
November 19, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 1



Checking Assumptions
 The single best plot to check assumptions is residuals 

vs. fitted values.
 This can show nonlinearity through curvature.
 It can show heteroscedacticity through funnel-shaped 

residual plots.
 It is not as helpful for assessing independence.
 To some extent, it can find outliers and skewness.
 Consider taking logs of one or both of x and y.
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Tetrahymena Experiment
 We examine an experiment on the growth of 

tetrahymena cells, a kind of protozoan sometimes 
used as a biological model. 

 The cell concentration (conc) was set at the beginning 
of the experiment and the cells were allowed to grow.

 The average cell diameter (diameter) of the resulting 
cells was measured. 

 Because of crowding, it was hypothesized that the 
greater the initial concentration, the smaller the 
diameter of the resulting cells.

November 19, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 3



conc diameter
630000 19.2
501000 19.5
332000 19.8
285000 21.0
201000 21.0
175000 21.0
129000 21.3
111000 20.5

78000 22.6
70000 22.7
69000 22.2
62000 22.7
35000 24.0
27000 23.6
24000 23.5
22000 23.3
14000 24.4
13000 24.3
11000 24.2
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Least Squares Fit
>> thlm = fitlm(conc,diameter)

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

Estimate       SE            tStat pValue

(Intercept)         23.384       0.26269    89.015    3.8974e-24

x1             -8.4212e-06    1.1672e-06    -7.215    1.4457e-06

Number of observations: 19, Error degrees of freedom: 17

Root Mean Squared Error: 0.868

R-squared: 0.754,  Adjusted R-Squared 0.739

F-statistic vs. constant model: 52.1, p-value = 1.45e-06
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>> plotResiduals(thlm,'fitted')

>> lconc = log(conc)

>> ldiameter = log(diameter)

>> thllm = fitlm(lconc,ldiameter)

Estimated Coefficients:

Estimate     SE           tStat pValue

(Intercept)       3.7642     0.046533     80.893    1.9752e-23

x1             -0.059677    0.0041246    -14.468    5.4816e-11

Number of observations: 19, Error degrees of freedom: 17

Root Mean Squared Error: 0.0219

R-squared: 0.925,  Adjusted R-Squared 0.92

F-statistic vs. constant model: 209, p-value = 5.48e-11

>> plotResiduals(thllm,'fitted')

>> scatter(lconc,ldiameter)

>> lsline
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'caseorder' Residuals vs. case (row) 
order

'fitted' Residuals vs. fitted 
values

'histogram' Histogram

'lagged' Residuals vs. lagged 
residual (r(t) vs. r(t–1))

'probability' Normal probability plot

'symmetry' Symmetry plot

Default

Most Useful

plotResiduals() options

Autocorrelation check
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Tetrahymena Experiment
 The average cell diameter varies systematically with the 

starting concentration.
 The relationship is clearly nonlinear.
 Both variables are measurements, and the starting 

concentration ranges across orders of magnitudes (factor 
of 60).

 Taking the log of the diameter is not so much needed since 
the range is only 19-24.

 But a theoretical model suggests that D=aCb so 
Log(D) = log(a) + b log(C)

 Either model will be good empirically (both log or only C 
log).
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Data Transformations
 Often the log is good for measured data and the square 

root for count data (Poisson).
 If X is Poisson with parameter λ, then 

 E(X) = λ
 V(X) = λ

 If Y = √X, then approximately
 E(Y) = 0.5√λ
 V(Y) = 0.25

 In a regression with different data points at different 
values of λ, this stabilizes the variance.
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Other Transformations
 The square root is f(x) = x0.5.
 We can also use other powers like f(x) = xα.

 For α = 0.5, this is the square root.
 For α = -1, this is the reciprocal.

 If we vary this a bit, so that f(x) = (xα − 1)/α, then as α
approaches 0, the function approaches ln(x), so the log is 
in this power transformation family.

 It is not important to find the ‘optimal’ transformation, 
only one that is ‘good enough’.

 This can linearize the relationship and make the errors 
more nearly constant in variance.
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Models Suggested by Physical Laws
 If we have the height and diameter of a series of trees, 

and want the volume of lumber generated, then we can 
approximate the volume as a cylinder, with 
V = π(D/2)2H or as a cone, with
V = (1/3)π(D/2)2H, so in either case,
ln(V) = a + 2 ln(D) + ln(H), where 
a = ln(π/4) or a = ln(π/12)

 This suggests a model with two predictors, and with 
volume, height, and diameter all on the log scale.

