CHAPTER 13

13.1 (a) The function can be differentiated to give

\[f'(x) = -2x + 8 \]

This function can be set equal to zero and solved for \(x = 8/2 = 4 \). The derivative can be differentiated to give the second derivative

\[f''(x) = -2 \]

Because this is negative, it indicates that the function has a maximum at \(x = 4 \).

(b) Using Eq. 13.7

\[
\begin{align*}
 x_0 &= 0 & f(x_0) &= -12 \\
 x_1 &= 2 & f(x_1) &= 0 \\
 x_2 &= 6 & f(x_2) &= 0 \\
 x_3 &= \frac{-12(4 - 36) + 0(36 - 0) + 0(0 - 4)}{2(-12)(2 - 6) + 2(0)(6 - 0) + 2(0)(0 - 2)} = 4
\end{align*}
\]

13.2 (a) The function can be plotted

(b) The function can be differentiated twice to give

\[f''(x) = -45x^4 - 24x^2 \]

Thus, the second derivative will always be negative and hence the function is concave for all values of \(x \).

(c) Differentiating the function and setting the result equal to zero results in the following roots problem to locate the maximum

\[f'(x) = 0 = -9x^5 - 8x^3 + 12 \]

A plot of this function can be developed
A technique such as bisection can be employed to determine the root. Here are the first few iterations:

<table>
<thead>
<tr>
<th>iteration</th>
<th>x_l</th>
<th>x_u</th>
<th>x_r</th>
<th>$f(x_l)$</th>
<th>$f(x_r)$</th>
<th>$f(x_l) \times f(x_r)$</th>
<th>ε_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>2.00000</td>
<td>1.00000</td>
<td>12</td>
<td>-5</td>
<td>-60.0000</td>
<td>100.00%</td>
</tr>
<tr>
<td>2</td>
<td>0.00000</td>
<td>1.00000</td>
<td>0.50000</td>
<td>12</td>
<td>10.71875</td>
<td>128.6250</td>
<td>100.00%</td>
</tr>
<tr>
<td>3</td>
<td>0.50000</td>
<td>1.00000</td>
<td>0.75000</td>
<td>10.71875</td>
<td>6.489258</td>
<td>69.5567</td>
<td>33.33%</td>
</tr>
<tr>
<td>4</td>
<td>0.75000</td>
<td>1.00000</td>
<td>0.87500</td>
<td>6.489258</td>
<td>2.024445</td>
<td>13.1371</td>
<td>14.29%</td>
</tr>
<tr>
<td>5</td>
<td>0.87500</td>
<td>1.00000</td>
<td>0.93750</td>
<td>2.024445</td>
<td>-1.10956</td>
<td>-2.2463</td>
<td>6.67%</td>
</tr>
</tbody>
</table>

The approach can be continued to yield a result of $x = 0.91692$.

13.3 First, the golden ratio can be used to create the interior points,

\[
d = \frac{\sqrt{5} - 1}{2} (2 - 0) = 1.2361
\]

\[x_1 = 0 + 1.2361 = 1.2361\]

\[x_2 = 2 - 1.2361 = 0.7639\]

The function can be evaluated at the interior points

\[f(x_2) = f(0.7639) = 8.1879\]

\[f(x_1) = f(1.2361) = 4.8142\]

Because $f(x_2) > f(x_1)$, the maximum is in the interval defined by x_1, x_2, and x_1, where x_2 is the optimum. The error at this point can be computed as

\[\varepsilon_u = (1 - 0.61803) \left| \frac{2 - 0}{0.7639} \right| \times 100\% = 100\%\]

For the second iteration, $x_1 = 0$ and $x_u = 1.2361$. The former x_2 value becomes the new x_1, that is, $x_1 = 0.7639$ and $f(x_1) = 8.1879$. The new values of d and x_2 can be computed as

\[d = \frac{\sqrt{5} - 1}{2} (1.2361 - 0) = 0.7639\]

\[x_2 = 1.2361 - 0.7639 = 0.4721\]

