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1. Ozone (O3) is a major component of air pollution in many cities. Atmospheric ozone levels are 
influenced by many factors, including weather. In one study, the mean percent relative humidity 
(x) and the mean ozone levels (y) were measured for 120 days in a western city. Mean ozone levels 
were measured in ppb. The following output (from MATLAB) describes the fit of a linear model to 
these data. Assume that the required assumptions are satisfied sufficiently well that we can do the 
usual analysis.

>> fitlm(Humidity,Ozone)
Linear regression model:

y ~ 1 + x1
Estimated Coefficients:

Estimate        SE            tStat pValue
(Intercept)    29.7240        2.051         14.490      0.0000
x1             -0.1268      0.03825         -3.315      0.0006   

Number of observations: 120, Error degrees of freedom: 118
Root Mean Squared Error: 6.26
R-squared: 0.960,  Adjusted R-Squared 0.890

a.  What is the slope of the least-squares line?
b.  Find a 95% confidence interval for the slope.
c.  Perform a test of the null hypothesis that the slope is greater than or equal to −0.1. What is the 
P-value?
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a) The slope of the regression line is the predictor 
coefficient −0.1268

b) The standard error of the slope is 0.03825. We have 
n = 120, so we can use a z interval based on 
z0.025 = 1.960 (or we could use t118, 0.025 = 1.98) so
−0.1268 ± (1.960)(0.03825)
−0.1268 ± 0.07497
(−0.2018, −0.0518)

c) The test statistic is  (−0.1268 − (− 0.1)/0.03825 
= − 0.701, so p = 2(0.2416) = 0.4832, don’t reject the 
null
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2.  The article “Computation of Equilibrium Oxidation and Reduction Potentials 
for Reversible and Dissociative Electron-Transfer Reactions in Solution” (P. 
Winget, C. Cramer, and D. Truhlar, Theoretical Chemistry Accounts, 2004:217–
227) presents several models for estimating aqueous one-electron potentials. The 
data set HW7-2.csv presents true potentials, measured experimentally in volts 
relative to the normal hydrogen electrode, for phenol and 23 substituted phenols, 
along with the corresponding value from the Austin model. Although the model 
values are not close to the true values, it is thought that they follow a linear model 
y = β0+ β1x + ε, where y is the true value and x is the model value.

a.  Compute the least-squares line for predicting the true potential from the 
model value.
b.  Compute 95% confidence intervals for β0 and β1.
c.  Two molecules differ in their model value by 0.5. By how much do you estimate 
that their true potentials will differ?
d.  A molecule has a model value of 4.3. Find a 95% confidence interval for its true 
potential.
e.  Can you conclude that the mean potential of molecules whose model value is 
4.5 is greater than 0.93? Explain.
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a.  Compute the least-squares line for predicting the true potential from the model value.
>> HW72lm = fitlm(HW72)

Linear regression model:
TRUE ~ 1 + Model

Estimated Coefficients:
Estimate       SE        tStat pValue
________    ________    _______    __________

(Intercept)    -0.37909     0.11329    -3.3463     0.0029224
Model           0.30201    0.026479     11.406    1.0478e-10

Number of observations: 24, Error degrees of freedom: 22
Root Mean Squared Error: 0.0514
R-squared: 0.855,  Adjusted R-Squared 0.849
F-statistic vs. constant model: 130, p-value = 1.05e-10

y-hat = -0.37909 + 0.30201x

b.  Compute 95% confidence intervals for β0 and β1.
t22,0.025 = 2.0739

-0.3791 ± (2.074)(0.1133) or -0.3791 ± 0.2350 or (−0.614, −0.144)
0.3020 ± (2.074)(0.0265) or  0.3020 ± 0.0549 or (0.247, 0.357)
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Estimated Coefficients:
Estimate    SE          tStat pValue

(Intercept)    -0.37909     0.11329    -3.3463     0.0029224
Model           0.30201    0.026479     11.406    1.0478e-10

c.  Two molecules differ in their model value by 0.5. By how much do you estimate that their true potentials will differ?

(0.5)(0.30201) = 0.151

d.  A molecule has a model value of 4.3. Find a 95% confidence interval for its true potential.

>> [pred ci] = predict(HW72lm,4.3)
pred =

0.9196
ci =

0.8977    0.9415

The CI is (0.8977. 0.9415), a CI for the mean true value when the model value is 4.3.
or

The prediction interval was not requested, but it can be found as follows:

>> [pred ci] = predict(HW72lm,4.3,'Prediction','observation')
ci =

0.8107    1.0284

The prediction interval for an observation with model value 4.3 is (0.8107, 1.0284)
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e.  Can you conclude that the mean potential of molecules whose model value is 4.5 is 
greater than 0.93? Explain.

>> [pred ci] = predict(HW72lm,4.5)

pred =

0.9800

ci =

0.9545    1.0054

Since the CI does not include 0.93,we reject the null hypothesis. 

