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Fractional Factorial Designs

In the context of two-level factors, a fractional
factorial design is when ℓ factors are investigated in
2k runs, where ℓ > k .

The full design would have 2ℓ runs.

If ℓ = k +1, this is a half-fraction, since 2k is half of
2ℓ.

If ℓ = k + 2, this is a quarter-fraction, and if
ℓ = k + 4, this is a sixteenth-fraction, and so on.
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Confounding

Run Temperature Catalyst
1 250◦ 1.0%
2 200◦ 1.5%
3 250◦ 1.0%
4 200◦ 1.5%

The temperature effect and the catalyst effect are completely
confounded. (y2 + y4)/2− (y1 + y3)/2 estimates the change in yield
from reducing the temperature from 250◦to 200◦, but the exact
same number estimates the change in yield from increasing the
catalyst percentage from 1.0% to 1.5%. We can’t tell which is
important, or what mixture of temperature effect and catalyst effect
we are estimating. These effects are completely confounded.
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Partial Confounding

Partial confounding happens when predictors are correlated with
each other, but not 100% correlated. For example, suppose I try to
predict the GPA of undergraduate BME students from x1 = parents’
educational attainment and x2 = family income. Since these are
likely correlated, part of the prediction comes from a common factor
of the two predictors, and part from the unique parts of each
predictor (suitably defined). The effects of the two predictors are
partially confounded.

In designed experiments, we generally either have no confounding of
effects, or predictable complete confounding of effects. In many
designs, effects that are not completely confounded are orthogonal.

Complete confounding of A and B means that the calculated effect
is either due to A or to B or to some mixture of the two.
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Conceptual Experiment on Floor Wax

Factors to be studied were as follows:

Label Definition − +
A Catalyst (%) 1 1.5
B Additive (%) 0.25 0.50
C Emulsifier P (%) 2 3
D Emulsifier Q (%) 1 2
E Emulsifier R (%) 1 2

Ordinarily, this would take 25 = 32 runs, but it was
decided to run a quarter fraction in 8 runs. The first
three factors were varied as a full factorial in A,B,C,
while D was run according to the BC interaction and E
was run according to the ABC interaction.
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With relations I = BCD and I = ABCE, (and
I = ADE), the confounding table looked like this:

A ABCD BCE DE
B CD ACE ABDE
C BD ABE ACDE
D BC ABCDE AE
E BCDE ABC AD

Each main effect is confounded with one or two two-way
interactions, but no two main effects are confounded.
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The important part of the confounding table is the lowest
order of the confounding relations, which in this case is
confounding of main effects and two-way interactions.

A DE
B CD
C BD
D BC AE
E AD

Each main effect is confounded with one or two two-way
interactions, but no two main effects are confounded.
Some two-way interactions are not confounded with
main effects (AB/CE, AC/BE).
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There were six responses, as follows:

y1 Hazy Y/N?
y2 Adheres Y/N?
y3 Grease on Top of Film Y/N?
y4 Grease Under Film Y/N?
y5 Dull, Adjusted pH Y/N?
y6 Dull, Original pH Y/N?

These are all qualitative, but that was suitable for the
application.
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D = BC, E = ACE

> wax <- read.table("tab0601.dat",header=T)

> wax

run A B C D E y1 y2 y3 y4 y5 y6

1 1 -1 -1 -1 1 -1 no no yes no slightly yes

2 2 1 -1 -1 1 1 no yes yes yes slightly yes

3 3 -1 1 -1 -1 1 no no no yes no no

4 4 1 1 -1 -1 -1 no yes no no no no

5 5 -1 -1 1 -1 1 yes no no yes no slightly

6 6 1 -1 1 -1 -1 yes yes no no no no

7 7 -1 1 1 1 -1 yes no yes no slightly yes

8 8 1 1 1 1 1 yes yes yes yes slightly yes

Haze (y1) correlates perfectly with C, Emulsifier P. (Other coefficients are ∴ 0).
Adherence (y2) correlates perfectly with A, Catalyst. (Other coefficients are 0).
Grease on top of film (y3) correlates perfectly with D, Emulsifier Q. (Other coefficients are 0).
Grease under film (y4) correlates perfectly with E, Emulsifier R. (Other coefficients are 0).
Dull, adjusted pH (y5) correlates perfectly with D, Emulsifier Q. (Other coefficients are 0).
Dull, original pH (y5) correlates almost perfectly with D, Emulsifier Q.

Set factor A to + (1.5% catalyst).
Factor B (additive %) seems inactive.
Set factor C to − (2% emulsifier P).
Set factor D to − (1% emulsifier Q).
Set factor E to − (1% emulsifier R).
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Stability of a New Product

Section 6.2 of the text concerns an experiment with four
factors in eight runs on the stability R of a product, with
a desired level of 25 on the scale used. The factors
varied were as follows (book has −/+ reversed):

Label Definition − +
A acid concentration 20 30
B catalyst concentration 1 2
C temperature 100 150
D monomer concentration 25 50

The design was a full factorial in A, B, and C with D
identified with the abc interaction in randomized order.
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With defining relation I = ABCD, main effects are not
confounded with two-way interactions. The confounding
pattern of two-way interactions is as follows

AB CD
AC BD
AD BC

We can estimate the intercept, the four main effects, and
the three confounded two-way interactions, but with no
error term. Or we can estimate the main effects model
with 3df for error.
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> product <- read.table("tab0602.dat",header=T)

> product

test A B C D y

1 1 -1 -1 -1 -1 20

2 2 1 -1 -1 1 14

3 3 -1 1 -1 1 17

4 4 1 1 -1 -1 10

5 5 -1 -1 1 1 19

6 6 1 -1 1 -1 13

7 7 -1 1 1 -1 14

8 8 1 1 1 1 10

The goal was to find a formulation that had a stability
rating of R = 25. The best observation in the
experiment was the first observation with all factors at
the − level and that reading was at R = 20.
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> product.lm1 <- lm(y~A*B+A*C+A*D,data=product)

> product.lm2 <- lm(y~A+B+C+D,data=product)

> summary(product.lm1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.625 NaN NaN NaN

A -2.875 NaN NaN NaN

B -1.875 NaN NaN NaN

C -0.625 NaN NaN NaN

D 0.375 NaN NaN NaN

A:B 0.125 NaN NaN NaN

A:C 0.375 NaN NaN NaN

A:D -0.125 NaN NaN NaN

> summary(product.lm2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.6250 0.2394 61.101 9.66e-06 ***

A -2.8750 0.2394 -12.011 0.00124 **

B -1.8750 0.2394 -7.833 0.00433 **

C -0.6250 0.2394 -2.611 0.07960 .

