1. Do the following problems from the text: 9.8, 9.10 on page 272.

2. Write a program in a language of your choice to implement Naive Gaussian Elimination. Below is the framework for a VBA implementation (available for download on the web site). You may use this, or you may write the equivalent in another language.

Option Explicit
Sub Gauss()
 ' Declarations
 Dim A() As Variant, b() As Variant, x() As Variant
 Dim nrows As Integer, ncols As Integer, n As Integer
 Dim rng1 As Range, rng2 As Range, rng3 As Range
 Dim i As Integer, j As Integer, k As Integer
 Dim factor As Double, sum As Double
 ' Get input ranges, check for correct shape, and set arrays
 Call GetRange(rng1, "Enter n by n input range for matrix of coefficients")
 Call GetRange(rng2, "Enter n by 1 input range for RHS")
 Call GetRange(rng3, "Enter n by 1 output range for solution")
 ncols = rng1.Columns.Count
 nrows = rng1.Rows.Count
 If (nrows <> ncols) Then
 MsgBox "Matrix not square"
 Exit Sub
 End If
 n = nrows
Sub GetRange(rng As Range, msg As String)
 Dim srng As String
 srng = InputBox(msg)
 Set rng = Range(srng)
End Sub

3. Use your program to solve the linear system \(Ax = b \), where

\[
A = \begin{bmatrix}
1 & 1/2 & 1/3 & 1/4 & 1/5 \\
1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\
1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\
1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\
1/5 & 1/6 & 1/7 & 1/8 & 1/9
\end{bmatrix}
\]

and

\[
b = \begin{bmatrix}
2 \\
-4 \\
3 \\
7 \\
-1
\end{bmatrix}
\]

4. Do the following problems from the text: 10.2–10.4, 10.20 on pages 293–294.
5. Use Matlab to solve the linear system \(Ax = b \), where

\[
A = \begin{bmatrix}
1 & 1/2 & 1/3 & 1/4 & 1/5 \\
1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\
1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\
1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\
1/5 & 1/6 & 1/7 & 1/8 & 1/9 \\
\end{bmatrix}
\]

and

\[
b = \begin{bmatrix}
2 \\
-4 \\
3 \\
7 \\
-1 \\
\end{bmatrix}
\]

You can use the backslash operator.

6. Do problem 11.9 on page 313 of the text. Also show that the criterion for Gauss-Seidel to work is satisfied.