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The Chi-Squared Distribution
 The Chi-Squared or Chi-Square distribution is the 

distribution of a sum of squares of independent 
standard normals.

 If X1, X2, … , Xk are independent standard normal 
random variables, and if Y = X1

2 + X2
2 + … + Xk

2,
then Y has a χ2(k) distribution. 

 This is a type of gamma distribution. It is strictly 
positive. Its mean is k and its variance is 2k

 One of the uses is to assess the difference between 
counts and expected counts.
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Observed and Expected Counts
 For a Poisson distribution, the expected count is λ. If the 

actual count is X, and if λ is large, then (X − λ)/√λ is 
approximately normal, so (X − λ)2/λ is approximately χ2(1)

 This is of the form (O − E)2/E, where O is the observed 
count and E is the expected count.

 This is large when the observed value is far from the 
expected value.

 The χ2 approximation to this distribution only works well if 
the expected count is at least largish, conventionally at 
least 5.

 The expected values can come from a variety of sources 
depending on the problem, but a two common uses are to 
test for goodness of fit or to test for independence of two 
discrete random variables.
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Is the Die Fair?
Category Observed Expected (O − E)2 (O − E)2/E

1 115 100 225 2.25

2 97 100 9 0.09

3 91 100 81 0.81

4 101 100 1 0.01

5 110 100 100 1.00

6 86 100 196 1.96

600 600 6.12
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6.12 is to be compared to a Chi-Squared distribution. The number of degrees of freedom is 5
since the expected values were fitted to the total of 600. Only large values show a discrepancy.
The area to the right tail is 0.4099 (using MATLAB chi2pdf(x,v)) or from Table A.5 we see that 
6.12 does not exceed the 10% tail area point of 9.236. We don’t have to double the p-value 
because deviations in any direction generate larger values of the Chi-Squared statistic.



Goodness of Fit
 The previous example is goodness of fit test.
 It can test a specific distribution against a set of data 

that may or may not have that distribution.
 The data can be discrete, or continuous data can be 

binned (as one does to make a histogram).
 The degrees of freedom is the number of categories 

less the number of parameters that are fit to the data.
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Homogeneity or Independence
 The chi-squared distribution can also be used to test for 

homogeneity or independence in two-way table.
 This is when data are classified in two ways and the 

question is whether the two are related or independent.
 This is different from deciding on independence when we 

know the probability distribution. In that case, we just 
check if the joint probability of two events is the product of 
the individual probabilities.

 When we have data, the question is this: is there a set of 
probabilities for the events such that they are independent 
and such that the data are consistent with these 
probabilities?
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Lymphoma Clinical Trials
 Intensive vs. moderate chemotherapy in lymphoma. 

Adapted from Pocock, S, Clinical Trials.
 273 patients, 138 on one treatment (BP) and 135 on the 

other (CP)
 Are the treatments provably different in outcome?
 77/138 = 56%;   90/135 = 67%
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BP CP Total

Improvement 77 90 167

No Improvement 61 45 106

Total 138 135 273
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BP CP Total

Improvement 77 90 167

No Improvement 61 45 106

Total 138 135 273

We test for independence, meaning that improvement rates on the two treatments
is the same. To use the chi-squared test, we need to calculate
expected values for each cell in the table. For Improvement on BP, we have 
167/273 of the patients are improved and 138/273 are on BP, so if these events 
were independent the probability would be 
167 138  and the expected numbe
27

r 
3 273

in that cell wo  
  
  

uld be

167 138273 84.41,  which is (row total)(column total)/total.

We can do the same for the other cells, or subtract from the

167 138
273 27

 margins
3 7

.
2 3
×   = =  

  
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BP CP Total

Improvement 77 90 167

No Improvement 61 45 106

Total 138 135 273
2

1

2 2
2 (77 84.42) (90 82.58) (45 52.42)

0.6518 0.6662 1.0497
3.3945

The p-value is 0.0654 using matlab 
or from table A.5, the p-value is between 0.05 (3.84

84.42 82.58 52.42

1) and 0.

