90 FEDENFILK Start Seq. Confirmed by CID Confirmed by CID 1124.763 1154.5831 0.0056 7 19 30 VSEELPAKYPK 56 99.985 Carbamidomethyl (C)(7) Confirmed by CID 1521.74 1521.74 1521.746 0.0057 4 75 88 IIIPGPMCQGGOPTR 42 99.637 Carbamidomethyl (C)(7) Confirmed by CID 1831.913 1831.913 0.0067 4 76 90 S		2506.0747	2506.0603	-0.0144	-6	127	148	EADIDGDGQVN	EEFVOMMTA	к			Oxidation (M)[18]				
List Number Score Cl. % Cl. % Cl. % Coverage NWV pl 2529 Peptidyl-prolyi lost-transes / (Cyclosphin A/JPPlase); Rotamase); (Cyclospoin A-binding protein); spil P05092 197 139 100 100 Homo sapiens 50 1789.8 7.82 (Cyclosphin A/JPPlase); Rotamase); (Cyclospoin A-binding protein); Fettle Information Fettle Informatio	Spot Number										Total Ion	Protein Score		% AA Sea	Protein	Protein	Peptid
2529 Peptidyl-prolyl cis-trans isomerase A (EC 5.2.1.8) spt1P05092 197 139 100 100 Homo sapiens 50 1789.8 7.82 (Cyclosporin A-hinding protein) (Cyclosporin A-hinding protein) Stat 5 protein Fed 5 Queence Intervine Network Intervine Network Intervine Network Stat 5 Queence Intervine Network Intervine Network Intervine Network Stat 5 Queence Intervine Network Carbamidomethyl (C)[7] Confirmed by CID 1154,5728 11545,5730 0.0051 4 154 164 KITADCGQLE Carbamidomethyl (C)[7] Confirmed by CID 1505,774 1379 7655 0.0065 7 19 30 VECEMNIVEAMER Stat 5 Queence Carbamidomethyl (C)[7] Confirmed by CID 1505,774 1505,7763 0.1143 7 114 143 VECEMNIVEAMER Stat 5 Queence Stat 5 Queence Oxidation (M)[5] Confirmed by CID 1505,774 1505,7764 1051 5 68 IIPGFMCQGQDFTR 41 99.43 Carbamidomethyl (C)[7], Oxidation (M)[6] Confirmed by CID 15186,7424 1546,6039 0.0067 4 <td></td> <td>-pooleo</td> <td></td> <td></td> <td></td> <td>Coun</td>													-pooleo				Coun
(Cyclophilin A)(PPtase)(Rotamase) (Cycloppoin A-binding protein) ×<	2529	Peptidyl-prolyl cis-	trans isomerase	A (EC 5.2.	1.8)								Homo sapiens	-			7
(Cyclosporin A-binding protein) Petride Information Calc. Mass Obsr. Mass ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±					-1-1						50						
Peptide Information Calc: Mass Oxive Mass t da ± pro 1154 5783 Stat ± pro 1154 5783 Stat ± pro 62 Stat ± 0 FEDENPILK Ion Score C. I. % Modification Modification 1124 763 1124 76351 0.0051 4 154 164 KTMOGOGLE 56 99.965 Carbamidomethyl (C)[7] Confirmed broken <																	
$ \begin{array}{ c c c c c c c } \hline Calc. Mas \\ \hline Calc. Mas \\ \hline 1145 632 \\ \hline 1145 632 \\ \hline 1145 633 \\ \hline 1145 \\ \hline 1145 \\ \hline 1145 633 \\ \hline 1145 \\ \hline 1145 633 \\ \hline 1145 \\ \hline 1145 \\ \hline 1145 633 \\ \hline 1145 \\ \hline 1145 \\ \hline 1145 633 \\ \hline 1145 \\ $																	
