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Summaries for Bivariate Data
 If we have two measurements on each unit in a sample, 

we call that bivariate data.
 For example, we have 17 subjects with measurements 

 X = peak air flow by the standard Wright meter
 Y = peak air flow by the mini Wright meter

 We have summaries of location and spread for each 
variable
 The mean
 The variance/standard deviation

 Are X and Y “related”?
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Measuring Relatedness
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Scaling

November 12, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 7

1

1

1

1

Correlation of  and 

( 1)

( 1) ( )( )

n
i i

XY
i X Y

n

i i
i

X Y

XY

X Y

X Y

x x y yn
S S

n x x y y

S S
S

S S

ρ −

=

−

=

  − −
= −   

  

− − −
=

=

∑

∑



Scaling
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Correlation for the Wright Meter Data
Means

std.wright mini.wright

450.3529    452.4706 

Variances

std.wright mini.wright

13,528.62    12,795.01

Standard Deviations

std.wright mini.wright

116.3126    113.1151 

Covariance and Correlation

12410.45

0.94327945
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Correlation in MATLAB

>> corrcoef(stdwright,miniwright)

ans =

1.0000    0.9433
0.9433    1.0000

>> cov(stdwright,miniwright)

ans =

1.0e+04 *

1.3529    1.2410
1.2410    1.2795



Cautions about Correlation
 The coefficient of correlation measures linear 

association. If the relationship is non-linear, a more 
sophisticated measure is needed.

 Correlation depends not only on how close the values 
in X and Y are, but also on the range of X

 Correlation coefficients can be distorted by outliers
 Correlation does not imply causation (storks do not 

bring babies)
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Summaries vs. Plots
 Four data sets of x/y pairs.
 In each case the mean of x is 9, with variance 11.
 The mean of y is 2.031 with variance 4.13.
 The correlation between x and y is 0.816
 So the summaries are all the same.
 But the appearance and interpretation is very 

different.
 This example is due to Anscombe.
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The Least-Squares Line
 Correlation is symmetric in X and Y
 If we want to predict Y from X, we can construct a 

prediction function y = f(x) which given x will make 
the best prediction it can about the value of y.

 Often, we use a straight-line prediction function
y = β0 + β1x

 We need to find the intercept and slope so that the line 
fits as well as it can.

 One solution is the least-squares line.
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Minimize Total Prediction Error
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Finding the Least-Squares Line
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Finding the Least-Squares Line
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Finding the Least-Squares Line
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Finding the Least Squares Line
 The computational formulas work for relatively small 

samples.
 Most of the time, the least squares line is computed in 

a computer program (MATLAB, Excel, R, …)
 In MATLAB there are several commands that can 

compute the least squares line.
>> fitlm(stdwright,miniwright)
Fits the least squares line
>> lsline
Adds the least squares line to a plot (the last one plotted)
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Finding the Least Squares Line
mdl = fitlm(tbl)

mdl = fitlm(tbl,modelspec)

mdl = fitlm(X,y)

mdl = fitlm(X,y,modelspec)

tbl is a table object, using the last column as y
X is a matrix of predictors
modelspec says which variables to use and how
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Calibration
 Standard aqueous solutions of fluorescein (in pg/ml) 

are examined in a fluorescence spectrometer and the 
intensity (arbitrary units) is recorded

 What is the relationship of intensity to concentration
 Use later to infer concentration of labeled analyte
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Concentration (pg/ml) 0 2 4 6 8 10 12

Intensity 2.1 5.0 9.0 12.6 17.3 21.0 24.7
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>> concentration = [0 2 4 6 8 10 12]
>> intensity = [2.1 5.0 9.0 12.6 17.3 21.0 24.7]
>> scatter(concentration,intensity)
>> lsline
>> fitlm(concentration,intensity)

Linear regression model:
y ~ 1 + x1

Estimated Coefficients:
Estimate      SE       tStat pValue
________    _______    ______    _________

(Intercept)    1.5179      0.29494    5.1464    0.0036258
x1             1.9304       0.0409    47.197    8.066e-08

Number of observations: 7, Error degrees of freedom: 5
Root Mean Squared Error: 0.433
R-squared: 0.998,  Adjusted R-Squared 0.997
F-statistic vs. constant model: 2.23e+03, p-value = 8.07e-08
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ˆ 1.52 1.93
ˆ  is the predicted average intensity
 is the true concentration
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Use of the calibration curve
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Measurement and Calibration
 Essentially all things we measure are indirect
 The thing we wish to measure produces an observed 

transduced value that is related to the quantity of 
interest but is not itself directly the quantity of 
interest

 Calibration takes known quantities, observes the 
transduced values, and uses the inferred relationship 
to quantitate unknowns
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Measurement Examples
 Weight is observed via deflection of a spring 

(calibrated)
 Concentration of an analyte in mass spec is observed 

through the electrical current integrated over a peak 
(possibly calibrated)

 Gene expression can observed via fluorescence of a 
spot to which the analyte has bound (usually not 
calibrated)

 Or via a relative count of DNA fragments that map to a 
known gene sequence
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Fitted Values and Residuals
 We have a set of data (xi, yi) and a least-squares line 

y = a + bx
 Each value xi has a fitted value which is a + bxi. All the 

fitted values lie on the line
 The residual is the difference between the fitted value 

and the actual value of y.
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>> model1 = fitlm(concentration,intensity)
>> fits = model1.Fitted
fits =

1.5179
5.3786
9.2393

13.1000
16.9607
20.8214
24.6821

>> resids = model1.Residuals.Raw
resids =

0.5821
-0.3786
-0.2393
-0.5000
0.3393
0.1786
0.0179
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>> scatter(fits,resids)
>> lsline
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>> model2 = fitlm(stdwright,miniwright)

Estimated Coefficients:
Estimate       SE       tStat pValue
________    ________    ______    __________

(Intercept)      39.34       38.704    1.0164       0.32554
x1             0.91735     0.083365    11.004    1.3995e-08

>> fits2 = model2.Fitted
>> resids2 = model2.Residuals.Raw
>> scatter(fits2,resids2)
>> lsline



November 12, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 43

200 250 300 350 400 450 500 550 600 650
-80

-60

-40

-20

0

20

40

60



Matlab Objects
fitlm() creates a linear model object.

Parts of the object can be addressed using 
suffixes such as

>> model1 = fitlm(concentration,intensity)

>> fits = model1.Fitted

>> resids = model1.Residuals.Raw

For a complete list of components see
www.mathworks.com/help/stats/linearmodel-class.html
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https://www.mathworks.com/help/stats/linearmodel-class.html


Other Issues
 A least squares (straight) line is only useful if the 

relationship between x and y is roughly linear. Check 
with a scatter plot and plot of residuals vs. fitted 
values.

 Outlying values can badly distort the computed line. 
Check with a scatter plot and plot of residuals vs. fitted 
values.
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