The function evaluation at $f(x_2) = 5.5496$. Since this value is less than the function value at x_1, the maximum is in the interval prescribed by x_2, x_1, and x_u. The process can be repeated and all three iterations summarized as
13.4 First, the function values at the initial values can be evaluated

\[f(x_0) = f(0) = 0 \]
\[f(x_1) = f(1) = 8.5 \]
\[f(x_2) = f(2) = -104 \]

and substituted into Eq. (13.7) to give,

\[x_3 = \frac{0(1^2 - 2^2) + 8.5(2^2 - 0^2) + (-104)(0^2 - 1^2)}{2(0)(1 - 2) + 2(8.5)(2 - 0) + 2(-104)(0 - 1)} = 0.570248 \]

which has a function value of \(f(0.570248) = 6.5799 \). Because the function value for the new point is lower than for the intermediate point \((x_1) \) and the new \(x \) value is to the left of the intermediate point, the lower guess \((x_0) \) is discarded. Therefore, for the next iteration,

\[f(x_0) = f(0.570248) = 6.6799 \]
\[f(x_1) = f(1) = 8.5 \]
\[f(x_2) = f(2) = -104 \]

which can be substituted into Eq. (13.7) to give \(x_3 = 0.812431 \), which has a function value of \(f(0.812431) = 8.446523 \). At this point, an approximate error can be computed as

\[\varepsilon_a = \left| \frac{0.81243 - 0.570248}{0.81243} \right| \times 100\% = 29.81\% \]

The process can be repeated, with the results tabulated below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_0)</th>
<th>(f(x_0))</th>
<th>(x_1)</th>
<th>(f(x_1))</th>
<th>(x_2)</th>
<th>(f(x_2))</th>
<th>(x_3)</th>
<th>(f(x_3))</th>
<th>(\varepsilon_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00000</td>
<td>0.00000</td>
<td>1.00000</td>
<td>8.50000</td>
<td>2.00000</td>
<td>-104</td>
<td>0.57025</td>
<td>6.57991</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.57025</td>
<td>6.57991</td>
<td>1.00000</td>
<td>8.50000</td>
<td>2.00000</td>
<td>-104</td>
<td>0.81243</td>
<td>8.44652</td>
<td>29.81%</td>
</tr>
<tr>
<td>3</td>
<td>0.81243</td>
<td>8.44652</td>
<td>1.00000</td>
<td>8.50000</td>
<td>2.00000</td>
<td>-104</td>
<td>0.90772</td>
<td>8.69575</td>
<td>10.50%</td>
</tr>
</tbody>
</table>

Thus, after 3 iterations, the result is converging on the true value of \(f(x) = 8.69793 \) at \(x = 0.91692 \).

13.5 The first and second derivatives of the function can be evaluated as

\[f'(x) = -9x^5 - 8x^3 + 12 \]
\[f''(x) = -45x^4 - 24x^2 \]

which can be substituted into Eq. (13.8) to give

\[x_{i+1} = x_i - \frac{-9x_i^5 - 8x_i^3 + 12}{-45x_i^4 - 24x_i^2} \]
Substituting the initial guess yields
\[x_{r+1} = 2 - \frac{-9(2^3) - 8(2^3) + 12}{-45(2^4) - 24(2^2)} = 2 - \frac{-340}{-816} = 1.583333 \]
which has a function value of \(-17.2029\). The second iteration gives
\[x_{r+1} = 1.583333 - \frac{-9(1.583333^3) - 8(1.583333^3) + 12}{-45(1.583333^4) - 24(1.583333^2)} = 1.583333 - \frac{-109.313}{-342.981} = 1.26462 \]
which has a function value of \(3.924617\). At this point, an approximate error can be computed as
\[\varepsilon = \left| \frac{1.26462 - 1.583333}{1.26462} \right| \times 100\% = 26.316\% \]

The process can be repeated, with the results tabulated below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>-104</td>
<td>-340</td>
<td>-816</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.583333</td>
<td>-17.2029</td>
<td>-109.313</td>
<td>-342.981</td>
<td>26.316%</td>
</tr>
<tr>
<td>2</td>
<td>1.26462</td>
<td>3.924617</td>
<td>-33.2898</td>
<td>-153.476</td>
<td>25.202%</td>
</tr>
<tr>
<td>3</td>
<td>1.047716</td>
<td>8.178616</td>
<td>-8.56281</td>
<td>-80.5683</td>
<td>20.703%</td>
</tr>
</tbody>
</table>

Thus, within five iterations, the result is converging on the true value of \(f(x) = 8.69793\) at \(x = 0.91692\).