1154.5728 1154.5836 0.0108 9 8.2 90 FEDENFILK Carbamidomethyl (C)[7] Confirmed by CID 1379.767 1379.767 1379.768 0.0051 4 164 K1ACOGQLE Carbamidomethyl (C)[7] Confirmed by CID 1379.767 1379.7673 1379.7683 0.0143 9 131 143 VKEGMNIVEAMER 56 99.985 Confirmed by CID Confirmed by CID 1521.74 1521.748 0.0051 9 55 68 IIPGFMCOGGDFTR 42 99.637 Carbamidomethyl (C)[7] Confirmed by CID 1581.741 1581.748 0.0067 4 76 90 Streper Confirmed by CID Carbamidomethyl (C)[7] Confirmed by CID 1946.001 1946.009 0.0062 4 1 18 VNPTVFDIAVOGEPLGR 41 99.43 Confirmed by CID 1946.001 1946.009 0.0062 4 1 18 VNPTVFDIAVOGEPLGR 41 99.43 Confirmed by CID 2585 R33729_1 (Fragment) V VNPTVFDIAVOGEPLGR Total Ion Total Ion Noten sapiens 47 13			Obsrv. Mass	± da ±	ppm	Start Seg.	End Sea.	Sequence			Ion Score	C. I. %	Modification				
1379 757 1379 7685 0.0095 7 19 30 VSECMAVPK 56 99.985 N Confirmed by CID 1505 745 1505 743 9 131 143 VKEGMNIVEAMER Oxidation (M)[5] Confirmed by CID 1505 744 1521 748 0.0068 4 131 143 VKEGMNIVEAMER Oxidation (M)[5] Confirmed by CID 1505 744 1596 765 68 IIPGFMCCGGDFTR 42 99.637 Carbanidomethyl (C)[7] Confirmed by CID 1813 1831.913 1831.918 0.0067 4 76 90 SYCEREDENFILK 41 99.434 Confirmed by CID Confirmed by CID 1946.007 1946.009 0.0062 4 76 90 SYCEREDENFILK 41 99.434 Confirmed by CID Confirmed by CID 2585 R33729_1 (Fragment) VEV FOIDAUGEPELGR Total Ion Total Ion Total Ion Col.% AA Seq Protein Protein 2585 R33729_1 (Fragment) VEV FIDAUGEPELGR To																	
1379 757 1379 7685 0.0095 7 19 30 VSECMAVPK 56 99.985 No.95 Confirmed by CID Confirmed by CID 1505.745 1505.754 1505.754 0.0058 4 131 143 VKEGMNIVEAMER Process Oxidation (M)[5] Confirmed by CID Confirmed by CID </td <td></td> <td>1247.63</td> <td>1247.6351</td> <td>0.0051</td> <td>4</td> <td>154</td> <td>164</td> <td>KITIADCGQLE</td> <td></td> <td></td> <td></td> <td></td> <td>Carbamidomethyl (C)[7]</td> <td></td> <td></td> <td></td> <td></td>		1247.63	1247.6351	0.0051	4	154	164	KITIADCGQLE					Carbamidomethyl (C)[7]				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1379.757	1379.7665	0.0095	7	19	30	VSFELFADKVPK			56	99.985			Confirmed	by CID	
1588.745, 1614.740 1598.764, 1614.740 0.015, 0.015, 1614.740 9,55 68, 0.005, 1614.740 0.015, 0.005, 183.913 9,55 68, 0.005, 183.913 0.005, 0.005, 194.009 4 76 90 SIYGEKFEDENFILK 41 99.434 Carbamidomethyl (C)[7], Carbamidomethyl (