χ − − −
= + + +

= + + +
=

chi2cdf(3.3945,1).





10 (2.706)
The degrees of freedom starts with the number of cells (4).
The margins (row and column sums) are fixed.
There is then only one cell with some choice to make the margins add up
Once the top left cell is known, the rest are determined.
If there are  rows and  columns, then the df is ( 1)( 1)r c r c− −



Same Problem, Different Test
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1 2

2 1

ˆ

We cou

(77

ld 

90)

view this a

/ (138 135) 0.6117

(0.6117)(0.3883)(1/138 1/135) 0.05900
0.1087 1.842

0.05900 0.05900
p-val

s a test of difference of proportions
77 /138 0.5580 . 90 /135 0.6667

ue

p vs
p

p pz

p= =
= + + =

+ =

−
= = =

= =

= 0.06541
Compare to p = 0.0654 by the chi-squared test.
Chi-squared test can handle more than two by two.



Failures of Four Compressors
 There are four compressors in a plant, each of which 

has three legs, North, Center, and South.
 We compare piston-ring failures in each leg on each 

compressor over a year’s time.
 The question of interest is whether the four apparently 

identical compressors have different patterns of 
failure.

 We can also ask if the compressors have different rates 
of failure overall.

 Davies, OL and Goldsmith, PL, Statistical Methods in 
Research and Production.
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Compressor North Leg Center Leg South Leg Total

1 17 17 12 46

2 11 9 13 33

3 11 8 19 38

4 14 7 28 49

Total 53 41 72 166
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To test for independence, meaning that the failure rates on the three legs
is similarly distributed across the four compressors, we need to calculate
expected values for each cell in the table. For the north leg of compressor 1,
we have that compressor 1 has 46/166 of the total failures and north legs have
53/166, so if these events were independent the

46 53  and 
166

 probability would

16

 be

6

 

  
  
  

the expected number of failures in that cell would be

46 53 46 53166 14.69,  which is (row total)(column total)/total.
166 166 166

×   = =  
  



Compressor North Leg Center Leg South Leg Total

1 17 17 12 46

2 11 9 13 33

3 11 8 19 38

4 14 7 28 49

Total 53 41 72 166
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Compressor North Leg Center Leg South Leg Total

1 14.69 11.36 19.95 46

2 10.54 8.15 14.31 33

3 12.13 9.39 16.48 38

4 15.64 12.10 21.25 49

Total 53 41 72 166

Observed

Expected
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Compressor North Leg Center Leg South Leg Total
1 17 14.69 17  11.36 12  19.95 46

2 11  10.54 9   8.15 13  14.31 33

3 11  12.13 8   9.39 19  16.48 38

4 14 15.64 7  12.10 28  21.25 49

Total 53 41 72 166

Observed  Expected

2 2 2
2
6

(17 14.69) (17 11.36) (28 21.25)
14.69 11.36 21.25

0.3644 2.7983 2.1419
11.7227

The p-value is 0.06845 using matlab 
or from table A.5, the p-value is between 0.05 (12.592) an

χ − − −
= + + +

= + + +
=

chi2cdf(11.7227,6).





d 0.10 (10.645)
The degrees of freedom is ( 1)( 1) or 3 2 or 6.
The margins (row and column sums) are fixed.
There are then 6 cells with some choice to make the margins add up

r c− − ×



Compressor North Leg Center Leg South Leg Total

1 17 17 12 46

2 11 9 13 33

3 11 8 19 38

4 14 7 28 49

Total 53 41 72 166
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Compressor North Leg Center Leg South Leg Total

1 17 17 46

2 11 9 33

3 11 8 38

4 49

Total 53 41 72 166



Overall failure rates
 The failures of the three compressors were 53, 41, 72, 

with a total of 166.
 The expected failure if they were all the same would be 

166/3 = 55.33.
 So the chi-squared statistic would be 

(53 −55.33)2/55.33 + (41 − 55.33)2/55.33 
+(72 − 55.33)2/55.33 = 8.8313

 This should be referred to a chi-squared distribution 
with 2 df. The tail area is 0.0121.