D 0.3750 0.2394 1.567 0.21517

Residual standard error: 0.677 on 3 degrees of freedom

Multiple R-squared: 0.9862, Adjusted R-squared: 0.9679

F-statistic: 53.73 on 4 and 3 DF, p-value: 0.004005

The interaction effects
are relatively small, and
only the A andB effects
look large. None of the
predicted values at the
design points exceed
20. But the coefficients
for the two large effects
point towards possible
formulations that might
have higher stability.
The gradient vector,
normalized to have
coefficient −1 for the A
effect is −A− 0.65B
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Some point that lie along the gradient, with the original
units, and the predicted values are given below.

A Coded Acid Conc. B Coded Catalyst Conc. Prediction
-1 20 -0.65 1.175 18.7
-2 15 -1.30 0.85 22.8
-3 10 -1.95 0.525 26.9

A few actual runs in this direction were able to obtain a
product for the first time with a stability R greater than
25.
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Half-Fraction in Roller Bearing
Modification

Section 6.3 has this example from Hellstrand (1989)
(linked on the web page).
AB SKF (Swedish: Svenska Kullagerfabriken;
’Swedish Ball Bearing Factory’) is a Swedish bearing
and seal manufacturing company founded in
Gothenburg, Sweden, in 1907.
SKF is the world’s largest bearing manufacturer,
and employs 44,000 people in 108 manufacturing
units. SKF is one of the largest companies in
Sweden and among the largest public companies in
the world. [Wikipedia]
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Quality and Productivity

Statistical process control and quality improvement
by experimental design was definitely trending in
1989.

BHH states that SKF (not named) lost a contract
for roller bearings in washing machines that would
be robust to ill-balanced loads.
Hellstrom reports a 23 factorial design using

Inner ring heat treatment,
Outer ring osculation (ratio between the ball diameter
and the radius of the outer ring raceway, and
Cage design.
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M O D E R N  Q U A L IT Y  I M P R O V E M E N T 533

It was decided to use a full two-level factorial design to investigate these parameters. The 
results are displayed in table 2.

Plotting the data (see figure 3), we find that superior performance is achieved with a 
modified outer ring osculation when using the modified inner ring heat treatment. Thus there 
is a strong interaction between outer ring osculation and inner ring heat treatment (see figure 
4). By using this design modification SKF has been able to supply a bearing in this particular 
application with a performance far superior to that of the standard bearing previously used. 
These design modifications result in improved performance only in this particular application.

Table 2
(std: standard design, mod: modified design)

experiment 1
1 std
2 mod
3 std
4 mod
5 std
6 mod
7 std
8 mod

design parameters 
2

std
std
mod
mod
std
std
mod
mod

3 life/h
std 17
std 26
std 25
std 85
mod 19
mod 16
mod 21
mod 128
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> bearings1

A B C y

1 -1 -1 -1 17

2 1 -1 -1 26

3 -1 1 -1 25

4 1 1 -1 85

5 -1 -1 1 19

6 1 -1 1 16

7 -1 1 1 21

8 1 1 1 128

> summary(lm(y~A*B*C,

data=bearings1))

Coefficients:

Estimate

(Intercept) 42.125

A 21.625

B 22.625

C 3.875

A:B 20.125

A:C 4.375

B:C 5.875

A:B:C 7.375

These are the data reported in the printed paper
Hellstrand (1989). The data in BHH are different and
likely were obtained either from the original presentation
to the Royal Society of London, from a more complete
and longer draft, or privately (Box in particular was
heavily involved in industrial consulting).

The coding is −1 is standard and +1 is modified. The
response y is lifetime on test in hours.

Factors A (inner ring heat treatment) and B (outer ring
osculation) look important, as does the A:B interaction.
Factor C (cage design) appears inert. Both of these
were previously unknown and resulted in a much better
product.
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BHH Roller Bearings Example

Section 6.3 concerns an experiment with four factors in eight runs
on the failure rate y (reciprocal of time to failure) of roller bearings.
The factors varied were as follows:

Label Definition − +
A ball mfg std mod
B cage design std mod
C type of grease std mod
D amount of grease std mod

The design was a full factorial in A, B, and C with D identified with
the abc interaction in randomized order. Main effects are not
confounded with two-way interactions, but two-way interactions are
confounded.
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> bearings2

A B C D y

1 -1 -1 -1 -1 16

2 1 -1 -1 1 7

3 -1 1 -1 1 14

4 1 1 -1 -1 5

5 -1 -1 1 1 11

6 1 -1 1 -1 7

7 -1 1 1 -1 13

8 1 1 1 1 4

> summary(lm(y~A*B+A*C+A*D,

data=bearings2))

Coefficients:

Estimate

(Intercept) 9.625

A -3.875

B -0.625

C -0.875

D -0.625

A:B -0.625

A:C 0.625

A:D 0.375

The effects for B and D are the same size as
two of the three interaction terms, so at most A
and C have been shown to be active.

If we fit a model only with A, C, and the
interaction, only A looks important, so that
should probably be the conclusion, with
manufacturing condition of the balls important,
and (contra BHH), none of the other factors
including cage design.
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Anatomy of a Half-Fraction

Suppose we have four factors, A, B, C, and D, and we run a half
fraction of the 24 design by identifying factor D with the ABC
interaction. With defining relation I = ABCD, main effects are not
confounded with two-way interactions. The confounding pattern of
all the effects is as follows

A BCD
B ACD
C ABD
D ABC

AB CD
AC BD
AD BC

I ABCD
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Anatomy of a Half-Fraction

A BCD
B ACD
C ABD
D ABC

AB CD
AC BD
AD BC

I ABCD

The coefficient or effect calculated (as 1/4 of the dot product of a
−1/+ 1 column) is the sum of the two theoretical effects. Each is
an alias of the other with which it is confounded. (The 1/4 is
because it is the difference of two averages of 4. The lm()
coefficient is half that since it is per unit change.)
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Design Resolution

The resolution of a design is the length of the shortest
word which is confounded with the identity. With a half
fraction, there is only one word confounded with the
identity and its length is the resolution.

