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Basic Assumptions of Linear Regression
Linearity: The mean value of y (the response) con-

ditional on the values of the predictors
is a linear function of the predictors.
Predictors themselves can be non-linear
combinations.

Independence: The error terms of different data points
are statistically independent of each
other (which can be encouraged by
randomization).

Constant Variance: The error terms of the data points all
have the same variance.

Normal Errors: The distribution of errors is normal (not
particularly important).
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Nonconstant Variance

A particularly common “violation” of the assumptions is
heteroscedacticity or non-constant variance and one very
common version is when the variance is a function of the
mean.

y ∼ f (µ, h(µ)))
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Distribution Pars Mean Variance

Lognormal (µ, σ) E(y) = η = exp(µ+ σ2/2) V (y) = [exp(σ2)− 1] exp(2µ+ σ2)

Poisson λ E(y) = µ = λ V (y) = λ = µ

Exponential 1/λ = µ E(y) = µ V (y) = µ2

Binomial (n, p) E(y) = µ = np V (y) = np(1− p) = µ(n − µ)/n

For the binomial, the variance is a function of the mean that also
depends on n, which is known. For the lognormal, the square of the
coefficient of variation is the ratio of the variance to the square of
the mean

V (y)

η2
=

[exp(σ2)− 1] exp(2µ+ σ2)

exp(2µ+ σ2)
= [exp(σ2)− 1]

Thus, for the lognormal, the variance is a constant multiple of the
square of the mean. Also note that for the exponential distribution,
the variance is exactly the square of the mean.
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The Delta Method

The delta method is a way of approximating the behavior of a
function of a random variable. Suppose Y is a random variable with
mean E (Y ) = µ and variance V (Y ) = σ2. And suppose g() is a
smooth transformation function. Then the Taylor series expansion of
g(Y ) around the mean is

W = g(Y ) ≈ g(µ) + g ′(µ)(Y − µ) +
1

2
g ′′(µ)(Y − µ)2 + · · ·

Or to the first order

W = g(Y ) ≈ g(µ) + g ′(µ)(Y − µ)

Then, to the first order, E (W ) ≈ g(µ) and V (W ) ≈ [g ′(µ)]2σ2

This approximation is called the (first-order) delta method.
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Nonconstant Variance
Now suppose that E (Y ) = µ and V (Y ) = h(µ), so that the
variance depends on the mean. We call h(µ) the variance function.
Can we find a transformation function g() such that (to the first
order) W = g(Y ) has constant variance? By the delta method,

V (W ) ≈ [g ′(µ)]2h(µ) = C 2

g ′(µ)
√
h(µ) = C

dg(µ)

dµ
=

C√
h(µ)

g(µ) =

∫
Cdµ√
h(µ)

with the constant being irrelevant.
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Variance a Power of the Mean

If
V (Y ) = h(µ) = cµ2,

then

g(µ) ∝
∫

µ−1dµ = ln(µ).

If
V (Y ) = h(µ) = cµ2p, p ̸= 1

then

g(µ) ∝
∫

µ−pdµ ∝ µ1−p.

So, if the CV is constant, take logs. If the standard deviation is
proportional to a different power p ̸= 1 of the mean, then use a
power transformation g(y) = y 1−p.
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For example, if ther variance function h(µ) = µ, as in the Poisson
distribution, then p = 1/2, c = 1, and g(µ) = µ1/2 =

√
µ. If Y is

Poisson with parameter λ, then the mean and variance of
W = g(Y ) are

E (W ) ≈ g(λ) =
√
λ = λ1/2

V (W ) ≈ g ′(µ)2σ2

= g ′(λ)2λ

=

[
1

2
√
λ

]2
λ

=
1

4λ
λ = 1/4

So the square-root of a Poisson random variable with parameter λ
has approximate mean

√
λ and approximate variance 1/4.
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If we let β = 1− p and define g(µ) = (yβ − 1)/β, then
this is a linear transformation of the function g() derived
above when p ̸= 1. When p = 1,

lim
β→0

(yβ − 1)/β = ln(y)

by L’Hôpital’s rule. Thus the transformation we want is

g(y ; β) =

{
(yβ − 1)/β if p ̸= 1

ln(y) if p = 1

and this is continuous in y and β.
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The Binomial Distribution
We’ll confirm here the variance stabilizing transformation for the
binomial proportion derived by Fisher, which is g(p̂) = 2 arcsin(

√
p̂).

