
October 10, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 1



October 10, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 2

1 2

1 2

1 2

1 1 2 2

1 2

2 2 2 2 2 2 2
1 2

2 2

1 1 1
1 2 1 2

 are random variables

if the { } are all statistically independen

, ,...,

( ) /

t, then

i

i

n

n

n

n n

Y X X n X

i

Y X X n X

X

X

n

X X
X c X c X

c c c

c c c

X X X X n n

X
Y c

X

X n X n X

µ µ µ µ

σ σ σ σ

µ µ

σ σ
− − −

+ + +
= + + +

= + + +

= + + + = + + +

=

=

=







 

1 1 1 1

2 2 2 2 2 2 2 2 2

) ( )
) (

(
( ) /

n

X n n n n n
X n n n

E
V n n n

µ µ µ µ µ

σ σ σ σ σ

− − − −

− − − −

= + + + = =

= + + + = =







Types of Data and Distributions
 Discrete data are usually counts, and these can be of basically 

two types.
 One type is when we have a set of objects, and for each one the 

object is of one of two (or several) types.
 Primary fibroblasts are to be re-programmed as stem cells (iPSC’s). 

If we start with 100 cells, some will be successfully reprogrammed 
and some not. We can count the number out of 100 that are 
successfully re-programmed. This number is an integer between 0 
and 100.

 A medical device is tested after manufacture. In a sample of 25 
devices from a lot of 5,000, we can count the number of defective 
ones. This number is an integer between 0 and 25.

 A part for the medical device needs to fit in close tolerances. We can 
classify each part from a sample of 50 as good, too small, or too 
large. We obtain three numbers, each between 0 and 50, that add 
up to 50.
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 Another type of count data is where there is no fixed 
upper limit.
 The number of defects in a silicon wafer is a positive 

integer with no fixed upper limit.
 If there are 800,000 spots on an Affymetrix microarray, 

and on the average 0.01% of them are defective, then the 
number of defective spots can be treated as a positive 
integer with no fixed upper limit. The upper limit is 
800,000, but the average value is around 80 and is 
unlikely to be more than a few hundred.
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Bernoulli Trials and the 
Binomial Distribution
 A series of Bernoulli trials is a series of statistically 

independent experiments where on each trial the 
probability of one of the outcomes (conventionally 
called “success”) is the same probability p.

 If we have a series of Bernoulli trials of length n, and if 
the chance of success on each trial is p, then the total 
number of successes is a Binomial random variable.

 If X has a Binomial distribution with parameters n and 
p, then X is an integer between 0 and n.
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Three Machines
 Machines 1, 2, and 3 are either up (operational) or 

down (not working).
 Each has independently a 10% chance of being down.
 There are eight elements in the sample space

{UUU, UUD, UDU, UDD, DUU, DUD, DDU, DDD}
 The number of machines that are down is a binomial 

random variable with parameters n = 3 and p = 0.10.
 Here “success” is the machine is down.
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Bin(5, .05)
x P(X = x) P(X ≤ x)

0 0.7737809 0.7737809

1 0.2036266 0.9774075

2 0.0214343 0.9988419

3 0.0011281 0.9999700

4 0.0000296 0.9999997

5 0.0000003 1.0000000
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 Use the formula (for probability mass function)
 Use table A1 in Appendix A.
 Use a computer command.
 In Excel, =Biomdist(1,5,0.05), 
=Biomdist(1,5,0.05,True)



The Binomial in MATLAB
>> binopdf(1,5,.05)

0.2036

>> binocdf(1,5,.05)

0.9774

>> binopdf(0:5,5,.05)

0.7738    0.2036    0.0214    0.0011    0.0000    0.0000

>> binocdf(0:5,5,.05)

0.7738    0.9774    0.9988    1.0000    1.0000    1.0000
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Glucose



Isotopes and Molecular Weight
 Glucose is a sugar with molecular formula C6H12O6.
 In round numbers, its molecular weight is 180 Daltons if all 

the atoms are the most common isotopes of the elements.
 Carbon-13 (13C) instead of the more common carbon-12 

(12C) occurs at a rate of 1.1% and weighs 1 Dalton more. 
What is the probability distribution of the molecular 
weights of glucose?