 It will only approximately be correct, but that may be 
good enough.
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Length of a Spring under Load
 Hooke’s Law states that the measured length of a spring 

under a force F is
L0 + kF, where L0 is the length under 0 load and k is a 
stiffness constant.

 This law is only approximate, like many such laws, and 
applies only when the load is not too great. For example, 
the extended length of a spring cannot exceed the length of 
the wire that is coiled to make the spring.

 Nonetheless, this suggests a linear model for length, with 
the intercept as the length under no load, and the slope as 
the stiffness constant.
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Linear Model for Hooke Data
>> hookelm = fitlm(Weight,Length)

Linear regression model:

y ~ 1 + x1

Estimated Coefficients:

Estimate    SE          tStat pValue

(Intercept)     4.9997     0.024774    201.81    1.1884e-31

x1             0.20462     0.011146    18.358    4.2038e-13

Number of observations: 20, Error degrees of freedom: 18

Root Mean Squared Error: 0.0575

R-squared: 0.949,  Adjusted R-Squared 0.946

F-statistic vs. constant model: 337, p-value = 4.2e-13

November 19, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 19



November 19, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 20

4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
-0.1

-0.05

0

0.05

0.1

0.15

Fitted values

R
es

id
ua

ls

Plot of residuals vs. fitted values



November 19, 2019 BIM 105 Probability and Statistics for Biomedical Engineers 21

0 0.5 1 1.5 2 2.5 3 3.5 4
5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8



Model Checking
>> plotResiduals(hookelm,'fitted')

>> scatter(Weight,Length)

>> lsline
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Multiple Regression
 We can use more than one predictor, in which case this 

is called multiple regression.
 The predictors can be quantitative or categorical.
 We can also use products (interactions) of variables, or 

even powers like x2.
 The computations are done by a computer almost 

always.
 The assumptions are essentially the same as for simple 

linear regression.
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Tetrahymena Experiment
 We examine an experiment on the growth of 

tetrahymena cells, a kind of protozoan sometimes 
used as a biological model. 

 The cell concentration (conc) was set at the beginning 
of the experiment and the cells were allowed to grow.

 The average cell diameter (diameter) of the resulting 
cells was measured.

 Some runs had added glucose and some did not 
 We want to examine the effects of glucose as well as 

starting concentration.
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TH Data Regression
>> ldiameter = log(diameter)
>> lconc = log(conc)
>> th = table(lconc, glucose, ldiameter) #by default last column is response
>> thllm = fitlm(th)

Linear regression model:
ldiameter ~ 1 + lconc + glucose   #when used as a table, variables have names!

Estimated Coefficients:
Estimate        SE         tStat pValue
_________    _________    _______    __________

(Intercept)       3.7161     0.026255     141.54    1.3865e-64
lconc -0.055393    0.0023011    -24.073    1.9177e-28
glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48
Root Mean Squared Error: 0.021
R-squared: 0.934,  Adjusted R-Squared 0.931
F-statistic vs. constant model: 338, p-value = 5.24e-29
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Estimated Coefficients:

Estimate        SE         tStat pValue

_________    _________    _______    __________

(Intercept)       3.7161     0.026255     141.54    1.3865e-64

lconc -0.055393    0.0023011    -24.073    1.9177e-28

glucose          0.06502    0.0060955     10.667    2.9322e-14

lconc is log concentration. For every unit change in log concentration, 
there is a predicted change of -0.055393. A unit change in natural log 
concentration is a factor of 2.71 increase, with a predicted decrease to 
exp(-0.055393) = 0.946 of the previous, or a 5.4% decrease.

The glucose variable is 1 if glucose is added and 0 otherwise, and the 
predicted increase is 0.06502 on the log scale or 6.7%.