First let’s find the derivative of the y = arcsin(x) function wrt x :

y = sin−1(x)

sin(y) = x

y ′ cos(y) = 1

y ′ =
1

cos(y)
=

1√
1− sin2(y)

=
1√

1− x2

d

dx
2 sin−1(

√
x) =

x−1/2

√
1− x

[g ′(p)]2σ2 =
p−1

(1− p)

p(1− p)

n
= n−1
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Zinc Data
The zinc data consist of test runs of EPA method 1638 ICPMS from spiked samples with 11
different concentrations from 0 to 25,000 µgm/L.

> summary(zinc)

Concentration Peak.Area

Min. : 0 Min. : 93

1st Qu.: 100 1st Qu.: 1187

Median : 500 Median : 4200

Mean : 4387 Mean : 31725

3rd Qu.: 5000 3rd Qu.: 34942

Max. :25000 Max. :189657

> dim(zinc)

[1] 91 2

> concs <- sort(unique(zinc$Concentration))

[1] 0 10 20 100 200 500 1000 2000 5000 10000 25000

> counts <- table(zinc$Concentration)

0 10 20 100 200 500 1000 2000 5000 10000 25000

8 7 7 11 7 7 9 7 9 10 9
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Zinc Data

> mns <- tapply(zinc$Peak.Area,zinc$Concentration,mean)

0 10 20 100 200 500

264.7500 316.8571 692.4286 1291.3636 2187.8571 4109.2857

1000 2000 5000 10000 25000

7589.4444 14388.5714 35072.3333 70267.2000 181354.4444

> vars <- tapply(zinc$Peak.Area,zinc$Concentration,var)

0 10 20 100 200 500

4.203907e+04 1.714762e+02 7.869524e+02 1.438745e+04 1.431810e+03 8.074238e+03

1000 2000 5000 10000 25000

5.365478e+04 4.098095e+04 1.849742e+06 1.358443e+07 2.835566e+07
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Plot of peak area vs.
concentration from
ICPMS along with
linear calibration curve.
Variance appears to
increase with the mean.
If the CV is nearly
constant, we can take
logs to stabilize the
variance..
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This is roughly linear.
Standard deviations
from only 5–10 points
are quite variable.
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This is the ratio of the
standard deviation to
the mean for the 11
concentrations. The
mean of the last 10 is
0.038 which is the
average CV of those
groups. For zero
concentration, the ratio
is higher as would be
expected.
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For the non-zero concentrations, the CV is roughly constant, so the
log transform should work.

The standard deviation of the zero-concentration samples is 205 and
the CV of the remainder is 0.0379, so the overall variance of the
peak areas is

V (Y ) = h(µ) = 2052 + (0.0379)2µ2.

It can be shown that if h(µ) = a2 + b2µ2, then a variance-stabilizing
transformation is

g(y) = ln(y 2 +
√

y 2 + a2/b2)

but this might disturb the linearity of the calibration curve, so we
will just use the log transform on the non-zero data.
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EPA Zinc Data Log Transformed

The variance no longer
seems to rise with the
mean. We can confirm
this with a plot of the
variance vs. the mean
of each non-zero
concentration.
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The standard deviation
is on the average close
to the previous average
CV of 0.038.
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Poison Data

These are data from a toxicology study on three poisons
and four possible treatments with the response being the
survival time of the animal in minutes (unit change from
the text).

Goals are to determine if the treatments differ in
prolonging life, if the poisons differ in toxicity , and if
different treatments are more effective against one
poison than another.
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A B C D

I 186 492 258 270

270 660 270 426

276 528 378 396

258 432 456 372

II 216 552 264 336

174 366 210 612

240 294 186 426

138 744 240 228

III 132 180 138 180

126 222 150 216

108 228 144 186

138 174 132 198

A quick look shows that some cells seem to have
larger survival times than others; for example
I/B and II/B. But we need a more systematic
analysis via lm() and the analysis of variance.