 Using Bin(6, 0.011), 
 The chance of zero 13C is 0.9358 (180 Daltons)
 The chance of one 13C is 0.0624 (181 Daltons), and 
 the chance of two 13C is 0.0017 (182 Daltons). 
 There is almost no chance of three or more (about 1 in 

40,000).
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 Oxygen-17 (17O) occurs with a probability of 0.00038, 
so the chance of any 17O occurring in a molecule of 
glucose is 0.0023

 2H occurs with a probability of 0.00015, so the chance 
of any 2H occurring is 0.0018.

 These calculations are important in mass spectrometry 
to find sub-peaks of a main peak of a compound to be 
identified.

 A small protein might have 100 amino acids and about 
400 carbon atoms. The most frequent number of 13C 
atoms is 4, but numbers from 0 to 9 all can occur. 2, 3, 
4, 5, 6 all occur at > 10%. Thus, the main peaks are 2 to 
6 Daltons above the nominal molecular weight.
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Acceptance Sampling
 A supplier of parts for a medical device has certified that no 

more than 1% of the parts will fail to meet the 
specifications.

 We want to test a random sample of each shipment of size 
n and reject the shipment if there are more than x
defectives out of n.

 If the fraction of defectives is actually 1%, then we would 
like to reject the shipment no more than 5% of the time.

 If the fraction of defectives is actually 2%, then we would 
like to reject the shipment at least 95% of the time.

 What should we choose as n and x?
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>> binocdf(0:20,500,.01)

Columns 1 through 13

0.0066    0.0398    0.1234    0.2636    0.4396    0.6160    0.7629    0.8677    0.9329    
0.9689 0.9868    0.9948    0.9981

Columns 14 through 21

0.9994    0.9998    0.9999    1.0000    1.0000    1.0000    1.0000    1.0000

>> binoinv(0.95,500,.01)

9

>> binocdf(0:20,500,.02)

Columns 1 through 13

0.0000    0.0005    0.0026    0.0098    0.0281    0.0652    0.1276    0.2175    0.3305    
0.4567 0.5830    0.6979    0.7935

Columns 14 through 21

0.8667    0.9186    0.9530    0.9743    0.9866    0.9934    0.9969    0.9986

>> binocdf(9,500,.02)

0.4567
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>> binoinv(0.95,1000,.01)

15

>> binocdf(15,1000,.01)

0.9521

>> binocdf(15,1000,.02)

0.1539

>> binoinv(0.95,2000,.01)

28

>> binocdf(28,2000,.01)

0.9664

>> binocdf(28,2000,.02)

0.0282 

>> binoinv(0.95,1625,.01)

23

>> binocdf(23,1625,.01)

0.9584

>> binocdf(23,1625,.02)

0.0498

>> binoinv(0.95,1624,.01)

23

>> binocdf(23,1624,.01)

0.9587

>> binocdf(23,1624,.02)

0.0502



The Multinomial Distribution
 Suppose we have more than two outcomes. Say a 

medical device voltage is a) in spec; b) too high; or c) 
too low. If we test n devices, then we have three 
random variables: 
 Xa = number in spec
 Xb = number with voltage too high
 Xc = number with voltage too low.

 If the device tests are statistically independent with 
constant probabilities of the three outcomes, then the 
three numbers have a multinomial distribution with 
parameters n and (pa, pb, pc).
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 The multinomial is defined by the number of trials, 
and the vector of probabilities of each outcome.

 For example, if we test 100 devices, and the 
probabilities of in spec, too high, and too low, are 
(0.90, 0.08, and 0.02), and if the tests are presumed to 
be statistically independent, then this has a 
multinomial distribution.

 Each of the three counts is binomial [Bin(100, 0.90), 
Bin(100, 0.08), and Bin(100, 0.02)], so the means and 
variances are the same as the binomial.

 But the counts are correlated (the more devices there 
are that are in spec, the less likely it is that the count of 
too high is large).
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The Poisson Distribution
 The Poisson arises in contexts in which the thing 

being counted has no fixed upper limit.
 Siméon-Denis Poisson (1781–1840) was a French 

mathematician. (pwa-son) definitely not poison!
 These are usually point events in time or space.

 Count the repairs made in a year on a five-year old drill 
press.

 Count the defects in an optical fiber cable of length 
1000m.

