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Goodness of Fit
 Probably the best measure of a prediction equation is 

the average size of the prediction errors.
 We can also measure the value of the predictor by 

seeing how much better predictions are with 
compared to without the predictor.

 If y is what we want to predict and x is a possible 
predictor, then the best predictor of y not using x is 
the mean of y
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The error sum of squares SSE is the sum of squares of errors
from the best predictor using 

SSE = 

Error mean square MSE
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The regression sum of squares SSR is the reduction in the prediction
sum of squares of errors from that using only the mean to that using a 
prediction based also on the predictor x.

SSR = SST  SSE ( = y− 2 2 2
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Predict mini.wright from std.wright

SSR 182,155

SSE 22,565

SST 204,720

r2 0.890

r 0.943
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>> fitlm(stdwright,miniwright)

ans = 

Linear regression model:
y ~ 1 + x1

Estimated Coefficients:
Estimate    SE          tStat pValue

(Intercept)      39.34       38.704    1.0164       0.32554
x1             0.91735     0.083365    11.004    1.3995e-08

Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 38.8
R-squared: 0.89,  Adjusted R-Squared 0.882
F-statistic vs. constant model: 121, p-value = 1.4e-08
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>> model2 = fitlm(stdwright,miniwright)
>> anova(model2)

ans = 

SumSq DF    MeanSq F         pValue
x1       1.8216e+05     1    1.8216e+05    121.09    1.3995e-08
Error         22565    15        1504.3 

We will learn later how to interpret many of these figures and 
how to decide if the regression analysis makes good predictions.
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Predict mini.wright from std.wright

SSR 182,155

SSE 22,565

SST 204,720

r2 0.890

r 0.943



Example Problem
In an accelerated life test, units are operated under 
extreme conditions until failure. 

In one such test, 12 motors were operated under high 
temperature conditions. 

The ambient temperatures (in ◦C) and lifetimes (in 
hours) are presented in the following table:
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Temperature Lifetime
40 851
45 635
50 764
55 708
60 469
65 661
70 586
75 371
80 337
85 245
90 129
95 158
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100 hours ~ 4 days
1000 hours ~ 40 days
40 °C = 104 °F
95 °C = 203 °F
120 °C = 248 °F



 Construct  a  scatterplot  of  lifetime  (y)  versus 
temperature (x). Verify that a linear model is appropriate.

 Compute the least-squares line for predicting lifetime from 
temperature.

 Compute the fitted value and the residual for each point.
 If the temperature is increased by 5◦C, by how much would 

you predict the lifetime to increase or decrease?
 Predict the lifetime for a temperature of 73◦C.
 Should the least-squares line be used to predict the lifetime 

for a temperature of 120◦C? If so, predict the lifetime. If 
not, explain why not.

 For what temperature would you predict a lifetime of 500 
hours?
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>> scatter(Temperature,Lifetime,'filled')

Filled dots are easier to see

>> axis([20 120 0 1000])

Enlarge the axes to room temperature, 120°

Lifetimes from 0 to 1000

>> xlabel('Temperature')

>> ylabel('Lifetime')

>> title('Accelerated Life Test')

Label axes and graph

>> lsline
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>> mod1 = fitlm(Temperature,Lifetime)

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

Estimate      SE       tStat pValue

________    ______    _______    __________

(Intercept)     1344.1     105.72     12.714    1.6936e-07

x1             -12.611     1.5174    -8.3112    8.4166e-06

Number of observations: 12, Error degrees of freedom: 10

Root Mean Squared Error: 90.7

R-squared: 0.874,  Adjusted R-Squared 0.861

F-statistic vs. constant model: 69.1, p-value = 8.42e-06
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>> [Temperature Lifetime mod1.Fitted mod1.Residuals.Raw]

