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Interval Estimates
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[ ]The idea of an interval estimate is to provide an interval ,  that is “likely” to contain 
the unknown parameter value . Suppose we are interested in the calcium content of
a cell-growth medium, and i

a b
θ

n particular, we want to know that the mean content is across 
batches of the medium. Suppose we take a sample of size 100 and the sample mean 
calcium content is 36 gm/L with a sample standard deviation of 14 gm/L. 
We know the sample mean has standard deviation (also call standard error of the mean)

/ 100 14 /10 1.4. 
What values of the population mean  are consistent with this evidence?
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38 or 34 are consistent with the findings.
42 or 30 are not consistent with the findings.

Why?
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µ µ
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Confidence Intervals
 A 95% confidence interval is an interval such that the 

probability that the true parameter value is in the interval 
is 0.95.

 We can also define 99% confidence intervals or, in general, 
the 100(1 − α)% confidence interval for any value of 
0 < α < 1. 

 The usual interpretation of this statement is based on the 
idea that the parameter has a fixed value that we do not 
know.

 We take a sample (which is random) and calculate the 
interval (which is random) and if we repeated this 
procedure, some of the intervals contain the true 
parameter value and some don’t.
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 In such repeated sampling, 95% of the resulting intervals 
are supposed to contain the true parameter value.

 This is called the frequentist approach since it is based on 
hypothetical repeats of the experiment and a statement 
about how frequently the interval will contain the true 
parameter value.

 An alternative approach is to treat the parameter value as 
itself a random variable (which we do not observe). In this 
Bayesian approach, the interval is based on the data, and 
then the statement that the parameter value is in the 
interval is a probability statement about the random 
parameter value.

 Much of the time, the two approaches yield very similar 
results. 

 We will concentrate on the first approach, which is the 
more usual in science and engineering.
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Suppose we take a sample of size 100 and the sample mean calcium content is 36 gm/L 
with a sample standard deviation of 14 gm/L. Then a 95% con
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36 (1.960)(14) / 100 36 (1.960)(1.40) 36 2.744

(33.256,38.744)
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Large-Sample Intervals for the Mean
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Confidence Interval for the IgM Data
 There are 298 observations in the IgM data set 

(concentrations of IgM in g/L), so this is a large 
sample.

 Since the distribution looks more normal on the log 
scale, we do the analysis on that scale.

 This gives us an interval for the mean of ln(IgM), 
which is the geometric mean of IgM on the original 
scale.

 The mean is −0.3632 and the standard deviation is 
0.5469
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Confidence Interval for the IgM Data
 The mean is −0.3632, the standard deviation is 0.5469, 

and the sample size is n = 298
 A 95% CI on the natural log scale is 

−0.3632 ± (1.960)(0.5469)/√298 
−0.3632 ± (1.960)(0.0317) 
−0.3632 ± 0.0621
(−0.4253, −0.3011)

 Or (0.653, 0.740) on the original scale of g/L, which we 
obtain by exponentiating each end of the CI. 
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Behavior of Confidence Intervals
 A 95% confidence interval will cover the true value 

95% of the times that the procedure is run.
 A particular 95% confidence interval either covers the 

true value or not, though we don’t know which in an 
particular case.

 So (from the frequentist point of view) it is incorrect to 
say that the probability that the interval covers the 
true value is 95%.

 That is why we call it 95% confidence and not 95% 
probability.
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Confidence Intervals in MATLAB
>> [h p ci stats] =ztest(ligm,0,std(ligm))

% ignore h and p. These are for a hypothesis test that the

% mean of the log IgM is 0, which is not meaningful

%

h =

1

p =

2.0190e-30

ci =
-0.4253
-0.3011

stats =

-11.4632        %this is the z-statistic testing mu=0, not relevant here
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Confidence Intervals in MATLAB
Confidence interval for mean log IgM

ci =

-0.4253

-0.3011

Confidence interval for geometric mean IgM

>> exp(ci)

ans =

0.6536

0.7400
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An Interpretation of CI’s
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Another perspective on confidence intervals is to ask the following question: 
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Example
 The birth weight of 189 infants was collected at 

Baystate Medical Center in Springfield, MA.
 The mean weight was 2945 gm with a standard 

deviation of 729 gm.
 A 95% confidence interval for the mean birth weight is 

2945 ± (1.960)(729)/√189 = 2945 ± 104 = (2841, 3049)
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Sample Size Determination
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Hypothesis Tests
 We have seen that a confidence interval for a 

parameter based on a sample from a population can be 
thought of as the set of parameter values that is 
consistent with the data collected, at the specified 
level of confidence.

 For example, if  a 95% confidence interval for the 
mean was 111 ± 12, or (99, 123), then values for the 
population mean consistent with the data include 100, 
99, 120, but not 98 or 125.
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Hypothesis Tests
 A hypothesis test is used when we have one specific 

value of the parameter that we wish to know if it is 
consistent with the data.

