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Goodness of Fit

Probably the best measure of a prediction equation is
the average size of the prediction errors.

We can also measure the value of the predictor by
seeing how much better predictions are with
compared to without the predictor.

If y is what we want to predict and x is a possible
predictor, then the best predictor of y not using x is
the mean of y
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The total sum of squares SST 1s the sum of squared

errors from the predictor y that does not use x

SST= ) (y,-¥)
i=1

Total mean square MST (aka the sample variance)

MST:SS_T

n—1
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The error sum of squares SSE 1s the sum of squares of errors

from the best predictor using x
SSE = Z(yi _);i)z
==tk

.),>i = f(x) =0y + Bx,
Error mean square MSE
SSE

n—2
Note that the degrees of freedom n —2 1s 2 less than the

original degrees of freedom n, because two parameters are

MSE =

estimated to produce the predictor.
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The regression sum of squares SSR 1s the reduction 1n the prediction
sum of squares of errors from that using only the mean to that using a

prediction based also on the predictor X.

SSR = SST — SSE = Z(yi _)_7)2 _Z(yi _)A/i)2 = Z()A/z _)7)2
i=1 i=1 i=1

I
MSR = IZ(yi _y)2

If there were k predictors, then the degrees of freedom for the
MSR would be &, not 1.
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//(rror sum of squares SSE

= Coefficient of Determination
- : Variance "Explained"
SSE- >y
)2‘ :f(xi):ﬂo+ﬂ1xi SST
Error mean square MSE Correlation Coefficient
MSE = e = \/’"_2
n—2 All of these figures are given in a computer analysis

Total sum of squares SST
SST=) (=)
i=1

Total mean square MST (Variance)
SST

n—1
Regression sum of squares SSR

SSR=SST - SSE=Y(; - 7> =Y (- 5’
i=1 i=1

MST =

- G,-7
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Predict mini.wright from std.wright
SSR
SSE
SST

rZ
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>>aEnelmitstdweigheiminywriaghe:)
ans =
Linear regression model:

YA P S e

Estimated Coefficients:

Estimate SE
(Intercept) G 3v] ot S o O
S EEDEEEEE BESEESISEaS

,X,——/
EeEat pValue
dE e B e
11.004 L3995 a=08

NumberEgt o saryaionsiiiiprrdgridagraa gy aadoms s

Reociaslie s ek Beeic s enmen e

Resauaredis =080 rhdanstadsReSanarad:=0::882

I e eI o e e i e R e o a Do s A e Y 0 I e 0 Ay e ot ar s D e B SN B
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>> model2 = fitlm(stdwright,miniwright)
>> anova (model?2)

ans =
SumSqg DF MeanSqg F pValue
Xl 1.8216e+05 1: 1.8216e+05 1:2:0:22:0:9 1::3995a=08
BError 22 45%5) 1504.3

We will learn later how to interpret many of these figures and
et o S e o B e B e Ry M e e e b T Nt e e ey B e A s o s e o AN NO M e e RO p e
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Predict mini.wright from std.wright
SSR
SSE
SST

rZ
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Example Problem

In an accelerated life test, units are operated under
extreme conditions until failure.

In one such test, 12 motors were operated under high
temperature conditions.

The ambient temperatures (in °C) and lifetimes (in
hours) are presented in the following table:
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Temperatu_‘[‘e
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40
45
50
55
60
65
70
S
80
55
90
9>

e e
S
ERES
764
FoeRS
469
ool
566
Sl
S
245
=
S

100 hours ~ 4 days
1000 hours ~ 40 days
40—C - |04

95 °C =203 °F

P90 °C—24% °F
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Construct a scatterplot of lifetime (y) versus
temperature (x). Verify that a linear model is appropriate.

Compute the least-squares line for predicting lifetime from
temperature.

Compute the fitted value and the residual for each point.

[f the temperature is increased by 5°C, by how much would
you predict the lifetime to increase or decrease?

Predict the lifetime for a temperature of 73°C.

Should the least-squares line be used to predict the lifetime
for a temperature of 120°C? If so, predict the lifetime. If
not, explain why not.