If we have a 24−1 design in which D is confounded with
ABC, then I = ABCD and the design is of resolution 4.
If for some reason we wanted to confound D with BC
then I = BCD and the design is of resolution 3.
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Design Resolution

If we have a 25−2 design and we confound D with AB
and E with BC, then DE is confounded with AC and
the defining relations are I = ABD = BCE = ACDE
and the design is of resolution 3.

We denote the 24−1 on the last slide by 24−1
IV , with

resolution in Roman numerals, and the design above by
25−2
III . In general, a 2p−q

r design is of size 2p−q runs, with
p variables and of resolution (Roman) r .
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Higher Order Interactions

A main effect is a difference quotient-estimate of the
partial derivative of the response function. Higher-order
effects are difference quotient estimates of mixed partial
derivatives. In general, for smooth functions, we would
presume that for small regions not at the maximum or
minimum a linear approximation is satisfactory. For
slightly larger regions, a quadratic model might suffice,
and then a cubic, and so on. In general, we might think
that the larger the order, the smaller the coefficient.
Thus, it is often the case that higher order interactions
may be negligible compared to the noise at some point.
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Redundancy

If we have a full 25 factorial in five variables with 32
runs, then we can estimate an intercept, 5 main effects,
10 two-factor interactions, 10 three-factor interactions, 5
four-factor interactions, and 1 five-factor interaction.

If three, four, and five factor interactions are negligible
compared to the noise, then we have 16df for error,
which might be more than needed.

Thus we might be inclined to add a sixth factor, and get
a 26−1

VI or even a seventh factor to obtain a 27−2
IV and get

greater efficiency.
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Parsimony

The Pareto Principle is that of the important few and
the trivial many. If we conceive of 10 factors that may
influence the strength of engineered cartilage, and run an
experiment varying all 10, most likely only a few will be
important, at least over the range that we vary them.
Too large a range leads to nonlinearity, while too short a
range leads to no measurable effect, and we often, when
starting out, don’t know the correct range. That can be
fixed in follow-up experiments.
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Projectivity

If we have a 23−1
III in which C = AB, then if any of the factors is

inert, the design becomes a full 22 factorial in the remaining
elements. The design is of projectivity P = 2.

a b ab
A B C

−1 −1 +1
+1 −1 −1
−1 +1 −1
+1 +1 +1

C = AB, A = BC, and B = AC because I = ABC.
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Projectivity

The 24−1
IV in which D = ABC, is of projectivity P = 3, because if

any one of the four factors is inert, the remaining three form a full
23 factorial.

This can be checked by multiplying the columns, or noting that we
have seven contrast columns originally labeled A, B, C, AB, AC,
BC, ABC. If A is inert, we have already columns for B, C, D, BC.

The three remaining original columns A, AB, AC are repurposed as
BD = AC, CD = AB, and BCD = A, and so the seven original
columns are now the full factorial in B, C, D. The same calculations
work if B or C is inert.
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Seven factors in Eight Runs

Section 6.5 in the text presents an experiment in bicycle
hill climbing, with seven factors being varied:

Factor Value Definition −1 +1
A a seat up down
B b dynamo off on
C c handlebars up down
D ab gear low medium
E ac raincoat on off
F bc breakfast yes no
G abc tires hard soft
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The response is time in seconds to climb the hill.
Preliminary test runs suggests that the standard
deviation of replicate runs is about 3 seconds. An
“effect” is the difference between the average of four +1
runs and the average of four −1 runs. The standard
deviation of an effect is then about

√
32/4 + 32/4 = 2.1.

Since the regression coefficient in the −1/+ 1 coding is
half the “effect’,’ the standard deviation is about 1.05.
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> bike2

run seat dynamo handlebars gear raincoat breakfast tires y

1 1 -1 -1 -1 1 1 1 -1 69

2 2 1 -1 -1 -1 -1 1 1 52

3 3 -1 1 -1 -1 1 -1 1 60

4 4 1 1 -1 1 -1 -1 -1 83

5 5 -1 -1 1 1 -1 -1 1 71

6 6 1 -1 1 -1 1 -1 -1 50

7 7 -1 1 1 -1 -1 1 -1 59

8 8 1 1 1 1 1 1 1 88

> summary(lm(y~seat+dynamo+handlebars+gear+raincoat+breakfast+tires,data=bike2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.50 NaN NaN NaN

seat 1.75 NaN NaN NaN

dynamo 6.00 NaN NaN NaN <= probably real

handlebars 0.50 NaN NaN NaN

gear 11.25 NaN NaN NaN <= probably real

raincoat 0.25 NaN NaN NaN

breakfast 0.50 NaN NaN NaN

tires 1.25 NaN NaN NaN
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Confounding Pattern
The defining relations are generated by D = AB, E = AC, F = BC,
and G = ABC, or

I = ABD = ACE = BCF = ABCG

The remaining elements of the defining relations are the products of
these two at a time:

I = BCDE = ACDF = CDG = ABEF = BEG = AFG

and the products three at a time or all four:

I = DEF = ADEG = BDFG = CEFG = ABCDEFG

The smallest word in the defining relation is of length 3, so this is a
resolution 3 design (27−4

III ).
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Ignoring interactions of more than two factors, the
confounding pattern is as follows:

Variable Result Confounding
Seat A = 1.75 A+ BD+ CE+ FG
Dynamo B = 6.00 B+ AD+ CF+ EG
Handlebars C = 0.50 C+ AE+ BF+DG
Gear D = 11.25 D+ AB+ CG+ EF
Raincoat E = 0.25 E+ AC+ BG+DF
Breakfast F = 0.50 F+ BC+ AG+DE
Tires G = 1.25 G+ CD+ BE+ AF

Note that the third largest coefficient A is also the BD
interaction of the two largest coefficients. Also note that
each numerical coefficient is the sum of the four listed
effects.
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Projection

Any two factors generate a replicated 22 design.
Some, but not all, triples generate a full 23 design,
but some just generate a 22.

For example, the three effects A, B, D only
generate a 22 because AB = D, AD = B, and
BD = A. Thus P = 2.