Alternatively, the CI is the prediction ± t22,0.025se(prediction) so 
0.02545 = t22,0.025se(prediction) and since the t-value is 2.0739, 
we have se(prediction) = 0.02545/2.0739 = 0.01227
The test statistic is (0.9800 − 0.9300)/0.01227 = 4.074 and 
p = 0.00025. This is of course a two-sided test.
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e.  Can you conclude that the mean potential of molecules 
whose model value is 4.5 is greater than 0.93? Explain.
Computing by hand, we need
n = 24

s2 = 0.05142

SSX = var(HW72.Model)*23 

= 0.1640*23 = 3.7709

(x – xbar)2 = (4.5 - mean(HW82.Model))2

= (4.5 – 4.2599)2 = 0.0577

SE(prediction) 

= 0.0514*sqrt(1/24 + 0.0577/3.7709) 

= 0.01227
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3.  Two radon detectors were placed in different locations in the basement 
of a home. Each provided an hourly measurement of the radon 
concentration, in units of pCi/L. The data are presented in the file 
HW7-3.csv.

a.  Compute the least-squares line for predicting the radon concentration 
at location 2 from the concentration at location 1.
b.  Plot the residuals versus the fitted values. Does the linear model seem 
appropriate?
c.  Divide the data into two groups: points where R1 < 4 in one group, 
points where R1 ≥ 4 in the other. Compute the least-squares line and the 
residual plot for each group. Does the line describe either group well? 
Which one?
d.  Explain why it might be a good idea to fit a linear model to part of 
these data, and a nonlinear model to the other.
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a.  Compute the least-squares line for predicting the radon concentration at location 2 from 
the concentration at location 1.
>> HW73lm = fitlm(HW73)

Linear regression model:
R2 ~ 1 + R1

Estimated Coefficients:
Estimate    SE          tStat pValue

(Intercept)    0.46358      0.11724    3.9541      0.000269
R1             0.57112     0.026908    21.224    4.4867e-25

>> plotResiduals(HW73lm,'fitted')
>> scatter(HW73.R1,HW73.R2)
>> lsline

b.  Plot the residuals versus the fitted values. Does the linear model seem appropriate?

No. The relationship appears curved.
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c.  Divide the data into two groups: points where R1 < 4 in one group, points where R1 ≥ 4 in the other. Compute the least-
squares line and the residual plot for each group. Does the line describe either group well? Which one?
>> fitlm(HW73(1:24,:))
Estimated Coefficients:

Estimate    SE          tStat pValue
(Intercept)      1.233     0.071943    17.139    3.2661e-14
R1             0.26358     0.024188    10.897    2.4736e-10 

R2 = 1.233 + 0.26358R1

>> fitlm(HW73(25:47,:))
Estimated Coefficients:

Estimate    SE          tStat pValue
(Intercept)    -0.19001     0.17932    -1.0596       0.30136
R1              0.70999    0.032981     21.527    8.5715e-16

R2 = −0.19001 + 0.70999R1

>> plotResiduals(fitlm(HW73(1:24,:)),'fitted')
>> plotResiduals(fitlm(HW73(25:47,:)),'fitted')

The first residual plot shows an S-shaped pattern, the second one, no pattern.

d.  Explain why it might be a good idea to fit a linear model to part of these data, and a nonlinear model to the other.

The linear model seems to work well when R > 4 but not for smaller values. We might use 
a quadratic or cubic curve for that part (or a cubic spline overall, though that is 
beyond the scope of the course).
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4. In an experiment to determine the factors affecting tensile strength in steel plates, the tensile strength (in 
kg/mm2), the manganese content (in parts per thousand), and the thickness (in mm) were measured for a sample 
of 20 plates. The following MINITAB output presents the results of fitting the model 
Tensile strength = β0+ β1 Manganese+β2 Thickness.

Strength  =  26.641  +  3.3201  Manganese  — 0.4249  Thickness

Predictor Coef StDev T P

Constant 26.641 2.72340  9.78 0.000

Manganese 3.3201 0.33198 10.00 0.000

Thickness—0.4249 0.12606 —3.37 0.004

S  =  0.8228 R-Sq =  86.2% R-Sq(adj)  =  84.6%

Analysis  of  Variance

Source DF SS MS F P

Regression        2 72.01 36.005 53.19 0.000

Residual  Error  17 11.508 0.6769

Total            19 83.517
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4. In an experiment to determine the factors affecting tensile strength in steel 
plates, the tensile strength (in kg/mm2), the manganese content (in parts per 
thousand), and the thickness (in mm) were measured for a sample of 20 plates. 
The following MINITAB output presents the results of fitting the model 
Tensile strength = β0+ β1 Manganese+β2 Thickness.