40.0000  851.0000  839.6410   11.3590

45.0000  635.0000  776.5851 -141.5851

50.0000  764.0000  713.5291   50.4709

55.0000  708.0000  650.4732   57.5268

60.0000  469.0000  587.4172 -118.4172

65.0000  661.0000  524.3613  136.6387

70.0000  586.0000  461.3054  124.6946

75.0000  371.0000  398.2494  -27.2494

80.0000  337.0000  335.1935    1.8065

85.0000  245.0000  272.1375  -27.1375

90.0000  129.0000  209.0816  -80.0816

95.0000  158.0000  146.0256   11.9744

>> plotResiduals(mod1,'fitted')

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 22



November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 23

100 200 300 400 500 600 700 800 900
-150

-100

-50

0

50

100

150

Fitted values

R
es

id
ua

ls

Plot of residuals vs. fitted values



Estimate      SE       tStat pValue
________    ______    _______    __________

(Intercept)     1344.1     105.72     12.714    1.6936e-07
x1             -12.611     1.5174    -8.3112    8.4166e-06

If the temperature is increased by 5°C, by how much would you predict the 
lifetime to increase or decrease?

Decrease by 12.611×5 = 63.1 hours

Predict the lifetime for a temperature of 73°C.

1344.1 – (12.611)(73) = 423.5

Should the least-squares line be used to predict the lifetime for a 
temperature of 120°C? If so, predict the lifetime. If not, explain why not.

No. Too far out of range. Might not be linear. Anyway the
prediction is negative (-169 hours), which is impossible.

For what temperature would you predict a lifetime of 500 hours?

(500 – 1344.1)/(-12.611) = 66.93 °C

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 24



Quantitative Prediction
 Regression analysis is the statistical name for the 

prediction of one quantitative variable (fasting blood 
glucose level) from another (body mass index)

 Items of interest include whether there is in fact a 
relationship and what the expected change is in one 
variable when the other changes.

 A linear model is a prediction equation that is linear in 
the parameters. The simplest example is y = a + bx
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Assumptions
 Inference about whether there is a real relationship or 

not is dependent on a number of assumptions, many 
of which can be checked

 When these assumptions are substantially incorrect, 
alterations in method can sometimes rescue the 
analysis

 No assumption is ever exactly correct

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 26



Linearity
 This is the most important assumption
 If x is the predictor, and y is the response, then we 

assume that the average response for a given value of x
is a linear function of x

 E(y) = a + bx
 y = a + bx + ε
 ε is the error or variability

November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 27



November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 28



November 14, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 29



 In general, it is important to get the model right, and 
the most important of these issues is that the mean 
function looks like it is specified

 If a linear function does not fit, various types of curves 
can be used, but what is used should fit the data

 Otherwise predictions are biased
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Independence
 It is assumed that different observations are 

statistically independent
 If this is not the case inference and prediction can be 

completely wrong
 There may appear to be a relationship even though 

there is not
 Randomization and then controlling the treatment 

assignment prevents this in general
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 Note no true relationship between x and y
 These data were generated as follows:
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How to not be Independent
 Let yt be the unemployment rate in year t and let xt be 

the inflation rate in year t.
 If we predict yt from xt using linear regression, the 

results will be garbage.
 Each of xt and yt is correlated from one time to the 

other, just like the artificial example.
 If unemployment is high in year t, it is likely to be high 

in year t + 1.
 More sophisticated methods are needed.
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Constant Variance
 Constant variance, or homoscedacticity, means that 

the variability is the same in all parts of the prediction 
function

 If this is not the case, the predictions may be on the 
average correct, but the uncertainties associated with 
the predictions will be wrong

 Heteroscedacticity is non-constant variance
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Consequences of Heteroscedacticity
 Predictions may be unbiased (correct on the average)
 Prediction uncertainties are not correct; too small 

sometimes, too large others
 Inferences are incorrect (is there any relationship or is 

it random?)
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Normality of Errors
 Mostly this is not particularly important
 Very large outliers can be problematic
 Graphing data often helps
 If in a gene expression array experiment, we do 40,000 

regressions, graphical analysis is not possible
 Significant relationships should be examined in detail
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“Assumptions” and Actions
 Linearity is most important. If the relationship is non-

linear there are a number of possible solutions:
 Perhaps the relationship may be more nearly linear on 

the log scale. We may need to take logs of y or x or both.
 Sometimes we use other transformations than the log, 

such as the square root or reciprocal.
 Sometimes instead we fit a non-linear function directly 

such as a polynomial or log-logistic curve, depending on 
the application. We will be able to do the first by the end 
of the quarter.
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Independence
 This is also a highly important assumption.
 A common way in which it may fail is if the x and y 

values are sequential (as in annual data, 1960–2010.
 You should assume that time-series data are not 

statistically independent. There are tests and methods 
for this situation.

