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Model Selection
 Suppose we have several possible predictor variables 

for a response.
 Each of the predictors and the response may be 

transformed.
 We can try to find a subset of the variables that predict 

well.
 We may want to include powers or interactions of the 

variables.
 We need a way to compare and assess models.

November 24, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 2



Principles of Model Selection
 Whenever an interaction is included, so should be any 

interaction contained in it.
 If x1:x2 is in the model, then so should be x1 and x2.
 If x1:x2:x3 is in the model, then so should be x1:x2, etc.

 Whenever x2 is in the model then so should be x.
 We want the simplest model that fits the data.
 Occam’s Razor. 
 Many possible criteria for whether a variable should be 

kept: the default in MATLAB stepwise is an F-test for 
the two models.
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Total Lung Capacity
 The data set tlc contains observations on 32 lung 

transplant patients.
 age in years
 sex (female=1, male=2)
 height (cm)
 tlc = total lung capacity (L)

 We want to investigate the ability of the first three 
variables to predict total lung capacity.

 This data set was imported as a Table.
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>> summary(tlc)

age: 32x1 double
Values:

min         11 
median    28.5 
max         52 

sex: 32x1 double
Values:

min         1  
median    1.5  
max         2  

height: 32x1 double
Values:

min       138     
median    170     
max       189     

tlc: 32x1 double
Values:

min        3.4 
median    6.15 
max       9.45
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Linear Model for tlc Data
>> fitlm(tlc)

Linear regression model:
tlc ~ 1 + age + sex + height

Estimated Coefficients:
Estimate        SE        tStat pValue
_________    ________    _______    _________

(Intercept)      -9.2407      3.4449    -2.6824     0.012123
age            -0.025025    0.023531    -1.0635      0.29665
sex              0.69705     0.49944     1.3957      0.17379
height          0.089546    0.024552     3.6472    0.0010729

Number of observations: 32, Error degrees of freedom: 28
Root Mean Squared Error: 1.16
R-squared: 0.542,  Adjusted R-Squared 0.493
F-statistic vs. constant model: 11.1, p-value = 5.82e-05
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>> fitlm(tlc,'tlc~age*height*sex')

Linear regression model:
tlc ~ 1 + age*sex + age*height + sex*height + age:sex:height

Estimated Coefficients:
Estimate        SE         tStat pValue
__________    _________    ________    _______

(Intercept)           5.1688       27.113     0.19064    0.85041
age                  -1.0638       1.1214    -0.94861    0.35227
sex                  -18.416       17.287     -1.0654    0.29732
height              0.013239      0.16868    0.078489    0.93809
age:sex 1.2337      0.80799      1.5269    0.13987
age:height 0.0056433    0.0067236     0.83933    0.40957
sex:height 0.10537      0.10455      1.0078    0.32359
age:sex:height -0.0068375    0.0046827     -1.4602    0.15721

Number of observations: 32, Error degrees of freedom: 24
Root Mean Squared Error: 1.14
R-squared: 0.618,  Adjusted R-Squared 0.506
F-statistic vs. constant model: 5.54, p-value = 0.000689
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>> stepwiselm(tlc)

1. Adding height, FStat = 28.1397, pValue = 9.85334e-06

Linear regression model:

tlc ~ 1 + height

Estimated Coefficients:

Estimate      SE        tStat pValue

________    _______    _______    __________

(Intercept)     -9.7403     2.9911    -3.2564      0.002799

height         0.094529    0.01782     5.3047    9.8533e-06

Number of observations: 32, Error degrees of freedom: 30

Root Mean Squared Error: 1.19

R-squared: 0.484,  Adjusted R-Squared 0.467

F-statistic vs. constant model: 28.1, p-value = 9.85e-06
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>> stepwiselm(tlc,'tlc~age*height*sex')
1. Removing age:sex:height, FStat = 2.1321, pValue = 0.15721
2. Removing sex:height, FStat = 0.26428, pValue = 0.61171
3. Removing age:sex, FStat = 0.59927, pValue = 0.44584
4. Removing age:height, FStat = 1.7378, pValue = 0.1985
5. Removing age, FStat = 1.131, pValue = 0.29665
6. Removing sex, FStat = 2.4182, pValue = 0.13078

Linear regression model:
tlc ~ 1 + height

Estimated Coefficients:
Estimate      SE        tStat pValue
________    _______    _______    __________

(Intercept)     -9.7403     2.9911    -3.2564      0.002799
height         0.094529    0.01782     5.3047    9.8533e-06

Number of observations: 32, Error degrees of freedom: 30
Root Mean Squared Error: 1.19
R-squared: 0.484,  Adjusted R-Squared 0.467
F-statistic vs. constant model: 28.1, p-value = 9.85e-06
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Data Set cpus
 Data on the performance of 209 computer processors.