David M. Rocke Data Transformations and Variance February 27, 2025 20 / 36



> summary(lm(survTime ~ Poison*Treatment,data=poison))

Residuals:

Min 1Q Median 3Q Max

-195.00 -29.25 3.00 25.88 255.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 247.50 44.74 5.532 2.94e-06 ***

PoisonII -55.50 63.27 -0.877 0.3862

PoisonIII -121.50 63.27 -1.920 0.0628 .

TreatmentB 280.50 63.27 4.433 8.37e-05 *** Prolongs survival

TreatmentC 93.00 63.27 1.470 0.1503

TreatmentD 118.50 63.27 1.873 0.0692 .

PoisonII:TreatmentB 16.50 89.48 0.184 0.8547

PoisonIII:TreatmentB -205.50 89.48 -2.297 0.0276 * except with poison III

PoisonII:TreatmentC -60.00 89.48 -0.671 0.5068

PoisonIII:TreatmentC -78.00 89.48 -0.872 0.3892

PoisonII:TreatmentD 90.00 89.48 1.006 0.3212

PoisonIII:TreatmentD -49.50 89.48 -0.553 0.5836

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 89.48 on 36 degrees of freedom

Multiple R-squared: 0.7335, Adjusted R-squared: 0.6521

F-statistic: 9.01 on 11 and 36 DF, p-value: 1.986e-07
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> drop1(lm(survTime ~ Poison*Treatment,data=poison),test="F")

Single term deletions

Model:

survTime ~ Poison * Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 288261 441.62

Poison:Treatment 6 90050 378310 442.67 1.8743 0.1123

> drop1(lm(survTime ~ Poison+Treatment,data=poison),test="F")

Single term deletions

Model:

survTime ~ Poison + Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 378310 442.67

Poison 2 371885 750195 471.53 20.643 5.704e-07 ***

Treatment 3 331634 709945 466.88 12.273 6.697e-06 ***

Interactions as a whole are not “significant” but both main effects
are strongly significant.
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> summary(lm(survTime ~ Poison+Treatment,data=poison))

Residuals:

Min 1Q Median 3Q Max

-151.000 -57.750 -8.937 37.063 299.000

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 271.38 33.55 8.088 4.22e-10 ***

PoisonII -43.87 33.55 -1.308 0.19813

PoisonIII -204.75 33.55 -6.102 2.83e-07 ***

TreatmentB 217.50 38.75 5.614 1.43e-06 ***

TreatmentC 47.00 38.75 1.213 0.23189

TreatmentD 132.00 38.75 3.407 0.00146 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 94.91 on 42 degrees of freedom

Multiple R-squared: 0.6503, Adjusted R-squared: 0.6087

F-statistic: 15.62 on 5 and 42 DF, p-value: 1.123e-08

In the main-effects model, Poison III is more lethal and treatments
D and especially B are better than treatment A.
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mns <- with(poison, tapply(survTime,list(Poison,Treatment),mean))

A B C D

I 247.5 528 340.5 366.0

II 192.0 489 225.0 400.5

III 126.0 201 141.0 195.0

vars <-with(poison, tapply(survTime,list(Poison,Treatment),var))

A B C D

I 1737 9312 8841 4584

II 2040 40716 1164 26433

III 168 780 60 252

sds <-with(poison, tapply(survTime,list(Poison,Treatment),sd))

A B C D

I 41.67733 96.49870 94.026592 67.70524

II 45.16636 201.78206 34.117444 162.58229

III 12.96148 27.92848 7.745967 15.87451

So, let’s examine the assumption of equality of variances. These
vary from 40,716 down to 60, which suggests that perhaps there is
heteroscedacticity. Let’s see if the variance is a function of the mean.
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Finding a Transformation