a.  Predict the strength for a specimen that is 10 mm thick and contains 8.2 ppt
manganese.
b.  If two specimens have the same thickness, and one contains 10 ppt more 
manganese, by how much would you predict their strengths to differ?
c.  If two specimens have the same proportion of manganese, and one is 5 mm 
thicker than the other, by how much would you predict their strengths to differ?
d. Find a 95% confidence interval for the coefficient of manganese.
e. Find a 99% confidence interval for the coefficient of thickness.
f. Can you conclude that β1 ≠ 3.
g. Can you conclude that β2 ≠ -0.1?
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4.  In an experiment to determine the factors affecting tensile strength in steel plates, the tensile strength (in 
kg/mm2), the manganese content (in parts per thousand), and the thickness (in mm) were measured for a sample 
of 20 plates. The following MINITAB output presents the results of fitting the model 
Tensile strength = β0+ β1 Manganese+β2 Thickness.

Predictor Coef StDev T P

Constant 26.641 2.72340  9.78 0.000

Manganese 3.3201 0.33198 10.00 0.000

Thickness—0.4249 0.12606 —3.37 0.004

a.  Predict the strength for a specimen that is 10 mm thick and contains 8.2 ppt manganese.

26.641 + 3.3201(8.2) − 0.4249(10) = 49.62

b.  If two specimens have the same thickness, and one contains 10 ppt more manganese, by how much would you
predict their strengths to differ?

(3.3201)(10) = 33.201 kg/mm2

c.  If two specimens have the same proportion of manganese, and one is 5 mm thicker than the other, by how 
much would you predict their strengths to differ?

(0.4249)(5) = 2.1245 kg/mm2
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4.  In an experiment to determine the factors affecting tensile strength in steel plates, the tensile strength (in 
kg/mm2), the manganese content (in parts per thousand), and the thickness (in mm) were measured for a sample 
of 20 plates. The following MINITAB output presents the results of fitting the model 
Tensile strength = β0+ β1 Manganese+β2 Thickness.

Predictor Coef StDev T P

Constant 26.641 2.72340  9.78 0.000

Manganese 3.3201 0.33198 10.00 0.000

Thickness—0.4249 0.12606 —3.37 0.004

d. Find a 95% confidence interval for the coefficient of manganese.

>> tinv(0.025,17) = 2.1098

3.3201 ± (2.1098)(0.33198)

3.3201 ± 0.7004

(2.6197, 4.0205)

e. Find a 99% confidence interval for the coefficient of thickness.

>> tinv(0.005,17) = 2.8982

-0.4249 ± (2.8982)(0.12606)

-0.4249 ± 0.3654

(-0.7903, -0.0595)
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Predictor Coef StDev T P

Constant 26.641 2.72340  9.78 0.000

Manganese 3.3201 0.33198 10.00 0.000

Thickness —0.4249 0.12606 —3.37 0.004

f.  Can you conclude that β1 ≠ 3? Perform the appropriate hypothesis test.

First, 3 is in the CI (2.6197, 4.0205), so the hypothesis is not 
rejected. Also, (3.3201 −3)/0.33198 = 0.9642, so p = 2(0.1742) = 
0.3484. The data are not inconsistent with β1 = 3

g.  Can you conclude that β2 ≠ −0.1? Perform the appropriate hypothesis test.

We can’t use the CI from the previous slide if we want to use a p = 
0.05 criterion. Directly, (−0.4249 + 0.1)/0.12606 = −2.577, p =  
2(0.0098) = 0.0196. The data are not consistent with β2 = −0.1.
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5.  The article “Multiple Linear Regression for Lake Ice and Lake 
Temperature Characteristics” (S. Gao and H. Stefan, Journal of 
Cold Regions Engineering, 1999:59–77) presents data on maximum 
ice thickness in mm (y), average number of days per year of ice 
cover (x1), average number of days the bottom temperature is lower 
than 8°C (x2), and the average snow depth in mm (x3) for 13 lakes in 
Minnesota. 

a.  Fit the model y = β0+β1x1+β2x2+β3x3+ε. For each coefficient, find 
the P-value for testing the null hypothesis that the coefficient is 
equal to 0.

b.  If two lakes differ by 2 in the average number of days per year of 
ice cover, with other variables being equal, by how much would you 
expect their maximum ice thicknesses to differ?

c.  Do lakes with greater average snow depth tend to have greater or 
lesser maximum ice thickness? Explain.
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a.  Fit the model y = β0+β1x1+β2x2+β3x3+ε. For each coefficient, find the P-value for testing the null 
hypothesis that the coefficient is equal to 0.

>> fitlm(HW75,'y~x1+x2+x3')

Estimated Coefficients:
Estimate    SE         tStat pValue

(Intercept)    -372.98      242.37    -1.5389      0.15821
x1              3.5368      1.1948     2.9602     0.015955
x2              3.7345      1.1069     3.3738    0.0082067
x3             -2.1661     0.85177     -2.543     0.031554

The p-values are given in the last column. All the coefficients are clearly 
non-zero except for the intercept.

b.  If two lakes differ by 2 in the average number of days per year of ice cover, with other variables being 
equal, by how much would you expect their maximum ice thicknesses to differ?