1614,7402 1614,7517 0,0115 7 55 68 INPERMCQGOPTR Carbamidomethyl (0)[7]. Oxidation (M)[6] 1831.9113 1831.9113 1831.918 0.0067 4 76 90 SIYGEKFEDENFILK 41 99.434 Carbamidomethyl (0)[7]. Oxidation (M)[6] Corbumidomethyl (0)[7]. Oxidation (M)[6] VINPTVFEIOLVOGEFLGR 1946.009 0.0062 4 1 18 VINPTVFEIOLVOGEFLGR Total Ion Total Ion Cols Species % AA Seq. Protein Protein Protein 2585 R33729_1 (Fragment) trail Start Seq. End Seq. Secre Score C. I. % C.I. % Modification 47 1132.5.7 7.03 2585 R33729_1 (Fragment) trm()07526 169 137 100 100 Homo sapiens 47 1132.5.7 7.03 Mass Observ. Mass Start Seq. End Seq. Sequence Info Info Modification Kort Security Info Security Info Security Info Security Info Security Info Security </td <td></td> <td>40</td> <td>00.627</td> <td></td> <td></td> <td>Confirmed</td> <td>by CID</td> <td></td>											40	00.627			Confirmed	by CID	
1831.9113 1831.918 0.0067 4 76 90 SIYGEKFEDENFILK 41 99.434 Confirmed by CID 1946.0017 1946.009 0.0082 4 1 18 VNPTVFDIAVDGEPLGR Total Ion Potein Score Species % AA Seq. Protein Protein Protein 2585 R33729_1 (Fragment) 5 Stat Seq. End Seq. End Seq. Ion Score C.I.% Cli Modification MW Plotein Protein Protein 2585 R33729_1 (Fragment) tial ± ptm Stat Seq. End Seq. End Seq. 100 100 Homo sapiens 47 11325.7 7.03 Peptide Information Calc. Mass Obsrv. Mass tat ± ptm Stat Seq. End Seq. Seq. Seq. Seq. Seq. Sec. Seq. Seq. Sec. Seq. Seq. Seq. Sec. Seq. Seq. Seq. Seq. Seq. Seq. Seq.											42	55.037		xidation (M)[6]	Comme	by OID	
1946.0017 1946.009 0.0082 4 1 18 VNPTVFEDIAVDGEPLGR Total Ion Total Ion Protein Score Species % AA Seq Protein Protein Protein C.I.% Species % AA Seq Protein Protein Protein C.I.% C.I.% % AA Seq Protein Protein Protein Protein C.I.% C.I.% C.I.% % AA Seq Protein Protein Protein C.I.% C.I.% % AA Seq Protein Protein Protein C.I.% C.I.% MW pi Protein T.O. T.O. D.O. Hom sapiens 4.7 1335.7 7.03 Peptide Information tda ± ppm Start Seq End Seq. Sequence Ion Score C.I.% Modification Confirmed by CID 1154.6428 1154.6522 0.0094 8 72 82 TAVAHRPGAFK 62 99.996 Confirmed by CID Confirmed by CID Confirmed by CID Sociation (M)[8] Confirmed by CID Sociadation (M)[8] Confirmed by CID											41	99.434		inducer (m)[e]	Confirmed	by CID	
Accession Protein Total Ion Total Ion Protein Score Species % AA Seq Protein Protein 2585 R33729_1 (Fragment) trmIO75256 169 137 100 100 Homo sapiens 47 11325.7 7.03 Peptide Information Calc: Mass 0587. Mass ±da ±ppm Start Seq. End Seq. Sequence Ion Score C.1.% Modification 47 11326.7 7.03 1154 6428 1154 6522 0.0094 8 72 82 TAVAHRPGAFK Ion Score C.I.% Modification Confirmed by CID 1396.6986 1196.5986 0.0018 -2 27 35 SYLYFTQFK 62 99.996 Confirmed by CID 1384.6909 1348.6102 0.0010 0 6 GELEYMANYSK Oxidation (M)[8]					4		18								Commed	by OID	
