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Types of Continuous Data and Distributions
 Continuous data arise from measurements, logs of 

measurements, or differences of measurements.
 The range of the data is often either the whole real line 

(−∞, ∞), the non-negative reals [0, ∞), or sometimes 
an interval.

 The amount of toluene in a sample (ng/L) lies in 
[0, ∞). 

 This may be based on the peak height above the 
baseline from a GC/MS, which can be negative, so we 
treat it as lying in (−∞, ∞).

 If we round the reading to a whole number of ng/L, 
then the rounding error lies in [-0.5, 0.5] ng/L.
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The Gaussian (Normal) Distribution
 For data that have a “mound-shaped” distribution, we 

often use the Gaussian/Normal.
 Some people avoid the term “Normal” because it 

implies that this is ordinarily the distribution that data 
will come from and that it is abnormal for the 
distribution to be otherwise, both of which are 
contrary to fact and experience.

 Nonetheless, it is the most important distribution in 
statistics, for reasons that will emerge later.

 There is a Gaussian distribution for every choice of 
mean μ and standard deviation σ > 0.
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There is no closed-form solution to this integration, so 
we need a table or computer program.



How to Use a Table of the 
Gaussian/Normal Distribution
 The table A.2 is expressed in standard units, so that it gives 

the CDF for a standard normal, one with mean 0 and 
variance 1.

 So any question needs to be translated to standard units, 
sometimes called z-scores.

 For example, suppose the amount of calcium in a liter of 
cell-growth medium is supposed to average 40gm, and has 
a standard deviation of 2.5gm.

 42 gm is (42-40)/2.5 = 0.8 in standard units.
 If the amount of calcium is normally distributed, then the 

chance that there is less than 42gm is the same as the 
chance that at standard normal random variable is less 
than 0.8, which from the table is 0.7881.
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 For example, suppose the amount of calcium in a liter 
of cell-growth medium is supposed to average 40gm, 
and has a standard deviation of 2.5gm.

 To find the probability that the amount of calcium is 
between 37 and 42, we translate this into a statement 
about a standard normal random variable.
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Normal CDF in MATLAB
>> normcdf(0.8) % cdf at 0.8 of the standard normal

ans =

0.7881

>> normcdf(42,40,2.5) % cdf at 42 of a normal with mu = 40 and sigma = 2.5

ans =

0.7881

>> normcdf(42,40,2.5)-normcdf(37,40,2.5) % area between 37 and 42

ans =

0.6731

>> 
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Percentage Points of the Normal
 P(Z < z) = 0.75
 What is the value of z?
 Normal Table A.2

 P(Z < 0.67) = 0.7486
 P(Z < 0.68) = 0.7517
 Interpolating, z = 0.6745

 Bottom line of Table A.3 
 0.674

 MATLAB or another computer program 
 0.6745
 0.6744898
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Normal Inverse CDF in MATLAB
>> norminv(.025) % Point on standard normal w/ 0.025 to the left

ans =

-1.9600

>> norminv(.975) % Point on standard normal w/ 0.025 to the
% right, or 0.975 to the left. Z0.025

ans =

1.9600

>> norminv(.975,100,10) % 0.025 point when mu = 100, sigma = 10

ans =

119.5996
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 Suppose the daily electricity cost for a bioprocessing 
plant has mean $832 and standard deviation $126. 

 If the daily cost is normally distributed, what is the 
cost level that will not be exceeded more than 10% of 
the time?

 z0.10 = 1.2816
 Cost = $832 + (1.2816)($126) = $993.48
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Combinations of Normal Random Variables
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Why is the Normal Distribution Important?
 Most of the time, we do not have data that are 

normally distributed, nor is it mostly important, with a 
few exceptions.

 If we have data that are more or less symmetric, and 
don’t have large outliers, then we are generally ok.

 The main reason the normal distribution is important 
is not that data are usually normally distributed, but 
that means and other statistics calculated from data 
are approximately normally distributed. This is called 
the central limit theorem.