Of the 35 possible triples of columns, 28 generate
the full 23 factorial.
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Nodal Designs

A nodal design is one that for the given number of runs has the
largest number of factors at a given resolution. For example, with 8
runs, resolution 4 designs have all words in the defining relation at
least of length 4, which means there have to be at least 4 factors.
The standard 24−1

IV in which I = ABCD has 8 runs. This design is
nodal.

With 5 factors in 8 runs, resolution 4 is not possible. To get down
from 32 runs to 8 and satisfy resolution 4 requires two generators of
the defining relation, each of length 4 or greater, whose product is
also of length 4 or greater. But any two distinct words from 5 letters
that are of length 4 must overlap in exactly 3, so that their product
is of length 2. For example, if I = ABCD = BCDE, then I = AE,
and the design is of resolution 2. Also I = ABCDE along with a
relation of length 4 generates a relation of length 1.
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Nodal Designs

With 8 runs, a resolution 3 design needs to have defining relations
with no words shorter than 3 letters. The standard 27−4

III has no
words in the defining relation shorter than 3 letters (see slide 31).
Clearly, 7 factors is the largest that can be accommodated, so this
design is nodal.

All other designs with 8 runs can be accommodated by dropping one
or more variables that are identified with the interactions of the first
three columns. If there are 5–7 factors, the resolution cannot be
better than 3.
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Derived Design for a Laboratory
Experiment

A reaction needs to be optimized to increase the percentage
yield.

The current conditions are thought to be far from the
optimum, so probably main effects are most important to find
“uphill.”

There were five variables that might be changed to move
towards increased yield.

But one or more might be inert at this design area.

And after some thought, one interaction might be important.

A fractional factorial seems appropriate
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Factor Definition −1 +1 Units
1 concentration of γ 94 96 %
2 proportion of γ to α 3.85 4.15 mol/mol
3 amount of solvent 280 310 cm3

4 proportion of β to α 3.5 5.5 mol/mol
5 reaction time 2 4 hr

We can use factors 1–3 as the first three columns
1 = A = a, 2 = B = b, 3 = C = c in the standard 8 run,
7 factor design. The 13 interaction might be important,
so we do not use the ac column. If we use the ab
column for 4=D=ab and the abc column for
5=G=abc, then the only other confounding is I = CDG
which is also free of the 13 = AC interaction.
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> yield

run A B C D G y

1 1 -1 -1 -1 1 -1 77.1

2 2 1 -1 -1 -1 1 68.9

3 3 -1 1 -1 -1 1 75.5

4 4 1 1 -1 1 -1 72.5

5 5 -1 -1 1 1 1 67.9

6 6 1 -1 1 -1 -1 68.5

7 7 -1 1 1 -1 -1 71.5

8 8 1 1 1 1 1 63.7

> summary(lm(y~A+B+C+D+G+A:C,data=yield))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.7 0.4 176.75 0.0036 **

A -2.3 0.4 -5.75 0.1096

B 0.1 0.4 0.25 0.8440

C -2.8 0.4 -7.00 0.0903 .

D -0.4 0.4 -1.00 0.5000

G -1.7 0.4 -4.25 0.1471

A:C 0.5 0.4 1.25 0.4296

Effects from A(1), C(3), G(5) are all large and negative, so reducing
concentration of γ, amount of solvent, and reaction time should improve yield.
Moving in these directions gave an eventual yield of 84%, compared to the
current best of 77%.
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Sequential Experimentation

Every experiment should do something; no
experiment can do everything.

If an experiment suggests that the best settings are
not in the present region, then we can move,
perhaps along the gradient, and set up another
design. The full use of this is in response surface
methods (Chapter 12 and Box and Draper).

If the present experiment leaves important
unanswered questions in the current region, then the
design can be augmented by addition runs. We will
consider the use of foldover design augmentation.

David M. Rocke Fractional Factorial Designs February 18, 2025 41 / 76



Foldover Design

Given a design matrix, a foldover is a design with all
the signs reversed.

By itself, this generates the same amount of
information as the original design.

But together, this can lead to more complete
information.

Suppose we have four runs with three factors (23−1
III ),

where C is identified with the AB interaction.
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Original
a b ab
A B C
− − +
+ − −
− + −
+ + +

Foldover
a b -ab
A B C
+ + −
− + +
+ − +
− − −

Combined
ac bc abc c
A B C W
+ + − −
− + + −
+ − + −
− − − −
− − + +
+ − − +
− + − +
+ + + +

The original design can estimate the intercept and three
main effects, but has no df for error. The combined design
has the foldover on top so the pattern of signs matches
some columns of the full factorial. The W factor is the
block in which the runs were located. Although the pat-
terns of −/+ are different from the first three columns
of the standard table, they contain all 8 possibilities and
could be reordered into the standard order. This is now a
24−1
IV design that allows estimation of all the main effects

and two-factor interactions of A,B,C as well as the block
effect (but no error df). Alternatively, the main effects
and blocks can be estimated with 3df for error.

We can start with the smaller design and see if we need to augment it and in which way.
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Single Column Foldover

Section 6.5 in the text presents an experiment in bicycle
hill climbing, with seven factors being varied in eight
runs:

Factor Value Definition −1 +1
A a seat up down
B b dynamo off on
C c handlebars up down
D ab gear low medium
E ac raincoat on off
F bc breakfast yes no
G abc tires hard soft
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> bike2

run seat dynamo handlebars gear raincoat breakfast tires y

1 1 -1 -1 -1 1 1 1 -1 69

2 2 1 -1 -1 -1 -1 1 1 52

3 3 -1 1 -1 -1 1 -1 1 60

4 4 1 1 -1 1 -1 -1 -1 83

5 5 -1 -1 1 1 -1 -1 1 71

6 6 1 -1 1 -1 1 -1 -1 50

7 7 -1 1 1 -1 -1 1 -1 59

8 8 1 1 1 1 1 1 1 88

> summary(lm(y~seat+dynamo+handlebars+gear+raincoat+breakfast+tires,data=bike2))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.50 NaN NaN NaN

seat 1.75 NaN NaN NaN

dynamo 6.00 NaN NaN NaN <= probably real

handlebars 0.50 NaN NaN NaN

gear 11.25 NaN NaN NaN <= probably real

raincoat 0.25 NaN NaN NaN

breakfast 0.50 NaN NaN NaN

tires 1.25 NaN NaN NaN

Factors B (dynamo) and D (gear) are dominant. The cyclist/experimenter had previously
thought that the gear change might interact with other variables. For example, with a higher
gear, the cyclist might stand, making seat height irrelevant. He reran the previous eight runs
except with the signs of D reversed.
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Confounding Pattern
The defining relations for the first half are