 Thus, the failure rates are likely not the same.
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Fisher’s Exact Test
 The chi-squared test for a contingency table is generally 

considered accurate if all of the expected counts are at least 5.
 In cases where this is not true, we can use Fisher’s exact test. In 

fact, some prefer to use this always.
 The idea is to line up all possible tables with a given set of row 

and column sums according to how strong the evidence of 
association is, then count how extreme the actual data are in this 
list. This is then doubled for a two-sided test.

 In practice, we weight each table by how likely it is to occur 
under the null hypothesis.

 This may be hard to compute in practice, and MATLAB can do so 
only for 2x2 tables, so can’t be used for compressor example.

 R and other statistical packages can do this.
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Glasses and Crime
 Study comparing health measures of juvenile offenders to a 

control group. Weindling, AM, Bamford, FN, and Whittall, 
RA “Health of Juvenile Delinquents,” British Medical 
Journal, 292, 1986.

 Compares those in both groups who failed a vision test as 
to whether they actually wear glasses

 The sample size is too small for a chi-squared test.
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Offender Non-Offender Total

Glasses 1 5 6

No Glasses 8 2 10

9 7 16
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Obs Offender Non-Offender Total

Glasses 1 5 6

No Glasses 8 2 10

9 7 16

Exp Offender Non-Offender Total

Glasses 3.375 2.625 6

No Glasses 5.625 4.375 10

9 7 16

More Extreme Offender Non-Offender Total

Glasses 0 6 6

No Glasses 9 1 10

9 7 16



 The p-value from Fisher’s exact test is 0.03497
 This is done using 
[h p stats] = fishertest(glasses)

 The measure of extremeness is the odds ratio, the 
observed value of which is (1/5)/(8/2) = 0.05

 The chi-squared test is not accurate here so should not 
be used.
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Obs Offender Non-Offender Total

Glasses 1 5 6

No Glasses 8 2 10

9 7 16



For a contingency table, MATLAB seems to be able to compute the

chi-squared test only when the data are given in raw form, not in 

tabulated form. This example is one where the chi-squared statistic should

Not actually be used because the sample size is too small, but here it is.

>> offend = [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 ]

>> glasses = [1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 ]

>> [table chi2 p labels] = crosstab(offend,glasses)

table =

2     5

8     1

chi2 =

6.1122

p =

0.0134

labels = 

'0'    '0'

'1'    '1'
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Here is Fisher’s exact test:

>> glasses = [1 5;8 2]

glasses =

1     5
8     2

>> [h p stats] = fishertest(glasses)

h =

1

p =

0.0350

stats = 

OddsRatio: 0.0500
ConfidenceInterval: [0.0035 0.7061]
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Statistical Power
 Hypothesis tests are designed so that if the null 

hypothesis is true, the chance of the hypothesis being 
rejected is small. This is called a Type I error.

 For example, if we agree to reject the null when 
p < 0.05, then we make a Type I error only 5% of the 
time, or 1 time in 20.

 A Type II error is when the null hypothesis is false, but 
we don’t reject the null.

 The chance of this happening depends on the specific 
alternate.
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 Suppose we are measuring the size of fibroblast cells, and 
we want to test the hypothesis that the mean diameter is 30 
μm. Assume we have measured 100 cells.

 We choose α = 0.05, which means we reject the null if the 
p-value is less than 0.05.

 Assume that the population standard deviation is 3 μm, so 
that the standard error of the mean is 
3/10 = 0.30 μm.

 If the true mean is 30.01 μm, then we will commit Type II 
errors quite frequently. The chance of rejection will be 
0.05013, so a Type II error happens almost 95% of the time.