 Another way that this can happen is if the data are 
collected in batches; for example, if 16 observations are 
collected on four four-well microplates. This can be 
fixed be adding a variable for which plate the 
observation was collected on.
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Constant Variance
 A small degree of non-constant variance is not really of 

concern.
 If the variance rises with the mean, so that the 

coefficient of variance (standard deviation divided by 
the mean) is roughly constant, then on the log scale 
the variance is roughly constant.

 If this method cannot fix the problem, and if the 
problem is large, meaning highly visible on plots, then 
a different transformation or else weighting can be 
used. 
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Normality
 In itself, this is not important.
 The main issue is with large outliers, and in simple 

linear regression you can see this on a plot of the data 
or on a plot of residuals vs. fitted values.

 You should always look for outliers in plots and 
investigate the possible reasons.

 Otherwise, you should not be excessively concerned 
with whether the distribution is normal.
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Inference on Coefficients
>> wrightmdl = fitlm(stdwright,miniwright)

wrightmdl = 

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

Estimate    SE          tStat pValue
(Intercept)      39.34       38.704    1.0164       0.32554
x1             0.91735     0.083365    11.004    1.3995e-08

Number of observations: 17, Error degrees of freedom: 15

Root Mean Squared Error: 38.8

R-squared: 0.89,  Adjusted R-Squared 0.882

F-statistic vs. constant model: 121, p-value = 1.4e-08
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Tests that the coefficient
is zero.
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Inferences on the 
Slope and Intercept
 We will usually obtain the standard errors from a 

computer analysis.
 The hypothesis test that the coefficient is 0 is usually 

given.
 For the slope, this is a test of association.
 For the intercept it may be of little interest.
 A confidence interval is found using the t percentage 

point and the given standard error.
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Estimate    SE          tStat pValue
(Intercept)      39.34       38.704    1.0164       0.32554
x1             0.91735     0.083365    11.004    1.3995e-08

Number of observations: 17, Error degrees of freedom: 15

Root Mean Squared Error: 38.8

R-squared: 0.89,  Adjusted R-Squared 0.882

F-statistic vs. constant model: 121, p-value = 1.4e-08
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Inference on a Mean Response
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Inference on a Mean Response
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>> [ypred yci] = predict(wrightmdl)
ypred =

492.5101
401.6927
512.6918
437.4693
475.9979
550.3030
418.2049
444.8080
635.6164
436.5519
421.8743
641.1205
284.2722
477.8326
202.6282
427.3784
431.0478



>> [stdwright miniwright ypred yci]

494.0000  512.0000  492.5101  471.0120  514.0082

395.0000  430.0000  401.6927  379.3598  424.0256

516.0000  520.0000  512.6918  489.4951  535.8885

434.0000  428.0000  437.4693  417.2094  457.7291

476.0000  500.0000  475.9979  455.4361  496.5596

557.0000  600.0000  550.3030  522.7146  577.8915

413.0000  364.0000  418.2049  397.0845  439.3254

442.0000  380.0000  444.8080  424.7028  464.9133

650.0000  658.0000  635.6164  594.8671  676.3657

433.0000  445.0000  436.5519  416.2658  456.8380

417.0000  432.0000  421.8743  400.9664  442.7823

656.0000  626.0000  641.1205  599.4398  682.8012

267.0000  260.0000  284.2722  246.0169  322.5274

478.0000  477.0000  477.8326  457.1891  498.4760

178.0000  259.0000  202.6282  150.2449  255.0115

423.0000  350.0000  427.3784  406.7473  448.0095

427.0000  451.0000  431.0478  410.5725  451.5231
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We have a data point
where x = stdwright =
494 and y = miniwright =
512. When x = 494, the
predicted value of y is
492.5 with CI 
(471.0, 514.0)



