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The -Omics Revolution

Gene expression microarrays, RNA-Seq,

proteomics by Luminex and mass spectrometry,

and metabolomics by mass spectrometry and

NMR spectroscopy presents enormous

opporunities for fundamental biological research

and for applications in medicine and biology.
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They also present many challenges in design and

analysis of laboratory experiments, population

studies, and clinical trials. We present some

lessons learned from our experience with these

studies.
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Omics Data

Genome Complement of all genes, or of all

components of genetic material in the cell

(mostly static).

Transcriptome Complement of all mRNA

transcripts produced by a cell (dynamic).
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Proteome Complement of all proteins in a cell,

whether directly translated or produced by

post-translational modification (dynamic).

Metabolome Complement of all metabolites

other than proteins and mRNA; e.g., lipids,

saccharides, etc (dynamic).
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The Principles of Experimental Design

Have not Changed

• A design that is not adequate to measure a

change in one indicator across populations is

probably not adequate to measure the change

in 50,000.

• We need more biological replicates than you

can afford!
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• Usually, biological variability (within or

between organisms) is much larger than the

technical variability of measurements.

• Thus, most replications should be across

organisms, not repeats of the same sample.

• The measurement of difference between types

of cancer, between varieties of wheat, or

between animal populations will often require

many samples
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We Need Internal Controls

• We learned long ago that clinical studies need

internal controls to be believable.

Comparisons with past history are too

frequently deceptive to be useful.
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• Genomics data can be an exception because

the genetic structure of (for example) humans

varies only a little between individuals, and

mostly varies not at all over time in a given

individual. But this too can be variable and

important, for example in cancer studies.

• Gene expression data, proteomics data, and

metabolomics data are more like clinical data

than genomics data: they vary over time and

over conditions, some of which are hard to

measure.
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• Databases of expression, proteomics, etc. will

mostly be useful as archives of studies; direct

comparisons across studies will need to be

interpreted cautiously.

• What we hope will be reproducible is

differences between groups, not absolute

measurements.
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Detecting Statistically Significant Effects

• Mostly, we do not yet have quantitative

knowledge of what changes in gene

expression, protein content, etc. are

biologically significant. Until we do have such

knowledge, we should detect all changes that

we are sure have occurred without regard to

size. Twofold may be a large or small change.

A 10% change may be important.
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• If we measure 10,000 things at once, and test

each one for significance, we may have too

many false positives to be useful.

• A 5% statistical test will generate an average

of 500 false positives in 10,000. If we have

1,000 “significant” genes in tests for

differential expression, then about half will

likely be “false discoveries.”
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• One way to control this is to use the

Bonferroni method for family-wise error rates,

in which each gene is tested at a significance

level of 5%/10,000 = 0.000005, or one in

200,000. This guarantees that there will be

no genes identified in 19 of 20 studies where

there are no real differences. This will clearly

miss some large real differences.
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• With a sample of 5 in each of two groups, the

smallest difference that is significant at the

5% level is about 1.7 standard deviations.

With the Bonferroni adjustment on 10,000

variables, the detectable change is over four

times as large (7.5 standard deviations).
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False Discovery Rate

• There are a series of False Discovery Rate

(FDR) methods that provide good protection

but are more sensitive than the Bonferroni

Method.
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• If there are 10,000 genes and 500 are

identified by a 5% FDR method, then

approximately 95% of these 500 will be really

different and no more than about 5% of them

will be false discoveries. This means that only

about 25 of the 500 will be false leads.

• We can say that the probability that each is a

real difference is 95%.
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Experimental Design

• Often investigating multiple factors in the

same experiment is better. We can use a full

factorial design (all possible combinations) or

a fractional factorial. Fractional factorial

designs can investigate as many as 7 factors

in 8 experiments, each one with the full

precision of a comparison of 4 vs. 4.
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• Consider a study of the response of mice to a

toxic insult. We can examine 2 ages of mice,

2 sexes, treatment and control, for a total of

eight conditions. With 2 mice per condition,

we are well placed to investigate even complex

relationships among the three factors.
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The Analysis of Variance

• The standard method of analyzing designs

with categorical variables is the analysis of

variance (ANOVA).
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• The basic principle is to compare the

variability of group means with an estimate of

how big the variability could be at random,

and conclude the difference is real if the ratio

is large enough.

• Consider an example with four groups and two

measurements per group.
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Example Data

Group Sample 1 Sample 2 Mean

A 2 4 3

B 8 10 9

C 14 16 15

D 20 22 21
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• The variabiliy among the four group means is

120 (Mean Square for groups). This has three

degrees of freedom.

• The variability within groups is 2 (Mean

Square Error or MSE). This has four degrees

of freedom.
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• The significance of the ratio uses the F

distribution. The more df in the MSE, the

more sensitive the test is.

• The observed F ratio of 120/2 = 60 is highly

significant. If there were no real difference,

the F ratio would be near 1.

25



Measurement Scales

• Standard statistical methods are additive: we

compare differences of means.

• Often with gene expression data and other

kinds of assay data we prefer ratios to means.
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• This is equivalent to taking logarithms and

using differences.

log(x/y) = log(x)− log(y)

• In general, we often take logs of data and

then use regression, ANOVA and other

standard (additive) statistical methods.

