EAD 115

Numerical Solution of Engineering and Scientific Problems

David M. Rocke
Department of Applied Science
Numerical Integration

• Some functions of known form can be integrated analytically
• Others require numerical estimates because the form of the integrand yields no closed form solution
• Sometimes the function may not even be defined by an equation, but rather by a computer program
\[
\int_1^2 x^3 \, dx = \frac{x^4}{4} \bigg|_1^2 = \frac{16}{4} - \frac{1}{4} = \frac{15}{4}
\]

\[
\int_0^{\pi/2} \sin(x) \, dx = -\cos(x) \bigg|_0^{\pi/2}
= -\cos(\pi/2) + \cos(0)
= 0 + 1 = 1
\]

\[
\int_1^4 e^{-x^2} \, dx = ?
\]
The Definite Integral

\[\int_a^b f(x)\,dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} \left(\frac{b-a}{n} \right) f\left(a + i\frac{b-a}{n} \right) \]

Left and right Riemann sums, and the midpoint rule give definition, not a good computational method. Exact only for constant functions (LR and RR) or linear functions (MR).
\[\int_{0}^{2} \frac{2 + \cos \left(1 + \frac{x^{3/2}}{2}\right)}{\sqrt{1 + 0.5 \sin x}} \ e^{0.5x} \ dx \]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>2.599</td>
</tr>
<tr>
<td>0.75</td>
<td>2.414</td>
</tr>
<tr>
<td>1.25</td>
<td>1.945</td>
</tr>
<tr>
<td>1.75</td>
<td>1.993</td>
</tr>
</tbody>
</table>

(c) Discrete points
Continuous function
Example

- \(f(x) = \exp(-x^2) \)
- Use left Riemann sum
- Integrate from 0 to 2
- Exact value is 0.882

<table>
<thead>
<tr>
<th>N</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.126</td>
</tr>
<tr>
<td>10</td>
<td>0.980</td>
</tr>
<tr>
<td>20</td>
<td>0.931</td>
</tr>
<tr>
<td>50</td>
<td>0.902</td>
</tr>
<tr>
<td>100</td>
<td>0.891</td>
</tr>
</tbody>
</table>
Trapezoidal Rule

• Simple Riemann sum approximates the function over each interval by a constant function
• We can use linear, quadratic, etc. instead for more accuracy
• Using a linear approximation over each interval results in the trapezoidal rule
Linear and Quadratic Approximations
Linear Approximations over Short Intervals
Closed and Open Rules
Trapezoidal Rule for an Interval

\[(a, f(a)) \]
\[(b, f(b)) \]

\[f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \]

\[\int_a^b f_1(x) \, dx = f(a)x + \frac{f(b) - f(a)}{2(b - a)} (x - a)^2 \Bigg|_a^b \]

\[= f(a)b + \frac{f(b) - f(a)}{2(b - a)} (b - a)^2 - f(a)a \]

\[= f(a)(b - a) + \frac{f(b) - f(a)}{2} (b - a) \]

\[= (b - a) \frac{f(b) + f(a)}{2} \]
Trapezoidal Rule for a Subdivided Interval

- Divide the interval \([a, b]\) into \(n\) equal segments, each of width \((b-a)/n\)
- Apply the trapezoidal rule to each segment
- Add up all the results
- This is much more accurate than the simple Riemann sum
\[h = (b - a) / n \]

\[x_i = a + ih \quad i = 0, 1, 2, \ldots, n \]

\[f_i = f(x_i) \]

\[0.5h(f_0 + f_1) + 0.5h(f_1 + f_2) + \cdots + 0.5h(f_{n-2} + f_{n-1}) + 0.5h(f_{n-1} + f_n) \]

\[= 0.5h \left[f_0 + 2 \sum_{i=1}^{n-1} f_i + f_n \right] = nh \frac{f_0 + 2 \sum_{i=1}^{n-1} f_i + f_n}{2n} \]

\[= (b - a) \frac{f_0 + 2 \sum_{i=1}^{n-1} f_i + f_n}{2n} = \text{(width)(average height)} \]
$f(x)$

$x_0 = a$

$h = \frac{b - a}{n}$

$x_n = b$
Example

- \(f(x) = \exp(-x^2) \)
- Use trapezoidal rule
- Integrate from 0 to 2
- Exact value is 0.8820814