 Count the defects in a silicon wafer of surface area of 
180cm2.
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The Poisson and the Binomial
 Suppose we have a silicon wafer in which we count 

defects.
 Suppose that the average number of defects per wafer 

is 1.
 What is the chance that there is no defect?
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Divide the wafer into 100 sections and compute the binomial distribution.
If the average number of defects per wafer is 1, and there are 100 sections
then the binomial would have 1/100 0.01. The chancp = =

100 0.3660
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The Mean and Variance of a Poisson
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Rates and Means
 Suppose that a flask has a suspension of cells with an 

average density of 12 cells per cc.
 A sample of 3 cc is taken.
 The number of cells in the sample could be modeled as 

a Poisson random variable with mean λ = 36.
 The variance is 36 and the standard deviation is 6.
 The rate is 12 cells/cc.
 The mean of the Poisson random variable is (3)(12) = 

36.
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Polymerase Chain Reaction (PCR)
 The most definitive test for viral diseases (HIV, 

Hepatitis A, B, C, Zika, Ebola) involves searching for 
the actual virus in the blood. A faster, but less accurate 
test is based on antibodies, which can measure past 
infections that are not necessarily current ones.

 PCR involves a process of multiple cycles. On each 
cycle the number of copies of the viral DNA (or RNA 
which has been reverse-transcribed to DNA) is 
approximately doubled. This can be done for up to 40 
cycles (240 = 1012 or 1 trillion)
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 If there are approximately 25 copies of the virus in the 
starting sample, then the amplification will yield a 
detectable signal.

 Suppose we use 10 μL of extracted DNA for a test, and 
this comes from a larger sample from a patient. If the 
average concentration of copies of the viral DNA is 
25/10 μL, then a sample will often have too few copies.

 How high does the copy number per μL need to be so 
that the sample has almost always 25 copies or more?

 Specifically, so that the chance is at least 95%.
 If X is a Poisson random variable with parameter λ, 

how big does λ need to be so that P(X ≤ 24) < 0.05?
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>> poisscdf(24,25)    (24=x, 25=λ)

0.4734

>> poisscdf(24,40)

0.0045

>> poisscdf(24,30)

0.1572

>> poisscdf(24,35)

0.0324

>> poisscdf(24,34)

0.0460

>> poisscdf(24,33)

0.0642

The copy number in the source needs to be at least 34 per 10 
μL to insure 25 copies per 10 μL sample.

poisspdf() gives individual values of the probability mass 
function
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The concentration of particles in a suspension is 4 per 
mL. The suspension is thoroughly agitated, and then 2 
mL is withdrawn. Let X represent the number of 
particles that are withdrawn. Find
a.  P(X = 6)
b.  P(X ≤ 3)
c.  P(X > 2)
d.  μ X
e.  σ X

October 10, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 34



October 10, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 35

The concentration of particles in a suspension is 4 per mL. 
The suspension is thoroughly agitated, and then 2 mL is withdrawn. 
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0 1 2 3 4 5 6 7

0.0003 0.0027 0.0107 0.0286 0.0573 0.0916 0.1221 0.1396

3) 0.0003 0.0027 0.0107 0.0286 0.0424
( 2) 1 ( 2) 1 0.0003 0.0027 0.0107 1 0.0138 0.9862
( 2) 1 ( 1) 1 0.0003 0.0027 1 0.0030 0.9970

(
P X P X
P X

P X

P X

≤ = + + + =
> = − ≤ = − + + = − =
≥ = − ≤ = − + = − =

>> poisscdf(0:6,8)

ans =

0.0003    0.0030    0.0138    0.0424    0.0996    0.1912    0.3134



Other Discrete Probability Distributions
 If X1, X2, … are independent Bernoulli random variables (1/0 with 

probability p/(1-p)), then the sum of n of them, for fixed n, is a 
binomial random variable

 If instead, we continue observing the sequence until the sum 
reaches x, the length of the sequence is a negative binomial 
random variable.

 This has mean px/(1 − p) and variance px/(1 − p)2

 When we divided up the silicon disk into many equal parts, we 
assumed that the chance of a defect per unit area was the same. 
If instead, this varied (maybe higher on the edges?), we can still 
have the same mean λ but the variance is then larger than λ.

 Perhaps remarkably, this can often be modeled as a negative 
binomial (which has a variance larger than its mean). This has 
applications in next generation sequencing, especially RNA-Seq.
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