I = ABD = ACE = BCF = ABCG

I = BCDE = ACDF = CDG = ABEF = BEG = AFG

I = DEF = ADEG = BDFG = CEFG = ABCDEFG

And for the new runs

I = −ABD = ACE = BCF = ABCG

I = −BCDE = −ACDF = −CDG = ABEF = BEG = AFG

I = −DEF = −ADEG = −BDFG = CEFG = −ABCDEFG

and so overall,

I = ACE = BCF = ABCG

I = ABEF = BEG = AFG

I = CEFG

Which shows that D and its two-factor interactions are not confounded with anything. If we
add a block factor, all the words that are + in one block and − in the other are confounded
with blocks.
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Ignoring interactions of more than two factors, the confounding pattern in the two blocks is as
follows:

Variable Result Confounding
Seat A = 1.75 A+ BD+ CE+ FG
Dynamo B = 6.00 B+ AD+ CF+ EG
Handlebars C = 0.50 C+ AE+ BF+DG
Gear D = 11.25 D+ AB+ CG+ EF
Raincoat E = 0.25 E+ AC+ BG+DF
Breakfast F = 0.50 F+ BC+ AG+DE
Tires G = 1.25 G+ CD+ BE+ AF

Variable Result Confounding
Seat A = 0.375 A− BD+ CE+ FG
Dynamo B = 5.125 B− AD+ CF+ EG
Handlebars C = 1.375 C+ AE+ BF−DG
Gear D = 12.625 D− AB− CG− EF
Raincoat E = -0.875 E+ AC+ BG−DF
Breakfast F = -1.125 F+ BC+ AG−DE
Tires G = -0.375 G− CD+ BE+ AF

B and D look large in both fractions, and nothing else much does. Note how the interactions
with D cancel out in the two halves.
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Here is the confounding pattern (up to two-factor interactions) of
the whole design, including the blocks effect.

Variable Confounding
Seat A = A+ CE+ FG
Dynamo B = B+ CF+ EG
Handlebars C = C+ AE+ BF
Gear D = D
Raincoat E = E+ AC+ BG
Breakfast F = F+ BC+ AG
Tires G = G+ BE+ AF
Blocks H = H

Both D and the blocks effect are estimated free of two-factor
interactions.
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> summary(lm(y~D*(A+B+C+E+F+G)+H,data=bike3))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.3125 0.6875 97.909 0.0065 **

D 11.9375 0.6875 17.364 0.0366 *

A 1.0625 0.6875 1.545 0.3656

B 5.5625 0.6875 8.091 0.0783 .

C 0.9375 0.6875 1.364 0.4028

E -0.3125 0.6875 -0.455 0.7284

F -0.3125 0.6875 -0.455 0.7284

G 0.4375 0.6875 0.636 0.6392

H 0.8125 0.6875 1.182 0.4471

D:A 0.4375 0.6875 0.636 0.6392

D:B 0.6875 0.6875 1.000 0.5000

D:C 0.8125 0.6875 1.182 0.4471

D:E 0.8125 0.6875 1.182 0.4471

D:F 0.5625 0.6875 0.818 0.5635

D:G -0.4375 0.6875 -0.636 0.6392
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> summary(lm(y~A+B+C+D+E+F+G+H,data=bike3))

Residuals:

Min 1Q Median 3Q Max

-3.5625 -0.8750 -0.3125 1.5625 2.4375

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 67.3125 0.6508 103.429 2.08e-12 ***

A 1.0625 0.6508 1.633 0.147

B 5.5625 0.6508 8.547 5.96e-05 ***

C 0.9375 0.6508 1.441 0.193

D 11.9375 0.6508 18.343 3.55e-07 ***

E -0.3125 0.6508 -0.480 0.646

F -0.3125 0.6508 -0.480 0.646

G 0.4375 0.6508 0.672 0.523

H 0.8125 0.6508 1.248 0.252

---

Residual standard error: 2.603 on 7 degrees of freedom

Multiple R-squared: 0.9835, Adjusted R-squared: 0.9646

F-statistic: 52.09 on 8 and 7 DF, p-value: 1.495e-05

Only the B and D effects seem large, and none of the interactions
with D or the block effect are large. In this case, the conclusions are
unchanged from the original fraction.
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Multicolumn Foldover

A number of similar chemical plants in different
locations had been operating successfully for several
years.

In older plants, a particular filtration cycle took
about 40 minutes, but in a newly constructed plant
it took twice as long.

Considering differences between the older and the
newer plants, and the details of the filtration
operation, seven factors were identified.

There was little information and many opinions
about which of these were most important in solving
the problem.
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It was thought that probably at most two factors of the seven were
important, so the nodal seven-factor, eight-run design 27−4

II was
used. The − levels were apparently the current ones and the +
levels were possible changes.

Factors − +
A water supply Town reservoir Well
B raw material On site Other
C temperature Low High
D recycle Yes No
E caustic soda Fast Slow
F filter cloth New Old
G holdup time Low High
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> filter

run A B C D E F G y

1 1 -1 -1 -1 1 1 1 -1 68.4

2 2 1 -1 -1 -1 -1 1 1 77.7

3 3 -1 1 -1 -1 1 -1 1 66.4

4 4 1 1 -1 1 -1 -1 -1 81.0

5 5 -1 -1 1 1 -1 -1 1 78.6

6 6 1 -1 1 -1 1 -1 -1 41.2

7 7 -1 1 1 -1 -1 1 -1 68.7

8 8 1 1 1 1 1 1 1 38.7

> summary(lm(y~A+B+C+D+E+F+G,data=filter))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.0875 NaN NaN NaN

A -5.4375 NaN NaN NaN

B -1.3875 NaN NaN NaN

C -8.2875 NaN NaN NaN

D 1.5875 NaN NaN NaN

E -11.4125 NaN NaN NaN

F -1.7125 NaN NaN NaN

G 0.2625 NaN NaN NaN

The two runs with the lowest times were the only ones that had A, C, and E simultaneously
changed and those factors had the largest negative coefficients.
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Ignoring interactions of more than two factors, the confounding pattern is as
follows:

Variable Result Confounding
water supply A = −5.4375 A+ BD+ CE+ FG
raw material B = −1.3875 B+ AD+ CF+ EG
temperature C = −8.2875 C+ AE+ BF+DG
recyle D = 1.5875 D+ AB+ CG+ EF
caustic soda E = −11.4125 E+ AC+ BG+DF
filter cloth F = −1.7125 F+ BC+ AG+DE
holdup time G = 0.2625 G+ CD+ BE+ AF

A could be large, but also it could be CE.
C could be large, but also it could be AE.
E could be large, but also it could be AC.