 We could just look to see if it is in the 95% confidence 
interval, but that does not distinguish between μ = 
122.5, which is almost out of the CI, and μ = 114, which 
is near the sample mean.

 It also does not distinguish between 98, barely out of 
the CI, and 90, which is very far from the CI.
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 The hypothesis we wish to test is called the null hypothesis, 
largely because we often want to test if the difference 
between two or more things is null, that is zero.

 We may or may not have a specific alternate hypothesis, 
but this is often not needed.

 We construct a statistic which under the null hypothesis 
has a known distribution; that is, we temporarily assume 
that the null hypothesis is true, and see what that would 
imply.

 If the value of this statistic is sufficiently unlikely under the 
null hypothesis, then we conclude that the null hypothesis 
probably is not true.

 We can never conclude that the null hypothesis is 
true, only that it is not shown to be false.
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Example
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The mean calcium content of a type of cell growth medium is supposed to be 30 g/L. 
A sample of 100 batches has a mean concentration of 36 g/L with a standard deviation
of 14 g/L. Test the hypothesis th

0

at the population mean is actually 30 as specified.
: 30

Under the null hypothesis, 
30 ~ (0,1)

14 / 100
36 30 6 4.286 ~ (0,1)?

1.4 1.4
This is too large to have come from a standard normal random variable. 
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N
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−

−
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Almost all
values of a standard normal lie between 3 and 3.−



Fixed Level Tests
 We compute a statistic that should be standard normal 

if the null hypothesis is true.
 If that statistics is either too large (like 3) or too small 

(like -3), then we will reject the null hypothesis, that is, 
decide that it is likely not to be true.

 For example, the chance that a standard normal 
random variable is larger than 1.960 in magnitude is 
5%.

 If we choose 5% as the criterion level, then we will 
reject the null hypothesis whenever the z statistic is 
larger than 1.960 or smaller than −1.960.
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P-Values
 Suppose we had a sample mean level of 33 g/L with a 

standard deviation of 14 g/L and n = 100. To test the null 
hypothesis that the population mean is 30, we calculate z = 
(33 − 30)/1.4 = 2.143. This is approximately standard normal 
if the true mean is 30.

 The chance that z exceeds 2.143 is 0.0161. We double this to 
account for the fact that we might have gotten a sample 
mean below 30. This is called a two-sided test.

 The (two-sided) p-value is then 2(0.0161) = 0.0322
 This means that if the null is true, we would get a value as 

extreme as this only 3.22% of the time.
 At this point, we may choose to reject the hypothesis based 

on a p-value threshold like 5%.
 We have two choices: either something unlikely has 

happened or else the null hypothesis is false.
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We Never “Accept the Null”
 If we have a null hypothesis that the population mean 

is 30, then we know from first principles that it is false 
at some decimal point. The true mean may be in 30 ± 1 
or 30 ± 0.1 or 30 ± 0.01, but it is not in 30 ± 10-9.

 So when we reject the null, it means that we know that 
the true mean is not 30 or very close to 30.

 If we do not reject the null, that does not mean that we 
know that the true mean is exactly 30.

 In fact, the confidence interval contains all the 
values of the true mean consistent with the data.
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A sample of 100 batches has a mean concentration of 33 g/L with a standard deviation
of 14 g/L. A 95% confidence interval for  is

33 (1.960)(14 / 100)

33 2.744

(30.256,35.744)

The value 30.256 is the smalle

µ

±

±

st value still in the 95% confidence interval.
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A sample of 100 batches has a mean concentration of 33 g/L with a standard deviation
of 14 g/L. A 95% confidence interval for  is
(30.256,35.744)
The value 30.256 is the smallest value still in the 95% 

µ

0

confidence interval.

If we test the hypothesis that the population mean is actually 30.256, then
: 30.256

Under the null hypothesis, 
30.256 ~ (

2.744

0,1)
14 / 100
33 30.256 1.960

1.4 1.4
The p-value is 2(0.

H

x N

µ =

−

−
= =

0250)=0.05 or 5%
The 95% confidence interval is the set of possible null hypotheses for  such that 
the p-value is greater than 5%

µ
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95% confidence interval is the set of possible null hypotheses for  such that 
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Hypothesis Tests in MATLAB
>> [h p ci stats] =ztest(ligm,-0.5,std(ligm))

Null hypothesis is that the mean of the log iGM values is -0.5

h =

1                    # the hypothesis is rejected at p = 0.05

p =

1.5657e-05             # this is the actual two-sided p-value

ci =                      # Confidence interval as before

-0.4253

-0.3011

stats =

4.3192                # t-statistic
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Type I and Type II Errors
 We make a Type I error when we reject a null 

hypothesis even though it is in fact true.
 By definition, we will always make some Type I errors, 

but we can explicitly control how many we make.
 If we use a 5% criterion, then we will reject a true null 

hypothesis 5% of the time.
 We make a Type II error when we fail to reject a false 

null. We can’t calculate this without specifying what 
false null we are talking about, and it cannot 
reasonably be so close to the null that it makes no 
difference.
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Type I and Type II Errors
 For example, if the null hypothesis is that the 

population mean is 30 g/L, we may choose to calculate 
the Type II error for a concentration of 35 g/L.