13.6 (a) First, the golden ratio can be used to create the interior points,
\[d = \frac{\sqrt{5} - 1}{2}(4 - (-2)) = 3.7082 \]
\[x_1 = -2 + 3.7082 = 1.7082 \]
\[x_2 = 4 - 3.7082 = 0.2918 \]
The function can be evaluated at the interior points
\[f(x_2) = f(0.2918) = 1.04156 \]
\[f(x_1) = f(1.7082) = 5.00750 \]
Because \(f(x_1) > f(x_2)\), the maximum is in the interval defined by \(x_2, x_1\) and \(x_u\) where \(x_1\) is the optimum. The error at this point can be computed as
\[\varepsilon = (1 - 0.61803) \left| \frac{4 - (-2)}{1.7082} \right| \times 100\% = 134.16\% \]

The process can be repeated and all the iterations summarized as

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_1)</th>
<th>(f(x_1))</th>
<th>(x_2)</th>
<th>(f(x_2))</th>
<th>(x_1)</th>
<th>(f(x_1))</th>
<th>(x_u)</th>
<th>(f(x_u))</th>
<th>(d)</th>
<th>(x_{opt})</th>
<th>(\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2.0000</td>
<td>-29.6000</td>
<td>0.2918</td>
<td>1.0416</td>
<td>1.7082</td>
<td>5.0075</td>
<td>4.0000</td>
<td>-12.8000</td>
<td>3.7082</td>
<td>1.7082</td>
<td>134.16%</td>
</tr>
<tr>
<td>2</td>
<td>0.2918</td>
<td>1.0416</td>
<td>1.7082</td>
<td>5.0075</td>
<td>2.5836</td>
<td>5.6474</td>
<td>4.0000</td>
<td>-12.8000</td>
<td>2.2918</td>
<td>2.5836</td>
<td>54.82%</td>
</tr>
<tr>
<td>3</td>
<td>1.7082</td>
<td>5.0075</td>
<td>2.5836</td>
<td>5.6474</td>
<td>3.1246</td>
<td>2.9361</td>
<td>4.0000</td>
<td>-12.8000</td>
<td>1.4164</td>
<td>2.5836</td>
<td>33.88%</td>
</tr>
</tbody>
</table>

PROPRIETARY MATERIAL. © The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.
(b) First, the function values at the initial values can be evaluated

\[f(x_0) = f(1.75) = 5.1051 \]
\[f(x_1) = f(2) = 5.6 \]
\[f(x_2) = f(2.5) = 5.7813 \]

and substituted into Eq. (13.7) to give,

\[x_3 = \frac{5.1051(2^2 - 2.5^2) + 5.6(2.5^2 - 1.75^2) + 5.7813(1.75^2 - 2^2)}{2(5.1051)(2 - 2.5) + 2(5.6)(2.5 - 1.75) + 2(5.7813)(1.75 - 2)} = 2.3341 \]

Second iteration:

\[f(x_0) = f(2) = 5.6 \]
\[f(x_1) = f(2.5) = 5.7813 \]
\[f(x_2) = f(2.3341) = 5.8852 \]

which can be substituted into Eq. (13.7) to give \(x_3 = 2.3112 \), which has a function value of \(f(2.3112) = 5.8846 \). At this point, an approximate error can be computed as

\[\epsilon_a = \left| \frac{2.3112 - 2.3341}{2.3112} \right| \times 100\% = 0.99\% \]

The process can be repeated, with the results tabulated below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x_0)</th>
<th>(f(x_0))</th>
<th>(x_1)</th>
<th>(f(x_1))</th>
<th>(x_2)</th>
<th>(f(x_2))</th>
<th>(x_3)</th>
<th>(f(x_3))</th>
<th>(\epsilon_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.7500</td>
<td>5.1051</td>
<td>2.0000</td>
<td>5.6000</td>
<td>2.5000</td>
<td>5.7813</td>
<td>2.3341</td>
<td>5.8852</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
<td>5.6000</td>
<td>2.5000</td>
<td>5.7813</td>
<td>2.3341</td>
<td>5.8852</td>
<td>2.3112</td>
<td>5.8846</td>
<td>0.99%</td>
</tr>
<tr>
<td>3</td>
<td>2.5000</td>
<td>5.7813</td>
<td>2.3341</td>
<td>5.8852</td>
<td>2.3112</td>
<td>5.8846</td>
<td>2.3260</td>
<td>5.8853</td>
<td>0.64%</td>
</tr>
<tr>
<td>4</td>
<td>2.3341</td>
<td>5.8852</td>
<td>2.3112</td>
<td>5.8846</td>
<td>2.3260</td>
<td>5.8853</td>
<td>2.3263</td>
<td>5.8853</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

Thus, after 4 iterations, the result is converging rapidly on the true value of \(f(x) = 5.8853 \) at \(x = 2.3263 \).