So it could be A,C,E, or A,C,AC, or A,E,AE, or C,E,CE.

We could change all three of the factors and fix the problem for the moment,
but without understanding why. Further study is needed to solve the problem.
We will run a full foldover fraction of an additional eight runs.
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Confounding Pattern
The defining relations for the first half are

I = ABD = ACE = BCF = ABCG

I = BCDE = ACDF = CDG = ABEF = BEG = AFG

I = DEF = ADEG = BDFG = CEFG = ABCDEFG

And for the new runs, the sign of each variable is changed, so signs of odd-length words are
changed,

I = −ABD = −ACE = −BCF = ABCG

I = BCDE = ACDF = −CDG = ABEF = −BEG = −AFG

I = −DEF = ADEG = BDFG = CEFG = −ABCDEFG

and so overall,
I = ABCG

I = BCDE = ACDF = ABEF

I = ADEG = BDFG = CEFG

Which shows that A,C,E are not confounded with any two-factor interactions, and no two of
AC,AE,CE are confounded with each other. The blocking factor H is confounded with any of
the defining relations that change sign in the two halves, so mostly three-factor interactions.
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> filter3

run A B C D E F G H y

1 1 -1 -1 -1 1 1 1 -1 -1 68.4

2 2 1 -1 -1 -1 -1 1 1 -1 77.7

3 3 -1 1 -1 -1 1 -1 1 -1 66.4

4 4 1 1 -1 1 -1 -1 -1 -1 81.0

5 5 -1 -1 1 1 -1 -1 1 -1 78.6

6 6 1 -1 1 -1 1 -1 -1 -1 41.2

7 7 -1 1 1 -1 -1 1 -1 -1 68.7

8 8 1 1 1 1 1 1 1 -1 38.7

-----------------------------------------

9 9 1 1 1 -1 -1 -1 1 1 66.7

10 10 -1 1 1 1 1 -1 -1 1 65.0

11 11 1 -1 1 1 -1 1 -1 1 86.4

12 12 -1 -1 1 -1 1 1 1 1 61.9

13 13 1 1 -1 -1 1 1 -1 1 47.8

14 14 -1 1 -1 1 -1 1 1 1 59.0

15 15 1 -1 -1 1 1 -1 1 1 42.6

16 16 -1 -1 -1 -1 -1 -1 -1 1 67.6
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> summary(lm(y~A+B+C+D+E+F+G+H+A*B+A*C+A*D+A*E+B*C+B*D+C*D,data=filter3))

Coefficients:

Estimate

(Intercept) 63.60625

A -3.34375

B -1.94375

C -0.20625

D 1.35625

E -9.60625

F -0.03125

G -2.15625

H -1.48125

A:B 0.23125 AB + CG + EF

A:C -1.80625 AC + BG + DF

A:D 0.55625 AD + CF + EG

A:E -8.08125 AE + BF + DG

B:C -1.68125 BC + AG + DE

B:D -2.09375 BD + CE + FG

C:D 2.41875 CD + BE + AF

The largest (negative) coefficients are those of A, E, AE. The C coefficient is small. All of this
means that water supply and caustic soda are the important factors (and not temperature).
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The foldover additional fraction augmented the
eight-run 27−4

III design of projectivity 2 to a 16-run
27−3
IV design of projectivity 3.

All the 16-run designs we have discussed have the
same 16 columns, generated by the identity column,
four dummy factors a,b, c,d, their six two-factor
interactions, their four three-factor interactions, and
the four-factor interaction. 1 + 4 + 6 + 4 + 1 = 16.

These can be used to provide fractional factorials of
resolution 3, 4, and 5.

Four of these are nodal designs of the maximum
number of factors for a given resolution.
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This is the basic table of signs that generate the full 24 factorial.

run a b c d ab ac ad bc bd cd abc abd acd bcd abcd

1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1

2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1

3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1

4 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1

5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1

6 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1

7 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1

8 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1

9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1

10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1

11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1

12 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1

13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1

14 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1

15 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Sixteen-Run Nodal Designs
Design a b c d ab ac ad bc bd cd abc abd acd bcd abcd

24 A B C D

25−1
V

A B C D — — — — — — — — — — P

28−4
IV

A B C D — — — — — — L M N O —

215−11
III

A B C D E F G H J K L M N O P

The last design has 15 factors in 16 runs and is resolution 3 because the
shortest words are derived from identification of a main effect with a two-factor
interaction like I = ABE. The second-to-last design has 8 factors in 16 runs.
The initial words in the defining relation are

I = ABCL = ABDM = ACDN = BCDO

and products of any two or three of these are also of length 4, while the product
of all four is of length 8. Table 6.14c in the book shows the alias structure for
the last three designs, and that of the 15-factor design can be used for any
subset of factors between 9 and 14.
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Nodal Half Replicate with Five Factors

The full 32-run design has

Factor − +
A feed rate (L/min) 10 15
B catalyst (%) 1 2
C agitation rate (rpm) 100 120
D temperature (◦C) 140 180
E concentration 3 6
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run A B C D E y