If x1 differs by 2, the max ice thickness is predicted to differ by 
(2)(3.5368) = 7.07mm

c.  Do lakes with greater average snow depth tend to have greater or lesser maximum ice thickness? 
Explain.

Greater average snow depth → less ice thickness (the coefficient is 
negative). (Snow is an insulator.)
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6.  The article “Vehicle-Arrival Characteristics at Urban Uncontrolled 
Intersections” (V. Rengaraju and V. Rao, Journal of Transportation 
Engineering, 1995:317–323) presents data on traffic characteristics at 10 
intersections in Madras, India. The data set HW7-6.csv provides data on 
road width in m (x1), traffic volume in vehicles per lane per hour (x2), and 
median speed in km/h (y).

a.  Fit the model y = β0+ β1x1+ β2x2+ ε. Find the P-values for testing that 
the coefficients are equal to 0. Use the anova command to obtain the 
analysis of variance table.

b.  Fit the model y = β0+ β1x1+ ε. Find the P-values for testing that the 
coefficients are equal to 0. Use the anova command to obtain the 
analysis of variance table.

c.  Fit the model y = β0+ β1x2+ ε. Find the P-values for testing that the 
coefficients are equal to 0. Use the anova command to obtain the 
analysis of variance table.

d.  Which of the models (a) through (c) do you think is best? Why?
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a.  Fit the model y = β0+ β1x1+ β2x2+ ε. Find the P-values for testing that the coefficients are equal to 0.
>> moda = fitlm(HW76,'y~x1+x2')

Linear regression model:
y ~ 1 + x1 + x2

Estimated Coefficients:
Estimate        SE         tStat pValue
_________    _________    _______    _________

(Intercept)       25.613       10.424     2.4572     0.043647
x1               0.18387      0.12353     1.4885      0.18024
x2             -0.015878    0.0040542    -3.9164    0.0057757

Number of observations: 10, Error degrees of freedom: 7
Root Mean Squared Error: 3.07
R-squared: 0.712,  Adjusted R-Squared 0.63
F-statistic vs. constant model: 8.65, p-value = 0.0128
>> anova(moda)

SumSq DF    MeanSq F        pValue
______    __    ______    ______    _________

x1       20.938    1     20.938    2.2155      0.18024
x2       144.95    1     144.95    15.338    0.0057757
Error    66.154    7     9.4506

Variable x1 seems unimportant and variable x2 seems important.
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b.  Fit the model y = β0+ β1x1+ ε. Find the P-values for testing that the coefficients are equal to 0.
>> modb = fitlm(HW76,'y~x1')

Linear regression model:
y ~ 1 + x1

Estimated Coefficients:
Estimate      SE        tStat pValue
________    _______    _______    _______

(Intercept)     14.444      16.754    0.86215     0.4137
x1             0.17334     0.20637    0.83993    0.42534

Number of observations: 10, Error degrees of freedom: 8
Root Mean Squared Error: 5.14
R-squared: 0.081,  Adjusted R-Squared -0.0338
F-statistic vs. constant model: 0.705, p-value = 0.425
>> anova(modb)

SumSq DF    MeanSq F       pValue
______    __    ______    _______    _______

x1       18.616    1     18.616    0.70547    0.42534
Error    211.11    8     26.389 

Variable x1 does not seem to be useful.
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c.  Fit the model y = β0+ β1x2+ ε. Find the P-values for testing that the coefficients are equal to 0.
>> modc = fitlm(HW76,'y~x2')

Linear regression model:
y ~ 1 + x2

Estimated Coefficients:
Estimate        SE         tStat pValue
_________    _________    _______    _________

(Intercept)        40.37       3.4545     11.686    2.623e-06
x2             -0.015747    0.0043503    -3.6197    0.0067859

Number of observations: 10, Error degrees of freedom: 8
Root Mean Squared Error: 3.3
R-squared: 0.621,  Adjusted R-Squared 0.573
F-statistic vs. constant model: 13.1, p-value = 0.00679
>> anova(modc)

SumSq DF    MeanSq F        pValue
______    __    ______    ______    _________

x2       142.63    1     142.63    13.102    0.0067859
Error    87.091    8     10.886 

Variable x2 seems to be a useful predictor.
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d.  Which of the models (a) through (c) do you think is 
best? Why?
x1 is not significant in the combined 
model, or in the model with just x1, so 
model c) looks best. x2 is significant 
there. The RMSE is smaller in a), but 
not by enough to be statistically 
significant. Some criteria such as the 
AIC would keep variable x1.
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7.  The article “Modeling Resilient Modulus and Temperature 
Correction for Saudi Roads” (H. Wahhab, I. Asi, and R. 
Ramadhan, Journal of Materials in Civil Engineering, 
2001:298–305) describes a study designed to predict the 
resilient modulus of pavement from physical properties. The 
file HW7-7.csv presents data for the resilient modulus at 
40°C (104°F) in 106 kPa (y), the surface area of the aggregate 
in m2/kg (x1), and the softening point of the asphalt in °C (x2).

