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Point and Interval Estimation
 A population may sometimes be characterized by its 

parameters; for example, a normal population is 
completely described by the mean and the variance.

 At least, these parameters may be important, and it 
may be a goal to estimate them.

 A statistic is something calculated from data.
 We can sometimes view a statistic as an estimate of a 

parameter.
 For example, the mean μ of a population is a 

parameter. The sample mean    is such a statistic.
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Estimators and Estimates
 An estimator is a method of computing a number from 

data, The result is called an estimate.
 If we are trying to estimate a parameter, it is best if the 

estimate is close to the parameter value.
 Since the estimate is a random variable, “close” has to 

be defined as an average distance from the true value, 
in some sense of average.

 This will depend on the estimator, the population, and 
the sample size, among other things.
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Figures of Merit
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The Sample Mean
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The Sample Proportion
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Unbiased vs. Minimum MSE
 Unbiased sounds like a good thing, but it is not the 

most important characteristic.
 A small amount of bias relative to the variability of the 

estimator may not be important.
 The sample variance s2 (with denominator n − 1) is an 

unbiased estimate of the population variance σ2.
 But the sample standard deviation s is not unbiased 

for the population standard deviation σ.
 We use it anyway, because it is optimal in other ways.
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Consistency/Convergence
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Interval Estimates
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[ ]The idea of an interval estimate is to provide an interval ,  that is “likely” to contain 
the unknown parameter value . Suppose we are interested in the calcium content of
a cell-growth medium, and i

a b
θ

n particular, we want to know that the mean content is across 
batches of the medium. Suppose we take a sample of size 100 and the sample mean 
calcium content is 36 gm/L with a sample standard deviation of 14 gm/L. 
We know the sample mean has standard deviation (also call standard error of the mean)

/ 100 14 /10 1.4. 
What values of the population mean  are consistent with this evidence?
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Confidence Intervals
 A 95% confidence interval is an interval such that the 

probability that the true parameter value is in the interval 
is 0.95.

 We can also define 99% confidence intervals or, in general, 
the 100(1 − α)% confidence interval for any value of 
0 < α < 1. 

 The usual interpretation of this statement is based on the 
idea that the parameter has a fixed value that we do not 
know.

 We take a sample (which is random) and calculate the 
interval (which is random) and if we repeated this 
procedure, some of the intervals contain the true 
parameter value and some don’t.
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 In such repeated sampling, 95% of the resulting intervals 
are supposed to contain the true parameter value.

 This is called the frequentist approach since it is based on 
hypothetical repeats of the experiment and a statement 
about how frequently the interval will contain the true 
parameter value.

 An alternative approach is to treat the parameter value as 
itself a random variable (which we do not observe). In this 
Bayesian approach, the interval is based on the data, and 
then the statement that the parameter value is in the 
interval is a probability statement about the random 
parameter value.

 Much of the time, the two approaches yield very similar 
results. 

 We will concentrate on the first approach, which is the 
more usual in science and engineering.
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Large-Sample Intervals for the Mean

October 22, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 14

/2

)%  
based on t   and sample standard deviation  of a samp
A large-sample 100(1  confidence interval for the mean

le of size  is

/

The statistic /  

 
he sam

is called the  

ple mean x s n

x z s n

s n standard error
α

α µ

±

−

of . 
As against the statistic  which is the 
If we repeat the process of taking a sample of size n and computing the confidence interval,
then the fraction of the time that t

x
s sample standard deviation.

he interval contains  is (1 ).µ α−

CI 50% 90% 95% 99% 99.9%

zα 0.6745 1.645 1.960 2.576 3.291



Confidence Interval for the IgM Data
 There are 298 observations in the IgM data set 

(concentrations of IgM in g/L).
 Since the distribution looks more normal on the log scale, 

we do the analysis on that scale.
 This gives us an interval for the mean of ln(IgM), which is 

the geometric mean of IgM on the original scale.
 The mean is −0.3632 and the standard deviation is 0.5469
 A 95% CI is 

−0.3632 ± (1.960)(0.5469)/√298 
= −0.3632 ± (1.960)(0.0317) 
= −0.3632 ± 0.0621
(−0.4253, −0.3011)

 Or (0.653, 0.740) on the original scale of g/L, which we 
obtain by exponentiating each end of the CI. 
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Behavior of Confidence Intervals
 A 95% confidence interval will cover the true value 

95% of the times that the procedure is run.
 A particular 95% confidence interval either covers the 

true value or not, though we don’t know which in an 
particular case.