 perf = benchmark performance (response)
 syct = cycle time in nanoseconds.
 mmin = minimum main memory
 mmax maximum main memory
 cach = cache size
 chmin = minimum number of channels.
 chmax = maximum number of channels.
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>> summary(cpus)

syct: 209x1 double

min         17  

median     110  

max       1500  

mmin: 209x1 double

min          64 

median     2000 

max       32000 

mmax: 209x1 double

min          64 

median     8000 

max       64000 
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cach: 209x1 double

min         0   

median      8   

max       256   

chmin: 209x1 double

min        0     

median     2     

max       52     

chmax: 209x1 double

min         0    

median      8    

max       176    

perf: 209x1 double

min          6  

median      50  

max       1150 
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>> cpus2 = table(log(cpus.syct),log(cpus.mmin),log(cpus.mmax),log(cpus.cach+2),
log(cpus.chmin+1),log(cpus.chmax+1),log(cpus.perf),
'VariableNames',{'lsyct', 'lmmin', 'lmmax', 'lcach', 'lchmin', 'lchmax', 'lperf'} )

>> fitlm(cpus2)

Linear regression model:
lperf ~ 1 + lsyct + lmmin + lmmax + lcach + lchmin + lchmax

Estimated Coefficients:
Estimate        SE        tStat pValue
_________    ________    ________    __________

(Intercept)      -1.3527     0.53856     -2.5117      0.012797
lsyct 0.0033807    0.047601    0.071022       0.94345
lmmin 0.18792    0.048365      3.8855    0.00013838
lmmax 0.32143    0.047068       6.829    9.8191e-11
lcach 0.23918    0.029901       7.999      9.59e-14
lchmin 0.17949    0.059834      2.9999     0.0030405
lchmax 0.13167    0.044035      2.9901     0.0031349

Number of observations: 209, Error degrees of freedom: 202
Root Mean Squared Error: 0.434
R-squared: 0.834,  Adjusted R-Squared 0.829
F-statistic vs. constant model: 169, p-value = 7.86e-76
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>> stepwiselm(cpus2)
1. Adding lmmax, FStat = 359.965, pValue = 3.554256e-47
2. Adding lcach, FStat = 121.2385, pValue = 1.794327e-22
3. Adding lchmin, FStat = 49.0826, pValue = 3.45972e-11
4. Adding lmmin, FStat = 13.5988, pValue = 0.000290186
5. Adding lmmin:lmmax, FStat = 22.8081, pValue = 3.42459e-06
6. Adding lchmax, FStat = 12.0322, pValue = 0.000639034
7. Adding lchmin:lchmax, FStat = 7.2802, pValue = 0.0075648
8. Adding lmmax:lchmin, FStat = 12.0451, pValue = 0.000636092

Linear regression model:
lperf ~ 1 + lcach + lmmin*lmmax + lmmax*lchmin + lchmin*lchmax

Estimated Coefficients:
Estimate        SE        tStat pValue
_________    ________    _______    __________

(Intercept)         5.6085      1.2427     4.5131    1.0891e-05
lmmin -1.0769     0.21943    -4.9079    1.9061e-06
lmmax -0.41148     0.13883    -2.9639     0.0034064
lcach 0.20124    0.027085     7.4301    3.0882e-12
lchmin 1.2346     0.42736      2.889     0.0042912
lchmax -0.079517    0.063678    -1.2487       0.21322
lmmin:lmmax 0.14528    0.024385     5.9576    1.1365e-08
lmmax:lchmin -0.18178    0.052376    -3.4706    0.00063609
lchmin:lchmax 0.17682    0.041043     4.3083    2.5782e-05

Number of observations: 209, Error degrees of freedom: 200
Root Mean Squared Error: 0.392
R-squared: 0.866,  Adjusted R-Squared 0.86
F-statistic vs. constant model: 161, p-value = 7.19e-83
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Model Selection
 Many models will make predictions of similar quality.
 In such cases, there is no one best model, but one can 

still select the simplest model that seems to do a good 
job.

 Stepwise regression can be helpful, but the variables 
should first be placed on the right scale (possibly 
taking logs).

 If one starts with many variables, stepwise regression 
will usually select some even if none of the variables 
actually is related to the response, so caution is often 
called for (see pages 635–638 in the text). 
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Factorial Experiments
 Regression type models can work with quantitative 

responses (and also qualitative ones) and predictors 
that are either quantitative or qualitative. 

 Sometimes, the predictors and the response on a given 
unit are observed together as when we measure 
characteristics of a patient and the outcome of 
treatment.

 Sometimes the treatments are chosen by the 
experimenter and then the response is observed, as 
when some patients get a new treatment and others 
standard of care.
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One-Factor Experiments
 We apply two or more treatments to experimental units, 

choosing the treatment for each unit by using random 
numbers.