1 -1 -1 -1 -1 -1 61

2 1 -1 -1 -1 -1 53

3 -1 1 -1 -1 -1 63

4 1 1 -1 -1 -1 61

5 -1 -1 1 -1 -1 53

6 1 -1 1 -1 -1 56

7 -1 1 1 -1 -1 54

8 1 1 1 -1 -1 61

9 -1 -1 -1 1 -1 69

10 1 -1 -1 1 -1 61

11 -1 1 -1 1 -1 94

12 1 1 -1 1 -1 93

13 -1 -1 1 1 -1 66

14 1 -1 1 1 -1 60

15 -1 1 1 1 -1 95

16 1 1 1 1 -1 98

17 -1 -1 -1 -1 1 56

18 1 -1 -1 -1 1 63

19 -1 1 -1 -1 1 70

20 1 1 -1 -1 1 65

21 -1 -1 1 -1 1 59

22 1 -1 1 -1 1 55

23 -1 1 1 -1 1 67

24 1 1 1 -1 1 65

25 -1 -1 -1 1 1 44

26 1 -1 -1 1 1 45

27 -1 1 -1 1 1 78

28 1 1 -1 1 1 77

29 -1 -1 1 1 1 49

30 1 -1 1 1 1 42

31 -1 1 1 1 1 81

32 1 1 1 1 1 82

> summary(reactor1.lm)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.550e+01 NaN NaN NaN

A -6.875e-01 NaN NaN NaN

B 9.750e+00 NaN NaN NaN

C -3.125e-01 NaN NaN NaN

D 5.375e+00 NaN NaN NaN

E -3.125e+00 NaN NaN NaN

A:B 6.875e-01 NaN NaN NaN

A:C 3.750e-01 NaN NaN NaN

B:C 4.375e-01 NaN NaN NaN

A:D -4.375e-01 NaN NaN NaN

B:D 6.625e+00 NaN NaN NaN

C:D 1.062e+00 NaN NaN NaN

A:E 6.250e-02 NaN NaN NaN

B:E 1.000e+00 NaN NaN NaN

C:E 4.375e-01 NaN NaN NaN

D:E -5.500e+00 NaN NaN NaN

A:B:C 7.500e-01 NaN NaN NaN

A:B:D 6.875e-01 NaN NaN NaN

A:C:D -3.750e-01 NaN NaN NaN

B:C:D 5.625e-01 NaN NaN NaN

A:B:E -9.375e-01 NaN NaN NaN

A:C:E -1.250e+00 NaN NaN NaN

B:C:E 6.250e-02 NaN NaN NaN

A:D:E 3.125e-01 NaN NaN NaN

B:D:E -1.250e-01 NaN NaN NaN

C:D:E 6.250e-02 NaN NaN NaN

A:B:C:D -2.946e-15 NaN NaN NaN

A:B:C:E 7.500e-01 NaN NaN NaN

A:B:D:E 3.125e-01 NaN NaN NaN

A:C:D:E 5.000e-01 NaN NaN NaN

B:C:D:E -3.125e-01 NaN NaN NaN

A:B:C:D:E -2.500e-01 NaN NaN NaN

Large effects are B, D,
E, BD, and DE, all
larger than 3. The
largest 3- or 4-factor
interaction is −1.25.
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qqreactor1 <- function(){

coef1 <- coef(reactor1.lm)[-1]

qqnorm(coef1,main="Normal Q-Q Plot of 32 Run Results",pch="")

qqline(coef1)

tmp <- qqnorm(coef1,plot=F)

text(tmp[[1]],tmp[[2]],names(coef1))

}

1 The first line gets the coefficients, minus the intercept.

2 The second line makes the qq normal plot, with blank plotting
characters.

3 The third line draws the line through the points that look like
a normal sample.

4 The fourth and fifth lines plot the names of the effects on top
of where the point would have been plotted.
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> reactor2 <- reactor1[with(reactor1,A*B*C*D==E),]

> reactor2

run A B C D E y

2 2 1 -1 -1 -1 -1 53

3 3 -1 1 -1 -1 -1 63

5 5 -1 -1 1 -1 -1 53

8 8 1 1 1 -1 -1 61

9 9 -1 -1 -1 1 -1 69

12 12 1 1 -1 1 -1 93

14 14 1 -1 1 1 -1 60

15 15 -1 1 1 1 -1 95

17 17 -1 -1 -1 -1 1 56

20 20 1 1 -1 -1 1 65

22 22 1 -1 1 -1 1 55

23 23 -1 1 1 -1 1 67

26 26 1 -1 -1 1 1 45

27 27 -1 1 -1 1 1 78

29 29 -1 -1 1 1 1 49

32 32 1 1 1 1 1 82

> summary(reactor2.lm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.525e+01 NaN NaN NaN

A -1.000e+00 NaN NaN NaN

B 1.025e+01 NaN NaN NaN

C 2.437e-15 NaN NaN NaN

D 6.125e+00 NaN NaN NaN

E -3.125e+00 NaN NaN NaN

A:B 7.500e-01 NaN NaN NaN

A:C 2.500e-01 NaN NaN NaN

B:C 7.500e-01 NaN NaN NaN

A:D -3.750e-01 NaN NaN NaN

B:D 5.375e+00 NaN NaN NaN

C:D 1.250e-01 NaN NaN NaN

A:E 6.250e-01 NaN NaN NaN

B:E 6.250e-01 NaN NaN NaN

C:E 1.125e+00 NaN NaN NaN

D:E -4.750e+00 NaN NaN NaN

This is the usual half-fraction in which E is identified with ABCD. The command at the top of
the left column selects those runs, though they are not in the canonical order. Large effects
are B, D, E, BD, and DE, all larger than 3. The largest remaining coefficient is 1.125.
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A few further points about this design can be noted.

This half fraction is a 25−1
V design, so is of resolution 5 and

therefore of projectivity 4, meaning that if any of the five
factors is inert, the design is then a full factorial in the four
remaining variables.

This is so, since the defining relation is just I = ABCDE.

This design is a factor screen of order [16, 5, 4], meaning that
it has 16 runs in 5 factors, and is projectivity 4.

If all five factors were active, a second fraction of full foldover
could be added, which would be two orthogonal blocks.

It appears that factors A and C are completely inert in main
effects and interactions, so we would get a replicated factorial
in factors B, D, E
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> summary(lm(y~B*D*E,data=reactor2))

Call:

lm(formula = y ~ B * D * E, data = reactor2)

Residuals:

Min 1Q Median 3Q Max

-4.5 -1.0 0.0 1.0 4.5

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.2500 0.7016 93.007 1.99e-13 ***

B 10.2500 0.7016 14.610 4.73e-07 ***

D 6.1250 0.7016 8.731 2.32e-05 ***

E -3.1250 0.7016 -4.454 0.002127 **

B:D 5.3750 0.7016 7.661 5.95e-05 ***

B:E 0.6250 0.7016 0.891 0.398998

D:E -4.7500 0.7016 -6.771 0.000142 ***

B:D:E 0.2500 0.7016 0.356 0.730795

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.806 on 8 degrees of freedom

Multiple R-squared: 0.9811, Adjusted R-squared: 0.9645

F-statistic: 59.28 on 7 and 8 DF, p-value: 2.89e-06
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Nodal 1/16 Fraction: 8 Factors in 16 Runs

This 28−4
IV design is of resolution 4, so it is of projectivity

3, meaning that it can form a replicated full factorial in
any of the three factors from eight.This is a [16, 8, 3]
factor screen with 16 runs, 8 factors, and projectivity 3.