<table>
<thead>
<tr>
<th>N</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.8806186</td>
</tr>
<tr>
<td>10</td>
<td>0.8818388</td>
</tr>
<tr>
<td>20</td>
<td>0.8820204</td>
</tr>
<tr>
<td>50</td>
<td>0.8820716</td>
</tr>
<tr>
<td>100</td>
<td>0.8820789</td>
</tr>
</tbody>
</table>
(a) Single-segment

FUNCTION Trap (h, f0, f1)
 Trap = h * (f0 + f1)/2
END Trap

(b) Multiple-segment

FUNCTION Trapm (h, n, f)
 sum = f0
 DO i = 1, n - 1
 sum = sum + 2 * f_i
 END DO
 sum = sum - f_n
 Trapm = h * sum / 2
END Trapm
Simpson’s Rules
Simpson’s Rules

• Simpson’s rules generalize the trapezoidal rule to use more than two points per interval, so we can use quadratic or cubic models instead of linear.

• We will mainly cover the quadratic model, or Simpson’s 1/3 rule.
Quadratic Interpolation

- For a single interval, we will derive Simpson’s 1/3 rule
- We will need to find the quadratic equation that goes through three points \((x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))\)
- We will then integrate the quadratic to obtain the estimate of the integral
- This also integrates cubics exactly
\[f_0 = f(x_0) \quad f_1 = f(x_1) \quad f_2 = f(x_2) \]
\[h = x_2 - x_1 = x_1 - x_0 \]
\[\tilde{f}(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} f_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} f_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} f_2 \]
\[2h^2 \tilde{f}(x) = (x-x_1)(x-x_2) f_0 - 2(x-x_0)(x-x_2) f_1 + (x-x_0)(x-x_1) f_2 \]
\[\int_{x_0}^{x_2} \tilde{f}(x) dx = \frac{1}{2h^2} \int_0^{2h} (y-h)(y-2h)f_0 - 2y(y-2h)f_1 + y(y-h)f_2 dy \]
\[= \frac{h}{3} (f_0 + 4f_1 + f_2) = 2h \frac{f_0 + 4f_1 + f_2}{6} = \text{width/average height} \]
\[\int_0^{2h} y(y-h)dy = \frac{1}{3} y^3 - \frac{1}{2} hy^2 \bigg|_0^{2h} = \frac{8}{3} h^3 - 2h^3 = \frac{2}{3} h^3 \]
\[\int_0^{2h} (y-h)(y-2h)dy = \frac{1}{3} y^3 - \frac{3}{2} hy^2 + 2h^2 y \bigg|_0^{2h} = \frac{8}{3} h^3 - 6h^3 + 4h^3 = \frac{2}{3} h^3 \]
\[-2 \int_0^{2h} y(y-2h)dy = -\frac{2}{3} y^3 + 2hy^2 \bigg|_0^{2h} = -\frac{16}{3} h^3 + 8h^3 = \frac{8}{3} h^3 \]
Simpson’s 1/3 Rule for a Subdivided Interval

- Divide the interval \([a, b]\) into \(n\) equal segments, each of width \((b-a)/n\)
- Apply the Simpson’s 1/3 rule to each pair of segments
- Add up all the results
- This is more accurate than the trapezoidal rule
\[
\frac{h}{3} \left[f_0 + 4f_1 + f_2 + 4f_3 + f_4 + \cdots + f_{n-4} + 4f_{n-3} + f_{n-2} + 4f_{n-1} + f_n \right]
\]

\[
\frac{h}{3} \left[f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \cdots + 2f_{n-4} + 4f_{n-3} + 2f_{n-2} + 4f_{n-1} + f_n \right]
\]

\[n = 2m \text{ is even}\]
Example

- \(f(x) = \exp(-x^2) \)
- Use Simpson’s rule
- Integrate from 0 to 2
- Exact value is 0.8820814

<table>
<thead>
<tr>
<th>N</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.8818124</td>
</tr>
<tr>
<td>10</td>
<td>0.8820749</td>
</tr>
<tr>
<td>20</td>
<td>0.8820810</td>
</tr>
<tr>
<td>50</td>
<td>0.8820814</td>
</tr>
<tr>
<td>100</td>
<td>0.8820814</td>
</tr>
</tbody>
</table>
Simpson’s 3/8 Rule