 There needs to be in this case at least two units with each 
treatment or there is no basis for comparison.

 With exactly two treatments, this can be analyzed by the 
two-sample t-test.

 If there are more than two treatments, we use one-way 
ANOVA.

 Ideally, the number of units on each treatment is the same, 
but this cannot always be assured. When it is, the design is 
called balanced.
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Red Cell Folate Study
 Red cell folate is a measure of folic acid (vitamin B9). It can be 

disrupted by anesthesia with nitrous oxide (N2O).
 This study compared operations under three conditions:

 N2O (50%) +O2 (50%) for 24 hours continuously up to and 
including the operation.

 N2O (50%) +O2 (50%) only during the operation.
 O2 at 30%-50% before the operation, but no N2O before the 

operation.
 There were 22 patients allocated 8/9/5 to the three treatments 

(unbalanced).
 The MATLAB function fitlm will be able to tell that ventilation 

is a factor because it does not consist of numbers. If it does, you 
have to tell it which variables are categorical. You can use 
nominal to convert numbers to categories of the Name-Value 
pair ‘CategoricalVars’ in fitlm.
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>> folatelm = fitlm(folate,'folate~ventilation')

Estimated Coefficients:

Estimate      SE       tStat pValue

________    ______    _______    __________

(Intercept)                  316.62     16.164     19.588    4.6492e-14

ventilation_"N2O+O2--op"    -60.181     22.216    -2.7089       0.01392

ventilation_"O2--24h"       -38.625     26.064    -1.4819       0.15476

Number of observations: 22, Error degrees of freedom: 19

Root Mean Squared Error: 45.7

R-squared: 0.281,  Adjusted R-Squared 0.205

F-statistic vs. constant model: 3.71, p-value = 0.0436

These coefficients are comparisons between each of the two listed 
treatments and the omitted comparison level, which is "N2O+O2--24h". This 
is not a test of whether the factor as a whole is important. The F-test is 
a valid test of the factor as a whole and is MS(ventilation)/MS(error) as 
given on the next slide in more detail.
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>> anova(folatelm)

SumSq DF    MeanSq F         pValue

ventilation    15516     2    7757.9    3.7113    0.043589

Error          39716    19    2090.3 

This test shows that ventilation has an effect on folate levels which is 
statistically significant at the 5% level. Note that the F ratio 
MS(ventilation)/MS(error) has df 2 and 19.

But which treatments are better?

This can be analyzed graphically with

>> boxplot(folate.folate,folate.ventilation)

And statistically with a more complex procedure for multiple comparisons, 
that is comparing each of the three procedures with the other two.
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Multiple Comparisons
>> vent2 = num2cell(folate.ventilation,1) 
>> [p,table,stats] = anovan(folate.folate,vent2)
p =

0.0436
table = 

'Source'    'Sum Sq.'       'd.f.'    'Singular?'    'Mean Sq.'      'F'         'Prob>F'
'X1'        [1.5516e+04]    [   2]    [        0]    [7.7579e+03]    [3.7113]    [0.0436]
'Error'     [3.9716e+04]    [  19]    [        0]    [2.0903e+03]          []          []
'Total'     [5.5232e+04]    [  21]    [        0]              []          []          []

stats = 

source: 'anovan'
resid: [22x1 double]

coeffs: [4x1 double]
Rtr: [3x3 double]

rowbasis: [3x4 double]
dfe: 19
mse: 2.0903e+03

nullproject: [4x3 double]
terms: 1

nlevels: 3
continuous: 0

vmeans: 0
termcols: [2x1 double]

coeffnames: {4x1 cell}
vars: [4x1 double]

varnames: {'X1'}
grpnames: {{3x1 cell}}
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>> multcompare(stats)

1.0000    2.0000    3.7421   60.1806  116.6190    0.0355
1.0000    3.0000  -27.5904   38.6250  104.8404    0.3215
2.0000    3.0000  -86.3406  -21.5556   43.2295    0.6802

The first two columns show the groups being compared, the fourth column the 
difference, and the flanking third and fifth columns show a 95% CI adjusted 
for multiple comparisons. If this 95% CI does not include 0, then the 
groups are significantly different. In this case, this is only 1 vs. 2. The 
last column shows the associated p-value.

>> celldisp(getfield(stats,'grpnames'))

ans{1}{1} =
"N2O+O2--24h"

ans{1}{2} =
"N2O+O2--op"

ans{1}{3} =
"O2--24h"
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Multiple Comparisons
 multcompare can use different comparisons metrics.
 The default is the Tukey HSD or honest significant 

difference which is based on the studentized range, 
and attempts to declare any one or more differences 
significant only 5% of the time if all of the true group 
means are actually the same.