 The value of the parameter that we use to calculate the 
Type II error is sometimes called the alternate 
hypothesis.

 For a given sample size, the power of a test is one 
minus the Type II error. This depends on the alternate 
hypothesis.

 We would like to have small Type I error and large 
power, but this may require very large values of n.
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Why do we double the tail area?
 Suppose we want to test the hypothesis that the true mean is 30 

g/L. A sample of 100 gives a mean of 33 g/L and a standard 
deviation of 14 g/L.

 If we construct the test statistic, we get z = 2.143, which has a tail 
area to the right of 0.0161. This happens 1.61% of the time when 
the null is true.

 The p-value is the fraction of time that we would reject the null if 
the null is true, and it looks like this would be 1.61%.

 But if the sample mean had been 27 g/L, then the test statistic 
would have been z = −2.143, which has a tail area of 1.61% to the 
left.

 So if we use the 1.61% criterion, we reject the null 1.61% of the 
time with positive z and 1.61% with negative z, for a total of 
2(1.61%) = 3.22% 
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What about one-sided tests?
 The book discusses a one-sided test, used when one expects only 

deviations on one side of the null.
 This should usually not be used because can be a form of self 

deception.
 Suppose I think that vitamin C prevents cancer. I might advocate 

a hypothesis test with null hypothesis that vitamin C has no 
effect and alternate hypothesis that it helps. Say I use a 5% 
cutoff.

 I am then promising that no matter how much the evidence 
seems to show that vitamin C causes cancer, I will not make any 
conclusion from the data.

 This is obvious nonsense; if the evidence looks strong, I will 
conclude that vitamin C is harmful.

 But then my chance of being wrong is 5% plus the chance that 
the evidence of harm is sufficiently great, which might also be 
5%.
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What about one-sided tests?
 One-sided tests can be used in a decision context. If we test a 

new manufacturing process for a medical device to see if the 
defective rate can be reduced from 4% to a lower rate, then we 
only want to adopt or pursue the new process if the defective rate 
is lower than 4%. If the defective rate of the new process is the 
same or higher, then we don’t want to use the new process.

 One-sided tests are appropriate for some decision analysis 
contexts. They are not usually appropriate for science.

 It is not sufficient to say that “we want to know if the mean is less 
than 12.” It must be the case that departures on the other side 
lead to the same conclusions as if the sample mean is near the 
true mean.

 Some book problems will assume a one-sided test. You can tell if 
the alternate is phrased with “greater than” or “less than” instead 
of “not equal.” Then you should do the one-sided test.
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Non-inferiority Tests
 A type of stent placed in coronary arteries as therapy 

for atherosclerosis has a mean increase in blood flow 
of 32 ml/min.

 A new type of stent is proposed to be equivalent to the 
standard type.

 It is unfair to require that the new stent be shown to 
have a higher mean increase in blood flow than the 
standard because this would require a sample mean 
blood flow increase much larger than 32 (depending 
on the standard deviation and the sample size.
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Non-inferiority Tests
 For example, if 100 patients had a mean increase of 35 

ml/min with a standard deviation of 25ml/min, then the 
test statistic (35-32)/(25/√100) = 1.2. The area to the right of 
1.2 is 0.1151, so not significant.

 Instead, the non-inferiority method says that the new 
device should be shown to be “equivalent” to the old one or 
better, where equivalent is ±20%. The band of 32 ± 6.4 is a 
sort of zone of equivalence. Thus we only need to show that 
the mean increase is at least 32 – 6.4 = 25.6 ml/min.

 (35-25.6)/(25/√100) = 3.76 which has p ~ 0. Correctly one 
sided.

 This is a decision context (approve/don’t approve drug)
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Hypothesis Tests Summary
 To test a statistical hypothesis you use a statistic whose 

distribution is known if the null hypothesis is true.
 Compute the probability that the statistic would be as 

greater (if positive) or less than (if negative) and 
double it. This is the (two-sided) p-value.

 Reject the null hypothesis if this p-value is sufficiently 
small.

 A 100(1 − α)% confidence interval is the set of values of 
the parameter such that the null hypothesis two-sided 
p-value is less than α.
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Hypothesis Tests for the Mean, Large Samples
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Confidence Intervals for the Mean, Large Samples
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