High-throughput assay data require some

alteration in this method.
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Variation in High Throughput Data

Some well known properties of measurement

error in assays with many measurements include

the following:

• For high-level measurements, the standard

deviation of the response is approximately

proportional to the mean response, so that

the CV is approximately constant.
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• For low level measurements, the CV is much

higher.

• Analysis is commonly analyzed on the log

scale, so that for high levels the SD is

approximately constant, but for low levels of

expression it rises.
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• Comparisons are usually expressed as n-fold,

corresponding to the ratio of responses, of

which the logarithm would be well behaved,

but only if both genes are highly expressed.

• These phenomena occur in many

measurement technologies, but are more

important in high-throughput assays as in gene

expression, proteomics, and metabolomics.
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• The fold change is the ratio of two responses.

• What is the fold increase when a gene goes

from zero expression in the control case to

positive expression in the treatment case?

• Which is biologically more important: an

increase in expression from 0 to 100 or an

increase from 100 to 200?
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Variance Model for Gene Expression

and other Omics Data

At high levels, the standard deviation of

replicates is proportional to the mean. If the

mean is µ, then this would be

SD(y) = bµ

Var(y) = b2µ2
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• But this cannot hold for unexpressed genes, or

in general for assays where the true

concentration is 0 because measurement error

always exists.

• So a reasonable model for the variance of

such assay data is

Var(y) = a2 + b2µ2

(Rocke and Durbin 2001).
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Often, the observed intensity (peak area, etc.)

needs to be corrected for background or baseline

by subtraction of the average signal α

corresponding to genes unexpressed (compounds

not present) in the sample. This may be a single

number, a single number per slide, or a more

complex expression. This can be estimated from

negative controls or by more complex methods.
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So if y is the signal, and z = y − α is the

background corrected signal, our mean/variance

model is

E(z) = µ

V (z) = a2 + b2µ2

It can be shown that

Var{ln(y − α)} ≈ σ2η + σ2ϵ /µ
2.
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An Example

We illustrate this with one slide from an

experiment on the response of male Swiss

Webster mice to a toxic substance. The treated

animal received 0.15mg/kg ip of

Naphthoflavone, while the control mouse had an

injection of the carrier (corn oil). Genes were

replicated usually eight times per slide.
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Data Transformation

• Logarithms stabilize the variance for high

levels, but increase the variance for low levels.

• Log expression ratios have constant variance

only if both genes are expressed well above

background.
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• Heterogeneity of variance is an important

barrier to reliable statistical inference

• Such heterogeneity is common in biological

data, including gene expression data
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• Data transformations are a well-known way of

dealing with this problem

• We present a new transformation family that

is expressly designed for biological data, and

which appears to work very well on gene

expression data measured on slides. Counted

data as in RNA-Seq requires some alteration

to be described later.
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• The logarithm is designed to stabilize data

when the standard deviation increases

proportional to the mean.

• When the data cover a wide range down to

zero or near zero, this transformation

performs poorly on low level data. This does

not mean that these data are “bad” or “highly

variable” or “unreliable”. It only means that

we are using the wrong transformation or

measurement scale.
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The generalized logarithm reproduces the

logarithm at high levels, but behaves better at

low levels. One way to express it is

f(z) = ln(z +
√
z2 + a2/b2)

where z is the background-corrected intensity.

(Durbin, Hardin, Hawkins, and Rocke 2002;

Hawkins 2002; Huber, von Heydebreck,

Sültmann, Poustka, and Vingron 2002; Munson

2001)
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f(z) = ln(z +
√
z2 + a2/b2)

• f(z) ∼ ln(z) for large z.

• f(z) is approximately linear for z = 0.

• f(z) is monotonic (does not change the order

of size of data).
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Another transformation family that has similar

properties is the started log, defined by

g(z) = ln(z + c)

This is often easier to handle, though as with

the glog, the parameters must be chosen wisely.
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Estimation

This transformation has one parameter that

must be estimated, as well as the background.

We can do this in various ways.

hλ,α(y) = ln
(
y − α+

√
(y − α)2 + λ

)
.
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• We can background correct beforehand, or

estimate the background and transformation

parameter in the same step.

• We can estimate λ = a2/b2 by estimating the

low-level variance a2 and the high-level square

CV b2, and take the ratio.
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• We can estimate the parameters in the

context of a model using standard statistical

estimation procedures like maximum

likelihood.

• We can estimate the transformation each

time, or use values estimated with a given

technology in a given lab for further

experiments.
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This helps solve the puzzle of comparing a

change from 0 to 40 to a change from 1000 to

1600. Suppose that the standard deviation at 0

is 10, and the high-level CV is 15%. Then

• A change from 0 to 40 is four standard

deviations (4× 10 = 40 = 40− 0).

• A change from 1000 to 1600 is also four

standard deviations

(1600/1000 = 160% = increase of 4× 15%).
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• So is a change from 10,000 to 16,000

(16,000/10,000 = 160% =

increase of 4× 15%).

• The biological significance of any of these is

unknown. Different transcripts can be active

at vastly different levels.

• But the glog transformation makes an equal

change equally statistically significant.
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Normalization and Transformation of Arrays

Given a set of replicate chips from the same

biological sample, we can simultaneously

determine the transformation parameter and the

normalization.
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The statistical model used is

hλ,α(intensity) = gene + chip + error

and we can estimate the transformation, the

gene effects, and the normalization together.
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