Number Number Score Score C.I.% C.I.% Colvenage NUV pl 258 R33729_1(Fragment) Tm(D7526 169 137 100 100 Homo sapiens 47 11325.7 7.03 Pertide Information Calc. Mass Obsrv. Mass tat spm End seq. Ref Seq. Colverage NUV pl 1166.5986 1196.5986 0.001 2 72 82 TAVAHRPGAFK 52 99.96 Confirmed by CID Confirmed by CID Confirmed by CID 1332.614 0.0001 0 40 51 GAELEYMANYSK 50 S0.048 50 Social of MUK Social of MUK <t< td=""><td>Spot Number</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Total lon</td><td>Total Ion</td><td>Protein Score</td><td>Species</td><td>% AA Seq.</td><td>Protein</td><td>Protein</td><td>Peptid</td></t<>	Spot Number									Total lon	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptid
2585 R33729_1 (Fragment) trm O75256 169 137 100 100 Homo sapiens 47 11325.7 7.03 Peptide Information Calc: Mass Obsrv. Mass ± da ± pm Start Seq. End Seq. Sequence Ion Score C. I. % Modification 1136 4242 1136 4522 0.0094 8 72 82 TAVAHRPGAFK Confirmed by CID 1139, 6424 1136 5668 -0.018 -2 27 35 SYL YTOFK 62 99.996 Confirmed by CID 1338, 609 1348, 6002 0.0013 4 51 GAELEYAMAYSK Oxidation (M)[8]	potriumber	Trotent Hume											opeoleo				Coun
Peptide Information Calc: Mass Obsrv. Mass ± da ± ppm Start Seq. End Seq. Sequence Ion Score C. I. % Modification 1154 6428 1154 6522 0.0094 8 72 82 TAVAHRPGAFK Confirmed by CID 1196 5986 1196 5968 -0.0018 -2 27 35 SYLYFTQFK 62 99.996 Confirmed by CID 1332 614 1332 6141 0.0001 0 40 51 GAELEYAMAYSK Oxidation (M)[8]	2585	R33729 1 (Fragm	ent)										Homo sapiens				4
Calc. Mass Obsrv. Mass ± da ± ppm Start Seq. End Seq. Sequence Ion Score C. I. % Modification 1154.6428 1154.6522 0.0094 8 72 82 TAVAHRPGAFK 5 SULYFORFK 62 99.996 Confirmed by CID 1332.614 1332.6141 0.0001 0 61 GAEIEYAMAYSK Oxidation (M)(8)													41				
1154.6428 1154.6522 0.009 8 72 82 TAVAHRPGAFK 1196.5968 1.196.5968 0.0018 -2 27 35 SYLPYTOPK 62 99.996 Confirmed by CID 1332.6141 0.0011 40 51 GAELEYAMAYSK 62 99.996 Confirmed by CID 1348.6099 1348.6102 0.0013 1 40 51 GAELEYAMAYSK Oxidation (M)[8]			Obsrv. Mass	± da ±	ppm	Start Seq.	End Sea.	Sequence			Ion Score	C. I. %	Modification				
1196.5988 1196.5968 -0.018 -2 27 35 SYLYFTQFK 62 99.996 Confirmed by CID 1332.614 1332.6141 0.0001 0 40 51 GAELEYAMAYSK 99.996 Confirmed by CID 1348.6099 1348.6102 0.0013 1 40 51 GAELEYAMAYSK Oxidation (M)[8]																	
1332.614 1332.6141 0.0001 0 40 51 GAELEYAMAYSK 1348.6089 1348.6102 0.0013 1 40 51 GAELEYAMAYSK Oxidation (M)[8]				-0.0018	-2						62	99.996			Confirmed	by CID	
													Oxidation (M)[8]				
1750.6745 1750.6745 0.005 5 57 71 ESDVPLKIEEPEVIK 59 99.991 Comminied by CD		1750.8745	1750.8795	0.005	3	57	71	ESDVPLKTEEFE	VTK		59	99.991			Confirmed	by CID	

NIH-PA Author Manuscript

Berglund et al.