For what temperature would you predict a lifetime of 500
hours?
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Filled dots are easier to see

g tEZ20 200000
Enlarge the axes to room temperature, 120°
FEErame st ot ol

>> xlabel ('Temperature')
T el e UM RS e =iy
>> title('Accelerated Life Test')

Eabaelaxas andgraph

P sl e
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Lifetime
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>> modl = fitlm(Temperature,Lifetime)

Linear regression model:

A e i

Estimated Coefficients:

Estimate SE ESEE pValue
(Intercept) A A A N B e A1 A B AR A B AR S ] A e B
£l et 1.5174 S 8.4166e-06
Number of observations: 12, Error degrees of freedom: 10

Root Mean Squared Error: 90.7
R-squared: 0.874, Adjusted R-Squared 0.861

e e DR A S M CE Y S MR s M S @ B Rt m= ) 0 BB D10 i BN At Y0 Rt Bt o LB M IR [ o e iy C s ol = o O )
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>> [Temperature

40.
255
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0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
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Lifetime modl.Fitted modl.Residuals.Raw]

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
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Plot of residuals vs. fitted values
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//47,//‘%4§§>//// Estimate SE tStat pValue

(Intercept) 1344.1 SRS 12.714 1.6936e-07
bl et A S G 1.5174 ok o RS 8 8.4166e-06

If the temperature is increased by 5°C; by how much would you predict the
lifetime to increase or decrease?

Decrease by 12.611x5 = 63.1 hours
Predict the lifetime for a temperature of 73°C.
e B o oo 0 o 1 o B o P A M A

Should the least-squares line be used to predict the lifetime for a
temperature of 120°C? If so, predict the lifetime. If not, explain why not.

No. Too far out of range. Might not be linear. Anyway the
T T ey O T o T B s PR St e B A e S T s e W G g L g T e G o

For what temperature would you predict a lifetime of 500 hours?

EaTeisine e v o b e S B CH B v Y pe e
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Quantitative Prediction

Regression analysis is the statistical name for the
prediction of one quantitative variable (fasting blood
glucose level) from another (body mass index)

[tems of interest include whether there is in fact a
relationship and what the expected change is in one
variable when the other changes.

A linear model is a prediction equation that is linear in
the parameters. The simplest example is y = a + bx
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Assumptions

Inference about whether there is a real relationship or
not is dependent on a number of assumptions, many
of which can be checked

When these assumptions are substantially incorrect,
alterations in method can sometimes rescue the
analysis

No assumption is ever exactly correct
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Linearity

This is the most important assumption

If x is the predictor, and y is the response, then we
assume that the average response for a given value of x
is a linear function of x

E(y) = a + bx
y=a+bx+e

€ is the error or variability

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers
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In general, it is important to get the model right, and
the most important of these issues is that the mean
function looks like it is specified

If a linear function does not fit, various types of curves
can be used, but what is used should fit the data

Otherwise predictions are biased

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 30
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Independence

It is assumed that different observations are
statistically independent

[f this is not the case inference and prediction can be
completely wrong

There may appear to be a relationship even though
there is not

Randomization and then controlling the treatment
assignment prevents this in general

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 3



Lack of Independence

y2
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Lack of Independence
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Note no true relationship between x and y
These data were generated as follows:

BIM 105 Probability and Statistics for
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How to not be Independent

Let y, be the unemployment rate in year ¢ and let x, be
the inflation rate in year ¢.

If we predict y, from x, using linear regression, the
results will be garbage.

Each of x, and y, is correlated from one time to the
other, just like the artificial example.

I[f unemployment is high in year ¢, it is likely to be high

Inyeart + 1.
More sophisticated methods are needed.

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers
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Constant Variance

Constant variance, or homoscedacticity, means that
the variability is the same in all parts of the prediction
function

If this is not the case, the predictions may be on the
average correct, but the uncertainties associated with
the predictions will be wrong

Heteroscedacticity is non-constant variance

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 36
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Consequences of Heteroscedacticity

Predictions may be unbiased (correct on the average)

Prediction uncertainties are not correct; too small
sometimes, too large others

Inferences are incorrect (is there any relationship or is
it random?)

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 39
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Normality of Errors

Mostly this is not particularly important

Very large outliers can be problematic

Grap

hing data often helps

If in a gene expression array experiment, we do 40,000
regressions, graphical analysis is not possible

Significant relationships should be examined in detail

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers
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“Assumptions” and Actions

Linearity is most important. If the relationship is non-
linear there are a number of possible solutions:

e Perhaps the relationship may be more nearly linear on
the log scale. We may need to take logs of y or x or both.

e Sometimes we use other transformations than the log,
such as the square root or reciprocal.

e Sometimes instead we fit a non-linear function directly
such as a polynomial or log-logistic curve, depending on
the application. We will be able to do the first by the end
of the quarter.
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Linear Regression

y=P0,+Bx+e

Quadratic Regression (Curved)
y=B,+Bx+p,x°+e

Nonlinear Regression Transformed to Linearity
= Otoeﬁ L

log(y)=log(a,)+ P,x +e
Intrinsically Nonlinear Regression
y=PB, +e" +e

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 43
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Independence

This is also a highly important assumption.