We have seen that if the standard deviation is
proportional to a power of the mean, then that suggests
a transformation. If the CV is constant, take logs. If the
standard deviation is proportional to a different power
p ̸= 1 of the mean, then use a power transformation
g(y) = y 1−p. If σ ∝ µp, then ln(σ) ≈ p ln(µ), so let’s
compare the log standard deviation to the log mean and
see what the slope is.
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> summary(lm(log(sdvec) ~ log(mvec)))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.2029 1.4689 -4.904 0.00062 ***

log(mvec) 1.9770 0.2633 7.509 2.04e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4113 on 10 degrees of freedom

Multiple R-squared: 0.8494, Adjusted R-squared: 0.8343

F-statistic: 56.39 on 1 and 10 DF, p-value: 2.041e-05

The slope of the log/log plot is p = 1.977, which suggests that a
good transformation would be near 1− p = −0.997. We will use
g(y) = y−1 = 1/y . I will multiply this by 10,000 to make the
numbers easier to read
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invsurv <- 10000/poison$survTime

> mnst <- with(poison, tapply(invsurv,list(Poison,Treatment),mean))

A B C D

I 41.44801 19.39107 31.04539 28.16137

II 54.47450 23.22320 45.23199 28.35890

III 80.04475 50.48288 71.08311 51.53009

> varst <-with(poison, tapply(invsurv,list(Poison,Treatment),var))

A B C D

I 68.52052 11.05536 66.52508 36.94870

II 187.83932 85.00486 48.42160 136.85308

III 77.92049 49.33560 15.31568 16.54518

> sdst <-with(poison, tapply(invsurv,list(Poison,Treatment),sd))

A B C D

I 8.277712 3.324960 8.156291 6.078545

II 13.705449 9.219808 6.958563 11.698422

III 8.827258 7.023930 3.913525 4.067576

The ratio of the largest variance to the smallest is
187.84/11.06 = 16.98, while the ratio in the untransformed data is
40716/60 = 678.6.
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> summary(lm(invsurv~Poison*Treatment,data=poison))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.448 4.083 10.151 4.16e-12 ***

PoisonII 13.026 5.775 2.256 0.030252 *

PoisonIII 38.597 5.775 6.684 8.56e-08 ***

TreatmentB -22.057 5.775 -3.820 0.000508 ***

TreatmentC -10.403 5.775 -1.801 0.080010 .

TreatmentD -13.287 5.775 -2.301 0.027297 *

PoisonII:TreatmentB -9.194 8.166 -1.126 0.267669

PoisonIII:TreatmentB -7.505 8.166 -0.919 0.364213

PoisonII:TreatmentC 1.160 8.166 0.142 0.887826

PoisonIII:TreatmentC 1.441 8.166 0.176 0.860928

PoisonII:TreatmentD -12.829 8.166 -1.571 0.124946

PoisonIII:TreatmentD -15.228 8.166 -1.865 0.070391 .

Residual standard error: 8.166 on 36 degrees of freedom

Multiple R-squared: 0.8681, Adjusted R-squared: 0.8277

F-statistic: 21.53 on 11 and 36 DF, p-value: 1.289e-12

The III×B interaction has disappeared, so the main effects model
looks good.
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> drop1(lm(survTime~Poison*Treatment,data=poison),test="F")

Single term deletions

Model:

survTime ~ Poison * Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 288261 441.62

Poison:Treatment 6 90050 378310 442.67 1.8743 0.1123

> drop1(lm(invsurv~Poison*Treatment,data=poison),test="F")

Single term deletions

Model:

invsurv ~ Poison * Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 2400.9 211.79

Poison:Treatment 6 436.33 2837.2 207.81 1.0904 0.3867

The interaction effect has the F-statistic dropping from 1.87 to 1.09
(with 1.00 being the center of the no evidence of effect range).
This, along with the coefficients, means that any evidence of an
interaction effect has been removed by the transformation.
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> drop1(lm(survTime~Poison+Treatment,data=poison),test="F")

Single term deletions

Model:

survTime ~ Poison + Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 378310 442.67

Poison 2 371885 750195 471.53 20.643 5.704e-07 ***

Treatment 3 331634 709945 466.88 12.273 6.697e-06 ***

> drop1(lm(invsurv~Poison+Treatment,data=poison),test="F")