The full quadratic model is 

y = β0+ β1x1+ β2x2+ β3x1x2+ β4x1
2 + β5x2

2+ ε. 

Which submodel of this full model do you believe is most 
appropriate? Justify your answer by fitting two or more 
models and comparing the results.
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>> model = fitlm(HW77,'y~x1*x2+x1^2+x2^2')

Linear regression model:
y ~ 1 + x1*x2 + x1^2 + x2^2

Estimated Coefficients:
Estimate        SE         tStat pValue

__________    _________    ________    _______

(Intercept)       -8.9597       50.447     -0.1776    0.86297
x1                -1.0985       3.8399    -0.28608    0.78129
x2                0.40155       1.1682     0.34374    0.73894
x1:x2            0.081573      0.10349     0.78826    0.45081
x1^2             -0.27101      0.26102     -1.0383    0.32622
x2^2           -0.0073347    0.0055679     -1.3173    0.22028

Number of observations: 15, Error degrees of freedom: 9
Root Mean Squared Error: 0.66
R-squared: 0.511,  Adjusted R-Squared 0.239
F-statistic vs. constant model: 1.88, p-value = 0.193
>> anova(model)

SumSq DF    MeanSq F       pValue
_______    __    _______    _______    _______

x1       0.10484    1     0.10484    0.24046    0.63561
x2        2.3467    1      2.3467     5.3821    0.04549
x1:x2    0.27091    1     0.27091    0.62135    0.45081
x1^2     0.47005    1     0.47005     1.0781    0.32622
x2^2     0.75662    1     0.75662     1.7353    0.22028
Error     3.9241    9     0.43601

Neither quadratic term is significant, nor is the product of x1 and x2. We remove the product 
since it has the worst p-value of the terms that can be removed. Note that variable x2 is 
significant in the anova (‘h’) because it is tested against a model not including x1:x2 and 
x2^2.
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>> model = fitlm(HW77,'y~x1+x2+x1^2+x2^2')

Linear regression model:
y ~ 1 + x1 + x2 + x1^2 + x2^2

Estimated Coefficients:
Estimate        SE         tStat pValue

__________    _________    ________    _______

(Intercept)       -42.932       25.718     -1.6693    0.12601
x1                 1.4936       1.9449     0.76795    0.46027
x2                 1.1357      0.69164      1.6421    0.13161
x1^2            -0.091797      0.12576    -0.72995    0.48217
x2^2           -0.0081813    0.0053589     -1.5267    0.15783

Number of observations: 15, Error degrees of freedom: 10
Root Mean Squared Error: 0.648
R-squared: 0.477,  Adjusted R-Squared 0.268
F-statistic vs. constant model: 2.28, p-value = 0.132
>> anova(model)

SumSq DF    MeanSq F        pValue
_______    __    _______    _______    ________

x1       0.10484     1    0.10484    0.24992     0.62795
x2        2.3467     1     2.3467     5.5939    0.039604
x1^2     0.22352     1    0.22352    0.53282     0.48217
x2^2     0.97776     1    0.97776     2.3308     0.15783
Error      4.195    10     0.4195 

Neither quadratic term is significant so we remove x1^2 since it has the worse p-value of the 
two terms that can be removed.
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>> model = fitlm(HW77,'y~x1+x2+x2^2')

model = 

Linear regression model:
y ~ 1 + x1 + x2 + x2^2

Estimated Coefficients:
Estimate        SE         tStat pValue

__________    _________    _______    _______

(Intercept)       -32.114       20.568    -1.5614    0.14673
x1               0.078541      0.15373    0.51089    0.61953
x2                0.96533      0.63709     1.5152    0.15791
x2^2           -0.0068648    0.0049379    -1.3902    0.19195

Number of observations: 15, Error degrees of freedom: 11
Root Mean Squared Error: 0.634
R-squared: 0.449,  Adjusted R-Squared 0.299
F-statistic vs. constant model: 2.99, p-value = 0.0773
>> anova(model)

ans = 

SumSq DF    MeanSq F        pValue
_______    __    _______    _______    ________

x1       0.10484     1    0.10484    0.26101     0.61953
x2        2.3356     1     2.3356     5.8144    0.034534
x2^2     0.77634     1    0.77634     1.9327     0.19195
Error     4.4185    11    0.40169 