A common way in which it may fail is if the xand y
values are sequential (as in annual data, 1960-2010.

You should assume that time-series data are not
statistically independent. There are tests and methods
for this situation.

Another way that this can happen is if the data are
collected in batches; for example, if 16 observations are
collected on four four-well microplates. This can be
fixed be adding a variable for which plate the
observation was collected on.
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Constant Variance

A small degree of non-constant variance is not really of
concern.

If the variance rises with the mean, so that the
coefficient of variance (standard deviation divided by
the mean) is roughly constant, then on the log scale
the variance is roughly constant.

If this method cannot fix the problem, and if the
problem is large, meaning highly visible on plots, then
a different transformation or else weighting can be
used.
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Normality

In itself, this is not important.

The main issue is with large outliers, and in simple
linear regression you can see this on a plot of the data
or on a plot of residuals vs. fitted values.

You should always look for outliers in plots and
investigate the possible reasons.

Otherwise, you should not be excessively concerned
with whether the distribution is normal.
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Inference on Coefficients

>> wrightmdl = fitlm(stdwright,miniwright)

wrightmdl = Tests that the coefficient

1S Zero.

Linear regression model:
A s, o> <A &

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 39.34 38.704 1.0164 0.32554
x1 0.91735 0.083365 11.004 1.3995e-08

Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 38.8
R-squared: 0.89, Adjusted R-Squared 0.882

F-statistic vs. constant model: 121, p-value = 1.4e-08

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers
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The statistical model is that the expected value of Y is a linear function of X

Y=0+BX+e

e~N(0,0°)

The errors are statistically independent, all with the distribution N(0,57), so
E(Y)=p,+ pEX)

If we have a sample (x,,¥,),(x,,»,)---(x,,»,) and we fit the least squares line we get
y=py+ B

ﬁo is an estimate of £, and ,@1 1s an estimate of /3, each with its standard error.

The standard errors of these estimates depend on the

standard deviation of errors from the regression line.

The sum of squares of errors SSE is Z( y,—3,)* and this has degrees of freedom n —2

i=1

because we have fit two coefficients to the original » numbers.

s?=MSE=n-2)") (y,-5)

i=1
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Y=0+BX+e
e~ N(0,07%)
y=P0,+pbx

s MSE-(=2F D O = )
i=1
The larger s 1s, the more uncertain the estimates are.
2 n

where SSX = Z(xl. —X)
i=1

Sz_ .
By

So the more spread out the x's are, the less error in the slope (and also intercept).
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Prfarencesonthe — —
Slope and Intercept

We will usually obtain the standard errors from a
computer analysis.

The hypothesis test that the coefficient is o is usually
given.

For the slope, this is a test of association.
For the intercept it may be of little interest.

A confidence interval is found using the t percentage
point and the given standard error.

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers
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Estimate SE tStat pValue
(Intercept) 39.34 38.704 1.0164 0.32554
x1 0.91735 0.083365 11.004 1.3995e-08

Number of observations: 17, Error degrees of freedom: 15

Root Mean Squared Error: 38.8

R-squared: 0.89, Adjusted R-Squared 0.882

F-statistic vs. constant model: 121, p-value = 1.4e-08

In this case, when both x and y are meant to measure the same thing, we might

be especially interested in the hypotheses that the slope is 1 and the intercept is O.

In that case, the model y = x + € may be tenable. The first line gives a test that

the intercept is 0, and it is not rejected. The second line shows that the slope 1s not 0,

but we want to know if it 1s 1. With 15df, the t statistic for 95% confidence 1s 2.132.

0.9173£(2.132)(0.08337)=0.9173+£0.1777 or (0.7396,1.095).