The example following has 8 (unnamed) factors
A,B,C,D,E,F,G,H in paint manufacture for vehicles
with E = ABC, F = ABD, G = ACD, and H = BCD.
The responses were glossiness and abrasion resistance.
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> paint

run A B C D E F G H y1 y2

1 1 -1 -1 -1 -1 -1 -1 -1 -1 53 6.3

2 2 1 -1 -1 -1 1 1 1 -1 60 6.1

3 3 -1 1 -1 -1 1 1 -1 1 68 5.5

4 4 1 1 -1 -1 -1 -1 1 1 78 2.1

5 5 -1 -1 1 -1 1 -1 1 1 48 6.9

6 6 1 -1 1 -1 -1 1 -1 1 67 5.1

7 7 -1 1 1 -1 -1 1 1 -1 55 6.4

8 8 1 1 1 -1 1 -1 -1 -1 78 2.5

9 9 -1 -1 -1 1 -1 1 1 1 49 8.2

10 10 1 -1 -1 1 1 -1 -1 1 68 3.1

11 11 -1 1 -1 1 1 -1 1 -1 61 4.3

12 12 1 1 -1 1 -1 1 -1 -1 81 3.2

13 13 -1 -1 1 1 1 1 -1 -1 52 7.1

14 14 1 -1 1 1 -1 -1 1 -1 70 3.4

15 15 -1 1 1 1 -1 -1 -1 1 65 3.0

16 16 1 1 1 1 1 1 1 1 82 2.8

> coefb

Gloss AbradeRes

(Intercept) 64.6875 4.7500

A 8.3125 -1.2125

B 6.3125 -1.0250

C -0.0625 -0.1000

D 1.3125 -0.3625

E -0.0625 0.0375

F -0.4375 0.8000

G -1.8125 0.2750

H 0.9375 -0.1625

A:B 0.4375 0.1375

A:C 1.3125 0.0125

A:D 0.9375 -0.0500

A:E -0.9375 0.0500

A:F -0.0625 -0.0375

A:G 1.3125 -0.2125

A:H -0.1875 -0.1000

Factors A and B are important in glossiness and increase it. Factors A, B, and F are important
in abrasion resistance, the first two decreasing it, and the third increasing. Factors A and B
can be run at the high level, and the bad effect on abrasion resistance can be counteracted by
increasing F, which helps abrasion resistance and does not damage glossiness significantly.
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Nodal 1/64 Fraction: 15 Factors in 16 Runs

This 215−11
III design is of resolution 3, so it is of

projectivity 2, meaning that it can form a replicated full
factorial in any of the two factors from 15 (and a
replicated 23 factorial from some sets of three
factors).This is a [16, 15, 2] factor screen with 16 runs,
15 factors, and projectivity 2.

The example following has 15 factors that might affect
post-extrusion shrinkage of a speedometer cable casing.
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> speedometer

run A B C D E F G H J K L M N O P ave var

1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 48.5 16.3

2 2 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 57.5 4.3

3 3 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 8.8 2.9

4 4 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 17.5 3.0

5 5 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 19.5 20.3

6 6 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 14.5 5.7

7 7 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 22.5 7.0

8 8 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 17.5 9.0

9 9 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 12.5 19.7

10 10 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 12.0 58.0

11 11 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 45.5 13.7

12 12 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 53.5 0.3

13 13 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 17.0 10.7

14 14 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 27.5 3.7

15 15 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 34.2 22.9

16 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 58.2 10.9

At each factor setting, 3000ft of extruded thermoplastic speedometer casing was produced
(the smallest practicable) and four pieces of each casing were tested. The data above list the
average of the four replicates and their variance (not log variance as stated in BHH). The
original data are given in Quinlan (1985), a version of which is linked on the web site.

David M. Rocke Fractional Factorial Designs February 18, 2025 73 / 76



−1 0 1

−
5

0
5

10
Normal Q−Q Plot of 16 Run Saturated Design

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

AB

C

D

E

F

G

H

J

K

L

M

N

O

P

J, wire braid type and
O, wire diameter were
the most important,
followed by C, liner die.
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> summary(lm(ave~C+J+O,data=speedometer))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.169 2.651 11.003 1.26e-07 ***

C -2.806 2.651 -1.059 0.310646

J 12.256 2.651 4.623 0.000587 ***

O -7.019 2.651 -2.648 0.021274 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 10.6 on 12 degrees of freedom

Multiple R-squared: 0.7109, Adjusted R-squared: 0.6386

F-statistic: 9.835 on 3 and 12 DF, p-value: 0.001485

The residual mean square is 112.45, which is an estimate of the variance
between conceptual replicates at the same conditions. The mean of the
within-sample variances is 13.025, so there is a lot of variation between
3000-foot pieces of speedometer casing that is not represented by the variation
within the piece. This is very common, and shows the great importance of
choosing the right comparison variance. The multiple pieces tested on each
length of cable did not increase the accuracy of the result by much!
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A true set of four replicates would have to have been done on four
separate 3000-foot pieces of casing embedded in a fully randomized
order of 16× 4 = 64 runs. What would happen if we used the four
individual data values for each factor combination? The residual
variance in R would be s2 = 13.025 exactly and the estimated
variance of one of the effects would be
s2/8 + s2/8 = s2/4 = 13.025/4 = 3.256, so the standard error
would be 1.80 with 48 df and the standard error of a regression
coefficient would 0.90 (compare to 2.65 from the regression on the
last slide). This would mean that coefficients larger than about 1.8
would be significant, and that would include A, B, C, D, G, H, J, K,
N, O. Only 2 or 3 of these 10 are likely real, and the rest are an
artifact of using variation within a casing to compare to variation
between casings, which is clearly larger.
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