We could remove x1 or x2^2. Even though x1 has a worse p-value, it may make sense to remove the 
quadratic term first, so we do that.
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>> model = fitlm(HW77,'y~x1+x2')

Linear regression model:
y ~ 1 + x1 + x2

Estimated Coefficients:
Estimate       SE        tStat pValue
________    ________    _______    ________

(Intercept)     -3.6833      2.2758    -1.6185     0.13153
x1             0.062295     0.15913    0.39146     0.70232
x2             0.080868    0.034816     2.3227    0.038575

Number of observations: 15, Error degrees of freedom: 12
Root Mean Squared Error: 0.658
R-squared: 0.353,  Adjusted R-Squared 0.245
F-statistic vs. constant model: 3.27, p-value = 0.0736
>> anova(model)

SumSq DF     MeanSq F        pValue
________    __    ________    _______    ________

x1       0.066339     1    0.066339    0.15324     0.70232
x2         2.3356     1      2.3356     5.3951    0.038575
Error      5.1949    12     0.43291

Now we remove x1 leaving only x2 as a predictor. 
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>> model = fitlm(HW77,'y~x2')

Linear regression model:
y ~ 1 + x2

Estimated Coefficients:
Estimate       SE        tStat pValue
________    ________    _______    ________

(Intercept)     -3.4482      2.1224    -1.6247     0.12822
x2             0.084601    0.032375     2.6131    0.021464

Number of observations: 15, Error degrees of freedom: 13
Root Mean Squared Error: 0.636
R-squared: 0.344,  Adjusted R-Squared 0.294
F-statistic vs. constant model: 6.83, p-value = 0.0215
>> anova(model)

SumSq DF    MeanSq F        pValue
______    __    _______    ______    ________

x2       2.7636     1     2.7636    6.8285    0.021464
Error    5.2612    13    0.40471 

We keep x2 because it appears to be a useful predictor.
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>> stepwiselm(HW77,'y~x1*x2+x1^2+x2^2')
1. Removing x1:x2, FStat = 0.62135, pValue = 0.45081
2. Removing x1^2, FStat = 0.53282, pValue = 0.48217
3. Removing x1, FStat = 0.26101, pValue = 0.61953
4. Removing x2^2, FStat = 1.9574, pValue = 0.18711

Linear regression model:
y ~ 1 + x2

Estimated Coefficients:
Estimate    SE          tStat pValue

(Intercept)     -3.4482      2.1224    -1.6247     0.12822
x2             0.084601    0.032375     2.6131    0.021464

Number of observations: 15, Error degrees of freedom: 13
Root Mean Squared Error: 0.636
R-squared: 0.344,  Adjusted R-Squared 0.294
F-statistic vs. constant model: 6.83, p-value = 0.0215
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8.  The article “Seismic Hazard in Greece Based on Different Strong Ground Motion Parameters” 
(S. Koutrakis, G. Karakaisis, et al., Journal of Earthquake Engineering, 2002:75–109) presents a 
study of seismic events in Greece during the period 1978–1997. Of interest is the duration of 
“strong ground motion,” which is the length of time that the acceleration of the ground exceeds a 
specified value. For each event, measurements of the duration of strong ground motion were made 
at one or more locations. The file HW7-8.csv presents, for each of 121 such measurements, the 
data for the duration of time y (in seconds) that the ground acceleration exceeded twice the 
acceleration due to gravity, the magnitude m of the earthquake, the distance d (in km) of the 
measurement from the epicenter, and two indicators of the soil type s1 and s2, defined as follows: s1
= 1 if the soil consists of soft alluvial deposits, s1 = 0 otherwise, and s2 = 1 if the soil consists of 
tertiary or older rock, s2 = 0 otherwise. Cases where both s1 = 0 and s2 = 0 correspond to 
intermediate soil conditions. The article presents repeated measurements at some locations, 
which we have not included here.

Use the data to construct a linear model to predict duration y from some or all of the variables m, 
d, s1, and s2. Be sure to consider transformations of the variables, as well as powers of and 
interactions between the independent variables. Describe the steps taken to construct your model. 
Plot the residuals versus the fitted values to verify that your model satisfies the necessary 
assumptions. In addition, note that the data is presented in chronological order, reading down the 
columns. Make a plot to determine whether time should be included as an independent variable.
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>> fitlm(HW78,'y~m+d+s1+s2')

Linear regression model:
y ~ 1 + m + d + s1 + s2

Estimated Coefficients:
Estimate     SE          tStat pValue

(Intercept)      -33.881      4.8669    -6.9615    2.1494e-10
m                  7.592     0.95277     7.9684    1.2345e-12
d              -0.076981    0.020769    -3.7065    0.00032359
s1               0.68398     0.97954    0.69826       0.48641
s2               -1.9942      1.2088    -1.6497       0.10171