Single term deletions

Model:

invsurv ~ Poison + Treatment

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 2837.2 207.81

Poison 2 9688.1 12525.3 275.09 71.708 2.865e-14 ***

Treatment 3 5670.6 8507.8 254.52 27.982 4.192e-10 ***

The F-statistic for poisons has risen from 20.6 to 71.7 with a large
change in the p-value. The F-statistic for treatments has risen from
12.3 to 28.0 with a large change in the p-value. The transformation
has increased the evidence of differences.
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> summary(poisont.lm)

Call:

lm(formula = invsurv ~ Poison + Treatment, data = poison)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.961 2.906 15.473 < 2e-16 ***

PoisonII 7.811 2.906 2.688 0.01026 *

PoisonIII 33.274 2.906 11.451 1.69e-14 ***

TreatmentB -27.623 3.355 -8.233 2.66e-10 ***

TreatmentC -9.536 3.355 -2.842 0.00689 **

TreatmentD -22.639 3.355 -6.747 3.35e-08 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 8.219 on 42 degrees of freedom

Multiple R-squared: 0.8441, Adjusted R-squared: 0.8255

F-statistic: 45.47 on 5 and 42 DF, p-value: 6.974e-16

All the coefficient tests are statistically significant, so Poison II and
Poison III are each more toxic than Poison I (if inverse survival time
is higher, then survival time is lower). Each of treatments B, C, and
D are better than A.
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Multiple Comparisons

The coefficients in the linear models for the poison data
set are tests of the hypothesis that the given
poison/treatment differs from the default (first) level. So
we have tests of the difference between Poison II and
Poison I and between Poison III and Poison I, but not
between Poison III and Poison II. Similarly, we have tests
of differences between each of Treatments B, C, and D
and Treatment A, but no tests of the three differences
within the the three non-default treatment levels. From
the F-statistic on each factor, we know differences exist,
but not the full list of significant differences.
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The Treatment factor has four levels and therefore six
distinct pairwise comparisons. Three of them are given in
the output to lm() but we can compute the other three,
as well as the one comparison among poisons that is not
already given.
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cmat <- matrix(c(0,0,0,0,-1,0,0,0,1,0,0,0,0,-1,-1,0,0,1,0,-1,0,0,1,1),ncol=6)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 -1 1 0 0 0 Compare Poison II to Poison III

[2,] 0 0 0 -1 1 0 Compare Treatments B and C

[3,] 0 0 0 -1 0 1 Compare Treatments B and D

[4,] 0 0 0 0 -1 1 Compare Treatments C and D

xp <- cmat %*% coefp

[,1]

[1,] 25.463061

[2,] 18.087782

[3,] 4.984402

[4,] -13.103381

varx <- diag(cmat %*% vcvp %*% t(cmat))

> varx

[1] 8.443994 11.258659 11.258659 11.258659

sdx <- sqrt(varx)

[1] 2.905855 3.355393 3.355393 3.355393

> t(xp)/sdx

[,1] [,2] [,3] [,4]

[1,] 8.762674 5.390661 1.48549 -3.905171

The last computation is the t-scores on 42 df for the four computed
comparisons.
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> coef(summary(poisont.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 44.960943 2.905855 15.472534 5.936991e-19

PoisonII 7.810688 2.905855 2.687914 1.026221e-02

PoisonIII 33.273749 2.905855 11.450587 1.690903e-14

TreatmentB -27.623373 3.355393 -8.232531 2.655965e-10

TreatmentC -9.535591 3.355393 -2.841870 6.892762e-03

TreatmentD -22.638971 3.355393 -6.747041 3.347340e-08

> t(xp)/sdx

[,1] [,2] [,3] [,4]

[1,] 8.762674 5.390661 1.48549 -3.905171

In addition to the previous conclusions, Poison III is more toxic than
Poison II. Treatment B is better than Treatment C, Treatment D is
better than Treatment C, but Treatments B and D are not
significantly different. Poisons more toxic to less toxic: III, II, I.
Treatments better to worse: (B, D), C, A.
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