Is it possible that the rate of decrease in log diameter with log 
concentration is different for experiments with glucose present than for 
experiments with glucose absent?
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Model with Glucose (32 obs with glucose and 19 without)

Estimate        SE         tStat pValue

_________    _________    _______    __________

(Intercept)       3.7161     0.026255     141.54    1.3865e-64

lconc -0.055393    0.0023011    -24.073    1.9177e-28

glucose          0.06502    0.0060955     10.667    2.9322e-14

Model without added glucose observations (just the original 19)

Estimate        SE         tStat pValue

_________    _________    _______    __________

(Intercept)       3.7642     0.046533     80.893    2.4631e-22

lconc -0.059677 0.0041246    -14.468    1.3111e-10
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>> thllm2 = fitlm(th,’ldiameter ~ lconc*glucose’)

Estimated Coefficients:

Estimate        SE         tStat pValue

__________    _________    ________    __________

(Intercept)          3.7642     0.044221      85.123    3.8116e-53

lconc -0.059677    0.0039197     -15.225    8.5488e-20

glucose          -0.0078692     0.054559    -0.14423       0.88593

lconc:glucose 0.0064805    0.0048209      1.3442       0.18532

The term for the interaction of glucose and log concentration is not 
significant, so the slopes are not significantly different. The slope 
estimate for no glucose is -0.059677 and for glucose it is 
-0.059677 + 0.006480 = -0.053196. The slope estimate without the 
interaction is -0.055393.

No Glucose -0.060

Glucose -0.053

Combined -0.055 
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Estimated Coefficients:

Estimate        SE         tStat pValue

__________    _________    ________    __________

(Intercept)          3.7642     0.044221      85.123    3.8116e-53

lconc -0.059677    0.0039197     -15.225    8.5488e-20

glucose          -0.0078692     0.054559    -0.14423       0.88593

lconc:glucose 0.0064805    0.0048209      1.3442       0.18532

The term for the interaction of glucose and log concentration is not 
significant, so the slopes are not significantly different. The interaction 
term is highly correlated with glucose (correlation = 0.98), and in this 
case, putting two correlated variables in the model makes both of them look 
non-significant.

The test for the coefficient is a test of whether eliminating that one 
variable would cause poorer predictions if all other variables are 
retained.
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>> fitlm(th,'ldiameter ~ lconc + glucose')

Estimate        SE         tStat pValue

_________    _________    _______    __________

(Intercept)       3.7161     0.026255     141.54    1.3865e-64

lconc -0.055393    0.0023011    -24.073    1.9177e-28

glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48

Root Mean Squared Error: 0.021

R-squared: 0.934,  Adjusted R-Squared 0.931

F-statistic vs. constant model: 338, p-value = 5.24e-29

The root mean square error s = 0.021 is an estimate of the sd around the 
regression line. s2 = 0.000442.

R2 = 0.934 is the SS(regression)/SS(total). It is at most 1.

F = 338 is a statistical test of the hypothesis that none of the predictors 
is useful. It has an F distribution with 2 and 48 df.
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Predicted Values and Residuals
 As with univariate regression, 
[ldpred ldci] = predict(thllm)
returns predicted values and a confidence interval.

 We can calculate the residuals by
ldres = thllm.Residuals.Raw
but often plotting them is sufficient.

 The main useful plot is of residuals vs. fitted values and this 
is produced by plotResiduals(thllm,’fitted’).

 We can also plot residuals vs. each predictor as in 
scatter(lconc,ldres).
boxplot(ldres,glucose)
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Model Checking
 Plot residuals vs. fitted values.
 Scatter plot of residuals vs. each quantitative predictor.
 Boxplot of residuals vs. each categorical predictor.
 If observations are time ordered, plot residuals against 

time, especially in cases where there is one observation 
per day/hour/month, etc.

 Look for curvature, changes in variance, outliers, and 
anything else unusual.
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Residuals vs. Fitted Values
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Residuals vs. Log Concentration
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Residuals vs. Glucose
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Inference for Linear Models
 The printed table of coefficients shows a test for 

whether each predictor can be eliminated. In cases 
where the predictors are correlated, this can cause loss 
of significance for both, because inclusion of either 
one gives good results.

 The F-statistic printed at the bottom is a test of 
whether the whole model is better than predicting the 
response only from the mean.
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ANOVA
 The Analysis of Variance (ANOVA) is a method of 

dividing up the sum of squares into parts to test 
statistically if one of those parts is needed.