Number of observations: 121, Error degrees of freedom: 116
Root Mean Squared Error: 4.71
R-squared: 0.389,  Adjusted R-Squared 0.368
F-statistic vs. constant model: 18.4, p-value = 9.51e-12

>> scatter(HW78.m, HW78.y)
>> scatter(HW78.d, HW78.y)
>> scatter(HW78.m,log(HW78.y))
>> scatter(HW78.d,log(HW78.y))
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>> HW78a = [HW78 table(log(HW78.y),'VariableNames',{'logy'})]

>> HW78afit1 = fitlm(HW88a,'logy~m+d+s1+s2')

Linear regression model:

logy ~ 1 + m + d + s1 + s2

Estimated Coefficients:

Estimate        SE         tStat        pValue  

_________    _________    ________    __________

(Intercept)        -8.13        1.719     -4.7294    6.3937e-06

m                 1.8332      0.33653      5.4474    2.9055e-07

d              -0.027724    0.0073358     -3.7793    0.00024996

s1              -0.29199      0.34598    -0.84394       0.40044

s2               -1.1798      0.42696     -2.7632     0.0066576

Number of observations: 121, Error degrees of freedom: 116

Root Mean Squared Error: 1.66

R-squared: 0.246,  Adjusted R-Squared 0.22

F-statistic vs. constant model: 9.48, p-value = 1.15e-06

>> plotResiduals(HW78afit1,'fitted')

>> HW78b = [HW78a table(sqrt(HW78.y),'VariableNames',{'sqrty'})]

>> plotResiduals(fitlm(HW78b,'sqrty~m+d+s1+s2'),'fitted')

December 3, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 41



December 3, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 42

-2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

Fitted values

R
es

id
ua

ls

Plot of residuals vs. fitted values



December 3, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 43

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-3

-2

-1

0

1

2

3

Fitted values

R
es

id
ua

ls

Plot of residuals vs. fitted values



>> crosstab(HW78.s1,HW78.s2)

43    26

52     0

>> HW78c = [HW78b table(HW78.s1+2*HW78.s2,'VariableNames',{'s12'})]

>> tabulate(HW78c.s12)

Value    Count   Percent

0       43     35.54%

1       52     42.98%

2       26     21.49%

>> HW78fit2 = fitlm(HW78c,'sqrty~m+d+s12','CategoricalVars',8)

Linear regression model:

sqrty ~ 1 + m + d + s12

Estimated Coefficients:

Estimate        SE          tStat        pValue  

_________    _________    _________    __________

(Intercept)      -5.9497       1.0112      -5.8839    3.9605e-08

m                  1.563      0.19795       7.8955    1.8055e-12

d              -0.017569    0.0043151      -4.0716    8.5648e-05

s12_1           -0.01674      0.20352    -0.082255       0.93459

s12_2           -0.63125      0.25115      -2.5135      0.013327
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>> HW78fit3 = fitlm(HW78c,'sqrty~m*d*s12+m^2+d^2','CategoricalVars',8)

>> anova(HW78fit3)

SumSq DF      MeanSq F          pValue

_________    ___    _________    _________    __________

m             58.207      1       58.207       62.253    2.7683e-12

d             12.381      1       12.381       13.242    0.00042325

s12           7.6971      2       3.8485        4.116      0.018961

m:d          0.86925      1      0.86925      0.92967       0.33712

m:s12         4.2806      2       2.1403       2.2891        0.1063

d:s12        0.84531      2      0.42266      0.45204       0.63754

m^2          0.37634      1      0.37634       0.4025       0.52716

d^2        0.0026134      1    0.0026134    0.0027951       0.95794

m:d:s12        4.896      2        2.448       2.6182      0.077605

Error         100.05    107      0.93501 
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>> HW78d = HW78c

>> HW78d(:,[1 4 5 6]) = []

>> HW78fit4 = stepwiselm(HW78d,'sqrty~m*d*s12+m^2+d^2','CategoricalVars',4)

1. Removing d^2, FStat = 0.0027951, pValue = 0.95794

2. Removing m^2, FStat = 0.52405, pValue = 0.47069

Linear regression model:

sqrty ~ 1 + m*d + m*s12 + d*s12 + m:d:s12

Estimated Coefficients:

Estimate        SE        tStat pValue

_________    ________    ________    ________

(Intercept)      -3.0645      2.3504     -1.3038     0.19505

m                 1.1048     0.42472      2.6013    0.010577

d                -0.2403     0.10611     -2.2647     0.02551

s12_1            -5.5512      2.9857     -1.8593    0.065686

s12_2           -0.80749       3.648    -0.22135     0.82523

m:d             0.035229    0.016679      2.1122     0.03695

m:s12_1          0.94322     0.55089      1.7122    0.089707

m:s12_2        -0.075238     0.66643     -0.1129     0.91032

d:s12_1          0.26996     0.11508      2.3459    0.020791

d:s12_2          0.28283     0.13398       2.111    0.037059

m:d:s12_1      -0.043186     0.01813      -2.382     0.01895

m:d:s12_2      -0.043778    0.021088     -2.0759    0.040252

Number of observations: 121, Error degrees of freedom: 109

Root Mean Squared Error: 0.96

R-squared: 0.441,  Adjusted R-Squared 0.385

F-statistic vs. constant model: 7.83, p-value = 7.25e-10
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>> anova(HW78fit4)