 So (from the frequentist point of view) it is incorrect to 
say that the probability that the interval covers the 
true value is 95%.

 That is why we call it 95% confidence and not 95% 
probability.
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68%
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Small-Sample Confidence Intervals for the Mean
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/
We can get these percentage points from Table A.3 on page 523
Or we can use the MATLAB command 
For example, for a 95% 

n

t

x t s nα−±

tinv()

confidence interval with  = 10, we have 9
Table A.3 has the 0.025 upper percentage point of a t with 9df as 2.262

n ν =

>> tinv(.975,9)

    2.2622



Behavior of the t-Distribution
 The t-distribution gets closer to the normal as n gets larger.
 If n is large, one can use the normal percentage point 

instead of the t percentage point.
 But using computer analysis, there is never any harm in 

using the t, so that is the default in MATLAB for confidence 
intervals for the mean.
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n 5 10 30 100 200 1000 5000

ν 4 9 29 99 199 999 4999

t(0.025) 2.776 2.262 2.045 1.984 1.972 1.962 1.960



Does X have to be normal?
 The t-distribution is derived mathematically from the 

assumption that the population is normally 
distributed.

 Modest departures from this do not matter much.
 If the distribution is skew, then it may make sense to 

take logs before analysis.
 If there are large outliers, then these should be 

examined.
 There are robust and resistant versions of the t-

distribution if the distribution is known to be outlier 
prone.
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Alkaline phosphatase data
 Repeated measurements of alkaline phosphatase in a 

randomized trial of Tamoxifen treatment of breast 
cancer patients.

 We use the measurements from 24 months and make 
confidence intervals for the placebo (21 subjects) and 
Tamoxifen (17 subjects) groups.

 Elevated alkaline phosphatase can be a sign of 
recurrence or metastasis. 
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Confidence Intervals in MATLAB
>> igmdist = fitdist(ligm,'Normal')

NormalDistribution

Normal distribution

mu = -0.363163   [-0.425511, -0.300816]

sigma =  0.546895   [0.506229, 0.594721]

>> paramci(igmdist)

-0.4255    0.5062

-0.3008    0.5947
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Confidence Intervals in MATLAB
>> [h p ci stats] = ttest(ligm)  % ignore h and p. This is a test that the

% mean of the log IgM is 0, which is not
h =                              % meaningful

1

p =

1.9612e-25

ci =

-0.4255
-0.3008

stats = 

tstat: -11.4632
df: 297
sd: 0.5469
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Confidence Intervals in MATLAB
Confidence interval for mean log IgM

ci =

-0.4255

-0.3008

Confidence interval for geometric mean IgM

>> exp(ci)

ans =

0.6534

0.7402
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Sample Size Determination
 In the calcium content example, we have a sample of size 

100 with mean 36 and standard deviation 14.
 We got a 95% confidence interval of 36 ± 2.744.
 Suppose we needed to know the mean concentration to 

within ±1 gm/L (that is, that the 95% CI would have the 
form 36 ± 1). How big must n be? 

 1.0 = (1.960)(14)/√n
n = (1.960)2(14)2/1.02

n = 752.95
n = 753
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An Interpretation of CI’s
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Confidence Intervals for Proportions
 Large sample intervals for proportions are also based 

on the standard error of the statistic (sample 
proportion) and on normal percentage points (because 
of the central limit theorem.

 The variance of a sample proportion is p(1 − p)/n
 So one possible approach to a 95% confidence interval 

is to substitute the sample proportion in this formula 
for the parameter p. 

 This could be called the traditional method, but there 
are other possibilities.
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Estimating the Binomial Proportion
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The traditional 95% CI for p is

ˆ ˆ ˆ1.960 (1 ) /
using 

ˆ

The book advocates for a different version that
uses a different center and variance estimate. 
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4
2

For exercises

p p p n

xp
n

p p p n
n n

xp
n

± −

=

± −

= +
+

=

   







 from the book, use this; it has some advantages.
The traditional interval is more common in the wild.
Both procedures are examples of Wald intervals, 
a general procedure based on a normal approximation.
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We will check this out more later in the lecture when we look at MATLAB
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We want to evaluate a new method of inducing iPSC stem cells.
In a trial of  = 100 cells, 14 were successfully transformed.
Find a 95% confidence interval for the true proportion transformed.