Spot Number	Protein Name						Accession Number	Protein Score	Total Ion Score	Total Ion C. I. %	Protein Score C.I.%	Species	% AA Seq. Coverage	Protein MW	Protein pl	Peptide Count
2611	Fatty acid-binding (Psoriasis-associa Peptide Information				log)		spt Q01469	342	276	100	100	Homo sapiens	64	15154.5	6.6	7
	Calc. Mass	Obsrv. Mass	± da ±	t ppm	Start Seq.	End Seq.	Sequence			Ion Score	C. I. %	Modification				
	889.376	889.3785	0.0025	3	18	24	GFDEYMK									
	905.3709	905.3723	0.0014	2	18	24	GFDEYMK									
	927.5621	927.5629	0.0008	1	25	33	ELGVGIALR			54	99.983			Confirmed	by CID	
	1271.5936	1271.5996	0.006	5	62	72	TTQFSCTLGEK			55	99.987	Carbamidomethyl (C)[6]		Confirmed	by CID	
	1694.8022	1694.7999	-0.0023	-1	116	129	LVVECVMNNVT	CTR		89	100	Carbamidomethyl (C)[5,12		Confirmed		
	1710.7971	1710.8018	0.0047	3	116	129	LVVECVMNNVT	CTR		52	99.967	Carbamidomethyl (C)[5,12	2], Oxidation (M)[Confirmed	by CID	
	1767.7897	1767.7905	0.0008	0	35	50	MGAMAKPDCIIT			50	99.958	Carbamidomethyl (C)[9,13	3]	Confirmed	by CID	
	1783.7845	1783.7753	-0.0092	-5	35	50	MGAMAKPDCIIT									
	2278.0293	2278.0212	-0.0081	-4	62	81	TTQFSCTLGEKF	EETTADGR				Carbamidomethyl (C)[6]				
	2434.1091	2434.0994	-0.0097	-4	83	103	TQTVCNFTDGAL	LVQHQEWDGK				Carbamidomethyl (C)[5]				
Spot Number	Protein Name						Accession Number	Protein Score	Total Ion Score	Total Ion C. I. %	Protein Score C.I.%	Species	% AA Seq. Coverage	Protein MW	Protein pl	Peptide Count
2640	Fatty acid-binding	protein, epiderma	al				spt Q01469	182	81	100	100	Homo sapiens	58	15154.5	6.6	6
	(Psoriasis-associa															
	Peptide Information												# unmatched			
	Calc. Mass 889.376	Obsrv. Mass 889.3734	± da ± -0.0026	ppm -3	Start Seq. 18	End Seq. 24	GFDEYMK			Ion Score	C. I. %	Modification	# unmatched 53			
	903.5046	903.5063	0.0017	2	11	17	WRLVDSK									
	927.5621	927.5521	-0.01	-11	25	33	ELGVGIALR									
	1055.6571	1055.6429	-0.0142	-13	25	34	ELGVGIALRK									
	1694.8022	1694.7769	-0.0253	-15 8	116	129	LVVECVMNNVT			81	100	Carbamidomethyl (C)[5,12	2]	Confirmed	by CID	
Spot Number	1710.7682 Protein Name	1710.7815	0.0133	8	35	50	MGAMAKPDCIIT Accession	Protein	Total Ion	Total Ion	Protein Score	Carbamidomethyl (C)[9] Species	% AA Seq.	Protein	Protein	Peptide
Spot Number	FIOtenn Name						Number	Score	Score	C. I. %	C.I.%	Species	Coverage	MW	pl	Count
2671	Profilin I						spt P07737	112	63	99.998	100	Homo sapiens	55	14913.5	8.48	6
	Peptide Information															
	Calc. Mass	Obsrv. Mass	± da ±		Start Seq.		Sequence			Ion Score	C. I. %	Modification	# unmatched			
	1151.6531 1166.5082	1151.6593 1166.5278	0.0062	5 17	116 127	126 135	EGVHGGLINKK CYEMASHLR			44	99.866	Carbamidomethyl (C)[1]	60	Confirmed	hu CID	
	1322.6093	1322.6267	0.0150	13	127	135	CYEMASHLR			44	99.000	Carbamidomethyl (C)[1]		Commed	by CID	
	1470.7587	1470.7845	0.0258	18	56	69	SSFYVNGLTLGG	GQK				00.00.000.000.000.000.000				
	1625.7476	1625.766	0.0184	11	75	88	DSLLQDGEFSMI	DLR								
	1915.0647	1915.0964	0.0317	17	38	55	TFVNITPAEVGVI									
Spot Number	Protein Name						Accession Number	Protein Score	Total Ion Score	Total Ion C. I. %	Protein Score C.I.%	Species	% AA Seq Coverage	Protein MW	Protein pl	Peptide Count