 SST = SSR + SSE
 We can compute the MS for these parts by dividing the 

SS by the df.
 Statistical tests come from ratios of mean squares 

using the F-distribution.
 The test for the whole model is MSR/MSE.
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>> thllm2 = fitlm(th,'ldiameter ~ lconc * glucose')

Estimated Coefficients:

Estimate        SE         tStat pValue

__________    _________    ________    __________

(Intercept)          3.7642     0.044221      85.123    3.8116e-53

lconc -0.059677    0.0039197     -15.225    8.5488e-20

glucose          -0.0078692     0.054559    -0.14423       0.88593

lconc:glucose 0.0064805    0.0048209      1.3442       0.18532

>> anova(thllm2,'components',3)

SumSq DF      MeanSq F          pValue

__________    __    __________    ________    __________

lconc 0.10085     1       0.10085       231.8    8.5488e-20

glucose          9.0505e-06     1    9.0505e-06    0.020803       0.88593

lconc:glucose 0.00078615     1    0.00078615       1.807       0.18532

Error              0.020448    47    0.00043506 

This shows the increase in the error sum of squares when each variable 
individually is removed. For quantitative or binary variables, this gives the 
same results as the t-test of the coefficient.
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Specification of the Model
>> th = table(lconc, glucose,ldiameter)  #response last by default
>> fitlm(th)

Linear regression model:
ldiameter ~ 1 + lconc + glucose

Estimated Coefficients:
Estimate     SE           tStat pValue

(Intercept)       3.7161     0.026255     141.54    1.3865e-64
lconc -0.055393    0.0023011    -24.073    1.9177e-28
glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48
Root Mean Squared Error: 0.021
R-squared: 0.934,  Adjusted R-Squared 0.931
F-statistic vs. constant model: 338, p-value = 5.24e-29

A table is a way of putting all the variables in one object. 
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>> fitlm(th)

Linear regression model:
ldiameter ~ 1 + lconc + glucose

Estimated Coefficients:
Estimate     SE           tStat pValue

(Intercept)       3.7161     0.026255     141.54    1.3865e-64
lconc -0.055393    0.0023011    -24.073    1.9177e-28
glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48
Root Mean Squared Error: 0.021
R-squared: 0.934,  Adjusted R-Squared 0.931
F-statistic vs. constant model: 338, p-value = 5.24e-29

>> fitlm(th,'ldiameter ~ lconc + glucose')

Linear regression model:
ldiameter ~ 1 + lconc + glucose

Estimated Coefficients:
Estimate     SE           tStat pValue

(Intercept)       3.7161     0.026255     141.54    1.3865e-64
lconc -0.055393    0.0023011    -24.073    1.9177e-28
glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48
Root Mean Squared Error: 0.021
R-squared: 0.934,  Adjusted R-Squared 0.931
F-statistic vs. constant model: 338, p-value = 5.24e-29
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>> fitlm(th,'ldiameter ~ lconc + glucose')

Linear regression model:
ldiameter ~ 1 + lconc + glucose

Estimated Coefficients:
Estimate     SE           tStat pValue

(Intercept)       3.7161     0.026255     141.54    1.3865e-64
lconc -0.055393    0.0023011    -24.073    1.9177e-28
glucose          0.06502    0.0060955     10.667    2.9322e-14

Number of observations: 51, Error degrees of freedom: 48
Root Mean Squared Error: 0.021
R-squared: 0.934,  Adjusted R-Squared 0.931
F-statistic vs. constant model: 338, p-value = 5.24e-29

>> fitlm(th,'ldiameter ~ lconc*glucose')

Linear regression model:
ldiameter ~ 1 + lconc*glucose

Estimated Coefficients:
Estimate      SE           tStat pValue

(Intercept)          3.7642     0.044221      85.123    3.8116e-53
lconc -0.059677    0.0039197     -15.225    8.5488e-20
glucose          -0.0078692     0.054559    -0.14423       0.88593
lconc:glucose 0.0064805    0.0048209      1.3442       0.18532

Number of observations: 51, Error degrees of freedom: 47
Root Mean Squared Error: 0.0209
R-squared: 0.936,  Adjusted R-Squared 0.932
F-statistic vs. constant model: 230, p-value = 4.51e-28
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Wilkinson Notation
 For details see the MATLAB help page for this.
 Y ~ terms
 Variables are quantitative, factors are qualitative
 A + B include both variables or factors
 A:B include the A by B interaction or product
 A*B include A and B and A:B
 A2 when A is a variable, include the square
 Include the intercept (constant term) unless -1 is 

included in the formula
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