(c) The first and second derivatives of the function can be evaluated as

\[f'(x) = 4 - 3.6x + 3.6x^2 - 1.2x^3 \]
\[f''(x) = -3.6 + 7.2x - 3.6x^2 \]

which can be substituted into Eq. (13.8) to give
\[x_{i+1} = x_i - \frac{4 - 3.6x_i + 3.6x_i^2 - 1.2x_i^3}{-3.6 + 7.2x_i - 3.6x_i^2} = 3 - \frac{-6.8}{-14.4} = 2.5278 \]

which has a function value of 5.7434. The second iteration gives 2.3517, which has a function value of 5.8833. At this point, an approximate error can be computed as \(\varepsilon_a = 18.681\% \). The process can be repeated, with the results tabulated below:

<table>
<thead>
<tr>
<th>(i)</th>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
<th>(\varepsilon_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0000</td>
<td>3.9000</td>
<td>-6.8000</td>
<td>-14.4000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.5278</td>
<td>5.7434</td>
<td>-1.4792</td>
<td>-8.4028</td>
<td>18.681%</td>
</tr>
<tr>
<td>2</td>
<td>2.3517</td>
<td>5.8833</td>
<td>-0.1639</td>
<td>-6.5779</td>
<td>7.485%</td>
</tr>
<tr>
<td>3</td>
<td>2.3268</td>
<td>5.8853</td>
<td>-0.0030</td>
<td>-6.3377</td>
<td>1.071%</td>
</tr>
<tr>
<td>4</td>
<td>2.3264</td>
<td>5.8853</td>
<td>0.0000</td>
<td>-6.3332</td>
<td>0.020%</td>
</tr>
</tbody>
</table>

Thus, within four iterations, the result is converging on the true value of \(f(x) = 5.8853 \) at \(x = 2.3264 \).

13.7 The function can be differentiated twice to give

\[
\begin{align*}
 f'(x) &= -4x^3 - 6x^2 - 16x - 5 \\
 f''(x) &= -12x^2 - 12x - 16
\end{align*}
\]

which is negative for \(-2 \leq x \leq 1\). This suggests that an optimum in the interval would be a maximum. A graph of the original function shows a maximum at about \(x = -0.35 \).

13.8 (a) First, the golden ratio can be used to create the interior points,

\[
d = \frac{\sqrt{5} - 1}{2} - (1 - (-2)) = 1.8541
\]

\[
x_1 = -2 + 1.8541 = -0.1459
\]

\[
x_2 = 1 - 1.8541 = -0.8541
\]

The function can be evaluated at the interior points

\[
\begin{align*}
 f(x_2) &= f(-0.8541) = -0.8514 \\
 f(x_1) &= f(-0.1459) = 0.5650
\end{align*}
\]

Because \(f(x_1) < f(x_2) \), the maximum is in the interval defined by \(x_2, x_1 \) and \(x_o \) where \(x_1 \) is the optimum. The error at this point can be computed as
14.7 The partial derivatives can be evaluated at the initial guesses, \(x = 0 \) and \(y = 0 \),

\[
\frac{\partial f}{\partial x} = 3.5 + 2x - 4x^3 - 2y = 3.5 + 2(0) - 4(0)^3 - 2(0) = 3.5 \\
\frac{\partial f}{\partial y} = 2 - 2x - 2y = 2 - 2(0) - 2(0) = 2 \\
f(0 + 3.5h, 0 + 2h) = 16.25h - 5.75h^2 - 150.06h^4 \\
g'(h) = 16.25 - 11.5h - 600.25h^3
\]

The root of this equation can be determined by bisection. Using initial guesses of \(h = 0 \) and 1 yields a root of \(h^* = 0.27893 \) after 13 iterations with \(\epsilon_a = 0.04\% \). Therefore,

\[
x = 0 + 3.5(0.27893) = 0.976257 \\
y = 0 + 2(0.27893) = 0.557861
\]

14.8

\[
\frac{\partial f}{\partial x} = -8 + 2x - 2y \\
\frac{\partial f}{\partial y} = 12 + 8y - 2x
\]

At \(x = y = 0 \),

\[
\frac{\partial f}{\partial x} = -8 \\
\frac{\partial f}{\partial y} = 12
\]

\[
f(0 - 8h, 0 + 12h) = g(h) \\
g(h) = 832h^2 + 208h
\]

At \(g'(h) = 0 \), \(h^* = -0.125 \).

Therefore,

\[
x = 0 - 8(-0.125) = 1 \\
y = 0 + 12(-0.125) = -1.5
\]