 On the other hand, if the true mean is 32 μm, then we will 
reject the null with probability 0.915, so the chance of a 
Type II error is only 8.5%
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 Power is the probability of rejecting a specific alternate 
hypothesis.

 If the power is not large, then the experiment is not 
worth performing because it will most likely end up 
with no conclusion.

 To set up a hypothesis test with specific level α, we only 
need to know the null hypothesis.

 To determine the power, we need also to have a specific 
alternate in mind and to have some idea what the 
standard deviation is.

 We can then use the normal distribution to find the 
chance of the Type II error and thus the power.
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Biotechnology Drug Production
 Using standard genetically engineered yeast cells, a 

biologically active drug can be produced in concentrations 
of 3.5 gm per liter. 

 A new strain of yeast is to be tested with 80 small batches 
in which the concentration is measured. 

 If the concentration reached 4.0 g/L, then this would be 
economically important and would justify switching the 
process. 

 Suppose previous experience suggested that the standard 
deviation of the yield would be 2.1 g/L. 

 If a 5% test is used, and if the true yield was 4.0 g/L, what is 
the chance that this will be detected by rejecting the null?
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Sample Size Determination
 If the null hypothesis is that the mean is 3.5, the 

alternate that we would like to detect is 4 and the 
standard deviation is 2.1, how big does the sample have 
to be in order that the usual 5% test has 80% power?

 We saw that a sample size of 80 gives only 56.7% 
power.

 We could use trial and error, or a formula, or we could 
use a computer analysis. Mostly, in practice, we use a 
computer analysis.
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Area under black curve 
to the right of green line
Is 0.025

Area under red curve 
to the left of green line
Is 0.20

5% test
80% power



Sample Size and Power in MATLAB
power = sampsizepwr(testtype,p0,p1,[],n)
n = sampsizepwr(testtype,p0,p1,power)

testtype: ‘t’, ‘z’   p0 = [mu0 sigma0]  p1 = mu1

The test size is always 0.05 unless specified to be otherwise.

>> sampsizepwr('t',[3.5 2.1],4,[],80)

0.5572

>> sampsizepwr('z',[3.5 2.1],4,[],80)

0.5674

>> sampsizepwr('t',[80 5],82,0.80)

52

>> sampsizepwr('z',[80 5],82,0.80)

50
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Multiple Testing
 Suppose that we measure 50,000 things (expression of 

genes, amount of proteins) on each of 10 control 
samples and 10 treatment samples, say of 
chondrocytes in a 48-well microplate.

 If we do a 5% test on each of the 50,000 genes, and if 
the treatment actually does nothing at all, then we will 
have false positives of around (50,000)(0.05) = 2,500. 
This can cause many false conclusions that cannot be 
replicated.

 For significance, the ratio of the difference of means to 
the standard error of the difference needs to be at least 
2 or so.
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Bonferroni
 We can prevent this by testing at a smaller value of α.
 The Bonferroni inequality says that if we test at α/k, 

where k is the number of tests, then there is only a 
chance of α that even one false positive will occur.

 But 0.05/50000 = 10-6, and the critical value for a two-
sided t-test is not around 2, but around 7, so only 
enormous differences can be detected.

 We can use improved methods of correcting for 
multiple testing, of which the most popular is the False 
Discovery Rate control methods.
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Example
 A 2012 paper on the possible effect of dental x-rays on the 

risk of meningioma, compared a group of patients with the 
disease to randomly sampled controls matched for age.

 The ‘result’ that the variable ‘ever had a bitewing x-ray’ was 
associated with the disease at a 5% level was widely 
reported in the media. The paper was published in a top 
journal and had authors in the medical schools at Harvard, 
Yale, UCSF, and Duke.

 There were around 50 questions that were tested, and only 
one was ‘significant’.

 With a 5% test and 50 tests, the expected number of false 
positives is 2.5.

 So the result is not believable. 
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