SumSq DF     MeanSq F         pValue

_______    ___    _______    _______    __________

m           58.764      1     58.764     63.713    1.5773e-12

d           13.293      1     13.293     14.412    0.00024184

s12         7.5885      2     3.7943     4.1138      0.018951

m:d          0.212      1      0.212    0.22986       0.63259

m:s12        3.831      2     1.9155     2.0768       0.13026

d:s12      0.63682      2    0.31841    0.34522       0.70883

m:d:s12     5.4636      2     2.7318     2.9619      0.055901

Error       100.53    109    0.92233 
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>> anova(fitlm(HW78d,'sqrty~m+d+s12+m:d+m:s12+d:s12','CategoricalVars',4))

SumSq DF     MeanSq F         pValue

_______    ___    _______    _______    __________

m         58.764      1     58.764     61.537    2.9102e-12

d         13.293      1     13.293      13.92    0.00030239

s12       7.5885      2     3.7943     3.9733      0.021546

m:d        0.212      1      0.212    0.22201       0.63844

m:s12      3.831      2     1.9155     2.0059       0.13938

d:s12    0.63682      2    0.31841    0.33344       0.71717

Error        106    111    0.95493
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>> anova(fitlm(HW78d,'sqrty~m+d+s12+m:d+m:s12','CategoricalVars',4))

SumSq DF     MeanSq F         pValue

_______    ___    _______    _______    __________

m         59.688      1     59.688     63.252    1.5236e-12

d         13.293      1     13.293     14.086    0.00027743

s12       7.5885      2     3.7943     4.0208      0.020565

m:d      0.17096      1    0.17096    0.18116       0.67119

m:s12     4.1634      2     2.0817      2.206       0.11487

Error     106.63    113    0.94367 

>> anova(fitlm(HW78d,'sqrty~m+d+s12+m:s12','CategoricalVars',4))

SumSq DF     MeanSq F         pValue

______    ___    _______    ______    __________

m        59.688      1     59.688    63.709    1.2558e-12

d        13.293      1     13.293    14.188     0.0002634

s12      7.5262      2     3.7631    4.0166      0.020623

m:s12    4.2614      2     2.1307    2.2742       0.10752

Error    106.81    114    0.93689 
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>> anova(fitlm(HW78d,'sqrty~m+d+s12','CategoricalVars',4))

ans = 

SumSq DF     MeanSq F         pValue

______    ___    _______    ______    __________

m        59.688      1     59.688     62.34    1.8055e-12

d        15.873      1     15.873    16.578    8.5648e-05

s12      7.5262      2     3.7631    3.9302      0.022308

Error    111.07    116    0.95747 
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>> HW78fit5 = fitlm(HW78d,'sqrty~m+d+s12','CategoricalVars',4)

Linear regression model:

sqrty ~ 1 + m + d + s12

Estimated Coefficients:

Estimate        SE          tStat pValue

_________    _________    _________    __________

(Intercept)      -5.9497       1.0112      -5.8839    3.9605e-08

m                  1.563      0.19795       7.8955    1.8055e-12

d              -0.017569    0.0043151      -4.0716    8.5648e-05

s12_1           -0.01674      0.20352    -0.082255       0.93459

s12_2           -0.63125      0.25115      -2.5135      0.013327

Number of observations: 121, Error degrees of freedom: 116

Root Mean Squared Error: 0.979

R-squared: 0.383,  Adjusted R-Squared 0.361

F-statistic vs. constant model: 18, p-value = 1.63e-11

>> plotResiduals(HW78fit5,'fitted')

>> plotResiduals(HW78fit5, 'caseorder')

>> plotResiduals(HW78fit5,'lagged')
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>> [xc lags] = xcorr(HW78fit5.Residuals.Raw,5,'coef')

xc =

-0.1364

-0.0565

-0.0449

0.0610

-0.0626

1.0000 #lag 0 correlation is always 1.0

-0.0626       #the autocorrelations are all small (large would be near ±1)

0.0610

-0.0449

-0.0565

-0.1364

lags =

-5    -4    -3    -2    -1     0     1     2     3     4     5

So no problem with time correlations
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Other comments
 We could have used log distance instead of distance.
 Log magnitude would not probably be a good idea 

because Richter Scale magnitude is already on the log 
scale.

 Use of the square root of shaking time made the model 
simple and with no apparent violations of the 
assumptions.

 Many other approaches would lead to useful predictive 
models.
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