• Uses four points to fit a cubic polynomial
• Is not theoretically more accurate than the 1/3 rule, but can use an odd number of segments
• We can combine this with Simpson’s 1/3 rule if the number of segments is odd
• With 15 intervals (16 points), this is 6 Simpson’s 1/3 rule plus 1 of Simpson’s 3/8 rule
\[= \frac{3h}{8} \left[f_0 + 3f_1 + 3f_2 + f_3 \right] \]

\[= (b - a) \frac{f_0 + 3f_1 + 3f_2 + f_3}{8} \]

\[= (\text{width})(\text{average height}) \]
(a)
FUNCTION Simp13 (h, f0, f1, f2)
 Simp13 = 2*h*(f0+4*f1+f2) / 6
END Simp13

(b)
FUNCTION Simp38 (h, f0, f1, f2, f3)
 Simp38 = 3*h*(f0+3*(f1+f2)+f3) / 8
END Simp38

(c)
FUNCTION Simp13m (h, n, f)
 sum = f(0)
 DO i = 1, n-2, 2
 sum = sum + 4 * fi + 2 * fi+1
 END DO
 sum = sum + 4 * fn-1 + fn
 Simp13m = h * sum / 3
END Simp13m

(d)
FUNCTION SimpInt(a,b,n,f)
 h = (b - a) / n
 IF n = 1 THEN
 sum = Trap(h,fn-1,fn)
 ELSE
 m = n
 odd = n / 2 - INT(n / 2)
 IF odd > 0 AND n > 1 THEN
 sum = sum + Simp38(h,fn-3,fn-2,fn-1,fn)
 m = n - 3
 END IF
 IF m > 1 THEN
 sum = sum + Simp13m(h,m,f)
 END IF
 END IF
 SimpInt = sum
END SimpInt
Theoretical Errors of Newton-Cotes Methods

- Left and right Riemann integral formulas have errors of $O(h)$. In the case of a linear function, $y = c+dx$ for example, integrated over the interval $[a, b]$, each approximating rectangle is missing a triangular portion whose base is h and whose height is dh, and there are n such triangles (h is the length of the interval divided by n), so the total error is $ndh^2 / 2 = d(b-a)h/2$, which is proportional to h
Improving Left and Right Riemann Sums

• We can eliminate these triangles in two ways
• We can use a central Riemann sum that uses points in the middle of the intervals (open rule). This fits straight lines exactly
• We can use the trapezoidal rule, which also fits straight lines exactly
• Both these have $O(h^2)$ errors
Error in Simpson’s Rule

- The error in Simpson’s 1/3 rule is is $O(h^4)$
- Compare this to left and right Riemann sums with errors at $O(h)$ and the central Riemann sum and trapezoidal rule with errors at $O(h^2)$
- This means that in general Simpson’s rule is more accurate at a given value of n
- It also gives information about changes of errors with n
Absolute Errors of Three Integration Methods
\(f(x) = \exp(-x^2) \), Integrate from 0 to 2,
Exact value is 0.8820814

<table>
<thead>
<tr>
<th>(N)</th>
<th>(R_L)</th>
<th>Trap</th>
<th>Simp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>(2 \times 10^{-1})</td>
<td>(1 \times 10^{-3})</td>
<td>(2 \times 10^{-4})</td>
</tr>
<tr>
<td>10</td>
<td>(1 \times 10^{-1})</td>
<td>(2 \times 10^{-4})</td>
<td>(6 \times 10^{-6})</td>
</tr>
<tr>
<td>20</td>
<td>(5 \times 10^{-2})</td>
<td>(6 \times 10^{-5})</td>
<td>(4 \times 10^{-7})</td>
</tr>
<tr>
<td>50</td>
<td>(2 \times 10^{-2})</td>
<td>(1 \times 10^{-5})</td>
<td>(1 \times 10^{-8})</td>
</tr>
<tr>
<td>100</td>
<td>(1 \times 10^{-2})</td>
<td>(2 \times 10^{-6})</td>
<td>(6 \times 10^{-10})</td>
</tr>
</tbody>
</table>