The test that B, =1 is given by

0.9173—1 -0.0827
0.08337  0.08337

=-0.9920=1¢, sop=0.34
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~“Inference on a Mean Response

The predicted value y for a particular value of the predictor x is

y= ﬂAo als Ax

Its uncertainty 1s a combination of the uncertainties of the two estimated coefficients:
= Bo a5 ﬁlf

y=po+ Bx=-D)+BI=F+ f(x-D)+F=f =V + A (x~T)

It turns out that y and ,Bl are statistically independent

so the variance of the sum i1s the sum of the variances
V(y) =0’ /n estimated by s* / n

V(B,)=0"/SSX where SSX = (x—X)* estimated by s> / SSX
i=1

V(B (x—%))=(x—%)’c / SSX estimated by (x—¥)’s* / SSX
V(§)=s*|1/n+(x—X)"/ SSX |
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““Inference on a Mean Response

V(§)=s"|1/n+(x-%)/SSX | where SSX =" (x,— %)
i=1

Usually we get the predictions and uncertainties from MATLAB

e T 0 T B e S G o = LB e I W e e My Y B o

ypred =
T e b U
401.6927
Sl nnEeing
437.4693
sl
SRR A
418.2049
444 .8080
AR ava b or |
S elarsi )
421.8743
G0
284.27722
e SRR
T e
42°7.3784
431.0478
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424 .
I35
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Ere s
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S
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iy
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D
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0082
0256
8885
F2 9L
B
e
3254
9:1:33
365
8380
e
8012

4760
St
BRORONS

We have a data point
where x = stdwright =
494 and y = miniwright =
512. When x = 494, the
predicted value of y is
492.5 with CI

(471.0, 514.0)
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Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 39.34 38.704 1.0164 0.32554
x1 0.91735 0.083365 11.004 1.3995e-08

Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 38.8

D V= i (s B G TRt O 1) ) ARamd
2.1646e+05

>> mean (stdwright)
450.3529

If x = stdwright = 494, then the variance of the prediction 512 is

e e R R e o A = et e e O o O B i B o Y B
10.0860

(P O AR o ) e R o 1 ) G s 0 | = Py @0 e S p | 4 Ml 1 O e s v (o sl 4 o G 0 o OR CR G B v o
R TR A OOy
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_ Prediction Intervals for
Future Observations

We just found a confidence interval for the true mean
response at a particular value of the predictor.

This is centered on the predicted value and has

uncertainty depending on the uncertainties of the
coefficients.

The variance of a future predicted observation is the
sum of the variance around the regression line and the
variance of the predicted value.
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V() =s*1/n+(x—%)" /SSX |
Voew =By + Bix +e€

If we predict y, by y, then the error in prediction is
ynew _.); :IBO +181x+€_(130 +181x)
ynew _j> = [IBO +IBIX_(IBO —I_IBI‘X)]—I_6

and this is the error in y as a prediction of the true mean response plus €

pe

Spred_S
e

Spred_S

[1/n+(x—X)/SSX |+’

1+1/n+(x—X)* / SSX |

The prediction interval 1s wider than the confidence interval.
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'Prediction', 'observation')

The prediction 492.5101
as an estimate of the mean
response has CI

(471, 514).

As an interval for future
observations, we get

(407, 578)

This is much wider

(half widths 85 vs. 21)

The default for ‘Prediction’
is ‘curve’ which gives a CI
for the mean response. The
Option ‘observation’ gives
a prediction interval.

BIM 105 Probability and Statistics for Biomedical Engineers 61



D S ATY O LN Cu O] AR I (I O T AR RO A OB w0y on 0 M Ve SR

494 .
o,
5 i ST
434 .
476.
SR
413.
442 .
630
2o
417.
656.
265
478.
e
g
427 .

November 14, 2019

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Sl
430.
52:0:
428 .
Sl
600.
364.
S50
6: 585
445.
432.
626.
2:6.0:%
477 .
e
£
451.

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

492.
401.
Sz,
437.
475.
S
.2049

418

444,
Ba
436.
421 .
641.
] P

284

477.
e
ST
431.

5101
(SRR,
6918
4693
ChElalet
e

8080
6l64
Shtlat
8743
205

8326
i
3784
0478

471 .
SO
489.
417.
Liopte
S
SOt
424 .
594.
416.
400.
NS O
246.
457.
SlESh
406.
410.

0120
Sros
4951
2094
430601
7146
0845
7028
86l
D)
9664
4398
0169
At
2449
Sl
o A

514.
424 .
I35
457.
496.
Ere s
439.
464.
S
456.
442.
682.
.5274
498.
iy
448.
D

322

451

0082
0256
8885
F2 9L
B
e
3254
9:1:33
365
8380
e
8012

4760
St
BRORONS

We have a data point
where x = stdwright =
494 and y = miniwright =
512. When x = 494, the
predicted value of y is
492.5 with CI

(471.0, 514.0)
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Confidence and Prediction Limits

— Regression Line
— Confidence Interval for Line
— Prediction Interval
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