 The average of a large number of data points is 
approximately normally distributed.
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The Lognormal Distribution
 If X is normally distributed, then eX is lognormally

distributed.
 Mostly, we don’t use this distribution directly.
 Instead, if we have data that are right skewed, we often 

take the log of the data before we analyze it, take the 
mean, etc.
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Probability Plots
 If we have a sample of size n and want to compare the 

distribution with a possible theoretical distribution 
from which it may have come, we have several options
 Histogram (+ overlaid fitted distribution)
 Boxplot
 Probability Plot

 A probability plot puts each point with x-axis value 
equal to the sample value, and with y-axis value equal 
to an estimate of what that should have been based on 
the theoretical distribution.
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 Suppose we have a sample of 5 observations.
 The smallest of these can be compared to a typical value for 

the smallest observation out of 5 from a normal 
distribution, and similarly for the others.

 We can’t use Ф-1(1/5) for the smallest, because we would 
then have to use Ф-1(5/5) = Ф-1(1) = ∞ for the largest.

 The book suggests that we use percentage points
(i – 0.5)/n = .1, .3, .5, .7, .9, and this is reasonable, though 
there are other possible choices.

 It does not matter whether we use a standard normal, or 
one with the same mean and standard deviation as the 
data, since the percentage points move linearly with the 
mean and variance, and all that matters is whether the data 
lie on a straight line.

 For a normal probability plot, use normplot() in 
MATLAB
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The Exponential Distribution
 The exponential distribution is often used to model 

time until an event.
 The domain is [0, ∞) and the PDF and CDF are

 f(x) = λe−λx

 F(x) = 1 − e-λx

 The mean and the variance are
 μ = 1/λ
 σ2 = 1/ λ2

 σ = 1/ λ
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Hazard Rate
 The hazard rate for a distribution used to model time 

to an event is the chance that an event will occur at 
time t if an event has not yet happened.

 The chance that the event has not yet happened is 
1 − F(t) = e-λx

 The hazard rate is 
 f(t)/(1 − F(t) ) = λe−λx/e-λx= λ
 So the exponential has constant hazard
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Lack of Memory
 If the waiting time until an event has an exponential 

distribution with parameter λ and if the event has not 
happened yet at time t, then the further waiting time 
after t until the event occurs is exponential with 
parameter λ.

 Suppose the waiting time in minutes for a bus is 
exponential with parameter λ = 0.1.

 The mean waiting time is 10 minutes.
 If it has been 10 minutes and the bus has not yet 

arrived, then the mean further waiting time is 10 
minutes.
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Connection with the Poisson
 A Poisson process with rate parameter λ produces points on 

a line so that
 On any finite interval [a, b], the number of points within the 

interval is a Poisson random variable with parameter λ(b-a).
 The two random variables associated with disjoint intervals 

[a, b] and [c, d] are statistically independent.
 If events follow a Poisson process on the line with 

parameter λ, the interval between any point on the line and 
the next event has an exponential distribution with 
parameter λ.

 The waiting time until the kth event follows a gamma 
distribution with parameters k and λ.
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Other Distributions
 The uniform is used when the random variable falls 

into a fixed interval with equal likelihood everywhere.
 The beta distribution is an uneven distribution over a 

fixed interval.
 The Weibull is often used for reliability when the 

hazard is not constant. Many items have a “bathtub” 
hazard rate, which needs an even more complex 
model.
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Distributions in MATLAB
normcdf(x, mu, sigma)
norminv(p, mu, sigma)
normcdf(x) #standard normal
norminv(p)
expcdf(x, mu)
expinv(p, mu)
gamcdf(x, a, b)  #a = k, b = 1/λ
unifcdf(x, a, b)
betacdf(x, a, b)
wblcdf(x, a, b)
# and many others
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Estimators and Estimates
 An estimator is a method of computing a number from 

data, The result is called an estimate.
 If we are trying to estimate a parameter, it is best if the 

estimate is close to the parameter value.
 Since the estimate is a random variable, “close” must 

be defined as an average distance from the true value, 
in some sense of average.

 This will depend on the estimator, the population, and 
the sample size, among other things.
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Figures of Merit
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The Sample Mean
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The Sample Proportion
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Unbiased vs. Minimum MSE
 Unbiased sounds like a good thing, but it may not be 

the most important characteristic.
 A small amount of bias relative to the variability of the 

estimator may not be important.
 The sample variance s2 (with denominator n − 1) is an 

unbiased estimate of the population variance σ2.
 But the sample standard deviation s is not unbiased 

for the population standard deviation σ.
 We use it anyway, because it is optimal in other ways.
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Consistency/Convergence
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