>> wrightmdl = fitlm(stdwright,miniwright)

Estimated Coefficients:

Estimate    SE          tStat pValue
(Intercept)      39.34       38.704    1.0164       0.32554
x1             0.91735     0.083365    11.004    1.3995e-08

Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 38.8

>> var(stdwright)*16

2.1646e+05
>> mean(stdwright)

450.3529

If x = stdwright = 494, then the variance of the prediction 512 is 

(38.8)2 [1/17 + (494 – 450.3529)2/2.1646e+05] = 101.8048 and the se is

10.0860

t(.025,15) = 2.1314 so the CI is 492.5101 ± (2.1314)(10.0860) or 

(471.012, 514.008)
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Prediction Intervals for 
Future Observations
 We just found a confidence interval for the true mean 

response at a particular value of the predictor.
 This is centered on the predicted value and has 

uncertainty depending on the uncertainties of the 
coefficients.

 The variance of a future predicted observation is the 
sum of the variance around the regression line and the 
variance of the predicted value.
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>> [yp2, yci2] = predict(wrightmdl,'Prediction','observation')

>> [stdwright miniwright yp2 yci2]

494.0000  512.0000  492.5101  407.0906  577.9296

395.0000  430.0000  401.6927  316.0593  487.3261

516.0000  520.0000  512.6918  426.8291  598.5545

434.0000  428.0000  437.4693  352.3530  522.5855

476.0000  500.0000  475.9979  390.8092  561.1865

557.0000  600.0000  550.3030  463.1512  637.4549

413.0000  364.0000  418.2049  332.8797  503.5302

442.0000  380.0000  444.8080  359.7284  529.8877

650.0000  658.0000  635.6164  543.4490  727.7838

433.0000  445.0000  436.5519  351.4294  521.6744

417.0000  432.0000  421.8743  336.6015  507.1472

656.0000  626.0000  641.1205  548.5375  733.7034

267.0000  260.0000  284.2722  193.1800  375.3643

478.0000  477.0000  477.8326  392.6242  563.0410

178.0000  259.0000  202.6282  104.7592  300.4972

423.0000  350.0000  427.3784  342.1730  512.5838

427.0000  451.0000  431.0478  345.8800  516.2156
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The prediction 492.5101
as an estimate of the mean 
response has CI
(471, 514).
As an interval for future 
observations, we get
(407, 578)
This is much wider
(half widths 85 vs. 21)

The default for ‘Prediction’
is ‘curve’ which gives a CI
for  the mean response. The
Option ‘observation’ gives
a prediction interval.



>> [stdwright miniwright ypred yci]

494.0000  512.0000  492.5101  471.0120  514.0082

395.0000  430.0000  401.6927  379.3598  424.0256

516.0000  520.0000  512.6918  489.4951  535.8885

434.0000  428.0000  437.4693  417.2094  457.7291

476.0000  500.0000  475.9979  455.4361  496.5596

557.0000  600.0000  550.3030  522.7146  577.8915

413.0000  364.0000  418.2049  397.0845  439.3254

442.0000  380.0000  444.8080  424.7028  464.9133

650.0000  658.0000  635.6164  594.8671  676.3657

433.0000  445.0000  436.5519  416.2658  456.8380

417.0000  432.0000  421.8743  400.9664  442.7823

656.0000  626.0000  641.1205  599.4398  682.8012

267.0000  260.0000  284.2722  246.0169  322.5274

478.0000  477.0000  477.8326  457.1891  498.4760

178.0000  259.0000  202.6282  150.2449  255.0115

423.0000  350.0000  427.3784  406.7473  448.0095

427.0000  451.0000  431.0478  410.5725  451.5231
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We have a data point
where x = stdwright =
494 and y = miniwright =
512. When x = 494, the
predicted value of y is
492.5 with CI 
(471.0, 514.0)
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