 An alternative is the least significant difference (lsd) 
which should only be used if the F-test is significant 
(protected lsd), but gives narrower intervals.
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>> multcompare(stats)

ans =

1.0000    2.0000    3.7421   60.1806  116.6190    0.0355

1.0000    3.0000  -27.5904   38.6250  104.8404    0.3215

2.0000    3.0000  -86.3406  -21.5556   43.2295    0.6802

>> multcompare(stats,'ctype','lsd')

ans =

1.0000    2.0000   13.6821   60.1806  106.6791    0.0139

1.0000    3.0000  -15.9285   38.6250   93.1785    0.1548

2.0000    3.0000  -74.9306  -21.5556   31.8195    0.4085

The intervals are narrower, but the results are unchanged in this case.
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Conclusions
 The form of ventilation appears to affect the folate 

level.
 The definitive conclusion of the study is that 

"N2O+O2--24h“ is better than "N2O+O2--op“, with 
"O2--24h“ in the middle and not definitively different 
from either one.

 A main assumption of ANOVA is that the groups have 
the same variance, and the boxplot does not strongly 
challenge that assumption.
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Two Factor Experiments
 In a two factor experiment, there are two sets of 

treatments and each experimental unit gets one 
treatment from each set.

 We can evaluate the effects of each factor separately, 
and also the interaction.
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Coking Data
 This experiment is on time to coking (making coke 

from coal) in an experiment in which oven width and 
temperature were varied.
 width = a factor with levels 4, 8, and 12 giving the oven 

width in inches.
 temp = a factor with levels 1600 and 1900, giving the 

oven temperature in degrees Fahrenheit.
 time = a numeric variable, time to coking 

 This is a balanced two-way experiment with three 
replicates under each set of conditions (3x2 = 6 
conditions), so n = 18.
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Main Effects and Interactions
 The main effect of width is the change in time as width changes, 

averaged over temperatures. For example, 

time(width = 12) – time(width = 8), 

which are differences of simple averages.
 The main effect of temperature is the change in time as 

temperature changes, averaged over widths.
 The interaction of width and time can be thought of as the 

change in the time between high and low temperature as width 
changes. For example, 

[time(width=12, temp=1900) − time(width=12, temp=1600)] 
−[time(width=8, temp=1900) − time(width=8, temp=1600)]

which are differences of differences.

November 24, 2015 BIM 105 Probability and Statistics for Biomedical Engineers 45



>> cokinglm = fitlm(coking,'time~width*temp','CategoricalVars',[1,2])

Linear regression model:

time ~ 1 + width*temp

Estimated Coefficients:

Estimate      SE        tStat pValue

________    _______    _______    __________

(Intercept)             3.0667    0.30399     10.088    3.2569e-07

width_8                    4.1     0.4299     9.5371     5.962e-07

width_12                7.7333     0.4299     17.989    4.7896e-10

temp_1900             -0.76667     0.4299    -1.7834      0.099819

width_8:temp_1900     -0.86667    0.60797    -1.4255        0.1795

width_12:temp_1900        -2.7    0.60797     -4.441    0.00080545

Number of observations: 18, Error degrees of freedom: 12

Root Mean Squared Error: 0.527

R-squared: 0.978,  Adjusted R-Squared 0.968

F-statistic vs. constant model: 105, p-value = 1.74e-09
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>> anova(cokinglm)

SumSq DF    MeanSq F         pValue

width         123.14     2     61.572     222.1    3.3123e-10

temp          17.209     1     17.209    62.076    4.3942e-06

width:temp 5.7011     2     2.8506    10.283     0.0025036

Error         3.3267    12    0.27722 

The interaction term is significant, which means that the effect 
of temperature is different at different levels of width. This 
makes it hard to interpret the main effects of width and 
temperature.

>> boxplot(coking.time,[coking.width coking.temp])

>> boxplot(log(coking.time),[coking.width coking.temp])
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>> ltime = log(coking.time)
>> coking2 = [coking table(ltime)]
>> coking2.time = []

coking2 = 

width    temp     ltime
_____    ____    _______

4       1600     1.2528
4       1600     1.0986
4       1600    0.99325
………………………………………………………………

>> coking2lm = fitlm(coking2,'ltime~width*temp','CategoricalVars',[1,2])
>> anova(coking2lm)

SumSq DF     MeanSq F         pValue
________    __    ________    _______    __________

width           4.6648     2      2.3324     224.99    3.0714e-10
temp           0.44332     1     0.44332     42.764    2.7718e-05
width:temp 0.012252     2    0.006126    0.59094       0.56915
Error           0.1244    12    0.010367 

On the log scale, only the main effects are significant, which makes the interpretation 
much easier.
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