2686	Calgranulin B (Mig			ed			spt P06702	473	391	100	100	Homo sapiens	74	13233.5	5.71	8
	protein 14)(Leukoo	cyte L1 complex)	-													
	Peptide Information															
	Calc. Mass	Obsrv. Mass	± da ±		Start Seq.	End Seq.				Ion Score	C. I. %	Modification				
	877.4777	877.4815	0.0038	4	44	50	DLQNFLK			43	99.688			Confirmed	by CID	
	971.4944 1005.5727	971.499 1005.5754	0.0046	5	86 44	93 51	LTWASHEK DLQNFLKK			52	99,964			0	hu OID	
	1005.5727	1005.5754	0.0027	3	44 26	38	LGHPDTLNQGE	EK		52 109	99.964 100			Confirmed		
	1742.8265	1742.8383	0.0131	9	58	72	VIEHIMEDLDTNA			108	100			Confirmed	by CID	
	1806.9385	1742.0303	0.0174	10	11	25	NIETIINTFHQYS			94	100			Confirmed	by CID	
	1953.0188	1953.0376	0.0188	10	26	42	LGHPDTLNQGE			95	100			Confirmed		
	2175.9624	2175.9773	0.0149	7	94	114	MHEGDEGPGHH		0					Comme	by OID	
Spot Number	Protein Name						Accession	Protein	Total Ion	Total Ion	Protein Score	Species	% AA Seq.	Protein	Protein	Peptide
2687	Histidine triad nuc	leotide binding n	vrotein 1 /	INT-1			Number spt P49773	91	Score 62	C. I. % 99.996	C.I.% 99.879	Homo sapiens	Coverage 22	MW 13662	pl 6,46	Count 4
2687		nophosphoramida					optic 40110	01	02	33.330	33.013	nomo adpiena	22	10002	0.40	-
		lophosphoramida	ase) (Phul	1-1)												
	Peptide Information	Obsrv Mass	+ də +	t nnm	Start Sec	End Sec	Sequence			Ion Score	C 1 %	Modification	# unmatcher	1		
		Obsrv. Mass 961.4674	± da : -0.0097	± ppm -10	Start Seq. 83	End Seq 91	. Sequence CAADLGLNK			Ion Score	C. I. %	Modification Carbamidomethyl (C)[1]	# unmatched	i		
	Peptide Information Calc. Mass									Ion Score	C. I. %		# unmatched 61	1		
	Peptide Information Calc. Mass 961.4771	961.4674	-0.0097	-10	83	91	CAADLGLNK	R		Ion Score	C. I. % 98.049			Confirmed	by CID	

Table 2

Significant effects in the ANOVA of the western blot analysis. The p-value is given for all effects significant at the 0.05 level. The (\uparrow) symbol in the ionizing radiation (IR) or arsenic (As) column indicates that the given protein is up regulated upon treatment with the respective toxicant, and the (\downarrow) symbol indicates down regulation. For the IR*As interaction, the (+) symbol indicates that the protein expression is greater than would have been expected from the two stimuli independently, and (-) indicates that the protein expression is less than would have been expected. In general, we can conclude that there has been evidence of an IR perturbation of protein expression if either the IR or the IR*As effect is significant, and that there has been evidence of an As perturbation if either the As or IR*As effect is significant. Thus 6 of the 11 proteins showed a reaction to IR, 8 of the 11 showed a reaction to As (including all that showed a reaction to IR), and 3 were inconclusive. The ANOVA was performed for all exposures, — indicates no significant change.

Protein	IR	Arsenic	IR*As
E-FABP	_	() p=0.0001	(+) p=0.0158
-Enolase	_	—	(-) p=0.0151
HINT-1	() p=0.0348	() p=0.0095	_
HSP27	() p=0.0135	() p=0.0024	—
LDH-A	_	—	(+) p=0.0435
PDI	_	() p=0.0001	(-) p=0.0268
S100A9	—	() p=0.0010	—
Annexin XI	_	—	_
Cyclophilin A	_	_	_
Profilin	_	_	—
Pyruvate Kinase, M	_	_	_