14
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n

X
n
=
=

ˆ 14 /100 0.14

ˆ ˆ ˆsd( ) (1 ) / 0.0347
0.14 (1.960)(0.0347) (0.0720

he usual (Wald) method using the normal approximation

The Agresti-Coull method that is presented in the book
,0

 g
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Sample Size Determination
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Example
 The birth weight of 189 infants was collected at 

Baystate Medical Center in Springfield, MA.
 The mean weight was 2945 gm with a standard 

deviation of 729 gm.
 A 95% confidence interval for the mean birth weight is 

2945 ± (1.960)(729)/√189 = 2945 ± 104 = (2841, 3049)
 59 out of the 189 infants had birth weights below the 

safe level of 2.5 kg, which is 31.2%. 
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 59 out of the 189 infants had birth weights below the 
safe level of 2.5 kg.
 p = 0.3122. 
 SD(p) = √(0.3122)(0.6888)/189 = √ 0.00114 = 0.0337

 The usual 95% CI is 
 0.3122 ± (1.960)(0.0337)
 0.3122 ± 0.0661
 (0.246, 0.378)
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Cell Migration Study

 Keratinocytes were plated at a density of 50 cells/mm2

onto collagen-coated coverslips for 2 h at 37 °C. 
 To simulate the high epinephrine environment seen in 

burn patients , culture medium was supplemented 
with epinephrine.

 There was also a control in which the epinephrine was 
not added.

 The distance moved by the cells in one hour was 
measured.
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 For the control, the mean distance of 24 cells was 
1.189 mm with a standard deviation of 0.883 mm

 A 90% confidence interval for the mean is then
1.189 ± (1.645)(0.883/√24)
1.189 ± (1.645)(0.180)
1.189 ± 0.296
(0.893, 1.485)

 For the treated cells, the mean distance of 22 cells was 
0.772 mm with a standard deviation of 0.758 mm.

 A 90% confidence interval for the mean is then
0.772 ± (1.645)(0.758/√22)
0.772 ± (1.645)(0.162)
0.772 ± 0.266
(0.506, 1.038)
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Confidence Intervals in MATLAB
Tamoxifen data using t interval
>> placebo'

148   116   221   189   114   218   190   123   138   232   
260   111   228   172   147   150   146   108   129   125   164

>> placebo_summary = fitdist(placebo,'Normal')

Normal distribution

mu = 163.286   [142.334, 184.238]  #this is the t interval

sigma = 46.0284   [35.2145, 66.4682]

>> paramci(placebo_summary)

142.3338   35.2145    # first column is t interval for mean

184.2376   66.4682    # second column is interval for sigma
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>> stemdist = fitdist(14,'Binomial','NTrials',100)

BinomialDistribution

Binomial distribution
N =  100
p = 0.14   [0.0787054, 0.223728]

>> paramci(stemdist)

100.0000    0.0787
100.0000    0.2237

>> paramci(stemdist,'Type','Wald')

100.0000    0.0720
100.0000    0.2080

October 22, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 45

This an ‘exact’ interval whose coverage
is conservative ( > 95%)

This is the traditional interval whose
coverage is liberal (< 95%)

Confidence Intervals in MATLAB
Stem cell data, intervals for p



>> binocdf(14,100,.20)
0.0804

>> binocdf(14,100,.22)
0.0305

>> binocdf(14,100,.23)
0.0177

>> binocdf(14,100,.225)
0.0233

>> binocdf(14,100,.223)
0.0260

>> binocdf(14,100,.224)
0.0246

>> binocdf(14,100,.2235)
0.0253

>> binocdf(14,100,.2237)
0.0250

>> paramci(stemdist)
100.0000    0.0787
100.0000    0.2237
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/2

For a large-sample 100(1 )% confidence interval for the mean of measured data, we use

/
For binomial data, if we have  successes out of  in a sample then a 100(1 )% 
confidence interval 

 

for 

x z s n
x n

α

α

α

−

±
−

the true proportion of successes  is

ˆ ˆ ˆ(1 ) /
ˆwhere usually / .

MATLAB calls this procedure the Wald interval. The default in MATLAB is the 
Clopper-Pearson so-called exact interval. It is exact

p

p p p n
p x n

± −

=

 in the sense that it uses the binomial 
cdf instead of the normal approximation. It is not exact in the sense that the coverage is 
actually exactly 95%. In practical use, either method is acceptable, as is the alternate 
method in the book, the Agresti-Coull interval.
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/2

2

2 2
/2

To obtain a confidence interval with half-width  
 or 

ˆ
the required sample size  is

 

 
for the proportion

both rounded up to the near

for the mean of measured data and
(1 ) /

est 

w
x w
p w

n
z
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α
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whole number
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